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Summary

In Arabidopsis, bric-a-brac, tramtrack and broad (BTB) domain scaffold proteins form a family of 80 proteins

that have involvement in various signaling pathways. The five members of the subfamily of BTB AND TAZ

DOMAIN proteins (BT1–BT5) have a typical domain structure that is only observed in land plants. Here, we

present a functional analysis of the BT family, of which at least four members are encoded by auxin-responsive

genes. BT1 is a short-lived protein that is characteristically targeted for degradation by the 26S proteasome.

Expression pattern, gene structure and sequence analyses indicate that BT1 and BT2 are closely related. They

both localize to the nucleus and the cytosol, whereas the remaining BT proteins were determined as cytosolic

proteins. Detailed molecular and phenotypic analysis of plants segregating for null mutations in the BT family

revealed substantial redundancy among the BT members, and highlighted that BT proteins perform crucial

roles in both male and female gametophyte development. BT2 seems to be the predominant gene in this

process, in which it is functionally replaced by BT3 and BT1 through reciprocal transcription regulation.

Compensational expression alters the steady-state mRNA levels among the remaining BT family members

when other BT members are lost, and this contributes towards functional redundancy. Our data provide a

surprising example of functional redundancy among genes required during gametophyte development,

something that could not be detected in the current screens for gametophyte mutants.

Keywords: gametophyte development, functional redundancy, reciprocal transcription regulation, protein–

protein interaction domain, auxin responsive, 26S proteasome.

Introduction

Effector proteins in basic cellular processes act generally as

part of a protein complex that is held together by one or

more scaffold or linker proteins. The importance of scaffold

proteins has for a long time been undervalued, but the

finding that loss of function leads to lethality, for instance for

CULLIN1 and CULLIN3 (CUL3) that are induced in targeted

proteolysis (Hellmann et al., 2003; Gingerich et al., 2005),

has revealed their underlying importance, and has revived

the interest in scaffolding processes.

Scaffold proteins are characterized by their protein–pro-

tein interaction domains, which are conserved and form the

basis of their classification. One of the largest families of

scaffold proteins is formed by so-called bric-a-brac, tram-

track and broad (BTB) domain proteins. The conserved BTB

domain was first identified in Drosophila melanogaster

proteins, which are central components of the BTB protein

complexes of transcriptional regulators. It is also referred to

as the POZ domain because of its occurrence in many pox

virus zinc-finger proteins (Albagli et al., 1995). Currently,

BTB proteins have been identified in many other eukaryotes,

including yeasts, Caenorhabditis elegans, mammals and

plants (Bardwell and Treisman, 1994; Stogios et al., 2005).

The genomes of the model plants Arabidopsis and rice

encode, respectively, 80 and 149 BTB proteins classified in

10 subfamilies (Gingerich et al., 2005, 2007), of which only a

few have been studied in detail. Most, but not all, Arabid-

opsis BTB proteins combine the BTB domain with at least

one other protein–protein interaction domain that appears
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to assign a specific cellular function to these proteins. For

example, the ankyrin and armadillo domains that are found

in other BTB proteins are involved in transcriptional regu-

lation (Cao et al., 1997; Ha et al., 2004; Hepworth et al., 2005;

Norberg et al., 2005), whereas the MATH and TPR domain-

containing BTB proteins BTB/POZ-MATH, ETHYLENE OVER-

PRODUCER 1 (ETO1) and ETO1-like proteins EOL1 and EOL2

each form an E3 ubiquitin protein ligase complex with CUL3,

which labels proteins for degradation by the 26S protea-

some (Wang et al., 2004; Dieterle et al., 2005; Gingerich

et al., 2005; Weber et al., 2005). Other plant BTB proteins

take part in a variety of cellular processes, such as photo-

tropic responses for NPH3 (Motchoulski and Liscum, 1999),

leaf and flower morphogenesis for BLADE-ON-PETIOLE 1

and 2 (Ha et al., 2004; Hepworth et al., 2005; Norberg et al.,

2005), and in ethylene responses for ETO1, EOL1 and EOL2

(Wang et al., 2004).

We identified the BTB AND TAZ DOMAIN (BT) proteins as

interacting partners of the protein kinase PINOID (HR, MKZ,

RB & RO, unpublished data). The Arabidopsis genome

encodes a small subfamily of five BT proteins that consist of

an N-terminal BTB domain, a transcriptional adapter zinc

finger (TAZ) domain and a C-terminal calmodulin binding

(CaMB) domain. Previously, BT proteins were found to

interact with the potato calmodulin 6 in a calcium-dependent

manner, and BT1, 2 and 4 were found to bind to bromo-

domain transcriptional regulators (Du and Poovaiah, 2004).

Furthermore, BT2 seems to be part of a feedback loop that

enhances specific responses to exogenous auxin (Ren et al.,

2007). Other than that, not much is known about the function

of BT proteins in plant development. Here, we present a

functional analysis of the BT family in Arabidopsis. We show

that there is functional redundancy among the family

members, and that the expression of specific BT genes is

up- or downregulated when null mutations occur in other BT

genes. BT proteins are either nuclear and cytoplasmic or

only cytoplasmic. Significantly, plants containing multiple

null mutations in the different BT genes show that BT

proteins play an essential role during gametogenesis, and

probably throughout plant development.

Results

BT proteins are land-plant specific

A comparison of the five members of the Arabidopsis BT

family based on amino acid sequence identity of the

encoded proteins distinguishes two groups: the first con-

sisting of BT1 and BT2, and the second of BT3, BT4 and BT5

(Figure 1a) (Du and Poovaiah, 2004). This is reflected in the

predicted nuclear localization signals (NLSs) and leucine-

rich nuclear export signals (NESs) (La Cour et al., 2004)

(Figure 1b), present in BT1 and BT2, but not in BT3, BT4 or

BT5, and partially in the exon/intron gene structure. Apart

from Arabidopsis, BT proteins can be found in rice (Ginge-

rich et al., 2007), Solanaceae (SOL genomic network, http://

www.sgn.cornell.edu), Medicago, red clover and Physco-

mitrella, but not in algae, yeast, fungi or animals (http://

www.ncbi.nlm.nih.gov/Genomes), indicating that the

domain structure of the BT family is restricted to land plants

(Figure 1a).

In order to investigate the possible function of these

proteins in Arabidopsis, lines with T-DNA or transposon

insertions in the corresponding genes were obtained from

available collections. In each case, the null mutation status

of the disrupted gene was verified (Figure 1b–g). All homo-

zygous insertion mutants were indistinguishable from the

wild type. These results suggest that BT family members

perform a non-essential function, or alternatively that func-

tional redundancy exists among BT family members in

Arabidopsis.

Subcellular localization of BT proteins

A previous analysis of the subcellular localization of BT1

indicated that the protein is predominantly nuclear (Du and

Poovaiah, 2004). Indeed, transfection of Arabidopsis pro-

toplasts with 35S::BT1:YFP showed that BT1:YFP is both

nuclear and cytosolic in 62% of the protoplasts (n = 34,

Figure 2b), whereas it is cytoplasmic in 38% of the prot-

oplasts (n = 21, Figure 2a). When the C-terminal YFP fusion

for BT2 was expressed in protoplasts, 90% (n = 31) of the

cells showed cytoplasmic localization (Figure 2c), and 10%

of the cells showed both nuclear and cytosolic localization

(Figure 2d). The less predominant nuclear localization of

BT2 compared with BT1 is in agreement with the ratio of the

predicted NLSs and NESs, which is 3:1 in the case of BT1,

and 2:2 in the case of BT2 (Figure 1b), and thereby suggests

that these putative NLSs and NESs in BT1 and BT2 are

functional. BT4:YFP and BT5:YFP were only found in the

cytoplasm (n = 40 and 33, respectively; Figures 2e–f), cor-

responding to the fact that no NLSs were predicted in BT4

and BT5. Western blot analysis confirmed that the proto-

plast-expressed BT:YFP fusion proteins were full length

(Figure 2h).

BT1 is a short-lived protein in Arabidopsis

To confirm the subcellular localization in planta, and to

further analyze the function of BT proteins, we generated

stable transformants using both 35S::BT1:GFP and

35S::GFP:BT1 constructs, or a construct containing a C-ter-

minal fusion of the BTB domain of BT1 with GFP

(35S::BTB:GFP). For each construct, at least 25 independent

T2 lines were generated and studied. Each line showed a

wild-type phenotype. None of the 35S::BT1:GFP or

35S::BTB:GFP lines, and only few of the 35S::GFP:BT1 lines,

showed a clear cytosolic fluorescent signal in the root
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(Figure 2i), resembling that of soluble GFP (Figure 2j). Fur-

ther analysis demonstrated that no full-length fusion protein

could be detected in these GFP positive lines, even though a

full-length GFP:BT1 mRNA was produced in vivo (Figure 2k–

l). The above result, together with the lack of fluorescent

signal in all lines carrying the C-terminal fusion (Figure 2m),

suggested to us that BT1 and the BT1:GFP fusions were

unstable. To test this, seedlings expressing BT1:GFP or

BTB:GFP were treated with the 26S proteasome inhibitor

MG132 (50 lM). After 4 h of treatment, a fluorescent signal

was observed both in the nucleus and the cytoplasm of root

cells of different lines (Figure 2n–p). Under higher magnifi-

cation, the nuclear localization was not uniform, but instead

consisted of bright dots (Figure 2p). Similar observations

have been made for other proteins that are targeted to the

26S proteasome (Hamann et al., 2002; Tao et al., 2005).

Western blot analysis confirmed the presence of the full-

length fusion proteins, which were significantly more

abundant in the MG132-treated samples (Figure 2q). Differ-

ent treatments with auxin or auxin transport inhibitors did

not influence the stability, nor the subcellular localization of

the BT1:GFP or BTB:GFP fusion proteins, in the MG132-

treated samples. Fluorescent microscopy on tissues other

than the root, such as leaves and inflorescences, did not

identify tissue-specific stabilization of the BT1:GFP or

BTB:GFP fusion proteins (data not shown). These in planta

results indicate that BT1 is a short-lived nuclear-cytoplasmic

protein that is targeted for degradation by the 26S protea-

some pathway, and suggest that its proteasome-mediated

degradation is linked to the N-terminal BTB domain-

containing part of the protein.

Compensational expression among BT family members

To examine gene redundancy among BT family members,

we investigated their expression in different tissues in the

wild type and in specific bt null mutant backgrounds by

northern blot analysis and quantitative RT-PCR (qPCR; Fig-

ures S1 and S3a, c and d). The four Arabidopsis BT genes

analyzed are most abundantly expressed in wild-type rosette

leaves. BT1 and BT5 are also expressed in stems, whereas

BT2 and BT5 show significant expression in seedlings, and

BT4 and BT5 are most abundant in flowers and siliques. In

general, these data correlate well with previously published

northern and microarray analyses (Figure S2a and b) (Du

and Poovaiah, 2004; Zimmermann et al., 2004; Gingerich

(a) (c)

(e)

(f)

(g)

(d)

(b)

Figure 1. The Arabidopsis BT family.

(a) A tree based on the CLUSTALW protein alignment showing the relationship between BT proteins from Arabidopsis, Rice, Medicago truncatula and Trifolium

pratense. The tree is constructed using the neighbor-joining method with a bootstrap test of 10 000 iterations.

(b) The structure of the five Arabidopsis BT genes. The black boxes represent the exons. The parts encoding the N-terminal BTB domain, the TAZ domain and the C-

terminal CaMBD are underlined. Predicted nuclear localization signals (NLSs) and nuclear export signals (NESs) are indicated by circles and squares, respectively.

For BT1, three NLSs and one NES are found at positions aa57–60, aa193–203, aa342–345 and aa181–183, respectively. For BT2, two NLSs and two NESs are found at

positions aa65–81, aa203–212 and aa191–197, aa294–302, respectively. The black arrowhead indicates the position of the T-DNA or transposon insertion in bt1-4

(GT2847), bt2-3 (SALK_084471), bt3-1 (Flag_396E01), bt4-1 (SALK_045370) and bt5-1 (GABI-Kat 771C08) at positions +748 bp, –173 bp, +357 bp, +430 bp and –42 bp,

respectively, relative to the ATG.

(c–g) Validation of the null allele status of bt mutants by northern blot (c, d) and RT-PCR (e–g) analyses in 8-day-old seedlings of bt1-4 (c), bt2-3 (d), bt3-1 (e), bt4-1 (f)

and bt5-1 (g). Positive controls for the RT-PCR are either the Col-0 or Ws cDNA and genomic DNA (gDNA). Negative controls are reactions in which the RT enzyme

was omitted (Col –RT) and water (H2O). rRNA, a-tubulin and ROC expression were used as loading controls. Note that for the bt4-1 sample (f; asterisks), genomic

DNA contamination was present and the cDNA was absent.
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et al., 2005). In addition, we found that BT1, BT2 and BT5

show a rapid and transient induction of expression by auxin

(indole-3-acetic acid, IAA), at different steady-state levels,

which peaks 30 min after treatment. BT4 expression was

also enhanced at this time point, but the RNA levels in-

creased until 4 h, and enhanced levels persisted at least until

24 h after auxin treatment (Figure 3b).

Interestingly, the bt1-4 loss of function caused a reduction

of expression of the other BT genes in leaves, whereas it

increased the expression of BT2 and BT5 in roots, of BT2 in

stems and flower buds, and enhanced BT4 expression in

stems. Likewise, the bt2-3 loss of function reduced the

expression of the other BT genes in leaves, enhanced the

expression of BT1 and BT5 in roots, of BT4 and BT5 in stems

and flower buds, respectively, and of both BT4 and BT5 in

siliques, whereas BT5 expression in seedlings and stems

was significantly reduced (Figure 3a). This indicates that the

genes are under reciprocal transcriptional regulation, and

that a mechanism of compensational expression exists. BT

proteins repress or activate the expression of alternate

members in specific tissues, and bt loss of function results

in enhanced or repressed expression of the remaining BT

genes, which could explain the absence of phenotypes in

single bt loss-of-function plants.

(a) 

(e) 

(i) 

(m) (n) (o) (p) 

(j) (k)

(f) (g) (h) 

(l)

(q) 

(b) (c) (d) 

Figure 2. Subcellular localization of Arabidopsis BT proteins.

(a–g) Confocal fluorescent images (left) and the corresponding transmitted light images (right) of Arabidopsis protoplasts expressing C-terminal YFP:HA fusions of

BT1 (a, b), BT2 (c, d), BT4 (e) and BT5 (f), or YFP:HA alone (g). For BT1:YFP and BT2:YFP, the percentage of cells showing cytoplasmic (a, c) or both cytoplasmic and

nuclear localization (b, d) is indicated.

(h) Western blot analysis of cell extracts with anti-HA confirms the expression of full-length BT:YFP fusion proteins in (a–f).

(i, j) Confocal images of root epidermal cells of the lines 35S::GFP:BT1-15 (i) and 35S::GFP (j) show identical cytoplasmic and nuclear localized GFP signals.

(k) Northern blot analysis with the BT1 (top) or the GFP probe (bottom) shows that a full-length GFP:BT1 mRNA is produced in 35S::GFP:BT1 lines 14 and 15.

(l) Western blot probed with anti-GFP antibodies detecting a partial GFP:BT1 fusion (30 kDa) or unfused GFP (27 kDa; GFP:BT1 is 69 kDa) in lines 35S::GFP:BT1-14

and 35S::GFP:BT1-15, respectively.

(m–p) BT1:GFP is detected in line 35S::BT1:GFP-9 after 4 h of MG132 treatment (n–p), but not in the DMSO-treated control (m). MG132 treatment results in a GFP

signal in both the cytoplasm (n, o) and the nucleus (n, p).

(q) Western blot analysis using anti-GFP antibodies revealing instability of the BT1:GFP and BTB:GFP fusions in vivo. Samples were treated for 4 h with MG132 (+) or

DMSO ()). Plants overexpressing BT1 or GFP were used as negative and positive controls, respectively. Note that the stability of the GFP protein in line GFP:BT1-15 is

not enhanced by MG132 treatment (black arrow head), whereas the full-length C-terminal fusions become more abundant after MG132 treatment (white

arrowheads).

Scale bars: 10 lm in (a–g); 20 lm in (i, j, m–p).
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BT1, BT2 and BT3 act redundantly during gametophyte

development

As the single bt null mutants were wild type in appearance,

mutant combinations were generated to assess the likely

functional redundancy among the BT genes. Various com-

binations of double and triple mutants were indistinguish-

able from the wild type. However, out of the five possible

quadruple mutant combinations, only bt1 bt2 bt4 bt5 and

bt1 bt3 bt4 bt5 could be obtained as homozygous quadru-

ple progeny, implying that quadruple mutants or gametes

carrying the bt2 and bt3 alleles together in the homozygous

state were not viable. In an attempt to identify the pentuple

loss-of-function mutant, only bt1 bt2/+bt3/+bt4 bt5 and

bt1 bt2/+bt3 bt4 bt5 plants were obtained. As BT2 and BT3

are located on chromosomes 3 and 1, respectively, physical

linkage does not explain the absence of seedlings homo-

zygous for both insertion alleles. In order to analyze the

observed segregation distortion, the progeny of a self-pol-

linated bt1 bt2/+bt3/+bt4 bt5 plant were genotyped. Neither

pentuple homozygous mutants nor bt1 bt2 bt3/+bt4 bt5

seedlings were found in over 200 genotyped seedlings.

Quadruple mutants that were homozygous wild type for

either BT2 or BT3 were obtained in a significantly higher

proportion than expected (Table 1). Moreover, embryos

carrying the bt2/+bt3/+ and bt2/+bt3 mutant combinations

(a) 

(b) (c) (d) 

Figure 3. BT genes are expressed throughout plant development, and show reciprocal transcriptional regulation.

(a) Quantified northern blot analysis of the expression pattern of Arabidopsis BT1, BT2, BT4 and BT5 in 8-day-old seedlings (S), rosette leaves (L) and roots (R) of

3-week-old plants, or stems (St), flower buds and inflorescence meristems (Fb-M), flowers (Fl) and siliques (Sil) from 6-week-old plants of Col-0 wild type, bt1-4

and bt2-3. Expression values that are more than twofold different in the mutant compared with wild type are marked with an asterisk.

(b) Northern blot analysis of BT1, BT2, BT4 and BT5 expression in 8-day-old seedlings after auxin (5 lM IAA) treatment for the indicated times. a-Tubulin and RPS5A

were used as controls.

(c) qPCR analysis of BT1 and BT2 expression in roots and shoots of 10-day-old seedlings.

(d) qPCR analysis of BT2 expression in the roots and shoots of 10-day-old seedlings in the indicated mutant backgrounds, relative to expression levels in the wild-

type background.
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did not arrest, and the resulting seedlings were indistin-

guishable from wild type. We therefore hypothesized that

the formation or viability of gametes containing both bt2 and

bt3 loss-of-function mutations was affected.

Genotyped F1 progeny from reciprocal backcrosses

between bt1 bt2/+ bt3/+ bt4 bt5 and Col-0 wild type showed

a segregation ratio of 2:1:1 for the gamete genotypes

BT2 BT3:BT2 bt3:bt2 BT3 (n = 96, v2 < 9.348, for P = 0.01,

in both reciprocal crosses), and the bt2 bt3 genotype was

absent from these populations. The results indicate that the

bt2 and bt3 single and double mutations hamper gameto-

phyte development, and lead to segregation distortion in

both female and male gametogenesis (McCormick, 2004;

Yadegari and Drews, 2004). However, finding bt1 bt2/+

bt3 bt4 bt5 seedlings among 8% of the selfed progeny

suggests that bt2 bt3 double mutant gametes can occasion-

ally escape and lead to successful seed set. Siliques of

bt1 bt2/+ bt3/+ bt4 bt5 plants showed empty spaces, char-

acteristic of female gametophytic lethal mutations (Yadegari

and Drews, 2004), whereas bt1 bt3 bt4 bt5 siliques con-

tained a full seed set (Figure 4a–c). Closer inspection of

bt1 bt2/+ bt3/+ bt4 bt5 siliques showed that the seed set was

reduced to 30% (Figure 4c; Table 2), and that embryo and

endosperm development in the set seeds was normal

(n � 600; data not shown). In accordance with the reduced

seed set, the siliques were almost twofold shorter for bt2/+

bt3/+ or bt1 bt2/+ bt3/+ bt4 bt5 plants, compared with Col-0

or bt1 bt3 bt4 bt5 plants (Table 3). Reduced seed set and

shorter siliques were also observed in bt1 bt2/+ and

bt1 bt2/+ bt3/ +bt5 plants (Tables 2 and 3), indicating that

the phenotype is strongly linked to bt2 loss of function.

Interestingly, the siliques were full in the quadruple

bt1 bt2 bt4 bt5 mutant, suggesting that in this case BT3 is

the redundant copy of BT2.

In a cross between bt2 and bt3, 14 out of 20 F2 plants

showed the short silique and reduced seed set pheno-

types (not shown). Notably, all 14 affected F2 plants were

double heterozygous for bt2 and bt3, which corroborates

our hypothesis that the loss of function of these two

genes leads to defective gametophyte development. The

six remaining wild-type-looking F2 plants were homozy-

gous for one of the bt mutations, and were homozygous

the wild type for the other BT gene, thereby confirming

that the two mutations preferably coexist in one plant

when in the heterozygous state. bt2/+ bt3/+ plants were

phenotypically indistinguishable from bt1 bt2/+ bt3/+

bt4 bt5 plants.

qPCR analysis on RNA isolated from the roots and shoots

of 10-day-old seedlings showed that BT2 expression was

significantly reduced in the progeny of a bt1 bt2/+ bt3/

+ bt4 bt5 plant, compared with wild-type plants (Figure 3d),

which is in line with the reduced expression observed for

some BT genes in the leaves and stems of the bt1-4 or bt2-3

null mutants (Figure 3a, and see above). In bt1 bt3 bt4 bt5

quadruple mutant plants, however, BT2 expression was

significantly enhanced, much more than could be expected

based on the change from one copy to two copies of the

wild-type gene, thereby corroborating the strong reciprocal

expression compensation among the BT genes, and explain-

ing the wild-type appearance of the bt1 bt3 bt4 bt5 quadru-

ple mutant plants.

Table 1 Genotypes of the progeny of a selfed bt1 bt2/+bt3/+bt4 bt5
plant

Genotype Observed %a Expected %b

bt1 bt2 bt3 bt4 bt5 0 6.3
bt1 bt2 bt3/+ bt4 bt5 0 13.0
bt1 bt2 BT3 bt4 bt5 15 6.3
bt1 bt2/+ bt3 bt4 bt5 8 13.0
bt1 bt2/+ bt3/+ bt4 bt5 32 25.0
bt1 bt2/+ BT3 bt4 bt5 10 13.0
bt1 BT2 bt3 bt4 bt5 25 6.3
bt1 BT2 bt3/+ bt4 bt5 6 13.0
bt1 BT2 BT3 bt4 bt5 5 6.3

aPercentage of progeny (more than 200 seedlings) with the indicated
genotype. The percentages in bold are strikingly different from the
expected values.
bPercentage of progeny expected, based on Mendelian segregation.

Figure 4. bt loss of function is female gametophytic lethal.

(a–c) Siliques of a bt2/+ bt3/+ plant (a right, b) are short and show many random empty positions (unfertilized ovules, black arrowheads in c), whereas siliques of a

bt1 bt3 bt4 bt5 plant (a left, c) show full seed set.

(d–m) Confocal sections of unfertilized female gametophytes at a mature stage (FG7), stained with propidium iodide. (d, e) Mature wild-type ovule (d) and detail of

the female gametophyte (e). bt2/+ bt3/+ ovules are either wild-type (h) or do not have an embryo sac, but instead have a fluorescent structure at the micropyle (f, g).

bt1 bt2/+ bt3/+ bt4 bt5 ovules in which the female gametophyte is completely absent, except for a fluorescent structure at the micropyle (i, j), or shows collapsed

synergid cells (k) or unfused polar nuclei in the central cell (l, m).

(n–z) Megaspore development sequence in wild-type ovules stained with DAB for callose deposition (n–t), and defects observed in bt2/+ bt3/+ ovules (u–z).

(t) Final stage of megaspore development. The degeneration of the non-selected megaspores is visible in the bright callose deposition.

(u, v) bt2/+ bt3/+ ovules lacking megaspores showing the persistent but limited presence of callose (arrowhead). This phenotype was observed frequently (�40–

60%). Note that the integuments have extended above the nucellus, even though callose persists (v).

(w, x) bt2/+ bt3/+ ovules showing arrested megaspore development and limited callose deposition.

(y) bt2/+ bt3/+ ovule showing callose deposition in the position normally occupied by the selected megaspore.

(z) bt2/+ bt3/+ ovule with a relatively normal looking megaspore.

Abbreviations: EC, egg cell (long arrow); CHZ, chalaza; CSy, collapsed synergids (short arrow); D, degenerating megaspores (arrow); M, selected megaspore

(arrowhead); MC, micropyle; MMC, megaspore mother cell (arrowhead); PN, polar nuclei (arrowhead); Sy, synergid cell (short arrow); UPN, unfused polar nuclei

(double arrowheads). Scale bars: 20 lm.
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Interestingly, when we compared seed set in bt2, bt1 bt2

or bt1 bt2/+ plants, the first two genotypes showed full seed

set, whereas the seed set in siliques from bt1 bt2/+ plants

was reduced to 50.1% (Table 2), which is characteristic of a

single female gametophytic mutation (Yadegari and Drews,

2004). These results suggest that compensational expres-

sion by BT3 during megagametogenesis is not sufficiently

triggered in the bt1 bt2/+ background, whereas BT2 is

haploinsufficient. BT3 can, however, function independently

in bt1 bt2 double and bt1 bt2 bt4 bt5 quadruple mutant

plants. Therefore, the penetrances of the gametophytic

lethal phenotypes in specific double, triple and quadruple

combinations are jointly linked to functional redundancy

and sufficient compensational expression.

Both our and previous expression studies indicate that

BT1, BT2 and BT3 are expressed during gametogenesis.

Firstly, our northern blot analysis and the transcriptome

analysis by Hennig and co-workers (Hennig et al., 2004)

(a) (e) (n)

(o)

(p)

(u)

(v)

(x)

(y)

(z)

(w)
(q)

(r)

(s)

(t)

(f)

(h) (i) (j)

(k) (l) (m)

(g)(c)

(b) (d)
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show that BT1, BT2 and BT3 are expressed in flower buds,

where BT2 expression is enhanced in the bt1 mutant

background (Figures S2c and S3a). Secondly, a detailed

tissue profiling of all Arabidopsis BTB genes demonstrates

that BT1, BT2 and BT3 are expressed in the pistils and

stamen (Gingerich et al., 2005; Figure S2b). Thirdly, game-

tophyte-specific microarray analyses show that both BT2

and BT3 are expressed at low levels in early-stage ovules (Yu

et al., 2005; Supplementary Figure S2d), and that BT3

expression is tightly linked to the early steps of male

gametogenesis, whereas BT2, BT4 and BT5 are expressed

in mature pollen (Honys and Twell, 2004; Borges et al., 2008;

Figure S2e and f).

BT proteins are essential during early stages of female,

and later stages of male gametophyte development

In wild type Arabidopsis, the female gametophyte develops

from a diploid megaspore mother cell (MMC) that under-

goes meiosis, giving rise to four haploid megaspores, from

which three selected megaspores die (stage FG1). The

remaining megaspore follows three rounds of mitosis to

become an eight-nucleate cell (stage FG5), which, after

nuclear migration and fusion, and cellularization, turns into

a seven-cell structure (stage FG7; Figure 4d–e) (Christensen

et al., 1997; Drews and Yadegari, 2002). In unfertilized bt2/+

bt3/+ or bt1 bt2/+ bt3/+ bt4 bt5 ovules at the terminal stage

of development (FG7) (Christensen et al., 1997), a portion of

the gametophytes appeared to be the same as in the wild

type (17% for the pentuple mutant, n = 42 from two siliques;

Figure 4d–e and h), whereas a significant portion of these

gametophytes did not develop an embryo sac (45% for the

pentuple; Figure 4f–g and i–j, respectively). Staining ovules

for callose deposition with decolourized aniline blue (DAB)

confirmed that the majority of bt2/+ bt3/+ ovules lacked or

displayed arrested megaspore development (Figure 4n–z),

demonstrating that bt loss of function induces defects at the

earliest stages of female gametophyte development (FG1).

Additional mutant phenotypes were observed only in pen-

tuple mutant gynoecia: gametophytes where the synergid

cells had prematurely collapsed (17%; Figure 4k) and

gametophytes with unfused polar nuclei (21%; Figure 4l–m).

The premature synergid collapse in unfertilized ovules is an

unusual phenotype, as collapse is always associated with

fertilization and pollen tube arrival (Yadegari and Drews,

2004).

The effect of the bt2 and bt3 mutations on male

gametophyte development was initially observed in

cleared anthers of Col-0, bt1 bt2 bt4 bt5, bt1 bt3 bt4 bt5

and bt1 bt2/+ bt3/+ bt4 bt5 plants. In Col-0, bt1 bt2 bt4 bt5

and bt1 bt3 bt4 bt5 anthers, respectively, 98 (n = 1776), 97

(n = 873) and 99% (n = 2185) of the pollen grain are round

in shape, whereas in bt1 bt2/+ bt3/+ bt4 bt5 anthers, only

32% (n = 1797, Student’s t-test, P < 0.01) of the pollen

grains were round, and the remainder were collapsed

(Figure 5a–b; data not shown). Nuclear and viability stain-

ing indicated that a portion of the bt2/+ bt3/+ and bt1 bt2/+

bt3/+ bt4 bt5 pollen lacked DNA, and was not viable

(Figure 5c–h; data not shown). Interestingly, callose stain-

ing of tetrad microspores showed that early bt2/+ bt3/+

tetrads had a wild-type phenotype (Figure 5i; n = 40 tetrads

from two flowers), but that at later stages many of the

bt2/+ bt3/+ tetrads showed two collapsed microspores

(Figure 5j), consistent with the segregation of a bt2/+ bt3/+

genotype. These observations indicate that both BT2 and

Table 2 Seed set in different bt mutant combinations

Seed
set (%) SD

Ovules per
silique SD nc

Col-0 96.5a 3.8 61.1 8.5 2
bt2 95.8a 4.1 48.8d 4.2 4
bt1/+bt2 92.0a 9.2 35.5d 3.8 1
bt1 bt2/+ 50.1a 10.5 45.6d 8.6 5
bt1 bt2 98.3a 2.8 56.6 4.3 2
bt1 bt5 98.8a 1.4 47.0d 5.9 1
bt2/+ bt3/+ 24.8b 7.8 46.8d 8.2 11
bt1 bt2 BT3 bt4 bt5 93.6a 5.7 48.0d 6.8 11
bt1 BT2 bt3 bt4 bt5 96.6a 5.2 53.2d 7.1 7
bt1 bt2/+ bt3/+ bt5 31.4a 10.1 40.0d 4.9 3
bt1 bt2/+ bt3/+ bt4 bt5 30.0a 6.0 50.2d 7.2 10

aMean percentage of fully developed seeds per silique for four
siliques per plant.
bMean percentage of fully developed seeds per silique for nine
siliques per plant.
cNumber of plants tested per genotype.
dThe number of ovules (both fertilized and non-fertilized) per silique
is significantly reduced compared with Col-0 (Student’s t-test,
P = 0.015).

Table 3 Silique length in different bt mutant combinations

Silique length (mm)a SD n

I
Col 13.4 0.8 2
bt1 BT2 bt3 bt4 bt5 12.5b 0.6 2
bt1 bt2 BT3 bt4 bt5 12.2b 1.6 2
bt2/+ bt3/+ 8.0b,d 1.1 2
bt1 bt2/+ bt3/+ bt4 bt5 8.4b,d 1.2 2

II
Col 15.0 1.3 5
bt1 BT2 bt3 bt4 bt5 14.6 1.7 5
bt1 bt2/+ bt3/+ bt4 bt5 8.7b,c 1.6 7

aMean silique length of 10 siliques per plant, n plants per genotype.
bSignificantly different from Col-0 (Student’s t-test, P < 0.01).
cSignificantly different from bt1 BT2 bt3 bt4 bt5 (Student’s t-test,
P < 0.01).
dSignificantly different from bt1 BT2 bt3 bt4 bt5 and
bt1 bt2 BT3 bt4 bt5 (Student’s t-test, P < 0.01).
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BT3 only become essential after meiosis or subsequent

cytokinesis in the microspores, which is in contrast with

the role of BT2 and BT3 in the female gametophyte, where

both genes are required for megaspore development and

maturation (Figure 4u–z).

Discussion

The BTB domain proteins form a large family of scaffold

proteins that are found in a wide range of organisms. Here,

we studied the function of a land plant-specific subfamily,

the BT proteins, in Arabidopsis, and demonstrated that there

is considerable functional redundancy and transcriptional

compensation among the family members. Detailed analy-

sis of Arabidopsis plants segregating null mutations of the

five BT genes indicated that the BT proteins perform a crucial

function in plant development.

BT proteins are probably multifunctional scaffold proteins

Functional analyses of some BTB proteins in yeast and

C. elegans indicated that these proteins are part of CUL-

LIN3 (CUL3)-containing E3 Ubiquitin ligases (Furukawa

et al., 2003; Geyer et al., 2003; Moon et al., 2004; Pintard

et al., 2004), where they act as scaffolds that interact with

CUL3 through the BTB domain, and select target proteins

for ubiquitination through their second protein–protein

interaction domain (Krek, 2003; Moon et al., 2004). Mem-

bers of several Arabidopsis BTB protein subfamilies, such

as the NPH3 and the BTB-MATH protein families, have

been found to interact with CUL3, but for the BT clade the

reports are contradictory (Wang et al., 2004; Dieterle et al.,

2005; Figueroa et al., 2005; Gingerich et al., 2005; Weber

et al., 2005). Moreover, in a yeast two-hybrid screen with

BT1, we have not identified CUL3 as a BT1 interactor (Zago,

2006). Interestingly, the experiments presented here indi-

cate that the BT1 protein itself is a target for degradation by

the 26S proteasome pathway. The BT1 instability and

degradation by the 26S proteasome could be part of a

feedback regulation of BT1 function. Considering the vari-

ety of interacting proteins identified for the BT proteins, the

presence of three protein–protein interaction domains in

the structure, and the drastic effect of bt loss of function in

Arabidopsis, it is likely that BT proteins are multifunctional

scaffolds that act in, or maybe even interconnect, multiple

cellular pathways.

Functional redundancy among the BT genes

The functional redundancy among the different Arabidopsis

BT genes was demonstrated by expression analysis and

genetic studies of the BT family. Both published expression

data (Du and Poovaiah, 2004; Hennig et al., 2004; Honys and

Twell, 2004; Zimmermann et al., 2004; Gingerich et al., 2005;

Yu et al., 2005; Borges et al., 2008) and our expression

analysis indicated that each of the BT genes is expressed in a

large panel of tissues, and that their respective expression

(a) (b)

(c) (d)

(f)(e)

(g) (h)

(i) (j)

Figure 5. bt loss of function is male gametophytic lethal.

(a, c, e, g) Columbia and (b, d, f, h) bt2/+ bt3/+ pollen grains.

(a, b) Scanning electron microscopy shows collapsed pollen grains segre-

gating in bt2/+ bt3/+ anthers.

(c, d) DAPI-stained nuclei of mature trinuclear wild-type pollen (c) and

hydrated bt2/+ bt3/+ pollen (d), some of which lack nuclei (arrow).

(e–h) FCR staining and (g, h) the corresponding DIC image, showing viable

(arrowhead) and non-viable (arrow) collapsed pollen grains.

(i, j) DAB staining of bt2/+ bt3/+ tetrads. Early tetrads (i) show little difference

with wild type (inset). Late tetrads (j), many of which have double-degener-

ated microspores (red arrowheads).

Scale bars:100 lm.
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patterns overlap. Moreover, our analysis uncovered

reciprocal expression compensation within the BT gene

family. This could be through a direct effect of the BT pro-

teins themselves on the transcription of the other BT family

members, or by an indirect mechanism of feedback control

upon BT expression, such as the misregulation of a negative

regulator of BT expression. The BT genes were found to be

auxin responsive, and given that BT proteins have been

identified as interactors of PINOID (HR, MKZ, RB and RO,

unpublished data), and that BT2 was found to alter auxin

responses (Ren et al., 2007), it is tempting to speculate that

the reciprocal transcription compensation of BT genes is at

least in part auxin-mediated.

When single bt mutants were crossed to obtain double,

triple, quadruple or even pentuple mutant combinations,

only those in which bt2 was combined with bt3 or bt1 loss of

function showed a reduced seed set, demonstrating that BT2

is essential for female and male gametophyte development,

and that either BT1 or BT3 can compensate for bt2 null

mutations. Together, our data point to a strong functional

redundancy among BT gene family members, and indicate

that BT proteins from different groups (Figure 1a) can

functionally replace each other. As a result of this redun-

dancy, the requirement of BT genes during gametophyte

development could not be detected in the current screens for

gametophyte mutants (McCormick, 2004; Yadegari and

Drews, 2004).

A central role for BT2 and BT3 in gametophyte development

Our genetic analysis of Arabidopsis bt loss-of-function

mutants indicated that the bt2-3 and bt3-1 null alleles can

only co-occur in one plant if at least one of the genes is

heterozygous for the null mutation, and that the presence of

bt2 and bt3 nulls in the haploid mega- or microspore results

in aberrant gametophyte development. BT2 bt3 or bt2 BT3

mega- or microspores do develop into fertile gametophytes,

but at 50% of the expected frequency. Although bt2 bt3

gametes were not detected in backcross experiments, the

identification of bt1 bt2/+ bt3 bt4 bt5 individuals among

progeny from a selfed bt1 bt2/+ bt3/+ bt4 bt5 plant (Table 1)

does indicate that bt2 bt3 spores can lead to seed set.

However, a seedling homozygous for both bt2 and bt3 null

alleles was never obtained, and the frequent early defects

observed in female gametophytes of bt2/+ bt3/+ plants

suggest that the bt2 bt3 female gametophyte is infertile.

Interestingly, among progeny of selfed bt1 bt2/+ bt3/+

bt4 bt5 and bt2/+ bt3/+ plants (Table 1; data not shown) we

detected a two- and fourfold, respectively, over-representa-

tion of the double homozygous bt2 BT3 and BT2 bt3 geno-

types, suggesting that gametes carrying bt2 or bt3 null

alleles are preferred when the mother plant is heterozygous

for bt2 and bt3. This may relate to the observed reciprocal

transcriptional regulation between BT genes. Possibly, the

expression of BT2 and BT3 during gametogenesis is optimal

in bt3 or bt2 loss-of-function backgrounds, respectively, as

was shown for BT2 in the shoots and roots of the

bt1 bt3 bt4 bt5 mutant (Figure 3d).

Analysis of female gametophytes in bt1 bt2/+ bt3/+

bt4 bt5 plants showed gametophytes with unfused polar

nuclei or with collapsed synergid cells. Unfused polar nuclei

can also be found in immature gametophytes (stage FG5)

and in category 4 mutants, such as magatama1 and maga-

tama3, and gametophytic factor2 (gfa2) and gfa3 (Christen-

sen et al., 1998; Shimizu and Okada, 2000; Drews and

Yadegari, 2002), suggesting that such gametophytes are

delayed in growth, or that their polar nuclei failed to fuse.

The collapse of the synergid cells does not occur if pollina-

tion is prevented, but it is usually observed at the time of, or

shortly before fertilization in wild type seeds, as a result of

pollen tube penetration and the discharge of sperm cells

(Faure et al., 2002). Viable synergid cells are required for

pollen guidance and attraction to the gametophyte for

proper fertilization (Higashiyama et al., 2001). The segrega-

tion distortion observed in bt1 bt2/+ bt3/+ bt4 bt5 plants

may in part be explained by a reduction of the pollen tube

attraction resulting from the collapsed synergid cells in

some of the gametophytes.

Together, our data suggest that the BT2 and BT3 proteins

are essential during female and male gametophyte devel-

opment. In fact, the bt2 bt3 combination belongs to category

1 of female gametophytic mutations, such as gfa4, gfa5, and

female gametophyte2 and 3 (Christensen et al., 1998; Drews

and Yadegari, 2002), where the mutants are affected at the

earliest step of the gametophyte development, and do not

progress after the one-nucleus stage (FG1) (Christensen

et al., 1997). BT4 and BT5 are probably not involved in

gametophyte development, but they may function redun-

dantly with BT1, 2 and 3 during later steps in plant

(gametophytic and vegetative) development, steps that we

overlooked because of the gametophytic lethality at the

early stage in the bt2 bt3 double mutant.

Experimental procedures

Arabidopsis lines, growth conditions, transformation

and protoplast transfections

The bt1-4 (Ds transposon line GT2847), bt2-3 (SALK_084471), bt4-1
(SALK_045370), bt3-1 (Flag 396E01) and bt5-1 (GABI-Kat 771C08)
alleles were obtained from CSHL (Sundaresan et al., 1995), NASC
(Alonso et al., 2003), INRA (Samson et al., 2002) and MPI (Rosso
et al., 2003), respectively. For detection and confirmation of the
insertion, we used gene-specific primers and the insertion-specific
primers LBaI, Ds3-2, LB4 or GABI-LB (Table S1) for SALK, Ds
transposon, FLAG or GABI-Kat lines, respectively. Arabidopsis
seeds were surfaced-sterilized in 50% commercial bleach solution,
and were then vernalized for 2–4 days before germination at 21�C
with a 16-h photoperiod and 3000 lux on solid MA medium (Masson
and Paszkowski, 1992). Plants were transferred to soil at 2- or
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3-weeks-old, and were grown at 21�C with a 16-h photoperiod of
10 000 lux and at 70% relative humidity.

Protoplasts isolation from Arabidopsis Col-0 cell suspension
cultures and polyethylene glycol (PEG)-mediated transfections were
performed as described by Axelos et al. (1992) and Schirawski et al.
(2000), with 10 lg of plasmid DNA, after which the cells were
incubated for at least 16 h prior to observation.

Molecular cloning and constructs

Molecular cloning was performed following standard procedures
(Sambrook et al., 1989). Bacteria were grown on a LC medium
containing 100 lg ml)1 carbenicillin (Cb) or 50 lg ml)1 kanamycin
(Km) for Escherichia coli strains DH5a or Rosetta (Novagen, http://
www.emdbiosciences.com/html/NVG/home.html), typical high-
copy cloning plasmids or the binary vector pCambia1300, respec-
tively, or 20 lg ml)1 rifampicin and 50 lg ml)1 Km for Agrobacte-
rium strains containing binary vectors. Primers used during cloning
procedures are listed in Table S2. The BT1 cDNA was amplified
from a cDNA batch made from Arabidopsis seedlings, using
BT1_SalI and BT1_PstI primers, and was cloned (SalI-PstI) into
pBluescript-SK+, giving rise to pSDM6014. The BT2 cDNA was
amplified from pUNI10183 (Yamada et al., 2003) with primers
BT2_EcoRI and BT2_BamHI, and was cloned (EcoRI-BamHI) into
pUC28, to obtain pSDM6069. The BT4 cDNA was cloned (StuI-NcoI)
from pUNI13579 (Yamada et al., 2003) into pUC28, giving rise
to pSDM6092. The plasmids 35S::BT1:YFP, 35S::BT2:YFP,
35S::BT4:YFP and 35S::BT5:YFP were constructed using Gateway
Technology (Invitrogen, http://www.invitrogen.com), by BP recom-
bination cloning of amplified coding regions from pSDM6014,
pSDM6069, pSDM6092 and BX827434 (Castelli et al., 2004),
respectively, into pDONOR207, and subsequent LR recombination
cloning in a pART7-derived plasmid containing the appropriate
Gateway cassette in frame with a YFP:HA coding region (C. Galván-
Ampudia, unpublished data). For 35S::BT1 (pSDM6086), the BT1
cDNA was cloned as a SalI-SpeI fragment from pSDM6014 into
pCambia1300int-35Snos. To create 35S::GFP:BT1 (pSDM6025),
the BT1 coding sequence was cloned as a XhoI-SmaI fragment
from pSDM6014 in pTH2 (Chiu et al., 1996). For 35S::BT1:GFP
(pSDM6063), the BT1 cDNA, including the start codon but excluding
the stop codon, was amplified from pSDM6014 using primers M13
forward and BT1-R-minusTGA-SalI. The amplified fragment was
cloned as the SalI fragment in pTH2 (pSDM6062). For 35S::BTB:GFP
(pSDM6066), the BTB domain containing part of BT1 was cloned as
a NcoI fragment from pGEX-BT1 into pTH2 (pSDM6098). The N- and
C-terminal GFP fusions were cloned (EcoRI-HindIII) into binary
vector pCambia1300.

Northern blot analysis, RT-PCR and qPCR

Total RNA was purified using the RNeasy Plant Mini kit (Qiagen,
http://www.qiagen.com). Subsequent northern blot analysis was
performed as described in Memelink et al. (1994), using 10 lg of
total RNA per sample. The following modifications were made: pre-
hybridizations and hybridizations were conducted at 65�C, with 10%
dextran sulfate, 1% SDS, 1 M NaCl and 50 lg ml)1 of single-stran-
ded herring sperm DNA as the hybridization mix. The hybridized
blots were washed for 20 min at 65�C in 2x SSPE and 0.5% SDS, and
for 20 min at 42�C in 0.2x SSPE and 0.5% SDS, 0.1x SSPE and 0.5%
SDS, and 0.1x SSPE, respectively. Blots were exposed to FUJI Super
RX X-ray film (FUJIFILM, http://www.fujifilm.com). Probes were
PCR amplified from pSDM6006 (BT1), pSDM6025 (GFP) and Col-0
genomic DNA (BT2, BT4, BT5, RPS5A and AtROC) using the primers

listed in Table S3. PCR products were column purified (Qiagen)
and radioactively labeled with [a-32P]ATP (Amersham, http://
www.amersham.com), using the Prime-a-gene kit (Promega, http://
www.promega.com). Expression changes were quantified with
GENETOOls v3.07.g software (PerkinElmer, http://www.promega.
com) using the TIF images from scanned autoradiograms. Values
were corrected for background and then normalized to the ROC
control.

RT-PCRs were performed as described in Weijers et al. (2001)
using 10 lg of total RNA from 8-day-old seedlings for the RT
reaction. The PCR reactions were performed using one tenth of the
RT volume with the gene-specific primers (Table S3). An RT
reaction with Col-0 seedling RNA, in which the reverse-transcriptase
was omitted, served as a negative control.

For the qPCR, the RT reactions were performed on 2 lg of total
RNA from the roots and shoots of 10-day-old seedlings using the
Superscript III reverse transcriptase (Invitrogen). The qPCR reac-
tions were carried out with 5· diluted cDNA mixtures (primers listed
in Table S3) on a Bio-Rad iCycler PCR machine (Bio-Rad, http://
www.bio-rad.com), using a Platinum SYBR Green qPCR SuperMix-
UDG kit (Invitrogen). Data were analyzed with ICYCLER IQ (Bio-Rad)
and QBASEPLUS (Biogazelle, http://www.biogazelle.com). Expres-
sion values were normalized to the EIF4A-1 control.

Western blot analysis

Transfected protoplasts were pelleted at full speed at 4�C, resus-
pended in 30 ll of 1· Laemmeli sample buffer and boiled for 5 min.
Half of this total protein extract was separated by SDS-PAGE (10%)
using PageRuler Prestained Protein Ladder (Fermentas, http://
www.fermentas.com) as a size marker. To analyze Arabidopsis lines
expressing GFP-tagged BT1, total protein was extracted from 7-day-
old seedlings, as previously described by Kurata et al. (2005). The
protein concentration was determined by Bradford assay and 40 lg
of protein per sample was separated by SDS-PAGE (12%). A parallel
gel was run and stained with Coomassie to correct for loading
differences. Gels for western blot analyses were transferred to
nitrocellulose membranes (Immobilon-P; Millipore, http://www.
millipore.com), which were incubated with rat horseradish
peroxidase (HRP)-conjugated anti-hemagglutinin (HA) antibody
(3F10, 1/2000; Roche, http://www.roche.com), or rabbit anti-GFP
primary polyclonal antibody (1/5000; Molecular Probes, http://
www.invitrogen.com/site/us/en/home/brands/Molecular-Probes.html)
and anti-rabbit HRP-conjugated secondary antibody (1/5000;
Promega). Detection followed the protocol of the Phototope-HRP
Western Blot Detection Kit (New England Biolabs, http://
www.neb.com).

Microscopy and phenotypic analysis

Propidium iodide (0.1 mg ml)1 in distilled water) was used to stain
the cell walls and nuclei in roots and ovules. The female gameto-
phyte phenotypes and GFP fusion lines were observed using
40 · dry and oil objectives on an Axioplan microscope (Zeiss, http://
www.zeiss.com) equipped with a confocal laser scanning unit
(MRC1024ES; Bio-Rad) and a 3CCD Sony DKC5000 digital camera
(Sony, http://www.sony.com). The GFP fluorescence was monitored
with a 522–532-nm bandpass emission filter (488-nm excitation).
Propidium iodide was visualized using the 585-nm longpass
emission filter (568-nm excitation). For the subcellular localization
of the BT proteins in protoplasts, a Leica DM IRBE confocal laser
scanning microscope (Leica, http://www.leica.com) was used with a
63 · water objective. The fluorescence was visualized with an
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Argon laser for excitation at 514 nm, and with a 522–532-nm (YFP)
emission filter. Seed set was determined in cleared siliques after
treatment with a derivative of Hoyer’s solution (Boisnard-Lorig
et al., 2001), using a Leica MZ12 stereomicroscope equipped with
a 3CCD Sony DKC-5000 digital camera. Mature pollen were stained
by the fluorochromatic reaction (FCR) method (Heslop-Harrison
and Heslop-Harrison, 1970) or with 4¢,6-diamidino-2-phenylindole
(DAPI; 1 lg ml)1 in 7% sucrose). Immature ovules and anthers were
stained in 1 DAB:1 glycerol:0.2% aniline blue, in 0.1 M K3PO4, pH 12
(Stone et al., 1984). Observations were performed with a Zeiss
AxioImager M microscope and a 40 · dry objective, and were
recorded with an AxioCam camera. Images were processed in
IMAGEJ (http://rsb.info.nih.gov/ij/) and assembled in Adobe
PHOTOSHOP (http://www.adobe.com).
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Faure, J.E., Rotman, N., Fortuné, P. and Dumas, C. (2002) Fertiliza-
tion in Arabidopsis thaliana wild type: developmental stages and
time course. Plant J. 30, 481–488.

Figueroa, P., Gusmaroli, G., Serino, G. et al. (2005) Arabidopsis has
two redundant CULLIN3 proteins that are essential for embryo
development and that interact with RBX1 and BTB proteins to
form multisubunit E3 ubiquitin ligase complexes in vivo. Plant
Cell, 17, 1180–1195.

Furukawa, M., He, Y.J., Borchers, C. and Xiong, Y. (2003) Targeting
of protein ubiquitination by BTB-Cullin 3-Roc1 ubiquitin ligases.
Nat. Cell Biol. 5, 1001–1007.

Geyer, R., Wee, S., Anderson, S., Yates, J. and Wolf, D.A. (2003) BTB/
POZ domain proteins are putative substrate adaptors for CULLIN3
ubiquitin ligases. Mol. Cell, 12, 783–790.

Gingerich, D.J., Gagne, J.M., Salter, D.W., Hellmann, H., Estelle, M.,

Ma, L.G. and Vierstra, R.D. (2005) CULLINs 3a and 3b assemble
with members of the broad complex/tramtrack/bric-a-brac (BTB)
protein family to form essential ubiquitin-protein ligases (E3s) in
Arabidopsis. J. Biol. Chem. 280, 18810–18821.

Gingerich, D.J., Hanada, K., Shiu, S.H. and Vierstra, R.D. (2007)
Large-scale, lineage-specific expansion of a Bric-a-Brac/Tram-
track/Broad complex ubiquitin-ligase gene family in rice. Plant
Cell, 19, 2329–2348.

Ha, C.M., Jun, J.H., Nam, H.G. and Fletcher, J.C. (2004) BLADE-ON-
PETIOLE1 encodes a BTB/POZ domain protein required for leaf
morphogenesis in Arabidopsis thaliana. Plant Cell Physiol. 45,
1361–1370.

Hamann, T., Benkova, E., Baurle, I., Kientz, M. and Jurgens, G.

(2002) The Arabidopsis BODENLOS gene encodes an auxin
response protein inhibiting MONOPTEROS-mediated embryo
patterning. Genes Dev. 16, 1610–1615.

Hellmann, H., Hobbie, L., Chapman, A., Dharmasiri, S., Dharmasiri,

N., del Pozo, C., Reinhardt, D. and Estelle, M. (2003) Arabidopsis

120 Hélène S. Robert et al.

ª 2009 The Authors
Journal compilation ª 2009 Blackwell Publishing Ltd, The Plant Journal, (2009), 58, 109–121



AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regula-
tion of embryogenesis. EMBO J. 22, 3314–3325.

Hennig, L., Gruissem, W., Grossniklaus, U. and Köhler, C. (2004)
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