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The prevalent modus operandi within the framework of quantum resource theories has been to characterize
and harness the resources within single objects, in what we can call single-object quantum resource theories.
One can wonder, however, whether the resources contained within multiple different types of objects, now
in a multiobject quantum resource theory, can simultaneously be exploited for the benefit of an operational
task. In this work, we introduce examples of such multiobject operational tasks in the form of subchannel
discrimination and subchannel exclusion games, in which the player harnesses the resources contained within
the composite object of a state-measurement pair. We prove that for any state-measurement pair in which either
of them is resourceful, there exist discrimination and exclusion games for which such a pair outperforms any
possible free state-measurement pair. These results hold for arbitrary convex resources of states, and arbitrary
convex resources of measurements where the set of free measurements is closed under classical post-processing.
Furthermore, we prove that the advantage in these multiobject operational tasks is determined, in a multiplicative
manner, by the resource quantifiers of: generalized robustness of resource of both state and measurement for
discrimination games and weight of resource of both state and measurement for exclusion games.

DOI: 10.1103/PhysRevResearch.2.033374

I. INTRODUCTION

The framework of quantum resource theories (QRTs) [1,2]
has proven to be a successful approach to quantum informa-
tion theory. Broadly speaking, it aims at identifying, char-
acterizing, and utilizing quantum phenomena as a resource
for fuelling quantum information processing protocols for the
development of quantum technologies. A QRT is specified by
first defining the objects of the theory, followed by a property
of these objects to be regarded as a resource. The choice
of a particular property as a resource is then justified by
specifying instances, usually in the form of operational tasks,
in which the presence of such resourceful object provides
an advantage over all resourceless (free) objects. There is a
plethora of objects in quantum theory whose properties are
deemed as resources, namely, states [3–21], measurements
[22–25], behaviours or boxes [26,27], steering assemblages
[28], channels [29–33], among many others—see the recent
review [2]. Arguably, the most studied QRTs are the ones for
states and measurements. QRTs of states address resources
such as entanglement [3,4], coherence [5–7], reference
frames [8], asymmetry [9], superposition [10,15], purity [11],
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athermality [12–14], magic [16], non-Gaussianity [17], and
non-Markovianity [18–20]. QRTs of measurements on the
other hand, address resources such as nonprojective simula-
bility [22,23], informativeness [24], entanglement, and coher-
ence [25].

Having specified a set of objects and one of their properties
to be treated as a resource, it is of interest to quantitatively
specify the amount of resource contained within a given
object. This can be accomplished by introducing appropriate
measures known as resource quantifiers [2]. Two well-known
families of these measures are the so-called robustness-based
[16,24,34–42] and weight-based [35,43–46] resource quanti-
fiers. These quantifiers have found applications in several sce-
narios, for instance, at characterizing, the advantage that a re-
sourceful object offers, when compared to all resourceless ob-
jects, in specific operational tasks. There are two broad fam-
ilies of such results addressing this quantifier-task correspon-
dence, the so-called robustness-discrimination [24,36,37,47–
49] and weight-exclusion [50,51] correspondences.

One common feature among all of these results is that
they address single-object operational tasks, meaning that a
single object is thought of as the resourceful object, and the
associated tasks are then exploiting the resource contained
within such an individual object. One then can wonder, about
the possibility of having operational tasks harnessing two or
more different resources out of two, in principle different,
objects. We refer to these tasks as multiobject tasks, and
we can intuitively approach them from the following two
general levels. In a first instance, one can consider a single
QRT with two different resources, in which case it is natural
to make the distinction of the resources being either: dis-
joint, intersecting or nested [52]. The case of QRTs of states
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with disjoint resources has been explored in the context of
a first law for general QRTs [52], this, inspired by results
from the thermodynamics of multiple conserved quantities
[53–55]. In a second instance however, one can also consider
a multiobject scenario in which a first QRT of certain objects
with an arbitrary resource is being specified, followed by
a second QRT with different objects with their respective
arbitrary resource. We address this latter case by considering a
multiobject scenario with two objects, one being a state and a
second one being a measurement and therefore, the composite
object of interest is now a state-measurement pair.

In this work, we address composite QRTs made of convex
QRTs of states with arbitrary resources and convex QRTs
of measurements with arbitrary resources where the set of
free measurements is closed under classical post-processing
(CPP). Taking into account that the set of free measurements
is closed under CPP for many important resources for mea-
surements like: entanglement, coherence and informativeness,
the results found in this work naturally apply to all of these
instances. Explicitly, we introduce multiobject operational
tasks in the form of subchannel discrimination and subchannel
exclusion games in which, a state-measurement pair is being
deemed as the composite object of the theory, as opposed
to the state (or the measurement) alone. Interestingly, we
find that any resourceful state-measurement pair offers an
advantage, over all possible free pairs, when performing at
particular multiobject tasks. Furthermore, we find that this
advantage can be quantified, in a multiplicative manner, by the
amount of resource contained within each object, here mea-
sured by the resource quantifiers of generalized robustness and
weight, for discrimination and exclusion games respectively.
Moreover, these quantifiers also find operational significance
in an multiobject encoding-decoding communication task in-
volving the state-measurement pair. We believe that the results
found in this work open the door for the exploration of
multiobject operational tasks in general convex QRTs with
different objects beyond states and measurements.

II. COMPOSITE CONVEX QUANTUM RESOURCE
THEORIES AND MULTIOBJECT OPERATIONAL TASKS

We start by addressing convex QRTs of states and measure-
ments with arbitrary resources.

Definition 1. (Composite convex QRTs of states and mea-
surements) Consider the set of quantum states in a complex
finite-dimensional Hilbert space. A quantum state is an opera-
tor ρ satisfying ρ � 0 and Tr(ρ) = 1. We consider a property
of these states defining a closed convex set which we will call
the set of free states and denote as F. We say a state ρ ∈ F is
a free (resourceless) state and it is resourceful otherwise. We
also consider the set of quantum measurements, or positive-
operator valued measures (POVMs) in the same complex
finite-dimensional Hilbert space. A POVM is a collection
of operators M = {Ma}, a ∈ {1, . . . , o} with Ma � 0, ∀a and∑o

a=1 Ma = 1. Similarly, we consider a property of measure-
ments defining a closed convex set of free measurements and
denote it as F . We say a POVM M ∈ F is a free (resourceless)
measurement and it is resourceful otherwise. We say that a
state-measurement pair (ρ,M) is: fully free when both state
and measurement are free, partially resourceful when either is
resourceful, and fully resourceful when both are resourceful.

We now address an operation for measurements.
Definition 2. (Classical post-processing (CPP)) We say that

a measurement N = {Nx}, x ∈ {1, . . . , k} is simulable by the
measurement M = {Ma}, a ∈ {1, . . . , o} when there exists a
conditional probability distribution {q(x|a)} such that Nx =∑o

a=1 q(x|a)Ma, ∀x ∈ {1, . . . , k} [23]. One can check that the
simulability of measurements defines a partial order for the set
of measurements and therefore we use the notation N � M,
meaning that N is simulable by M. We refer to this property
as simulability of measurements or classical post-processing
(CPP).

Intuitively, a set of free measurements is closed under
CPP when there is no physical significance to the specific
measurement label. For example, when labeling an outcome
0 or 1 does not signify anything. An example where this
does not hold is in thermodynamics, where the labels on
an energy measurement have physical significance (labelling
particular energies) and relabelling is not automatically free,
unless the relationship between the label and the energy is also
accordingly updated.

We can check that the set of free measurements is closed
under CPP for QRTs of measurements with the resources
of: entanglement, coherence and informativeness. The sets of
free measurements for these resources (separable, coherent,
uninformative) are defined by specifying the POVM ele-
ments respectively as [24,25]: MS

x = ∑
k MA

x,k ⊗ MB
x,k , MC

x =∑
j p(x| j)| j〉〈 j|, {| j〉} a basis of the Hilbert space being

considered, and MU
x = p(x)1. Since any CPP operation al-

ways maps measurements into measurements and can never
generate entanglement, coherence nor increase purity, all of
these exemplary sets of measurements remain closed under
CPP. We will then be addressing, from now on, convex QRTs
of measurements with its free set being closed under CPP. We
now introduce multiobject operational tasks which are meant
to be played with state-measurement pairs.

Definition 3. (Multiobject subchannel discrimination/

exclusion games) Consider a player with access to a state-
measurement pair (ρ,M). The player sends the state ρ to
the referee who is in possession of a collection of subchan-
nels � = {�x}, x ∈ {1, . . . , k}. The subchannels {�x} are
completely positive (CP) trace-nonincreasing maps, such that∑

x �x forms a completely positive trace-preserving (CPTP)
map. The referee promises to apply one of these subchannels
on the state ρ and the transformed state is then sent back to the
player. The player then effectively has access to the ensemble
Eρ

� = {ρx, p(x)} with p(x) = Tr[�x(ρ)], ρx = �x(ρ)/p(x). In
a subchannel discrimination game, the goal is for the player
to output a guess g ∈ {1, . . . , k} for the subchannel that was
applied, the player succeeds at the game if g = x and fails
when g �= x. In a subchannel exclusion game on the other
hand, the goal is for the player to output a guess g ∈ {1, . . . , k}
for a subchannel that was not applied, that is, the player
succeeds at the game if g �= x and fails when g = x. In order
to generate a guess, the player proceeds to implement the
measurement M = {Ma} on the received state and classically
post-process the measurement outcome a to produce an output
guess g, according to a probability distribution {p(g|a)}, for
playing either a discrimination or an exclusion game. The
probability of success at subchannel discrimination and the
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probability of error at subchannel exclusion are given by

PD
succ(�, ρ,M) = max

{p(g|a)}

∑
x,a,g

δx,g p(g|a) p(a|x) p(x), (1)

PE
err (�, ρ,M) = min

{p(g|a)}

∑
x,a,g

δx,g p(g|a) p(a|x) p(x), (2)

with p(a|x) = Tr[Maρx] and the maximization (minimization)
over all classical post-processing of the measurements outputs
p(g|a). A subchannel discrimination/exclusion game is spec-
ified by the collection of subchannels � = {�x}.

A key point to remark, is that the object of interest is now
the state-measurement pair (ρ,M), as opposed to the state
(or measurement) alone. We now proceed to establish a first
result comparing the performance of a fully resourceful state-
measurement pair against all fully free pairs when addressing
a particular game.

III. ANY FULLY RESOURCEFUL STATE-MEASUREMENT
PAIR IS USEFUL FOR SUBCHANNEL

DISCRIMINATION/EXCLUSION

Result 1. Consider a convex QRT of states with an arbi-
trary resource and a convex QRT of measurements with an
arbitrary resource closed under CPP. Given a fully resourceful
state-measurement pair (ρ,M), meaning that we have both a
resourceful state ρ /∈ F and a resourceful measurement M /∈
F , then, there exist subchannel games �

(ρ,M)
D and �

(ρ,M)
E such

that

max
σ∈F

max
N∈F

PD
succ

(
�

(ρ,M)
D , σ,N

)
< PD

succ

(
�

(ρ,M)
D , ρ,M

)
, (3)

PE
err

(
�

(ρ,M)
E , ρ,M

)
< min

σ∈F
min
N∈F

PE
err

(
�

(ρ,M)
E , σ,N

)
. (4)

These two strict inequalities mean that the state-measurement
pair (ρ,M) provides strictly larger (smaller) advantage (error)
than all fully free state-measurement pairs, when playing
the subchannel discrimination (exclusion) game specified by
�

(ρ,M)
D (� (ρ,M)

E ).
The proof of this result relies on the hyperplane separation

theorem [56] as well as on a method first used in the context of
quantum steering [36], for “completing” a set of subchannels,
from which one can extract suitable operators in order to
construct the tailored subchannel games �

(ρ,M)
D and �

(ρ,M)
E ,

for which playing with the pair (ρ,M) is optimal. The full
proof of this result is in Appendix A. We would now like to
quantify this advantage by specifying how large this gap can
be. In order to do this, we need to define a suitable resource
quantifier for the composite objects of state-measurement
pairs. A natural starting point is to quantify the amount of
resource contained within the individual objects of interest,
states and measurements.

IV. RESOURCE QUANTIFIERS
AND MULTIOBJECT GAMES

We now address resource quantifiers for convex QRTs of
states and measurements with arbitrary resources.

Definition 4. (Generalized robustness and weight for states
and measurements) Consider a convex QRT of states with an
arbitrary resource and a convex QRT of measurements with an

arbitrary resource. The generalized robustness and the weight
of resource of a state and a measurement are given by

RF(ρ) =
min

r � 0
σ ∈ F
ρG

{r | ρ + rρG = (1 + r)σ }, (5)

RF (M) =
min

r � 0
N ∈ F
MG

{
r
∣∣ Ma + rMG

a = (1 + r)Na
}
, (6)

WF(ρ) =
min

w � 0
σ ∈ F
ρG

{w | ρ = wρG + (1 − w)σ }, (7)

WF (M) =
min

w � 0
N ∈ F
MG

{
w

∣∣ Ma = wMG
a + (1 − w)Na

}
. (8)

The generalized robustness quantifies the minimum amount of
a general state ρG (measurement MG) that has to be added to
ρ (M) such that we get a free state σ (measurement N). The
weight on the other hand, quantifies the minimum amount of
a general state ρG (measurement MG) that has to be used for
recovering the state ρ (measurement M).

One now would like to introduce a quantifier for the com-
posite object (ρ,M). It turns out however, that it is enough to
quantify the resources contained within the individual objects,
as we will see in what follows. We now establish a connection
between robustness-based (weight-based) resource quantifiers
for states and measurements and multiobject subchannel dis-
crimination (exclusion) games.

Result 2. Consider a convex QRT of states with an arbitrary
resource and a convex QRT of measurements with an arbitrary
resource closed under CPP. Given any state-measurement pair
(ρ,M), we have.

max
�

PD
succ(�, ρ,M)

max
σ ∈ F
N ∈ F

PD
succ(�, σ,N )

= [1 + RF(ρ)][1 + RF (M)], (9)

min
�

PE
err (�,M, ρ)

min
σ ∈ F
N ∈ F

PE
err (�, σ,N )

= [1 − WF(ρ)][1 − WF (M)],

(10)

with the maximization (minimization) over all subchannel
games.

The full proof of this result is in Appendix B. The first thing
we can notice is, that by considering a fully resourceful state-
measurement pair (ρ,M), one recovers the strict inequalities
in Eqs. (3) and (4). Additionally, we can also see that by con-
sidering now a partially resourceful pair (ρ,M), meaning that
either the state or the measurement is resourceful, we still get
an advantage. This may seem counter-intuitive at first sight, as
using a resourceless measurement should not allow the player
to obtain any advantage, even with the most resourceful state.
However, as we explicitly show in Appendix B, there still
exists a game which allows the player to utilize the advantage
arising in such a partially resourceful scenario. The resolution
to this apparent paradox is based on the crucial difference
between channel and subchannel discrimination/exclusion
tasks. In particular, in a subchannel discrimination/exclusion
game, a resourceful state has the additional ability to
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“influence” the ensemble of states from which the player
needs to discriminate/exclude, since Eρ

� = {ρx, p(x)} with
p(x) = Tr[�x(ρ)], ρx = �x(ρ)/p(x) and therefore, this leads
to suitable ensembles, even for resourceless measurements.
Similarly, having access to a resourceful measurement pro-
vides better guessing strategies, even for ensembles generated
by resourceless states. Finally, for a fixed fully free pair, there
exists a game for which the pair is still optimal amongst all
free pairs. Therefore the ratios considered in result 2 are com-
paring the performance of any pair against all fully free pairs.

It is illustrative to compare these results with their single-
object counterparts [50,57]. When considering subchannel
games being played with a state alone, and allowing max-
imizations over arbitrary measurements, the advantage be-
comes [1 + RF(ρ)] [57]. In the multiobject scenario consid-
ered here however, we get [1 + RF(ρ)][1 + RM(M)] instead,
which can be larger, whenever M is resourceful. A similar
analysis can be made for the weight-exclusion case [50]. This
increment can be conceptually understood by the fact that we
are now addressing a composite object and therefore, it is
natural that each object contributes to the overall advantage.
Nevertheless, it is still surprising that the advantage can be
quantified in this elegant multiplicative manner.

It is also interesting to note that this result applies to convex
QRTs of states with arbitrary resources and convex QRTs of
measurements with arbitrary resources closed under CPP and
therefore it covers, as particular instances, several important
resources for both states and measurements. It would be
interesting to explore whether these results still hold when
CPP is dropped or, on the other hand, if a counterexample can
be found. We leave this however for future research. We now
address multiobject single-shot information-theoretic quanti-
ties in the context of an encoding-decoding communication
task.

V. SINGLE-SHOT INFORMATION THEORY

Consider a state-measurement pair (ρ,M) and the follow-
ing communication task. Suppose we have an ensemble of
subchannels � = {�x} which add up to a completely positive
and trace preserving map. Our goal is to encode the infor-
mation about which of these subchannels has been applied in
a classical random variable X . We do so by applying one of
these subchannels to the state ρ, resulting in the ensemble of
states E (�,ρ) = {σ (�,ρ)

x , p(x)} with σ (�,ρ)
x = �x(ρ). We refer

to the classical random variable X encoded in such a way as
X�,ρ . We then consider a decoding scheme using the measure-
ment M = {Mg} with its outcomes representing a (guess) clas-
sical random variable G. Similarly, we refer to such a decoded
variable as GM. We then have that this encoding-decoding
scheme depends on the state-measurement pair (ρ,M). A
well studied figure of merit for communication tasks is the
so-called accessible information [58]. Additionally, it has re-
cently been introduced a complementary figure of merit which
has been coined the excludible information, for its natural
connection to exclusion tasks [50]. These quantities depend
on the plus (minus) infinity mutual information (respectively),
which are given by

I±∞(X�,ρ ; GM) = ±[H±∞(X�,ρ ) − H±∞(X�,ρ |GM)],

with the order plus and minus infinity entropies H+∞(X�,ρ ) =
− log2 {maxx p(x)} and H−∞(X�,ρ ) = − log2 {minx p(x)},
the order plus and minus infinity conditional entropies
H+∞(X�,ρ |GM) = − log2 {∑g maxx p(x, g)} and
H−∞(X�,ρ |GM) = − log2 {∑g minx p(x, g)}, with p(x, g) =
p(g|x)p(x) and p(g|x) = Tr[Mg�x(ρ)]. The ±∞ mutual
information quantifies the amount of the respective type of
information (accessible or excludible) that can be conveyed
by the state-measurement pair and the ensemble of channels at
play. These measures are usually functions of the channel but
we consider them here as functions of the pair (ρ,M) instead.
We now address these quantities for a state-measurement pair
in comparison to all fully free pairs.

Result 3. Consider a state-measurement pair (ρ,M). The
maximum gap between the plus (minus) infinity mutual infor-
mation between this pair and all fully free state-measurement
pairs is upper bounded as

max
�

{
I+∞(X�,ρ ; GM) − max

σ∈F
max
N∈F

I+∞(X�,σ ; GN )

}

� log2[1 + RF(ρ)] + log2[1 + RF (M)], (11)

max
�

{
I−∞(X�,ρ ; GM) − max

σ∈F
max
N∈F

I−∞(X�,σ ; GN )

}

� − log2[1 − WF(ρ)] − log2[1 − WF (M)], (12)

with the maximization over all ensembles of channels.
The full proof of this result is in Appendix C. This result

means that the resource quantifiers place upper bounds for
these quantities. It would be interesting to see whether they
can be saturated.

VI. CONCLUSIONS

In this work, we have introduced multiobject operational
tasks in which the composite objects of interest are state-
measurement pairs. The results found in this article hold for
convex QRTs of states with arbitrary resources and convex
QRTs of measurements closed under CPP. In particular, we
have shown that any resourceful pair is useful for multiob-
ject subchannel discrimination and exclusion games, when
compared to the best possible strategy using fully free state-
measurement pairs.

Furthermore, we have found that this advantage can be
quantified, in a multiplicative manner, by the quantifiers of
generalized robustness and weight of the state and the mea-
surement, for discrimination and exclusion, respectively. This
means that the advantage is always possible whenever at least
one of the pair is a resource. This is a consequence of the fact
that in our case the resources do not interact with each other
(i.e., the set of free objects is the set of all state-measurement
pairs in which both of them are free, i.e., the total free set
is F × F ). This leads to a natural open question: can we find
relevant information-theoretic tasks in situations in which the
set of free objects is more complicated, i.e., allows for a
nontrivial interplay between the constituent resources? This
could be achieved by considering a superset of F × F as the
free set and quantifying the quantum advantage in this new
case. It would be interesting to see whether this alteration can

033374-4



MULTIOBJECT OPERATIONAL TASKS FOR CONVEX … PHYSICAL REVIEW RESEARCH 2, 033374 (2020)

provide any new insights for other information-theoretic tasks
and quantifiers.

Moreover, the objects which we jointly studied (state and
measurement) are used in subchannel discrimination and ex-
clusion tasks in a way which does not allow them to interfere
with each other. It would be interesting to study objects which
can influence one another and find tasks exploiting these
interactions. For example, one could consider the pair: state
and quantum instrument and study the advantage which they
provide in tasks with multiple number of guesses. We believe
that this may lead to new insights related to the information-
disturbance trade-off purely from a resource theoretic per-
spective.

Our results also provide support, now in the multiobject
regime, to the conjecture made in Ref. [50], about the exis-
tence of a weight-exclusion correspondence whenever there
is a robustness-discrimination one. We have also introduced a
communication task in which the log-robustness and the log-
weight place upper bounds for information-theoretic quanti-
ties.

Finally, we believe that this work opens the door for
exploring multiobject operational tasks in general QRTs of
arbitrary composite objects with arbitrary resources, beyond
those of states and measurements, as well as tasks for pairs of
the same type of objects but exploiting different resources, and
whether the distinction between the resources being disjoint,
intersecting and nested plays any major role.
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APPENDIX A: PROOF OF RESULT 1

In order to prove result 1, we start by rewriting the figures
of merit in a more compact form, we then extract some useful
operators using the hyperplane separation theorem and define
a particular classical post-processing (CPP) operation. With
this in place, we proceed to address the discrimination case
followed by the exclusion case.

1. Rewriting the figures of merit

We start by rewriting the probability of success (error)
in multiobject discrimination (exclusion) games in a more
compact form. Given a multiobject discrimination game
� = {�x(·)} and a state-measurement pair (ρ,M), the

probability of success can be written as

PD
succ(�, ρ,M)

= max
{p(g|a)}

∑
x,a,g

δx,g p(g|a) p(a|x) p(x),

= max
{p(g|a)}

∑
x,a,g

δx,gp(g|a) Tr

[
Ma

�x(ρ)

Tr [�x(ρ)]

]
p(x),

= max
{p(g|a)}

∑
x,a,g

δx,gp(g|a) Tr[Ma�x(ρ)],

= max
{p(g|a)}

∑
x

Tr

{[∑
a

(∑
g

p(g|a)δx,g

)
Ma

]
�x(ρ)

}
,

= max
{p(x|a)}

∑
x

Tr

{[∑
a

p(x|a)Ma

]
�x(ρ)

}
,

= max
N�M

∑
x

Tr [Nx�x(ρ)],

where in the third line, we used p(x) = Tr[�x(ρ)], and in the
last line, the maximization is over all measurements simulable
by M. Similarly, for the multiobject exclusion case, we get

PE
err (�, ρ,M) = min

N�M

∑
x

Tr [Nx�x(ρ)].

2. Some useful operators

Given any fully resourceful state-measurement pair (ρ,M),
meaning that ρ /∈ F and M = {Mx} /∈ F , x ∈ {1, . . . , k} and
using the hyperplane separation theorem [56], we have that
there exist positive semidefinite operators Zρ and {ZM

x }, x ∈
{1, . . . , k} such that

Tr(Zρρ) > 1,
∑

x

Tr
(
ZM

x Mx
)

> 1, (A1)

Tr(Zρσ ) � 1,
∑

x

Tr
(
ZM

x Nx
)

� 1, (A2)

∀σ ∈ F,N ∈ F . Similarly, there exist positive semidefinite
operators Y ρ and {YM

x }, x ∈ {1, . . . , k} such that

Tr(Y ρρ) < 1,
∑

x

Tr
(
YM

x Mx
)

< 1, (A3)

Tr(Y ρσ ) � 1,
∑

x

Tr
(
YM

x Nx
)

� 1, (A4)

∀σ ∈ F,N ∈ F . These sets of operators are going to be useful
when constructing the subchannel games for discrimination
and exclusion.

3. Particular CPP operation

Given an arbitrary measurement N = {Na} with a ∈
{1, . . . , k + n}, n and k integers, we then construct a measure-
ment Ñ = {Ñx} with k elements as

Ñx := Nx, x ∈ {1, . . . , k − 1},

Ñk := Nk +
k+n∑

y=k+1

Ny. (A5)
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We can check that this is a well-defined measurement and that
the operation taking N into Ñ is a CPP operation on the initial
measurement N. This corresponds to a coarse graining of
measurement outcomes, such that any outcome of N greater
or equal than k is declared as outcome k.

4. Discrimination case

Result 1A. Consider a convex QRT of states with an
arbitrary resource and a convex QRT of measurements with
an arbitrary resource closed under CPP. Given any fully re-
sourceful state-measurement pair (ρ,M), meaning that we
have a resourceful state ρ /∈ F and a resourceful measurement
M /∈ F , then, there exists a subchannel game � (ρ,M) such that

max
σ∈F

max
N∈F

PD
succ(� (ρ,M), σ,N ) < PD

succ(� (ρ,M), ρ,M), (A6)

with the left side being maximized over all possible free states
and free measurements.

Proof. We start by considering a fully resourceful state-
measurement pair (ρ,M). Using the hyperplane separation
theorem [56], there exist positive semidefinite operators Zρ

and {ZM
x }, x ∈ {1, . . . , k} satisfying the conditions (A1) and

(A2). We now define the set of maps {�(ρ,M)
x (·)} such that for

any state η, we have

�(ρ,M)
x (η) := α(ρ,M) Tr(Zρη)ZM

x ,

α(ρ,M) := 1

‖Zρ‖1 Tr(ZM)
,

ZM :=
k∑

x=1

ZM
x ,

with ‖X‖1 = Tr(
√

X †X ) the trace norm. We are going to use
the notation α = α(ρ,M). We can check that these maps are
completely positive and linear, and that they satisfy that ∀η:

F (η) := Tr

[
k∑

x=1

�(ρ,M)
x (η)

]
= Tr(Zρη)

‖Zρ‖1
� 1.

The inequality follows from the variational character-
ization of the trace norm, establishing that ‖X‖1 =
max−1�M�1{Tr(XM )} for any Hermitian operator X [58].
We can also write F (η) = α Tr(Zρη) Tr(ZM). The set of
maps {�(ρ,M)

x (·)} then add up to a completely positive trace-
nonincreasing linear map. We can then complete this set
to be a set of subchannels by adding an extra subchan-
nel �

(ρ,M)
k+1 (·) := �(·) − �(ρ,M)(·), with � being an arbi-

trary CPTP map such that it is greater or equal than zero
(take the identity channel for instance). Therefore, with this
construction, we obtain a well-defined set of subchannels
with k + 1 elements. We now proceed to define a family of
sets of subchannels in the following manner. Given a state-
measurement pair (ρ,M), M = {Mx}, x ∈ {1, . . . , k}, and an
integer n � 1, we define the family of sets of subchannels
given by � (ρ,M,n) = {� (ρ,M,n)

y (·)}, y ∈ {1, . . . , k + n} with:

� (ρ,M,n)
y (η) :=

{
α Tr[Zρη]ZM

y , y = 1, . . . , k
1
n [1 − F (η)]ξ, y = k + 1, . . . , k + n

(A7)

with ξ begin an arbitrary quantum state ξ � 0, Tr(ξ ) = 1.
We can check that this is a well-defined set of subchannels,
because they now add up to a CPTP linear map:

Tr

⎡
⎣k+n∑

y=1

� (ρ,M,n)
y (η)

⎤
⎦ = 1, ∀n,∀η.

We now analyze the multiobject subchannel discrimination
game given by � (ρ,M,n). The probability of success of a player
using the state-measurement pair (ρ,M) is given by

PD
succ(� (ρ,M,n)ρ,M) = max

N�M

k+n∑
y=1

Tr
[
Ny�

(ρ,M,n)
y (ρ)

]

�
k∑

x=1

Tr
[
Mx�

(ρ,M,n)
x (ρ)

]

= α Tr[Zρρ]
k∑

x=1

Tr
[
MxZM

x

]
. (A8)

The inequality follows because we have chosen to simulate
a particular measurement, i.e. Ny = My for y � k and Ny = 0
for y > k. In the last equality, we have replaced the subchannel
discrimination game with (A7). Now, because of the condi-
tions in Eq. (A1), we have the strict inequality:

PD
succ(� (ρ,M,n), ρ,M) > α. (A9)

We now analyze the best fully free player:

max
σ ∈ F
N ∈ F

PD
succ(� (ρ,M,n), σ,N ) = max

σ ∈ F
N ∈ F
Ñ � N

k+n∑
x=1

Tr
[
Ñx�

(ρ,M,n)
x (σ )

]
.

We are considering QRTs of measurements closed under CPP
and therefore, CPP is redundant here and we have

max
σ ∈ F
N ∈ F

PD
succ(� (ρ,M,n), σ,N ) = max

σ ∈ F
N ∈ F

k+n∑
x=1

Tr
[
Nx�

(ρ,M,n)
x (σ )

]
.

Let us now consider, without loss of generality, that these
two maximizations are being achieved by the fully free pair
(σ ∗,N∗). We then have

PD
succ(� (ρ,M,n), σ ∗,N∗) =

k+n∑
x=1

Tr
[
N∗

x � (ρ,N,n)
x (σ ∗)

]
,

= α Tr[Zρσ ∗]
k∑

y=1

Tr
[
N∗

y ZM
y

]

+ 1

n
[1 − F (σ ∗)]

k+n∑
y=k+1

Tr[N∗
y ξ ].

(A10)

In the second equality, we have replaced the subchannel game
(A7). The first term can be upper bounded as

k∑
y=1

Tr
[
N∗

y ZM
y

]
�

k∑
y=1

Tr
[
Ñ∗

y ZM
y

]
� 1,
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with the measurement Ñ∗ defined in Eq. (A5). The first
inequality follows from the definition of the measurement
Ñ∗. In the second inequality we use the fact that Ñ∗ is a
free measurement (because it was constructed from a free
measurement N∗ and a CPP operation) and therefore we can
use the conditions in Eq. (A2). We now also use the fact that
1 − F (η) � 1, ∀η, then equation (A10) becomes

PD
succ(� (ρ,M,n), σ,N ) � α + 1

n

k+n∑
y=k+1

Tr[N∗
y ξ ].

The second term can be upper bounded as

k+n∑
y=k+1

Tr[N∗
y ξ ] �

k+n∑
y=1

Tr[N∗
y ξ ] = Tr

⎡
⎣

⎛
⎝k+n∑

y=1

N∗
y

⎞
⎠ξ

⎤
⎦ = 1.

The inequality follows because we have added positive terms
and the equality follows from N∗ being a measurement∑k+n

y=1 Ñy = 1 and ξ being a state. We then get

PD
succ(� (ρ,M,n), σ,N ) � α + 1

n
.

We now choose the subchannel game given by � (ρ,M,n→∞)

and therefore we get

PD
succ(� (ρ,M,n→∞), σ,N ) � α. (A11)

Finally, Eqs. (A9) and (A11) together imply that

max
σ ∈ F
N ∈ F

PD
succ(� (ρ,M,n→∞), σ,N ) < PD

succ(� (ρ,M,n→∞), ρ,M),

as desired. �

5. Exclusion case

Result 1B. Consider a convex QRT of states with an arbi-
trary resource and a convex QRT of measurements with an ar-
bitrary resource closed under CPP. Given any fully resourceful
state-measurement pair, meaning that we have a resourceful
state ρ /∈ F and a resourceful measurement M /∈ F , then, there
exist a subchannel game � (ρ,M) such that

PE
err (�

(ρ,M), ρ,M) < min
σ∈F

min
N∈F

PE
err (�

(ρ,M), σ,N ), (A12)

with minimization over all possible free states and measure-
ments.

Proof. This proof is closely related to the discrimination
proof, but the subchannel game has to be constructed dif-
ferently. We start by considering a fully resourceful state-
measurement pair (ρ,M). Using the hyperplane separation
theorem [56], there exist positive semidefinite operators Y ρ

and {YM
x }, x ∈ {1, . . . , k} satisfying the conditions (A3) and

(A4). We now define the set of maps {�(ρ,M)
x (·)} with

�(ρ,M)
x (η) := β (ρ,M) Tr(Y ρη)YM

x ,

β (ρ,M) := 1

2‖Y ρ‖1 Tr(YM)
, (A13)

YM :=
k∑

x=1

YM
x ,

with ‖X‖1 = Tr(
√

X †X ) the trace norm. We are going to
use the notation β = β (ρ,M). As before, these operators are
completely positive linear maps and they now satisfy that ∀η:

G(η) := Tr

[
k∑

x=1

�(ρ,M)
x (η)

]
= Tr(Y ρη)

2‖Y ρ‖1
� 1

2
,

which can also be written as

G(η) = β Tr(Y ρη) Tr(YM). (A14)

The set of maps {�(ρ,M)
x (·)} then add up to a completely

positive trace-nonincreasing linear map. We can then com-
plete this set to be a set of subchannels by adding an extra
subchannel �

(ρ,M)
k+1 (·) := �(·) − �(ρ,M)(·), with � being an

arbitrary CPTP map such that it is greater or equal than zero
(take the identity channel for instance). Therefore, with this
construction we obtain a well-defined set of subchannels with
k + 1 elements. We now proceed to define a set of subchannels
in the following manner. Given a state-measurement pair
(ρ,M), M = {Mx}, x ∈ {1, . . . , k}, we define the set of sub-
channels given by � (ρ,M) = {� (ρ,M)

y (·)}, y ∈ {1, . . . , k + n}
with:

� (ρ,M)
y (η) :=

{
β Tr[Y ρη]YM

y , y = 1, . . . , k

[1 − G(η)]ξM, y = k + 1
(A15)

with the quantum state

ξM :=
∑k

x=1 p(x)YM
x .∑k

x=1 p(x) Tr
(
YM

x

) . (A16)

{p(x)} being an arbitrary probability distribution. We can also
check that this is a well-defined set of subchannels, i.e., they
add up to a CPTP linear map:

Tr

⎡
⎣k+1∑

y=1

� (ρ,M)
y (η)

⎤
⎦ = 1, ∀η.

We remark here that, unlike the discrimination case, we are
not generating a family of sets of subchannels, but only a
specific one. We now analyze the multiobject subchannel
exclusion game given by � (ρ,M) and the probability of error
of a player using the state-measurement pair (ρ,M), which is
given by

PE
err (�

(ρ,M)ρ,M) = min
N�M

k+n∑
y=1

Tr
[
Ny�

(ρ,M)
y (ρ)

]

�
k∑

x=1

Tr
[
Mx�

(ρ,M)
x (ρ)

]

= β Tr[Y ρρ]
k∑

x=1

Tr
[
MxY

M
x

]
. (A17)

The inequality follows because we have chosen to simulate
a particular measurement, i.e. Ny = My for y � k and Ny = 0
for y > k. In the last equality, we have replaced the subchannel
exclusion game with (A15). Now, because of (A3) and (A4),
we have the strict inequality:

PE
err (�

(ρ,M), ρ,M) < β. (A18)
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As before, we now analyze the best fully free player:

min
σ ∈ F
N ∈ F

PE
err (�

(ρ,M), σ,N ) = min
σ ∈ F
N ∈ F
Ñ � N

k+1∑
x=1

Tr
[
Ñx�

(ρ,M)
x (σ )

]

= min
σ ∈ F
N ∈ F

k+1∑
x=1

Tr
[
Nx�

(ρ,M)
x (σ )

]
,

where the equality follows because CPP is redundant. Let
us now consider, without loss of generality, that these two
minimizations are achieved by the fully free pair (σ ∗,N∗). We
then have

PE
err (�

(ρ,M), σ ∗,N∗) =
k+1∑
x=1

Tr
[
N∗

x � (ρ,N )
x (σ ∗)

]

=β Tr[Y ρσ ]
k∑

y=1

Tr
[
N∗

y YM
y

]

+ [1 − G(σ ∗)] Tr[N∗
k+1ξ

M].

We now add and subtract a convenient term as

PE
err (�

(ρ,M), σ ∗,N∗) = β Tr[Y ρσ ]
k∑

x=1

Tr
[
N∗

x YM
x

]

+ β Tr(Y ρσ ∗)
k∑

x=1

p(x) Tr
(
N∗

k+1Y
M

x

)

− β Tr(Y ρσ ∗)
k∑

x=1

p(x) Tr
(
N∗

k+1Y
M

x

)
+ [1 − G(σ ∗)] Tr

[
N∗

k+1ξ
M

]
.

We now define a measurement given by Ñ = {Ñ∗
x } with Ñ∗

x =
N∗

x + p(x)N∗
k+1, and p(x) being the probability distribution

from (A16), and we can reorganize this as

PE
err (�

(ρ,M), σ ∗,N∗) = β Tr[Y ρσ ]
k∑

y=1

Tr
[
Ñ∗

y YM
y

]

+ [1 − G(σ ∗)] Tr[N∗
k+1ξ

M]

− β Tr(Y ρσ ∗)
k∑

x=1

p(x) Tr
(
N∗

k+1Y
M

x

)
.

The first term is lower bounded by β by using the conditions
in Eq. (A4) and therefore we have

PE
err (�

(ρ,M,n), σ ∗,N∗)

� β + [1 − G(σ ∗)] Tr[N∗
k+1ξ

M]

− β Tr(Y ρσ ∗)
k∑

x=1

p(x) Tr
(
N∗

k+1Y
M

x

)
. (A19)

We now prove that the remaining term (last two lines) is
always greater than or equal to zero. We start by rewriting

this term as

[1 − G(σ ∗)] Tr[N∗
k+1ξ

M]

−β Tr(Y ρσ ∗)
k∑

x=1

p(x) Tr
(
N∗

k+1Y
M

x

)

= Tr

{
N∗

k+1

[
(1 − G(σ ∗))ξM

−β Tr(Y ρσ ∗)
k∑

x=1

p(x)YM
x

]}
.

We have N∗
k+1 � 0 and therefore we now only need to

prove that the operator inside the square brackets is positive
semidefinite. We rewrite this operator as

[1 − G(σ ∗)]ξM − β Tr(Y ρσ ∗)
k∑

x=1

p(x)YM
x

= [1 − G(σ ∗)]

∑k
x=1 p(x)YM

x∑k
x=1 p(x) Tr

(
YM

x

)
− β Tr(Y ρσ ∗)

k∑
x=1

p(x)YM
x ,

where we used (A16) to substitute for ξM. We now multiply
by the positive term

∑k
x=1 p(x) Tr(YM

x ) and obtain

[1 − G(σ ∗)]
k∑

x=1

p(x)YM
x

− β Tr(Y ρσ ∗)

(
k∑

x=1

p(x) Tr
(
YM

x

))(
k∑

x=1

p(x)YM
x

)
.

We now factorize the positive semidefinite operator∑k
x=1 p(x)YM

x and analyze the coefficient as follows:

1 − G(σ ∗) − β Tr(Y ρσ ∗)
k∑

x=1

p(x) Tr
(
YM

x

)

= 1 − β Tr(Y ρσ ∗) Tr(YM) − β Tr(Y ρσ ∗)
k∑

x=1

p(x) Tr
(
YM

x

)
,

� 1 − 2β Tr(Y ρσ ∗) Tr(YM)

= 1 − Tr(Y ρσ ∗)

‖Y ρ‖1
� 0. (A20)

In the first equality, we replaced G(σ ∗) using (A14). The
first inequality follows because we are subtracting a larger
quantity. In the second equality we substituted β (A13). The
second inequality follows because Tr(Y ρη)

‖Y ρ‖1
� 1, ∀η. Coming

back to (A19) we then have

PE
err (�

(ρ,M), σ ∗,N∗) � β. (A21)

Putting together (A18) and (A21), we obtain

PE
err (�

(ρ,M), ρ,M) < min
σ∈F

min
N∈F

PE
err (�

(ρ,M), σ,N ),

as desired. �
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APPENDIX B: PROOF OF RESULT 2

We divide this result in two parts. In the first part, we prove
the upper bound for discrimination and the lower bound for
exclusion. In the second part, we show how to achieve these
bounds.

Result 2A. Consider a convex QRT of states with an
arbitrary resource and a convex QRT of measurements with
an arbitrary resource closed under CPP. Given any state-
measurement pair (ρ,M), we have

max
�

PD
succ(�, ρ,M)

max
σ ∈ F
N ∈ F

PD
succ(�, σ,N )

= [1 + RF(ρ)][1 + RF (M)].

(B1)

Result 2B. Consider a convex QRT of states with an
arbitrary resource and a convex QRT of measurements with

an arbitrary resource closed under CPP. Given any state-
measurement pair (ρ,M), we have

min
�

PE
err (�, ρ,M)

min σ ∈ F
N ∈ F

PE
err (�, σ,N )

= [1 − WF(ρ)][1 − WF (M)].

(B2)

1. Upper bound for multiobject discrimination and lower bound
for multiobject exclusion

We start by proving that for any state-measurement pair
(ρ,M), the product [1 + RF(ρ)][1 + RF (M)] places an upper
bound on the advantage ratio in any subchannel game �.

Proof. Given any subchannel game � and any state-
measurement pair (ρ,M), we have

PD
succ(�, ρ,M) = max

N�M

∑
x

Tr[Nx�x(ρ)] � [1 + RF(ρ)] max
N�M

∑
x

Tr[Nx�x(σ ∗)],

� [1 + RF(ρ)] max
σ∈F

max
N�M

∑
x

Tr[Nx�x(σ )],

= [1 + RF(ρ)] max
σ∈F

max
{q(x|a)}

∑
x

Tr

[(∑
a

q(x|a)Ma

)
�x(σ )

]
,

� [1 + RF(ρ)][1 + RF (M)] max
σ∈F

max
{q(x|a)}

∑
x

Tr

[(∑
a

q(x|a)Ñ∗
a

)
�x(σ )

]
,

= [1 + RF(ρ)][1 + RF (M)] max
σ∈F

max
≈
N �Ñ∗

∑
x

Tr[
≈
Nx�x(σ )],

� [1 + RF(ρ)][1 + RF (M)] max
σ∈F

max
Ñ∈F

max
≈
N �Ñ

∑
x

Tr[
≈
Nx�x(σ )],

= [1 + RF(ρ)][1 + RF (M)] max
σ∈F

max
Ñ∈F

PD
succ(�, σ, Ñ ). (B3)

In the first inequality, we use the definition of the generalized
robustness from which we get ρ � [1 + RF(ρ)]σ ∗ and since
�x are linear maps we have �x(ρ) � [1 + RF(ρ)]�x(σ ∗), ∀x.
In the second inequality we allow ourselves to maximize over
all free states. In the third inequality, we use the definition
of the generalized robustness from which we get Ma � [1 +
RM(M)]Ñ∗

a , ∀a. In the fourth inequality, we allow ourselves
to maximize over all free measurements. �

Proof. The proof for the lower bound for multiobject sub-
channel exclusion follows similar arguments. �

2. Achieving upper bound for discrimination
and lower bound for exclusion

Lemma 1. (Dual SDPs for generalized robustness) The gen-
eralized robustness of resource of a state ρ and a measurement
M = {Mx}, x ∈ {1, . . . , k} can be written as

RF(ρ) = max
Z

Tr[(Z )ρ] − 1, (B4a)

s.t. Z � 0, (B4b)

Tr[Zσ ] � 1, ∀σ ∈ F, (B4c)

RF (M) = max
{Zx}

∑
x

Tr[ZxMx] − 1, (B5a)

s.t. Zx � 0, ∀x, (B5b)∑
x

Tr[ZxNx] � 1, ∀N ∈ F . (B5c)

These are the dual SDP formulations of the generalized ro-
bustnesses of resource for states and measurements.

Proof. (of result 2A) Given any state-measurement pair
(ρ,M), we want to find a suitable subchannel game � so that
we achieve the upper bound in Eq. (B3). We start by noting
that lemma 1 is a refined version of the hyperplane separation
theorem, from which we can extract positive semidefinite
operators Zρ , {ZM

x }, x ∈ {1, . . . , k} satisfying the conditions
(A1) and (A2). Therefore the construction of the set of sub-
channels from the previous section applies here as well. We
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then continue from (A8) which can now be rewritten as

PD
succ(� (ρ,M,n), ρ,M) � α Tr[Zρρ]

k∑
y=1

Tr
[
MyZM

y

]
,

= α[1 + RF(ρ)][1 + RF (M)]. (B6)

The equality follows from (B4a) and (B5a). We now analyze
the fully free player. Similarly, we now choose the subchannel
game given by � (ρ,M,n→∞) and invoking (A11) we have

max
σ∈F

max
N∈F

PD
succ(� (ρ,M,n→∞), σ,N ) � α. (B7)

We now analyze the ratio of interest with this particular
subchannel game and have

PD
succ(� (ρ,M,n→∞), ρ,M)

maxσ∈F maxN∈F PD
succ(� (ρ,M,n→∞), σ,N )

� α[1 + RF(ρ)][1 + RF (M)]

maxσ∈F maxN∈F PD
succ(� (ρ,M,n→∞), σ,N )

� α[1 + RF(ρ)][1 + RF (M)]

α

= [1 + RF(ρ)][1 + RF (M)]. (B8)

In the first inequality, we used (B6) while in the second, we
used (B7). Putting together (B8) and (B3), we obtain

PD
succ(� (ρ,M,n→∞), ρ,M)

max σ ∈ F
N ∈ F

PD
succ(� (ρ,M,n→∞), σ,N )

= [1 + RF(ρ)][1 + RF (M)].

as desired. �
Lemma 2. (Dual SDPs for weight) The weight of resource of a
state ρ and a measurement M = {Mx}, x ∈ {1, . . . , k} can be
written as

WF(ρ) = max
Y

Tr[(−Y )ρ] + 1, (B9a)

s.t. Y � 0, (B9b)

Tr[Y σ ] � 1, ∀σ ∈ F, (B9c)

WF (M) = max
{Yx}

∑
x

Tr[(−Yx )Mx] + 1, (B10a)

s.t. Yx � 0, ∀x, (B10b)∑
x

Tr[YxNx] � 1, ∀N ∈ F . (B10c)

These are the dual SDP formulations of the weights of re-
source for states and measurements.

Proof. (of result 2B) This proof follows a similar logic to
that of the robustness, and we write down for completeness.
Given any state-measurement pair (ρ,M), we want to find
a suitable subchannel game � so that we achieve the lower
bound in Eq. (B2). The construction of the set of subchannels
form the previous section applies here as well. We then

continue from (A17) which can now be rewritten as

PE
err (�

(ρ,M)ρ,M) � β Tr[Y ρρ]
k∑

y=1

Tr
[
MyY

M
y

]
,

= β[1 − WF(ρ)][1 − WF (M)]. (B11)

The equality follows from (B9a) and (B10a). We now analyze
the fully free player and invoke (A21), which reads

min
σ∈F

min
N∈F

PE
err (�

(ρ,M), σ,N ) � β. (B12)

We now analyze the ratio of interest with this particular
subchannel game and have

PE
err (�

(ρ,M), ρ,M)

minσ∈F minN∈F PE
err (�

(ρ,M), σ,N )

� β[1 − WF(ρ)][1 − WF (M)]

minσ∈F minN∈F PE
err (� (ρ,M), σ,N )

� β[1 − WF(ρ)][1 − WF (M)]

β

= [1 − WF(ρ)][1 − WF (M)]. (B13)

In the first inequality, we used (B11), while in the second, we
used (B12). Putting together (B13) and the lower bound in
Eq. (B2), we obtain

PE
err (�

(ρ,M), ρ,M)

min σ ∈ F
N ∈ F

PE
err (�

(ρ,M), σ,N )
= [1 − WF(ρ)][1 − WF (M)],

as desired. �

APPENDIX C: PROOF OF RESULT 3

Result 3A. The maximum gap between the order plus-
infinity mutual information of any state-measurement pair
(ρ,M) when compared to the best fully free state-
measurement pair is upper bounded as

max
�

{
I+∞(X�,ρ ; GM) − max

σ∈F
max
N∈F

I+∞(X�,σ ; GN )

}

� log2[1 + RF(ρ)] + log2[1 + RF (M)], (C1)

with the maximization over all ensembles of channels.
Proof. The plus-infinity mutual information between clas-

sical random variables X�,ρ and GM is given by [59]

I+∞(X�,ρ ; GM) = +[H+∞(X�,ρ ) − H+∞(X�,ρ |GM)],

with H+∞(X�,ρ ) = − log2(maxx p(x)), H+∞(X�,ρ |GM) =
− log2(

∑
g maxx p(g, x)) with p(g, x) = p(g|x)p(x). We

have p(g|x) = Tr(Mg�x(ρ)) and H+∞(X�,ρ |GM) =
− log2

∑
g maxx Tr[Mg�x(ρ)]p(x). Considering fg(x) =

Tr[Mg�x(ρ)]p(x) and using

max
x

fg(x) = max
{p(x|g)}

∑
x

p(x|g) fg(x), (C2)
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we have

H+∞(X�,ρ |GM)

= − log2

∑
g

max
{p(x|g)}

∑
x

p(x|g) fg(x),

= − log2

∑
g

max
{p(x|g)}

∑
x

p(x|g)Tr[Mg�x(ρ)]p(x),

= − log2 max
{p(x|g)}

∑
x

Tr

[(∑
g

p(x|g)Mg

)
�x(ρ)

]
p(x),

= − log2 max
N≺M

∑
x

Tr[Nx�x(ρ)]p(x),

= − log2 PD
succ(�,M, ρ). (C3)

We then have the following expression:

I+∞(X�,ρ ; GM) − max
σ∈F

max
N∈F

I+∞(X�,σ ; GN )

= −H+∞(X�,ρ |GM) − max
σ∈F

max
N∈F

−H+∞(X�,σ |GN ),

= log2

[
PD

succ(�,M, ρ)
] − max

σ∈F
max
N∈F

log2

[
PD

succ(�,N, σ )
]
,

= log2

{
PD

succ(�,M, ρ)

maxN∈F maxσ∈F PD
succ(�,N, σ )

}
.

We now maximize over all ensembles of channels and using
result 2A, we obtain the claim in Eq. (C1). �

Result 3B. The maximum gap between the order minus-
infinity mutual information of any state-measurement pair
(ρ,M) when compared to the best fully free state-
measurement pair is upper bounded as

max
�

{
I−∞(X�,ρ ; GM) − max

σ∈F
max
N∈F

I−∞(X�,σ ; GN )

}

� − log2[1 − WF(ρ)] − log2[1 − WF (M)], (C4)

with the maximization over all ensembles of channels.

Proof. The minus-infinity mutual information between
classical random variables X�,ρ and GM is given by [50]

I−∞(X�,ρ ; GM) = −[H−∞(X�,ρ |GM) − H−∞(X� )],

with H−∞(X�,ρ ) = − log2(minx p(x)), H−∞(X�,ρ |GM) =
− log2

∑
g minx p(g, x), p(g, x) = p(g|x)p(x). Us-

ing p(g|x) = Tr[Mg�x(ρ)] then H−∞(X�,ρ |GM) =
− log2

∑
g minx Tr[Mg�x(ρ)]p(x). Considering fg(x) =

Tr[Mg�x(ρ)]p(x) and using

min
x

fg(x) = min
{p(x|g)}

∑
x

p(x|g) fg(x), (C5)

we have

H−∞(X�,ρ |GM)

= − log2

∑
g

min
{p(x|g)}

∑
x

p(x|g) fg(x),

= − log2

∑
g

min
{p(x|g)}

∑
x

p(x|g)Tr[Mg�x(ρ)]p(x),

= − log2 min
{p(x|g)}

∑
x

Tr

[(∑
g

p(x|g)Mg

)
�x(ρ)

]
p(x),

= − log2 min
N≺M

∑
x

Tr[Nx�x(ρ)]p(x),

= − log2 PE
err (�,M, ρ). (C6)

We then have the following expression:

I−∞(X�,ρ ; GM) − max
σ∈F

max
N∈F

I−∞(X�,ρ ; GN )

= H−∞(X�,ρ |GM) − max
σ∈F

max
N∈F

H−∞(X�,σ |GN ),

= − log2

[
PE

err (�,M, ρ)
] − max

σ∈F
max
N∈F

− log2

[
PE

err (�,N, σ )
]
,

= − log2

[
PE

err (�,M, ρ)
] + min

σ∈F
min
N∈F

log2

[
PE

err (�,N, σ )
]
,

= −{
log2

[
PE

err (�,M, ρ)
] − min

σ∈F
min
N∈F

log2

[
PE

err (�,N, σ )
]}

,

= − log2

{
PQ

err (�,M, ρ)

minσ∈F minN∈F PE
err (�,N, σ ),

}
.

We now maximize over all ensembles of channels and using
result 2B we obtain the claim in Eq. (C4). �
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