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Abstract

The field of Ambient Assisted Living (AAL) is gaining increasing at-

tention from the research community in recent years with the rapid

present and future ageing of the population worldwide. This problem

has been widely recognised as has the need for it to be addressed both

from an economic and societal perspective. Assisted living environ-

ments incorporate technological solutions to create a better condition

of life for older adults. However, in order to create a better condition

of life, it is crucial to understand the specific needs of each individ-

ual. To this regard, self-assessment of daily activities has shown to

be subjective and variable, presenting important discrepancies with

those performed by clinicians.

The above challenges have fostered the search for alternative monitor-

ing solutions, increasing the research efforts upon the field of Human

Activity Recognition (HAR). A vast array of sensing devices, includ-

ing ambient sensors, video cameras and wearable devices, has been

employed for the automatic monitoring of a person in a home envi-

ronment. However, the research focus is shifting towards wearable

solutions, which avoid the privacy concerns related to the use of video

cameras in a home environment while providing more intrinsic infor-

mation about the user than ambient devices.

The focus of this research is the investigation of signal processing and

machine learning techniques for the recognition of quotidian activities

concerning self-neglect (a behavioural condition in which individuals,

generally older people, disregard the attention, intentionally or un-

intentionally, of their basic needs). More precisely, the aimed group

of activities include those concerning personal hygiene, namely hands



washing and teeth brushing, as well as those directly related to dietary

behaviour, namely eating and drinking.

The work undertaken in this thesis is divided into three different

stages. First, given the continuous quasi-periodic behaviour of hands

washing and teeth brushing, these are studied alongside a group of

other quotidian activities which also exhibit continuity during their

performance. These studies include the investigation of informative

features for activity recognition as well as relevant classification mod-

els and signal processing techniques. In addition, a novel multi-level

refinement approach is proposed as a way to improve the classification

rate of those activities with lower inter-activity classification rate.

Second, a novel framework for fluid and food intake gesture recog-

nition is developed. As opposed to the above activities, the nature

of eating and drinking activities is neither static nor quasi-periodic.

Instead, they are composed of sparsely occurring motions or gestures

in continuous data streams. Given this characteristic, a novel signal

segmentation technique, namely the Crossings-based Adaptive Seg-

mentation Technique (CAST), is proposed to identify potential eating

and drinking gestures while filtering out the remaining unwanted seg-

ments of the signals. In addition, various feature descriptors, namely

a Soft Dynamic Time Warping (DTW) gesture discrepancy measure

and time series to image encoding techniques, as well as various deep

learning architectures are explored to overcome the notable existing

similarity between eating and drinking gestures.

The third stage of the work aims at the identification of meal periods

through the analysis of the distribution of eating gestures along time

using low-computational cost signal processing techniques, including

a moving average and an entropy measure.

The novel computational solutions and the results presented in this

thesis, demonstrate a significant contribution towards the recognition

of quotidian activities in support of independent living.
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Chapter 1

Introduction

The world population is ageing rapidly. According to [1], by 2050, the number

of older adults will exceed the number of children for the first time in history.

Besides, the old-age dependency ratio, calculated as the ratio of older adults (65

or older) to the working-age population (15 to 64), is growing fast, particularly

within developed countries [2]. Studies indicate that older adults normally prefer

to stay at their own homes as long as possible [3]. As a result of this, more older

people live alone as sole occupants of a dwelling than any other population group

[4]. In addition, the number of older adults needing peripheral support during

their quotidian activities follows a worrying upwards trend, and it is predicted to

reach the 22% by 2050 [2].

This problem has been widely recognised as it has the urgency for it to be

addressed both from an economic and societal perspective. An increase in the

number of care providers is a potential solution. However, the fast growth seen on

the old-dependency ratio makes this option rather unrealistic. It is suggested the

use of smart technologies can mitigate the impact of this demographic problem [5].

The significant advances in mobile and ubiquitous computing have already trans-

lated into increasing attention towards emerging research fields such as Ambient

Intelligence (AMI) and Ambient Assisted Living (AAL). The aim is to enable

independent living while promoting a better condition of life employing different

assistive systems. Nonetheless, to be able to support and assist individuals, it

is first crucial to understand their specific needs by the deployment of accurate

monitoring systems.
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1. Introduction

Recent research in AAL has investigated the use of different monitoring plat-

forms including video cameras [6, 7], ambient sensors such as passive infrared

sensors (PIRs), pressure mats or magnetic sensors [8], as well as that of wearable

devices incorporating motion sensors such as accelerometers and gyroscopes [9].

Although various pros and cons can be found on the employment of each sens-

ing technology, research efforts are currently shifting towards the use of wearable

solutions based on three main factors. First, the information provided by am-

bient sensors (normally in the form of binary data) is rather basic, being thus

insufficient to monitor complex behaviours. Second, even though computer vi-

sion has been proven to be an accurate means of monitoring humans, there exist

major privacy concerns with its use in home environments [10]. In addition, the

problem of occlusion caused by the frequent presence of an object between the

video camera and the subject makes the use of this solution unsuitable in most

home environments. Third, recent surveys regarding the acceptability of the use

of wearable devices have shown positive results, not only in adults [11], but also

within the elderly population [12].

The remainder of this chapter is organised as follows. Section 1.1 presents the

motivation behind this thesis. Section 1.2 provides an overview of the research

undertaken in this thesis. Section 1.3 presents the project aim and objectives.

Section 1.4 discusses the major research challenges identified for the completion of

this work. Section 1.5 presents the major contributions achieved throughout the

undertaken work. Finally, Section 1.6 outlines the organisation of the remaining

chapters of the thesis.

1.1 Motivation

Current wearable and portable technologies such as smart phones, smart watches

and/or fitness trackers incorporate a great array of sensors (i.e. accelerometers,

gyroscopes, magnetometers), allowing for human behaviour analysis in different

applications. Examples include fitness [13–17], rehabilitation [18], security [19]

and health care [20].

Predominant attention has been given to fitness applications, where typically

quasi-periodic activities such as walking, running or climbing stairs are analysed.
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The efforts of this work are focused on the search for means to identify activ-

ities related to self-neglect issues. This not only includes the identification of

quasi-periodic activities such as teeth brushing and hand washing but also the

recognition of activities composed of sparsely occurring gestures like the intake

of meals.

Self-neglect is defined as a behavioural condition in which individuals, nor-

mally older people, intentionally or unintentionally, disregard the attention of

their essential needs [21]. These include any form of lack of personal hygiene, ap-

propriate feeding or any other aspect regarding self-care. Research statistics from

the National Health Service (NHS) [22], show that neglect and omission are the

main risks for safeguarding inquiries, with rising figures comparing to previous

years. Besides, self-neglect has been empirically related to cognitive impairment

and depressive symptoms [23], and more importantly, it has been proven to be on

its own an independent risk factor for death [24], with some of the most common

diagnoses being hypertension, diabetes mellitus, dementia and depression.

The above strongly suggest that there is a research need for exploring novel

monitoring solutions to track quotidian activities concerning self-neglect issues.

The lack or under-performance of these activities could potentially indicate the

need for peripheral support or the inability for independent living. Such infor-

mation not only could be used to alert the older person’s relatives, carers or

medical institutions but to directly remind the person to carry out the activities

themselves or yet cooperate with assistive robots to aid the individuals in the

procedure as well. To the best of my belief, a self-neglect behaviour tracking sys-

tem can be a significant contribution towards independent living in the way that

it ensures the acknowledgement of the well-being of the subject by their relatives

while passively contributing to the well-being of the person itself. In line with

this, all the efforts of this thesis are directed towards the development of com-

putational solutions for the accurate recognition of different activities concerning

self-neglect issues. These mainly include hands washing, teeth brushing, as well

as food and drink intake.
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1.2 Overview of the Research

This study aims to develop computational solutions to accurately recognise quo-

tidian human activities based on wrist-motion information. Human Activity

Recognition (HAR) can be understood as a problem whose aim is to identify

patterns on sensory temporal sequences of data or time series to infer the activity

being performed by a person at a specific point in time. Specifically, the efforts

are given to the recognition of a group of four activities concerning self-neglect

issues. These include hand washing, teeth brushing, eating and drinking.

Driven by the differing nature of the activities of interest, the investigation

is divided into two main parts, whereby quasi-periodic activities (hands washing

and teeth brushing) and sequential activities (eating and drinking) are studied

separately. For clarification purposes, it should be noted this work defines quasi-

periodic activities as those activities whose motion signals exhibit certain similar-

ity to a periodic function when being performed and sequential activities as those

activities that are composed of sequences of sporadic gestures. Intuitively, the for-

mer group is studied through the analysis of consecutive time windows, whereas

the latter group is studied through the temporal analysis of the occurrence of

relevant gestures.

Despite the above, the recognition of quasi-periodic and that of sequential

activities share three common areas of investigation. These are defined as follows:

• Signal pre-processing: this area embodies the investigation of signal process-

ing techniques to suitably accommodate the raw sensory signals for further

analysis. These include the removal of unwanted components of the signals

through signal filtering, the creation of approximated functions to capture

important patterns within the signals as well as the segmentation of the

signals to either break them down into segments which share a common

characteristic or to filter out unwanted segments.

• Feature extraction: this involves the investigation of means of transforming

the pre-processed signals into a reduced number of variables (features) to

facilitate the subsequent learning and generalisation of the activities and

gestures of interest. A vast array of hand-crafted features are explored in
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1. Introduction

Figure 1.1: An illustration of the main steps of an activity or a gesture recognition
system.

this work. Further feature descriptors are explored for the recognition of

eating and drinking gestures based on their high degree of similarity in terms

of wrist motion. These include the development of a gesture discrepancy

measure based on Dynamic Time Warping (DTW) and the exploration of

deep learning models as feature descriptors.

• Gesture/activity classification: this includes the investigation upon the per-

formance of various supervised learning techniques for the detection of the

activities and gestures of interest.

A further investigation was undertaken to identify a means of detecting meal

periods based on the occurrence of eating gestures across the day. Low compu-

tational cost signal processing techniques were explored to study the distribution

of eating gestures across time.

The above research areas were thoroughly investigated to address the main re-

search question of this thesis - how can a single wrist-worn motion sensing unit be

used to detect quotidian activities concerning self-neglect issues. For illustration

purposes, Figure 1.1 depicts the main steps undertaken in an activity/gesture

recognition problem.
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1.3 Aim and Objectives

The aim of this research is to identify means of detecting quotidian activities

concerning self-neglect using a single wrist-worn motion sensing unit, including a

tri-axial accelerometer and a tri-axial gyroscope. The work undertaken embodies

a thorough investigation of appropriate signal processing and computational in-

telligence techniques to be able to accurately recognise quotidian activities whose

diminution or lack of performance can potentially be identified as jeopardy for

the health and well-being of an individual, thus implying the need for peripheral

support.

To achieve the above research aim, the following objectives were identified:

1. To conduct extensive research into existing methods for activity recognition

using inertial sensors.

2. To propose a computational solution to recognise quotidian quasi-periodic

activities in a home environment.

3. To extensively investigate signal processing, feature extraction and com-

putational intelligence techniques to spot and recognise sporadic gestures

from continuous motion data streams.

4. To explore deep neural network architectures for feature extraction and food

and drink intake gesture recognition.

5. To develop a computational solution to accurately spot and recognise food

and drink intake gestures from continuous wrist motion data streams.

6. To investigate the temporal occurrence of eating gestures to develop a com-

putational solution for the recognition of meal periods under a free-living

environment.

1.4 Research Challenges

In order to fulfil the above research aim and objectives, four main research chal-

lenges have been identified:
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1. Sensing platform deployment: Various factors have to be taken into con-

sideration for the selection of a suitable sensing platform for human mon-

itoring. While the employment of numerous sensing devices can increase

the sensory information obtained, unobtrusiveness and freedom of motion

should be carefully taken into consideration. Another critical issue is that

battery-life should be maximised utmost. Currently, wearable devices in-

corporate a great array of sensors, however, the overuse of resources can

make a system inadequate for continuous monitoring. Therefore, it is a

challenge to minimise the number of sensing units as well as the number

of sensors within a sensing unit while maintaining an adequate recognition

rate.

2. Structure of human activities: Human activity is normally referred to as

a global term. However, it can be divided into different levels in a similar

way when natural language is processed. For instance, a paragraph can be

broken down into different words, a word can be divided into different sylla-

bles, and these can be further broken down into different letters. Likewise,

activities can be broken down into smaller actions, and these can be fur-

ther divided into basic movements. For instance, the activity ‘eating pasta’

could be further divided into smaller actions such as ‘using the fork to take

a bite’, which at the same time could be broken down into ‘lift up the hand’

and ’put the hand back down to the rest position’. It is a challenge to ac-

curately model the spatial and temporal relationship between the different

outlined elements.

3. Differing nature of activities and signal segmentation: Although activity

recognition is normally understood as a standalone problem, human ac-

tivities differ significantly from each other in the way they are performed.

For instance, while walking exhibits a continuous quasi-periodic temporal

behaviour, eating is composed of sparsely occurring gestures. Signal seg-

mentation is a crucial aspect for activity and gesture recognition which

aims at either breaking down the signal into segments that share a common

characteristic or to filter out unwanted segments of the signal. The differing

nature of activities is, therefore, a key research challenge which demands
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the investigation of adaptive signal segmentation techniques to comply with

the differing characteristics of the activities themselves.

4. Gesture Similarity: This challenge refers to the high degree of similarity

encountered on fluid and food intake activities in terms of the hand move-

ments required to perform these two activities. It is crucial to explore dis-

criminative feature descriptors so that discrepancies that will facilitate the

learning of classification models can be found amongst such a high degree

of similarity.

1.5 Major Contributions

The major contributions of this thesis are summarised as follows:

• To propose a computational solution for the recognition of quotidian activ-

ities concerning personal hygiene.

• Propose a novel multi-level refinement approach for activity recognition. As

demonstrated in this work, the employment of this approach can achieve an

improvement in the recognition rate of the activities which were originally

lowering the performance of the whole system.

• Propose a novel adaptive signal segmentation technique (CAST) for spot-

ting potential eating and drinking gestures within continuous motion data

streams. This technique achieves a recall of 100%, therefore, it overcomes

the main drawbacks encountered in previous attempts at developing seg-

mentation techniques for spotting sporadic gestures. Given its outstanding

results and its flexibility, CAST can be used in future activity and gesture

recognition work.

• Propose the introduction of a DTW-based gesture discrepancy measure into

long-established feature sets. As demonstrated in this work, the use of the

gesture discrepancy measure consistently improves the gesture recognition

rate across different experiments. This suggests the use of its employment

as a feature descriptor in future activity and gesture recognition work.
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• Propose a system for the recognition of eating and drinking gestures with

the use of a novel adaptive segmentation technique and hand-crafted feature

vector incorporating a personal gesture discrepancy measure.

• Propose a deep-learning-based domain knowledge free system for the recog-

nition of eating and drinking gestures.

• Propose a novel approach for the detection of meal periods through the

analysis of the occurrence of eating gestures across time.

1.6 Thesis Outline

In order to address the research question presented in Section 1.3 with regards to

how a single wrist-worn motion sensing unit can be used to detect quotidian ac-

tivities concerning self-neglect issues, Chapter 2 conducts an extensive literature

review upon previous work in the field of activity recognition using wearable sen-

sors to identify relevant research methods, as well as relevant research challenges

and opportunities within the field. Chapter 3 presents a technical overview of the

common methods employed for activity and gesture recognition and summarises

how these are explored and employed throughout the work undertaken in the

thesis. Chapter 4 presents a computational solution to recognise hygiene-related

activities. Chapter 5 and Chapter 6 investigate the spotting and the recognition

of sparsely occurring eating and drinking gestures from continuous data streams.

Ultimately, making use of the knowledge gained in the previous two chapters,

Chapter 7 investigates the recognition of meal periods based on the distribution

of eating gestures across time. Putting all together, this thesis provides novel com-

putational solutions to identify the main hygiene and nutrition-related activities

concerning self-neglect issues using a single wrist-worn motion sensing unit.

In line with the above, The remainder of this thesis is organised as follows

(see also Figure 1.2).

Chapter 2: Literature Review - This chapter provides an overview on pre-

vious work in the field of Ambient Assisted Living (AAL) as well as a detailed

discussion on relevant literature in Human Activity Recognition (HAR) and its

main crucial aspects.

9



1. Introduction

Figure 1.2: Thesis structure showing the organisation of the chapters.

Chapter 3: Experimental Pipeline - This chapter presents the common meth-

ods employed in HAR work with the use of wearable sensors. This includes the

description of how data is collected, as well as the signal processing, feature

extraction and computational intelligence techniques employed for gesture and

activity recognition purposes.

Chapter 4: Recognition of Quotidian Quasi-Periodic Activities - This chapter

describes in detail the proposed system for the recognition of the quotidian quasi-

periodic activities of interest for this study. In addition, this chapter presents a

novel multi-level refinement approach as an alternative to state-of-the-art classi-

fication approaches.

Chapter 5: Gesture Recognition Through the Use of Hand-Crafted Features

and Gesture Discrepancy - This chapter presents a solution to spot and recognise

eating and drinking gestures from continuous wrist motion data streams. This

solution incorporates a novel signal segmentation approach (CAST) and the in-

troduction of a gesture discrepancy measure into long-established feature sets.

The experimental results achieved are presented and compared to those obtained

by previous similar work.

Chapter 6: Exploring Deep Learning Techniques for Gesture Recognition -

10
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This chapter explores the use of deep learning techniques for feature extraction

and for the recognition of eating and drinking gestures. The performance of 1-

Dimensional (1D) Convolutional Neural Networks (CNNs), 2D CNNs and multi-

input networks are evaluated.

Chapter 7: Identification of Meal Periods Through Gesture Distribution -

This chapter describes a novel approach to identify meal periods through the

analysis of the occurrence of eating gestures across time.

Chapter 8: Conclusions and Future Work - This chapter presents the con-

clusions arisen from the thesis and propose directions for future work on human

monitoring with the use of wearable sensors.

11



Chapter 2

Literature Review

2.1 Introduction

The increasing life expectancy alongside the decline in birth rates across the world

is translating into a global ageing population structure [25], especially in devel-

oped nations such as the UK. Ageing is a phenomenon caused by the impact of

a wide variety of cellular and molecular damage over time, which in turn lead

to a gradual decrease in cognitive and physical abilities. As a result of this, the

senior-age stage of a person’s life is usually spent suffering from multiple disabili-

ties [26], and as age increases, elderly individuals may lose the capacity to attend

their basic needs (i.e. food or drink intake), therefore requiring peripheral sup-

port. There is thus a need to address the current demographic issue by providing

means of sensing individual needs, through which the use of further resources

(i.e. carers, care home spaces and assistive robotics) can be optimised. Given

this, advances in sensing technologies can play a crucial role in preserving the

wellbeing of older population groups while supporting their independent living.

In line with this, this chapter provides a comprehensive review of previous

work in the fields of Ambient Assisted Living (AAL) and Human Activity Recog-

nition (HAR). A particular emphasis is given to HAR work based on wearable

motion sensors, where a thorough critical evaluation upon the different crucial

aspects and open challenges found across the work in the field is undertaken. The

aim of this chapter is, therefore, the justification of the overall experimental and
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development work undertaken throughout this thesis through the identification,

critical evaluation and discussion of the existing limitations found in HAR work

in the context of AAL. Additionally, each experimental chapter is accompanied

by its own specific review of related work and critical evaluation, justifying inde-

pendently each of the experiments carried out and the methodology employed.

The remainder of this chapter is organised as follows: Section 2.2 discusses

the rationale behind the field of AAL, the benefits it can bring to independent

living and presents relevant work using alternative approaches to that of the use

of wearable sensors. Section 2.3 provides a discussion upon the different crucial

aspects of implementing activity recognition systems with the use of wearable

sensors, including the sensor modality, the sensor placement, the sampling fre-

quency, the signal pre-processing, the segmentation of the signals, the extraction

of features and the use of classification models. Section 2.4 presents the conclu-

sions drawn from the literature and the research opportunity identified through

the analysis of previous work.

2.2 Assistive Technologies

The worrying upwards trend on global population ageing, alongside the current

advances in ubiquitous computing, wireless technologies and robotics have made

the development of assistive technologies become a crucial demand, leading to

increasing research attention to the field of AAL and to the development of AmI

technologies in recent years [27, 28]. Such technologies aim at the development

of sensitive, responsive and adaptive environments to create a better condition

of life for individuals with disabilities and older adults, while supporting their

independent living. The effective use of sensing and monitoring devices is crucial

to understand and anticipate the specific needs each individual may have. Like-

wise, gaining insights into such individual needs can improve the performance of

assistive robots and optimise the use of human resources in terms of providing

ad-hoc support to each individual. A broad categorisation of the sensing devices

employed to monitor individuals in a home environment is generally made regard-

ing the sensing modality employed. This includes three main categories, namely

ambient sensors, video cameras (computer vision), and wearable sensors.
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2.2.1 Ambient Sensor-based Technologies

Numerous research works have employed ambient devices for monitoring sub-

jects in a home environment. The term ‘ambient devices’ embodies a broad array

of sensing devices which are typically embedded within a home environment.

The main examples include microphones [29], door magnetic switches [30, 31],

RFID [32], Passive Infrared Sensors (PIRs) [30, 31], pressure mats [33–35] and

infrared sensors [36]. Such devices are normally installed to form a multimodal

collaborative sensing and intelligent Wireless Sensor Network (WSN) to be used in

various application. For example, PIRs and magnetic door switches are normally

utilised to track the movement of subjects across different areas of the house. Such

information is then used, among other applications, to infer the activities being

performed by the subject [37], to build personal behavioural patterns and iden-

tify abnormal behaviours or events [31, 38], as well as to infer single-occupancy

and multi-occupancy scenarios in home environments [30]. Pressure mats are

commonly used for the detection of sleeping periods and personal sleeping pat-

terns [33–35], as well as for gait analysis and fall detection applications [39].

RFID technology is typically used to track the indoor location of individuals by

the installation of various RFID tags around the home environment. Likewise,

the use of RFID tags on everyday objects has been employed for activity recog-

nition applications [40,41]. Microphones are also employed as a means of indoor

location tracking [42] and activity recognition [43]. However, the performances

achieved at the latter application, ranging from 54% [44] to 80% [45] in terms

of classification accuracy, are considerably low as compared to those achieved by

the use of computer vision or wearable devices.

With regards to the recognition of Activities of Daily Living (ADLs) with the

use of ambient sensors, various efforts are identified within the literature. For

instance, the work in [46] proposes an audio-based system for the recognition

of eating activities, achieving a classification recall of 76.3%. In [47] a pressure

sensor matrix is used to detect the position of kitchen utensils on a table to in-

fer eating related actions achieving a classification accuracy of 77%. The work

in [40] makes use of a wrist-worn RFID reader and a network of RFID tags em-

bedded into everyday objects to recognise a number of ADLs, including among
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others, medication intake, food preparation related activities and teeth brush-

ing, achieving an average per-class classification recall of 91%. A fluid intake

recognition solution based on RFID technology is proposed in [48] by the attach-

ment of four RFID tags to glass, and the analysis of the received signal strength

(RSSI) between the RFID tags and a ceiling-mounted RFID antenna, achieving

classification recalls in the range of 70.8% to 85.4% across different experiments.

2.2.2 Computer Vision-based Technologies

Computer vision-based technologies in the context of HAR make use of video cam-

eras as a means of recognising and monitoring human activities, where typically

the camera or combination of cameras employed are fixed at specific locations and

angles within the home environment. Generally, the problem of activity recogni-

tion based on video sequences is tackled in three main steps. First, moving objects

are segmented out from the video by the application of background subtraction

image processing techniques such as Gaussian Mixture Models (GMM) [49] or by

the use of threshold-based background modelling techniques based on individual

pixel chromatic statistics such as the average [50] or the median [51]. A posteriori,

a feature vector incorporating relevant characteristics of the human object such

as the silhouette, the orientation, the change of the shape or the motion between

consecutive frames is built [52]. Ultimately such feature vector is used to train

a range of classification models to recognise the specific activity being performed

across a sequence of video frames. Alternatively, deep learning techniques, es-

pecially CNN architectures, in which the feature learning takes place during the

training phase, are widely employed recently for activity and gesture recognition

applications [53–55].

As with ambient sensors, several attempts have been made to recognise ADLs

in home environments with the use of computer vision. For instance, the work

in [56] proposes a camera-based system to recognise eating and drinking activities

from manually pre-segmented sequences of video frames achieving an overall clas-

sification rate of 93.3%. In [53] different CNN and hybrid CNN-LSTM networks

are proposed to recognise food intake actions from video recordings achieving

an F1 score of 85.8%. The work in [55] proposes a hybrid network-based bite
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detection system achieving a classification recall of 91.71%.

2.2.3 Wearable Sensors-based technologies

Wearable sensors are being increasingly adopted for the development of activity

recognition and behaviour analysis systems in view of their many applications in

fitness, security and health care. Major examples of these applications include

fall detection [57,58], sleeping analysis [59], gait analysis [60], door security [19],

activity recognition [14–16, 61] and gesture recognition [62, 63]. Within activity

and gesture recognition work, predominant attention has been given to fitness ap-

plications in which quasi-periodic activities such as walking, running or climbing

stairs are studied [14–17]. In contrast, more limited research has been reported

concerning the recognition of quotidian daily activities, such as eating [9], drink-

ing [64, 65] or hygiene-related activities [66], which in turn could potentially be

used as an indicator of the mental health and physical well-being of older adults

living independently. Besides, the use of wearable solutions can help to overcome

the existing occlusion issues and the privacy concerns related to the use of video

cameras in a home environment, while providing explicit personal-oriented data,

as opposed to that provided by ambient sensors, which is rather object-oriented

and simplistic (normally in the form of binary data). In addition, previous sur-

veys regarding the acceptability of the use of wearable devices [11,12] support the

adoption of wearable devices as human monitoring systems, not only in adults

but also within older population groups.

2.3 Activity and Gesture Recognition Using

Wearable Sensors

A wearable-based HAR system generally embodies four main steps, namely data

collection, signal pre-processing, feature extraction and activity classification.

As a summary, the data collection deals with the gathering of informative data

regarding the activities of concern for a specific application. This involves the

adequate selection of the sensors employed and their placement on the human

body, as well as the sampling frequency utilised to collect experimental data. At
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Figure 2.1: The main crucial aspects of an activity or gesture recognition system.

the pre-processing step, filtering techniques are employed to reduce the signal

noise and enrich the information provided by the collected raw data. The pre-

processed data is then transformed into a feature set or feature vector with a

reduced number of variables. Ultimately, the resultant feature set is used to train

a range of classification models, which throughout the training process, learn the

relationship between the feature set and the activities included in the activity

set.

The remainder of this section discusses the crucial aspects involved in recog-

nition of gestures and activities using wearable sensors depicted in Figure 2.1.

2.3.1 Sensor Modality

The first question that arises in the context of activity recognition using wearable

devices is which sensor/s should be employed. The continuous miniaturisation of

electronics and Micro-Electro Mechanical Systems (MEMS) has enabled the pos-

sibility of embedding several sensors into a single wearable or portable device such

as a smartphone, a smart band, a smart watch or smart clothes. A broad range

of sensors has been employed either independently or through information fusion.

Major examples include tri-axial accelerometers [67–69], tri-axial gyroscopes [69],

tri-axial magnetometers [70], barometric sensors [71], light sensors [72], heart rate

sensors [73] and wearable microphones [72,74]. However, as more sensors are em-
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bedded into a platform or a device, obtrusiveness and power consumption issues

can compromise the acceptance of wearable devices as all-day monitoring mech-

anisms [75]. Although other resources like memory, bandwidth and processing

power are constantly being improved to keep up with the increasing storage, com-

munication and processing power demanded by novel applications like HAR, the

battery capacity grows only at an approximate rate of 10% per year [76]. There-

fore, it is crucial to keep a fair balance between classification performance and

power consumption. Given this, most previous work in the field has opted for the

employment of inertial-based motion sensors, especially that of accelerometers

and gyroscopes. As demonstrated in previous work [15, 77], the employment of

these two motion sensors as a source of data for activity recognition can lead to the

achievement of a classification accuracy in the range of 90% to 99%. As suggested

by the results reported in [78], they can complement each other when combined

together. However, the same results suggest that when the employment of one

of these two sensors individually achieves a satisfying classification performance,

the addition of a second sensor may not lead to an improvement on the original

performance. Therefore, this fact should be considered before the blind employ-

ment of several sensors. In line with this, most previous work in HAR makes use

of stand-alone accelerometers [15, 67, 77, 79], which in addition to being able to

provide data from which accurate activity recognition algorithms are built, their

power consumption is approximately ten times lower than that of gyroscopes [9],

therefore being more appropriate for all-day monitoring applications.

2.3.2 Sensor Placement

The sensor placement indicates the part or parts of the body where the sensing

device(s) are worn or placed. The selection of the optimal sensor placement is

a crucial aspect of achieving accurate recognition rates in activity recognition.

However, there is still some debate over this research topic. Various attempts

have been made to unravel this question by evaluating the recognition rate on

certain activity sets with different sensor placements [80–83]. For instance, the

work in [80] evaluated the recognition rate achieved by using seven different ac-

celerometer placements on five groups of activities, where the activities were
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grouped from very low level (e.g. laying down) to high level (e.g. running) ac-

cording to the level of motion required at their performance. The results of the

study suggest the waist is the optimal position for the recognition of low-level

activities such as eating or drinking, whereas the ear is the preferred option for

high-level activities such as cycling or running. The work in [81] evaluates the

classification performance achieved by six different accelerometer placements on

a group of seven activities, including both high level and low-level activities. In

this case, the best results are obtained when the accelerometer is worn on the hip.

In [83], three different sensor placements, namely right wrist, left ankle and chest,

are evaluated using two different activity sets, including eight different activities.

In this case, the ankle is shown to be the optimal placement, achieving the best

overall activity recognition rate. However, the optimal placement varies across

individual activities. In [82], the wrist is shown to outperform the hip and the

thigh on the overall recognition rate of a set of fourteen activities.

Given the inconsistency found between the different attempts to define an ideal

part of the body for the placement of a sensing device, HAR studies normally

select the sensor placement based on their specific application. For instance,

wrist-worn placements are convenient to recognise activities implying the use

of the hands such as teeth brushing, smoking, eating or ironing [20, 61, 84, 85].

Foot-mounted or ankle-mounted sensors are preferred for step counting and gait

analysis applications [86–88]. Thigh-mounted sensors can well reflect the leg

motion involved in activities such as jogging or walking [82,89,90].

Other studies make use of multiple motion sensing devices placed at different

parts of the body [91–95] or yet incorporate additional sensing devices such as

surface Electromyography (EMG) electrodes or stethoscope microphones for the

recognition of complex activities such as eating [74,96]. As one would expect, the

HAR systems incorporating multiple sensing devices generally outperform those

which incorporate only a single sensing unit [81,83]. However, such improvement

in the classification performance comes along with the undesired extra obtrusive-

ness and lack of usability in real-life scenarios of multi-sensor setups.
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2.3.3 Sampling Frequency

The sampling frequency refers to the frequency at which the sensory data is col-

lected. The main concern regarding the selection of an adequate experimental

sampling frequency is to comply with the Nyquist-Shannon sampling theorem [97]

which establishes that the minimum sampling rate at which a continuous-time

signal of finite bandwidth should be sampled to capture all the relevant informa-

tion, must be at least twice the highest significant frequency in the signal. While

complying with this is crucial, it is also important to consider the computational

cost associated to the selection of an excessively high sampling frequency, since

the computations required in further steps, namely in the signal pre-processing

and feature extraction steps, would have to deal with an unnecessary excess of

data, therefore increasing the overall computational cost and power consump-

tion of the entire system. In this regard, the work in [98] studies the impact of

the sampling frequency on the final classification performance across five bench-

mark datasets composed of different activities. According to the results obtained,

the optimal sampling frequency, that is, the lowest sampling frequency achiev-

ing comparable performance to those achieved with higher sampling frequencies,

varies significantly with regards to the activities being included in the activity

set. In a similar effort, the work in [99] compares the classification performance

achieved by five different sensor placement setups as a function of the sampling

frequency using a unique activity set. The results indicate the classification rate

increases marginally by just 1% above 20Hz and stabilise beyond 50Hz. Accord-

ing to [67], the fundamental frequencies of human activities do not exceed 20Hz.

However, this statement is made with regards to the findings in [100] which con-

cerns gait analysis only. Given the discrepancies found across the above experi-

ments, the sampling frequency across the different works in the field has generally

been arbitrarily selected by taking into consideration the nature of the activities

to be classified, with sampling frequencies ranging from as low as 1Hz [101] to

as high as 200Hz [99] and with the majority of studies ranging from 50Hz to

100Hz [13–15,77,102,103].
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2.3.4 Signal Pre-processing

Pre-processing techniques have been widely used to enrich the information pro-

vided by unprocessed experimental raw data. These include the application of

digital filtering and smoothing techniques with the aim of reducing potential noise

in the collected signals, the isolation of specific frequency components of the sig-

nal to be analysed individually, as well as the computation of additional time

series from which to extract further features.

With regards to noise reduction, various studies have made use of Butterworth

low pass filters to eliminate those frequency components which are not believed

to be caused by human activities or human actions [104,105]. Beside Butterworth

filters, smoothing techniques such as a moving average [79], a weighted moving

average (WMA) [20], median filters [106, 107] or Gaussian-weighted windows [9]

have also been employed as a means of noise reduction, while other works have

opted for not to carry out noise reduction [16,77]. Concerning noise, an investiga-

tion upon the signal to noise ratio (SNR) offered by different filtering techniques

on accelerometer data, is carried out in [67], with one of the conclusions which

can be drawn from this study being that a median filter offers a good balance

between computational cost and SNR as compared to other filtering techniques.

Filtering techniques have also been used to isolate different frequency com-

ponents of the signal. This is generally done with the purpose of separating the

low-frequency component of the signal caused by the gravitational force, from the

high-frequency component due to the linear acceleration caused by the motion of

the body part where the sensor is placed. For instance, the work in [15] makes

use of a low pass filter and a high pass filter both with a cut-off frequency of

1Hz to separate the gravity component from the body acceleration component

to then perform feature extraction from the two separated components inde-

pendently. Similarly, in [14], the gravity and the acceleration components are

separated using a digital filter with a cut-off frequency of 0.25Hz. However, only

the high-frequency component is kept for further analysis in this case.

Further processing techniques have been used to compute additional time

series from those provided by the sensory devices. A common approach within

the work in the field [13, 15, 69] is to complement the tri-axial signal with a
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fourth time series, namely the magnitude of the tri-dimensional vector, to provide

orientation-free information. Even, in [108], although it did not lead to a good

performance as compared to similar work, only the magnitude time series is used

to train a CNN, discarding, therefore, the tri-dimensional accelerometer signal.

Other studies [109,110] propose the use of the jerk (the rate at which acceleration

changes) to provide additional time series for feature extraction.

2.3.5 Signal Segmentation

Once the signals are pre-processed, the next step is to divide the resultant data

streams into shorter windows or segments to facilitate the later feature extrac-

tion and learning. Given its simplicity, a common approach throughout the field

is to employ sliding windows, through which the data streams are divided into

consecutive (often overlapping) time windows of equal length [13–17,77,111–116].

The intuition behind this approach is to identify a window length that incorpo-

rates the fundamental characteristics of an activity or an activity cycle. Window

sizes have varied considerably between studies, with lengths varying from as low

as 0.08 seconds [112] to as high as 30 seconds [113]. No reasoning is provided

regarding the window length employed, therefore implying studies in the field

commonly rely on an arbitrary window size or the success of a specific window

length in previous similar work. Hereof, the impact of the window size on the clas-

sification performance of HAR systems has been investigated in various research

works [117, 118]. The results reported in [118] with regards to the classification

rate achieved as a function of the window size across different activities, obtaining

differing optimal values for various activities, suggest that the optimal window

size in a HAR system is dependent on the activity set studied. Nonetheless, given

the optimal window size intervals provided in this same study, a safe option could

be the selection of window size of around 1 second. A similar approach to sliding

windows is proposed in [119]. In this study, the segmentation of the signals is

done through the division of the data streams into extremely short fundamental

movements to then through the clustering of such fundamentals, perform activ-

ity classification by studying the distribution of the fundamentals across each

activity.
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Despite the success achieved by the use of sliding windows on activity clas-

sification problems, adaptive segmentation techniques have been shown to offer

better performance when tackling gesture recognition problems [120]. Within

adaptive segmentation techniques, Piecewise Linear Representations (PLRs) are

well-known techniques [121, 122]. In PLRs, segments of time series are approx-

imated to a line either by the application of linear regression or interpolation,

until a customised threshold error is exceeded. A posteriori, a Feature Similarity

Search (FSS) is normally used to narrow down the number of segments [123]. In

point of fact, the work in [123], employed a PLR, namely the Sliding Window and

Bottom-up technique (SWAB), to spot a set of fluid and food intake gestures.

Besides PLRs, various adaptive segmentation approaches have been proposed

for spotting sporadic gestures or actions from continuous inertial data streams.

For instance, the work in [120] proposes an extendable Gaussian probability

function-based window. In [61], a segmentation approach based on a re-adjustable

resting position and a distance peak detector from the most current resting posi-

tion is proposed. The work in [9] employs a wrist motion energy threshold-based

segmentation approach. In [124] the sign changes on the accelerometer signal are

used to divide it into different potential segments of interest.

2.3.6 Feature Extraction

Feature extraction is the process of computing abstractions from the raw or pre-

processed segmented sensory signals to extract the characteristics that better

describe the original signal [125]. Through such abstraction, a large set of data

is transformed into a reduced representation, namely a feature vector, which

includes relevant cues for the categorisation of the activities themselves. The

resultant feature vector is a posteriori used as the input for classification models.

In the context of HAR, features can be divided into two main categories regarding

how they are extracted, namely hand-crafted features and automatically learned

features.

Hand-crafted features are those features which are based on domain knowl-

edge [25], being purposely computed for a specific application. The intuition

behind the use of these features is that a sensory signal value at an instant point
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in time does not provide sufficient information to infer which activity is being per-

formed at the time. However, certain informative characteristics of the signals

over a period of time or time window can provide valuable information. Gener-

ally, hand-crafted features are computed in the time and frequency domains, with

the former domain being dominant across the different works in the field. The

extraction of features in the wavelet domain has also been explored [17], however

the extra computational cost did not translate into a better classification perfor-

mance. Within the time domain, statistical features have been shown to include

relevant characteristics of the signals which can help to distinguish between dif-

ferent activities. For instance, the standard deviation over a time window can

provide valuable information to a classification model to make a decision upon

whether a static activity such as ‘standing’ or a dynamic activity such as ‘run-

ning’ is being performed over the period of time delimited by that window. Main

examples of statistical features include the mean [14, 15, 17, 72, 77], the standard

deviation [14,15,17,72,77], the signal magnitude area [17], the root mean square

(RMS) [14, 15, 17, 72], the inter-quartile range [17, 72] or the correlation between

different signal axes [15, 77]. Main examples of features in the frequency domain

include the bandwidth [13, 17] and the spectral energy [17, 126]. Dynamic Time

Warping (DTW), which is a time series dissimilarity measurement algorithm, has

also been widely employed as a feature descriptor [18,127,128].

In contrast to hand-crafted features, automatically learned features do not re-

quire specific domain knowledge since they are automatically learned throughout

the training process of the corresponding deep learning classification algorithm.

Although hand-crafted features were dominant in the field for a long period of

time, deep learning is increasingly employed for both feature extraction and ac-

tivity/gesture classification given the promising results achieved, especially with

the use of Convolutional Neural Networks (CNNs) [90,129–132].

2.3.7 Classification Models

The last step in the development of a gesture/activity recognition system is the

classification of different gestures/activities. The aim of this step is to relate the

information gained throughout the feature extraction to the different activities
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or gestures using the different observations. Classification models are normally

divided into conventional models and deep learning models.

Within conventional classification models, Support Vector Machines (SVM)

[13,14,16,77,133,134], k-Nearest Neighbours (KNN) [77,79,133,135] and Random

Forest (RF) [13–15, 133] have shown good classification performance across dif-

ferent feature sets and experiments. However, as with the different HAR-related

aspects discussed in previous sections, a precise evaluation upon which classifi-

cation model exhibits the best performance in HAR systems cannot be made,

since their performance varies across different experiments and activities. For in-

stance, the results in [14] show SVM offers better performance than that of RF at

recognising walking related activities, whereas RF obtains a better performance

at recognising dancing-related activities. Given this, the tendency amongst the

works in the field is to evaluate the performance of the proposed systems using

a range of classification models [14, 15, 77, 83]. In addition to the above classifi-

cation models but to a lower extent, Hidden Markov Models (HMM) [65,85] and

Naive-Bayes [85] have also been employed in previous HAR work.

The recent advances in deep learning architectures are revolutionising the field

of HAR. In contrast to conventional classification models, the majority of deep

learning models do not rely on domain-specific knowledge to exhibit good classi-

fication performance, since the features are automatically learned throughout the

training process. An increasing number of research works are recently employing

deep learning models for activity recognition with the use of wearable sensors,

specially CNNs [90, 129–132], which as shown in [130] can clearly outperform

other deep learning approaches such as Artificial Neural Networks (ANNs) and

Deep Believe Networks (DBN), as well as conventional classification models. As

demonstrated by previous work [90, 130, 132, 136] CNNs can achieve a classifica-

tion accuracy of over 90% across different human activity classification problems.

Besides, CNNs have been used in combination with LSTM recurrent layers to ex-

ploit the temporal dynamics present in human activities [137]. Although LSTMs

are normally used to make further predictions on given sequences of data, models

exclusively formed by LSTM layers have also been employed by previous work in

the field achieving satisfactory results in activity recognition problems [138,139].

However, when compared to the performance of CNNs on a benchmark dataset
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(UCI HAR [109]), CNNs [132] have shown a better classification performance

than that shown by LSTMs [138, 139]. ANNs have also showed good perfor-

mance in HAR studies [126], especially when combined with a thorough process

of hyper-parameter tuning. However, in contrast to CNNs, which exhibit a good

classification performance with the use of raw data, the results reported in [126]

indicate ANNs should rather be fed with a small feature set of hand-crafted fea-

tures than with raw data, with this implying the feature extraction efficiency of

ANNs on raw time series is limited as compared to that of CNNs.

2.4 Discussion and Research Opportunity

From the analysis of the literature, it can be concluded that wearable devices show

significant advantages as compared to alternative sensing solutions. Wearable so-

lutions overcome the occlusion issues and privacy concerns of systems employing

video cameras in a home environment [140]. Motion wearable sensors provide

more intrinsic information about the subjects than systems using ambient sen-

sors. Although ambient systems have shown good results at detecting simple

activities such as sleeping or toileting, those results are significantly worsened

when attempting the recognition of complex activities like eating [141].

Even though increasing efforts and subsequent achievements are being made

in the field of HAR with the use of wearable sensors, most of these are being

directed towards fitness applications. Also, the discrepancies found amongst the

different studies in the field, suggest many of the crucial aspects for activity

recognition depend on the activity set studied. Many attempts have been made to

recognise quasi-periodic activities. However, there are still many open challenges

in recognition of quotidian activities, especially of those composed of sparsely

occurring gestures such as food and fluid intake.

The selection of the sensor/s placement is key to achieve successful activity

recognition rates. However, as shown in the literature, there is still some debate

as to what is the optimal placement for HAR systems. The analysis of previous

work suggests the sensor placement should be decided based on the application

itself. With regards to the work in this thesis, the active role of the arm, and

especially of the hand, on the performance of the target activities, the literature
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suggest that the wrist may potentially be the optimal placement for the sensing

device.

Another crucial aspect to be taken into consideration is the overuse of power

consumption since sensing devices are to be potentially employed as “all-day”

monitoring mechanisms. This suggests that the employment of sensors should be

considered carefully so that only sensors which contribute significantly to higher

recognition rates are incorporated as a means of data collection. In this sense,

tri-axial accelerometers are the preferred option among the different works in the

field. The analysis of the literature also indicates tri-axial accelerometers may

be employed alongside tri-axial gyroscopes in HAR applications. However, this

should not be done blindly, since the power consumption of tri-axial gyroscopes

is approximately ten times higher than that of tri-axial accelerometers. Further

to the selection of the sensors, the sampling frequency employed for the collection

of data also plays a crucial role on the power consumption of HAR systems, as an

increase in the sampling frequency leads to an increase in the power consumption

of the sensors, as well as in the amount of data that needs to be a posteriori

processed. However, the issue of signal aliasing, which occurs when the sampling

frequency is not at least twice the highest relevant component of the signal, should

also be taken into consideration to appropriately select the sampling frequency

of the different sensors employed.

The sliding window technique is an effective way of tackling the segmentation

of sensory signals for the recognition of quasi-periodic activities. However, adap-

tive segmentation techniques are preferred when attempting the recognition of

sparsely occurring gestures. Statistical features in the time domain and spectral

information computed in the frequency domain have achieved good classification

performance across numerous studies. Besides, automatically learned features

through the use of deep learning techniques, and especially of CNNs, are increas-

ingly adopted in recent work in the field, given their good performance and the

advantage they provide in the sense that they are computed without the need

for domain-specific knowledge. The classification model to be employed in HAR

applications is another open area for discussion. This is mainly due to the vari-

ation with regards to the performance across different experiments of the main

classification models employed for activity recognition. This variation indicates
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the performance of the classification models depends on the specific application

and feature set provided.

The above conclusions drawn from the analysis of relevant work in the field

of HAR suggest that there are still many open challenges in activity recognition

with the use of wearable sensors, especially in activities composed by sporadic

occurring gestures. In line with this, the efforts of this thesis are focused on ex-

ploring computational solutions to provide alternative approaches to the current

state-of-the-art.
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Experimental Pipeline

3.1 Introduction

This section presents a technical overview of the common methods employed for

activity and gesture recognition for the justification of their exploration through-

out the work undertaken in this thesis. Experiment-specific methods will be pre-

sented at the corresponding experimental chapters. Besides, the main datasets

utilised in this thesis are also explained in this chapter. An activity/gesture recog-

nition system typically involves five main steps, namely data collection, signal

processing, feature extraction, gesture/activity classification and model evalua-

tion. In view of this, the remainder of this chapter is organised as depicted in

Figure 3.1.

Figure 3.1: Block diagram representing the chapter organisation.
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3.2 Data Collection

Data collection in the context of activity and gesture recognition is the process

of gathering data by the use of different sensory devices to ultimately develop

classification models to predict the activity or gesture being performed at a given

time sequence. To do so, a range of experimental participants perform a series

of activities while wearing one or various sensory devices. These recordings are

annotated (labelled) so that the resultant wrist motion signals at any given time

are associated with a specific class or label (activity or gesture in this case).

3.2.1 Sensory Device

A wrist-worn device composed of, among other sensors, a tri-axial accelerom-

eter and a tri-axial gyroscope has been employed throughout the different ex-

perimental work undertaken in this thesis. As outlined in Section 2.3.1, ac-

celerometers have been almost unanimously employed by previous work in the

field [14, 15, 17, 68, 77, 79, 108, 127, 131, 142, 143] given the good balance between

the performance shown by acceleration-based classification models and the power

consumption demanded for the collection of the data. Besides, as demonstrated

in [78], gyroscopes can in some circumstances improve the recognition perfor-

mance achieved by classification models based solely on accelerometer data. How-

ever, the power consumption of gyroscopes is approximately ten times higher than

that of accelerometers [9]. Based on this, the work in this thesis employs a tri-

axial accelerometer, with occasional use of a tri-axial gyroscope, as a means of

data collection for the recognition of the activities of interest.

The selection of the wrist as the location for the sensory device is based on two

distinct factors. First, as discussed in Section 2.3.2, there exist major discrepan-

cies between different studies aiming at the definition of optimal sensor placement

for activity recognition, leading to a common tendency within the field for de-

termining the sensor placement based on the application itself. In other words,

the sensor placement is typically based on the nature of the target activities. In

this case, the nature of the target activities ‘Teeth brushing’, ‘Hands Washing’,

‘Eating’ and ‘Drinking’, suggest that the wrist is potentially the most suitable

sensor placement, given the higher number of degrees of freedom as compared
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Figure 3.2: Visual representation of the signals measured by a wrist-worn tri-axial
accelerometer. The data provided by the accelerometer is composed of three
different time series ax, ay, az, which correspond to the medio-lateral, vertical
and antero-posterior acceleration inputs respectively. The data provided by the
gyroscope is composed of ωx, ωy, ωz, which correspond to the angular velocities
around the x, y and z axes respectively.

to other parts of the arm and its evident connection with the target activities.

Besides, the wrist is a natural place for instrumentation which minimises unde-

sired obtrusiveness while increasing social acceptance due to the resemblance of

a wrist-worn device to a common watch.

At present, motion sensors come in the form of Micro-Electro Mechanical

Systems (MEMS) which embody both mechanical and electronic components of

very small size. These range from a few micrometres to one millimetre. In

particular, the datasets used for the work undertaken throughout this thesis were

collected with a Mbientlab Meta Motion R [144], which comprises a BMI160

Inertial Measurement Unit (IMU) consisting of a state-of-the-art 3-axis low-g

accelerometer and a low power 3-axis gyroscope both with 16bit resolution and

a sample rate of up to 800Hz.

A detailed description of the working principle of tri-axial accelerometers and

tri-axial gyroscopes are provided in Sections 3.2.1.1 and 3.2.1.2 respectively.

3.2.1.1 Tri-axial Accelerometer

A tri-axial accelerometer is a sensing device which measures linear acceleration

along three axes, namely x, y and z. Given that during the undertaken ex-

perimental work, the device is worn on the wrist, the accelerometer, therefore,
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Figure 3.3: Visual representation of Hooke’s law, where the dashed square repre-
sents the mass at its original position, and the solid square represents the same
mass after a displacement x has occurred.

measures the linear motion of the wrist as this moves about in space. This can

be visualised in Figure 3.2.

The working principle of an accelerometer is based on the Hooke’s law (see

Figure 3.3), which states that for relatively small displacements of an object (a

mass), such displacement is directly proportional to the force or load that causes

the displacement itself. Mathematically, this can be expressed as:

F = −kx (3.1)

where F is the force that causes the displacement, k is a constant factor charac-

teristic of the spring and x is the displacement of the mass from its equilibrium

position.

Besides, Newton’s Second Law states that the acceleration of an object is

directly proportional to the magnitude of the force applied to it and inversely

proportional to the mass m of the object. Assuming that the mass m remains

constant, this can be mathematically expressed as:

a =
F

m
(3.2)

where a is the acceleration of the object, F is the force applied to the object, and

m is the mass of the object.
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Figure 3.4: Visual representation of the Coriolis effect on a mass-spring model of
a MEMS gyroscope.

3.2.1.2 Tri-axial Gyroscope

A tri-axial gyroscope is a sensing device which measures angular velocity around

the x, y and z axes (see Figure 3.2). These are commonly known as pitch, roll

and yaw respectively. MEMS gyroscopes make use of a vibrating mechanical

element for detecting the angular velocity of a rotating mass. The measuring

process is based on the Coriolis effect, an apparent acceleration proportional

and perpendicular to the linear and angular velocities, which is observed in the

rotating mass. The working principle of a gyroscope considering a mass m moving

along the y-axis with a velocity v is depicted in Figure 3.4.

Given the scenario presented in Figure 3.4, the Coriolis force is calculated as:

Fz = |2mΩ× v| (3.3)

where Fz is the Coriolis force along the z axis in this case, Ω is the angular

velocity and v is the linear velocity of the mass relative to the reference frame.
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Figure 3.5: Example of accelerometer data from different quotidian activities.
The x axis represents time and the y axis represents the corresponding accelera-
tion measured in g.

3.2.2 Datasets

To conduct the research in this thesis, three distinct datasets are used. A brief

description of the datasets is provided below. The first, namely Dataset 1, em-

bodies data from a range of quotidian quasi-periodic activities to support the

development of techniques to enable the recognition of hygiene-related activities

among other quotidian activities. The second dataset, namely Dataset 2, incor-

porates data from a range of free-living actions as well as from meal periods to

support the development of computational solutions to spot and recognise food

and fluid intake gestures from continuous data streams. Ultimately, Dataset 3,

embodies free-living recordings, to enable the development of computational so-

lutions to detect meal periods from the distribution of food intake gestures across

time. A pictorial example of the resultant accelerometer signal collected from

the performance of various quotidian activities is provided in Figure 3.5. Further

details about the three datasets are provided below.
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3.2.2.1 Dataset 1 - Recognition of Quotidian Quasi-periodic Activi-

ties. Activities

Six subjects, two female and four male, including three undergraduate and three

postgraduate students, participated in this research experiment. The participants

were asked to perform a set of seven quotidian daily activities while wearing the

employed IMU [144] on their dominant hand. The experiment was run at the

Crime Scene Training Facility at Nottingham Trent University, Clifton Campus.

The activities performed are listed below:

1. Hand Washing,

2. Teeth Brushing,

3. Standing,

4. Sitting,

5. Picking up an object from the floor1,

6. Walking Upstairs,

7. Walking Downstairs.

No instructions were given as to how to perform the activities. This ensured

the participants could perform the activities naturally, therefore providing reality

to the resultant data set. To avoid undesired aliasing effect in the collected

signals, a sampling frequency of 100 Hz was used.

3.2.2.2 Dataset 2. Spotting and Recognition of Eating and Drinking

Gestures

This experiment embodied six volunteers, five male and one female (five post-

graduate students and a senior member of staff), having a meal which included

crisps, soup, chicken breast and cake. Given the food provided, the experiment

included the use of diverse utensils. Moreover, the utensils provided differed

1This action was repeatedly performed, thus becoming a quasi-periodic activity.

35



3. Experimental Pipeline

between different participants (i.e. various participants used a mug to drink

water while others used a glass), therefore incorporating inter-utensil variability.

Furthermore, one left-handed person took part in the experiment, thus adding

extra variability to the dataset. The resultant data set embodied the following

gestures (labels):

1. Null (irrelevant gestures not related to eating or drinking),

2. Drinking (using a glass or mug to drink water),

3. Hand (Using the hand to take a bite of crisps or cake),

4. Spoon (Using the spoon to eat soup),

5. Fork (Using the fork to eat chicken).

As with the previous data set, the participants were asked to wear the IMU on

their dominant hand, and no instructions were given as to how to carry out any

of the actions during the recordings. Before the meal took place, the participants

were asked to act freely around the house for an unlimited period of time. For this

experiment, a sampling frequency of 25 Hz was used, given the lower frequency

components present in meal intake gestures as compared to those present in other

quotidian activities such as teeth brushing. The experiment was carried out at

the new Crime Scene Training Facility at Nottingham Trent University, Clifton

Campus.

3.2.2.3 Dataset 3. Recognition of Meal Periods

This experiment embodied four male volunteers (three postgraduate students and

a senior member of staff), who were asked to wear the IMU on their dominant

hand before, during and after their meals (breakfast, lunch and dinner) for various

days. The participants were trained on how to use the sensory device and they

were asked to annotate the beginning and the end of each meal with a minute

precision. The purpose of this experiment was to collect sufficient pre-meal,

during a meal and post-meal wrist motion data to identify their meal periods

along the day. Consequently, the resultant data set embodied the two following

classes:
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1. Null (everything but meal periods),

2. Meal Period.

As in Dataset 2, a sampling frequency of 25 Hz was used for the recordings.

As per the settings, the experiments were run under free-living conditions. A

total of 41 meals with an average duration of 9.02 minutes were reported by

the participants of the experiment. The total duration of the recordings is 3774

minutes ≈ 63 hours.

3.2.2.4 Datasets Remarks and Inter-Subject Variability

The work in this thesis has been primarily based on the use of the above mentioned

datasets. Chapter 4 is based on a dataset composed of seven different quotidian

quasi-periodic activities (Dataset 1). Chapter 5 and Chapter 6 exploit a dataset

with different embedded food and drink intake gestures with the aim of developing

computational solutions to accurately spot and recognise the target gestures from

continuous data streams (Dataset 2). The work in Chapter 7 is based on longer-

term recordings, aiming at the recognition of meal periods (e.g. lunch) based

on the distribution of non-annotated eating and drinking gestures across time

(Dataset 3).

The experimental setups for the collection of the above datasets were, to

the extent possible, designed to incorporate the variability one would expect to

encounter in real life. Although Dataset 1 and Dataset 2 were collected under

semi-controlled environments, the experimental participants were told to perform

the different activities freely. To the extent possible, participants from different

cultures, nationalities, sex and age groups were recruited for the different exper-

iments. This was done with the aim of ensuring the activity and gesture recog-

nition systems proposed throughout the work in this thesis had to deal with the

expected intra-subject and inter-subject variability present in the performance

of the different activities. Ultimately, Dataset 3 was collected under free-living

conditions. In this case, the experimental participants were given a sensing de-

vice, whereby they were able to collect data under different scenarios (e.g. their

respective home environments).
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It should be mentioned that the variation in the experimental participants

across the different experiments was caused by the different availability of sub-

jects at the time when the experiments were conducted.

3.3 Signal Processing

To remove unwanted components and enrich the collected motion signals for

further analysis, various signal processing techniques are employed in HAR work.

This section provides an overview of the main techniques employed to smooth,

filter and segment accelerometer and gyroscope signals.

3.3.1 Filtering and Smoothing

Motion sensing devices such as the tri-axial accelerometer and the tri-axial gyro-

scope employed in this project are subject to undesired instrumentation, random

and electric/electronic noise. To minimise the impact of such noise on the sensor

measurements, various factors are taken into account. First, a digital low pass

filter can be used to remove the frequency components above a specific frequency

threshold from which human activity is not expected to happen. The filtering of

the undesired high frequency components can be achieved by the employment of

a Butterworth low pass filter [145] with the desired cut off frequency. Besides,

according to the results in [67], median filters can offer a good balance between

the computational cost required and the Signal to NoiseRatio (SNR) when used

with motion signals.

3.3.2 Gravity vs. Linear Motion

A common step in HAR employing accelerometers is to separate the acceleration

caused by the linear motion of the selected body part where the sensory device

is placed, from that caused by the gravitational force [14, 15]. The gravitational

component is associated with the low frequency component of the signal. In

contrast, the acceleration caused by human motion is associated with the high

frequency component. Generally, low-pass filters with cut-off frequencies of up to

1Hz are employed to separate these two components. In this work, a Butterworth
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filter with a cut-off frequency of 1Hz is employed to isolate the above-mentioned

components in Chapter 4. A posteriori, features can be extracted from the resul-

tant two components. This step can be of crucial value to differentiate between

dynamic and static activities since the existence of an acceleration in a static

position can be further miss-interpreted by the employed classification models.

The extraction of the gravity component from the overall accelerometer signal

leads to the following resultant signals:

1. Linear acceleration due to wrist motion: ax, ay, az

2. Gravity component: agx , agy , agz

with the computation of the above components, two further time series from

which features can be extracted are obtained. This step can be crucial to obtain

features regarding the orientation of the wrist using the gravity component.

3.3.3 Computation of Additional Signal Time Series

As explained in the section above, accelerometer signals from each independent

axis can be split into two components, namely the gravity component and the lin-

ear acceleration component. Further to these, the computation of additional time

series from which to extract features can also benefit the ultimate classification

performance [146–148]. For instance, the computation of the magnitude, calcu-

lated over the tri-dimensional accelerometer and gyroscope signals, can mitigate

the device orientation dependency when utilising each independent axis [147]. By

doing so, each sensory signal is now represented by 4 different time series, instead

of the original three provided by the sensory devices. The incorporation of the

jerk (rate at which the acceleration changes) into the set of time series can also

contribute to higher classification rates [146]. Thereby, the following time series

can be computed for the further feature extraction:

1. Accelerometer signal: ax, ay, az, |a|

2. Linear acceleration due to wrist motion: axm , aym , azm , |am|

3. Gravity component: axg , ayg , azg , |ag|
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4. Jerk: jx, jy, jz, |j|

5. Angular Velocity: ωx, ωy, ωz, |ω|

where |a| is the magnitude of the corresponding tri-dimensional vector [ax, ay, az]

calculated as:

|a| =
√
a2
x + a2

y + a2
z (3.4)

and the acceleration jerk j at time t is given by:

j[t] =
a[t]− a[t− 1]

∆t
(3.5)

the computation of the above time series enables the extraction of further features

which account for the rate of change of the acceleration along the different axes, as

well as the extraction of orientation independent features which provide a means

of accounting for the magnitude of the acceleration and angular velocity of the

wrist as it moves about in space.

3.3.4 Signal Segmentation

Signal segmentation is the process of dividing the collected time series into smaller

segments from which a posteriori the feature vector is calculated. As discussed

in Section 2.3.5, there are two main ways of segmenting motion signals, namely

through artificial segmentation and through adaptive segmentation. These are

presented below in the context of the work undertaken in this thesis.

3.3.4.1 Artificial Segmentation

Artificial segmentation has almost unanimously employed by previous work in

the field of HAR due to the good performance exhibited across a wide range of

experiments concerning quasi-periodic activities [14,15,17,77,111,131]. The term

artificial indicates the segmentation of the signals is not dependent on the signals

themselves but on different parameters arbitrarily provided. Artificial segmenta-

tion is done through the use of sliding windows, whereby the signals are divided

into windows of equal length. These windows are delimited by the window length

of n, which defines the length of the windows from which a posteriori the features
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Figure 3.6: Example of the sliding window segmentation technique with a window
length n and an overlapping o.

are calculated, and the overlapping o, which defines the overlapping between con-

secutive windows. The working principle of the sliding window technique with a

window length n and an overlapping o is depicted in Figure 3.6.

3.3.4.2 Adaptive Segmentation

As suggested by the work in [120], adaptive segmentation techniques can out-

perform artificial segmentation techniques like the commonly employed sliding

windows presented above. Especially, adaptive segmentation can be useful when

tackling the spotting of sporadic gestures with different lengths such as food and

drink intake gestures. Contrary to continuous quasi-periodic activities such as

walking or teeth brushing, activities like eating and drinking are composed of

sparsely occurring gestures embedded in continuous data streams. Motivated by

the above, an adaptive segmentation technique is proposed to tackle the experi-

mental work in this thesis with regards to the recognition of eating and drinking

gestures. This makes use of characteristics of the signals themselves to identify

potential segments of interest while filtering out unwanted segments of the signal

which are not believed to be related to intake gestures. Two main constraints are

identified on the segmentation of eating and drinking gestures. First, an eating or

a drinking gesture can exhibit different lengths in time (i.e. a person may drink
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Figure 3.7: Crossings-based adaptive segmentation technique applied to a sample
signal with two consecutive eating gestures.

for 1 second but may also do so for 10 seconds). This implies the segmentation

has to adapt to such variability to extract the fundamental characteristics of each

gesture. Second, segments need to be adjusted as new incoming data is received.

The crossings of two moving averages are explored to determine the poten-

tial segments containing eating or drinking gesture. Given its functionality, the

technique is referred to as Crossings-based Adaptive Segmentation Technique

(CAST). The intuition behind the CAST is the sequence of hand motions in-

volved in an eating or a drinking gesture. First, the corresponding tool (i.e. a

glass) is taken to the mouth. This is followed by a movement of the hand back to

the rest position. Such a sequence of motions leads to a rapid increase on the fast

moving average when food or a drink are taken to the mouth, crossing over the

slow moving average. A hand movement to the rest position follows, producing a

rapid decrease on the fast moving average and the consequent cross down of the

slow moving average. This is illustrated in Figure 3.7, where the segmentation of

two consecutive eating gestures using the CAST is shown.

The CAST can be explained as follows. Consider a signal y[t]. The moving
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average ȳ[t] of y[t] is defined as:

ȳ[t] =
1

n

n−1∑
i=0

y[t− i] (3.6)

where n is the number of data points over which the moving average is calculated.

Two moving averages ȳ1[t] and ȳ2[t] are calculated over the intervals T1 and T2

respectively, such that T2 > T1. If y[t] increases, the CAST moving average

ȳ1[t] will react faster to that increase on y[t]. Likewise, a faster reaction is also

observed when a decrease is seen on y[t].

Provided the higher power consumption of gyroscopes as compared to that of

accelerometers, and the prospective use of HAR systems for all-day monitoring

applications, the accelerometer signal is explored as a means of the segmentation

of the signal.

The values for T1 and T2, as well as the accelerometer axis over which the mov-

ing averages are calculated, are experimentally evaluated by testing the following

values for T1 and T2:

T1: [25, 50, 75, 100]

T2: [50, 100, 150, 200]

Given that more computational intensive tools are to be applied after the

segmentation step, T1 and T2 are selected based on the gesture spotting recall.

In other words, the aim of the segmentation technique is to maximise the true

positives so that gestures of interest are not missed at the segmentation stage.

The experiments show the optimal values for T1 and T2 are n = 25 and n = 150

respectively when used with the y-axis signal of the accelerometer. With these

values, a 100% spotting recall is achieved. Considering a sampling frequency of

25 Hz, ȳ1[t] and ȳ2[t] are therefore the moving averages of the acceleration on the

y-axis over 1 second and 6 seconds respectively.

Overall, the CAST overcomes the challenges exposed at the beginning of this

section. First, it adapts to the nature of the signal, since both moving averages

ȳ1[t] and ȳ2[t] react in consonance with the changes on y[t]. Second, it deals with

different length of gestures successfully. For instance, in a long drinking gesture,
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the decrease in the fast moving average ȳ1[t] after the glass has been taken to the

mouth is slower than in a short gesture, since the hand movement that causes

the decrease in y[t] and therefore in ȳ1[t] is deferred. Third, CAST can be used

real-time since it adapts to new incoming data adjusting the moving averages

accordingly.

3.4 Feature Extraction

The computation of efficient representation of data in the form of a feature set is

a crucial aspect in wearable HAR. In this process, data abstraction is computed

upon each segment of the signal, so that the new representation is more relevant

to the activity or gesture associated with the segment. The use of hand-crafted

features has shown good recognition performance across numerous studies. The

term hand-crafted means the features are calculated by leveraging specific domain

knowledge. In the context of activity recognition with the use of wearable sensors,

statistical features computed in the time domain and spectral-focused features

computed in the frequency domain are widely employed. Based on the different

works reviewed in Section 2.3.6, common hand-crafted features across relevant

HAR work are presented below:

- Mean:

a =
1

n

n∑
t=0

at (3.7)

where at is the acceleration at time t and n is the window length expressed

as the number of samples.

• Standard Deviation:

σ =

√∑n
t=0(at − a)2

n− 1
(3.8)

where at is the acceleration at time t, n is the window length expressed as

the number of samples, and a the mean acceleration of the corresponding

window.
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- Signal Magnitude Area:

sma =
1

n

∫ T=n

0

(|axt − ax|+ |ayt − ay|+ |azt − az|)dt (3.9)

where axt , ayt , azt are the acceleration at time t on the x, y and z axes re-

spectively, n is the window length expressed as a number of samples, and ax,

ay, az the mean acceleration on the corresponding axis in the corresponding

window.

- Signal Entropy:

H(a) =
Wl∑
t=0

|at − a| log10 |at − a| (3.10)

where at is the acceleration at time t, n is the window length expressed as

the number of samples and a the mean acceleration in the corresponding

window.

- Correlation:

rxy =
Cov(ax, ay)

σ(ax)σ(ay)
(3.11)

where Cov(ax, ay) is the covariance of the acceleration on the axes x and y,

and σ(ax)andσ(ay) are the standard deviation for the acceleration on the

axes x and y respectively.

- Skewness:

γ1 =
1
n

∑n
t=0(at − a)3

(σ(a))3
(3.12)

where at is the acceleration at time t, n is the window length expressed as

the number of samples and, a and σ(a) are the mean acceleration and the

standard deviation in the corresponding window respectively.

- Kurtosis:

β2 =
1
n

∑n
t=0(at − a)4

(σ(a))4
(3.13)

where at is the acceleration at time t, n is the window length expressed as
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the number of samples and, a and σ(a) are the mean acceleration and the

standard deviation in the corresponding window respectively.

- Root Mean Square

RMS =

√√√√ 1

n

n∑
t=0

(at)2 (3.14)

where at is the acceleration at time t and n is the window length expressed

as the number of samples.

The transformation from the time domain to the frequency domain has

been computed using the Fast Fourier Transform:

A(k) =
n−1∑
t=0

ate
(−i2πkt/n) (3.15)

where at is the acceleration at time t and n is the window length expressed

as the number of samples, A(k) is the sequence of n complex-valued numbers

given the sequence of data a(t).

- Energy

E =

∑n
k=1 |ak|

2

n
(3.16)

where a1, a2, ... an are the FFT components of the corresponding window

of length n.

3.5 Classification Models

The last stage in an activity or gesture recognition system is the training and

testing of a machine learning classification model. Once trained, the classification

model is used to predict the categorical class of new incoming instances. That is,

given the set of features calculated over a time series segment, the classification

model predicts the class (in this case, the activity or the gesture) of that segment.

Therefore, the task of the predictive model is that of approximating a function f
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from input variables X to a discrete output variable y. This section presents the

most common supervised classification algorithms employed throughout previous

work in the field, namely K-Nearest Neighbours (KNN), Support Vector Machine

(SVM) and Random Forest (RF). Given their good performance across different

studies (see Section 2.3.7), these are widely employed throughout the different

experimental chapters of this thesis.

3.5.1 K-Nearest Neighbours

The KNN is a non-parametric instance-based supervised classification model

which requires no learning process. Instead, through ‘lazy learning’, the class

f̂(xq) of a new incoming instance xq is predicted based on the most common

class among its k nearest neighbours estimated by their Euclidean distance to

the current instance (see Figure 3.8). The KNN classification model can be de-

fined as follows:

Given an instance xq to be classified and the set of training samples (x, f(x)),

let x1...xk denote the k instances from the training examples nearest to xq. The

predicted class of xq, denoted by f̂(xq) is given by:

f̂(xq)← arg max
c∈C

k∑
i=1

δ(c, f(xi)) (3.17)

where δ(a, b)=1 if a=b and δ(a, b) = 0 otherwise.

3.5.2 Support Vector Machine

Support Vector Machines (SVM) is a classification model based on the margin

maximisation principle. That is, during the training phase, a separating hy-

perplane that maximises the distance between the instances corresponding to

different classes is estimated, with the support vectors being the closest points to

such separating hyperplane. Commonly, before the estimation of the optimal sep-

arating hyperplane, a kernel function, typically a Radial Basis Function (RBF),

is used to map the input space into a higher dimensional space where the distance

between the instances of the different classes can be further maximised. With

this, a linear classifier can be used to solve a non-linear problem. Considering a
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Figure 3.8: KNN classification model with k=1 and k=3 in a binary classification
problem.

binary classification problem, the separating hyperplane can be defined as:

wᵀx + b = 0 (3.18)

where w is a weight vector, x is the input feature vector and b is the bias.

The working principle of an SVM classification model on a binary classification

problem is depicted in Figure 3.9. However, activity recognition is normally tack-

led as a multi-class classification problem, since generally, several activities are

included in the activity sets. In this case, a One-vs-Rest classification strategy

can be employed. With this, an N -class classification problem is tackled through

the use of N binary classification models, where each binary classification model

is aimed at estimating an optimal hyperplane that separates a specific class from

the rest of the classes.

3.5.3 Random Forest

Random Forest (RF) is an ensemble supervised classification model based on the

voting of a large number of randomly created and merged decision trees, where

each of the decision trees can be thought of as a series of nodes with yes/no

questions regarding the features that compose the feature vector, leading to a

predicted class. At each node, decision trees search through the features for the
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Figure 3.9: SVM classification model in a binary classification problem, where d
is the maximum margin between the 2 classes.

value from which the split is made that results in the greatest reduction in the

Gini Impurity. The Gini Impurity is given by:

IG(n) = 1−
C∑
i=1

(pi)
2 (3.19)

where C is the total number of classes in the classification problem and pi is the

fraction of samples labelled with class i.

As shown in Figure 3.10, Random Forest makes use of n decision trees to

make a prediction based on the majority voting across the trees. Besides, Random

Forest de-correlates the different decision trees that form the forest by considering

only a selection of features at each tree node split.

3.6 Model Evaluation

This section presents the evaluation measures and cross-validation strategies em-

ployed by the different activity and gesture recognition frameworks developed

throughout this thesis.
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Figure 3.10: Random Forest working principle for predicting new incoming in-
stances.

3.6.1 Evaluation Measures

To evaluate the performance of the classification models, three evaluation mea-

sures, namely classification accuracy, classification recall and classification preci-

sion, have been widely employed.

The classification accuracy provides an overview of the performance of the

evaluated classification model calculated as the ratio of the number of correct

predictions to the total number of predicted samples as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3.20)

Alongside the classification accuracy, the classification recall and classification

precision are used to mitigate the poor generalisation performance of the classifi-

cation accuracy at evaluating unbalanced datasets. The classification recall, also

known as the true positive ratio, is calculated as:

Recall =
TP

TP + FN
(3.21)
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The classification precision is expressed as:

Precision =
TP

TP + FP
(3.22)

It should be noted that, in this thesis, the above measures are provided for

each class within the classification problem, so that intuition on how the classifi-

cation model performs on each specific activity or gesture can be obtained. These

are referred to as per-class measures. On top of these, the average per-class ac-

curacy, precision and recall are used to evaluate the overall performances of the

implemented systems.

3.6.2 Evaluation Strategy

Further to selecting appropriate measures for the specific classification problems,

the adoption of an adequate cross-validation strategy is crucial to guarantee the

robustness of the results achieved. K-fold and Leave-One-Out cross-validation

strategies are widely employed for evaluating HAR systems. By the employment

of K-fold, the dataset is shuffled and split into K folds or groups. The model is

then evaluated K times, where each time a different group is used as the test set

and the remaining groups as the training set. A posteriori the average value across

the K runs is provided as the final results. The Leave-One-Out cross-validation

strategy follows a similar working principle. However, the split of the dataset

is based on the number of participants, whereby each participant’s instances are

used once as the test set. Figure 3.11 illustrates the working principle of a 5-fold

cross-validation strategy.

In the context of the experimental work carried out in this thesis, three dif-

ferent strategies are employed as follows. In Chapter 4, a 3-fold cross-validation

where each of the three runs is divided into three sets, namely training, valida-

tion and test sets. The intuition behind the employment of this strategy comes

from the need to have different sets for evaluating the robustness of the multi-

refinement approach proposed in the chapter. In this context, the validation set

is used to find refinement opportunities whereas the test set is used to test the

improvement of such refinement.

51



3. Experimental Pipeline

Figure 3.11: 5-fold cross-validation strategy

In Chapter 5 and Chapter 6 a Leave-One-Subject-Out strategy, whereby each

of the experimental subject’s data is used once as the test set, is adopted. The

adoption of this strategy is mainly motivated by two main factors. First, the

adaptive segmentation technique employed results in a reduced sample set as

compared to problems tackled using artificial segmentation techniques where all

the signal frames are considered for classification. Second, the dataset collected for

these experiments includes data from a left-handed person, therefore potentially

increasing the variations between participants. While a single train-test split may

be used to evaluate the performance of classification models on larger datasets,

the Leave-One-Subject-Out cross validation strategy is in this case considered the

most appropriate strategy to evaluate the robustness of the gesture recognition

approaches proposed in these two chapters given the reduced size of the dataset.

In addition, the adoption of this strategy allows for the evaluation of the per-

formance of the different classification models on a left-handed individual when

these are trained on data from right-handed individuals only.

Lastly, in Chapter 7 a 10-fold cross validation strategy is employed. The adop-

tion of this strategy is justified by the very limited data samples to be fed into the

classification model, since samples are given in the form of whole meal periods

rather than as short frames or segments of an activity. Given the limited size of

the dataset, it is crucial to provide sufficient training data to the model for it to

be able to generalise competently on unseen data. In this context, a 10-fold cross

validation is considered an appropriate solution to evaluate the robustness of the
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model while mitigating the impact of the limited size of the dataset.

3.7 Conclusions

This section has presented common methods employed in human activity recog-

nition work, including signal processing techniques to reduce noise and to extract

further information in the form of additional time series from those collected by

the tri-axial accelerometer, signal segmentation techniques to break the sensory

signals into smaller segments and to filter out unwanted segments of the signals,

feature extraction of domain-specific hand-crafted features, the working principle

of a range of classification models, as well as cross-validation strategies to evalu-

ate the performance and robustness of the classification models. These methods,

alongside further methods developed in this work with the aim of mitigating some

of the limitations found in the state-of-the-art in the field, are explored in the

following chapters.
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Chapter 4

Recognition of Quotidian

Quasi-Periodic Activities

4.1 Introduction

Many attempts have been made to develop HAR systems using wearable sen-

sors. However, most of these efforts have been directed to the recognition of

fitness-related activities such as walking or running [14–17]. By contrast, limited

research has explored the recognition of hygiene-related activities [149, 150]. As

suggested in [102], gaining insights into the daily behaviour of an older adult

living independently can be valuable information for clinicians, who would be

able to react in consonance with such information. Regarding hygiene issues,

research reported in [151] suggests a big proportion of elderly individuals need

assistance with their daily oral hygiene, however, only a very small percentage

of those actually receives it. Hand washing is another crucial factor in personal

hygiene, being widely recognised as a critical infection control mechanism [152].

As evidenced by the reiterative recommendations made by medical institutions

during the current COVID-19 (Coronavirus Disease 2019) pandemic, preventing

any form of infection through the maintenance of adequate hand hygiene habits

can be critical for the health of individuals, especially for those in advanced age

with weakened immune systems.

Motivated by the above, this chapter explores computational solutions to
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recognise hygiene-related activities, namely teeth brushing and hand washing,

among other common quotidian activities such as sitting, standing and walking-

related activities. As mentioned in Section 2.3.6, the use of hand-crafted features

have shown good classification performance across different studies concerning

the recognition of continuous quasi-periodic activities. However, it is argued that

activities differ diversely from each other, leading to the judgement that a spe-

cific set of features may be informative to classify a specific set of activities, but

such informativeness should not necessarily be extended to a different activity

set. In this context, a multi-level refinement approach, through which the selec-

tion of features is optimised for those activities which show lower classification

performances as compared to that of the overall activity recognition system, is

proposed. With this approach, after the classification takes place, information is

extracted from the confusion matrix to focus the computational efforts on those

activities with lower classification performances.

The remainder of this chapter is structured as follows: Section 4.2 presents a

review of work on activity recognition. Section 4.3 presents the motivation behind

the work in this chapter. Section 4.4 describes the methodology followed for the

recognition of hygiene-related activities among other quotidian activities. Section

4.5 presents the results achieved. Ultimately, Section 4.6 draws the conclusions

from this chapter based on the results obtained.

4.2 Review of Work on Activity Recognition

Numerous research works concerning activity recognition with the use of wearable

sensors have been proposed in the last years, with these varying the type and num-

ber of sensors, their placement, the activities to be tracked, the pre-processing

techniques, the feature extraction and selection methods, the classification ap-

proaches as well as the research purpose itself. This section describes some of

the undertaken studies to put activity recognition into context. For instance, the

work in [14] makes use of a smart-phone with a single tri-axial accelerometer to

evaluate the activity recognition performance on a set of six activities, carrying

the phone in the pocket and carrying the phone in hand. A maximum accuracy

of 91.15% is achieved on the ‘in-hand’ experiment using a combination of differ-
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ent classifiers. In [15], a group of five activities is studied using a single tri-axial

accelerometer worn on the chest, achieving a maximum accuracy of 94% using a

Random Forest classifier. In [77] data from a tri-axial accelerometer worn near

the pelvic region is used to study eight different activities, obtaining a classifica-

tion accuracy of over 99% combining different classifiers by plurality voting. The

authors in [143] propose a Gaussian Continuous Hidden Markov Model (cHMM)-

based sequential classifier using data from five bi-axial accelerometers to classify

seven different activities, achieving a maximum accuracy of 98.4%. In [13], a

circuit composed of eight fitness activities is studied using a system embodying a

tri-axial accelerometer and a tri-axial gyroscope embedded in a vest and located at

the upper trunk of the experimental participants, achieving a maximum accuracy

of 92% using a Logistic Model Tree (LMT). The work in [17] makes use of data

from a tri-axial accelerometer worn on the chest to study seven activities. Their

approach includes an ensemble feature selection, which combined with a Random

Forest classifier, obtains a maximum accuracy of 88%. In [102] data from two ac-

celerometers worn on the sternum and the right thigh is used to classify sitting,

standing and stepping with a classification accuracy of 98%. In [135], transi-

tion movements including sit-to-stand, stand-to-sit, lie-to-stand and stand-to-lie

are studied using tri-axial accelerometer data, achieving an average classification

accuracy of 84% with a KNN classifier.

Concerning hygiene-related activities, the work in [149] makes use of data

from a wrist-worn bi-axial accelerometer to propose Gaussian Mixture Models

(GMMs) combined with a majority voting system for the recognition of three early

morning activities, including face washing, teeth brushing and shaving, achieving

a classification rate of 83.9% with the use of a 16-dimensional hand-crafted feature

vector. Using the same sensor but five more subjects, the work in [153] achieves a

classification accuracy of 90.1% on the same activity set. In [150], teeth brushing

is studied along with other seven quotidian activities with the use of data from

a single wrist-worn tri-axial accelerometer. In this study, a 24-dimensional hand-

crafted feature vector is used alongside a range of classification models, including

KNN and ANNs. The results report the achievement of an average recognition

accuracy of 95.24%.

In summary, a large number of research studies concerning activity recog-
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nition with the use of wearable devices can be identified within the literature.

Despite the existing differences between studies in terms of the experimental se-

tups, the signal processing techniques and the classification models employed, a

common factor can be identified across the different studies by analysing further

the results achieved. Such an analysis reveals that some activities are less easily

discriminated than others, exhibiting notable differences in terms of class-specific

classification performances.

4.3 Motivation

The motivation behind the work in this chapter is to provide unobtrusive means

of recognising hygiene-related activities among other quotidian activities, given

the crucial impact personal hygiene can have on the health of older individuals

and the limited studies found regarding this matter. Besides, the multi-level

refinement approach proposed in this chapter is based on the analysis of different

HAR research works providing class-specific evaluation measures. As mentioned

above, from these studies, a common issue can be identified; some activities are

less easily discriminated than others. For instance, authors in [67] struggle to

classify ‘sit’ and ‘fall’. In [18], it can be observed that the highest number of false

detections occur in two specific activities; ‘get up’ and ‘max-reach’. The authors

in [74] find the groups ‘spoon’ and ‘apple’ to have considerably lower detection

rate than others. In [119], the recognition rate of ‘walking upstairs’ and ‘walking

downstairs’ is lower as compared to that of other walking-related activities.

4.4 Methods

This section presents the methodology proposed for the recognition of hygiene-

related activities. An explanatory diagram with a summary of the different

methodology steps can be seen in Figure 4.1.
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Figure 4.1: Steps of the proposed multi-level refinement approach. Pairs of ac-
tivities which worsen the performance of the classification model, are grouped
together for further inspection.

4.4.1 Experimental Setup

The work in this chapter makes use of the Dataset 1 (see Section 3.2.2.1) with

tri-axial accelerometer data. The dataset embodies seven quotidian activities,

including teeth brushing and hands washing.

4.4.2 Signal Pre-processing

The accelerometer data is composed of three different time series ax, ay, az, which

correspond to the mediolateral, vertical and anteroposterior acceleration inputs

respectively. A fourth time series, namely |a|, is computed as the magnitude of the

tri-dimensional vector. In addition, the rate of change of the acceleration (jerk)

is computed to obtain additional information from the accelerometer signals.

A median filter with a window length n = 7 is used for signal smoothing

purposes. The frequency components of the signal above 20 Hz are filtered out

with the use of a low-pass 20 Hz Butterworth filter. The gravity and motion

components are separated through the use of a 1 Hz Butterworth filter.

The above signal processing steps result in a set of time series as follows:

• Accelerometer signal: ax, ay, az, |a|

• Linear acceleration due to wrist motion: axm , aym , azm , |am|

• Gravity component: axg , ayg , azg , |ag|
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• Jerk: jx, jy, jz, |j|

The segmentation of the signals is performed using sliding windows with a

window length of 1 second and a 40% overlapping percentage.

4.4.3 Feature Extraction

A broad range of commonly employed hand-crafted features are computed for

the construction of the feature vector (see Section 3.4). Within the time domain,

different statistical features were explored. These include measures of central

tendency like the mean and Root Mean Square (RMS), measures of statistical

dispersion such as range, standard deviation and interquartile range, measures of

distribution shape such as kurtosis or skewness, measures of dependence between

different axes, such as Pearson’s correlation and measures of the magnitude of

varying quantity such as the signal magnitude area. On top of the statistical fea-

tures, the number of peaks in the signal, the number of zero-crossings (number

of times the signal crosses the 0 level) and signal entropy are computed to add

additional information about the dynamics of the signals. After converting the

signal to the frequency domain through the Fast Fourier Transform (FFT), the

largest magnitude of the signal spectrum, the index of the spectrum component

with the highest magnitude and the energy of the signal are also computed. Ex-

cept for a few cases where it was not appropriate (e.g. correlation), the proposed

features were calculated over all the time series exposed in Section 4.4.2. The

dimensionality of the resultant feature vector is n = 266.

This feature set has been carefully selected to embody informative and dis-

criminative information with regards to a wide array of signal characteristics, such

as range, dispersion, central tendency, periodicity, frequency distribution, magni-

tude and changes in direction. A summary of the feature vector dimensionality,

the total number of instances and the class distribution of the classification prob-

lem is given in Table 4.1.

59



4. Recognition of Quotidian Quasi-Periodic Activities

Table 4.1: Post-segmentation data summary

Dim. Inst Hands. W Teeth. B Stand Sit P. Object W. Down W. Ups

266 8674 25.29% 9.52% 14.15% 18.38% 28.12% 2.32% 2.23%

4.4.4 Feature Selection and Reduction

As stated in [143], when the dimension of feature space is considerably high,

learning the parameters for a classifier becomes a difficult and consuming task.

In addition, feature selection/reduction can maintain or even increase the dis-

criminative capability of the whole feature set. Three different methods for di-

mensionality reduction are explored. First, an Analysis of Variance (ANOVA) is

conducted, where features are ranked according to their F measure, calculated as

the ratio of the variance between classes and the variance within the class. Even

though the use of ANOVA on non-normally distributed data can increase the

chances of obtaining false positives, the F measure here is only used as a feature

ranking mechanism regarding the dissimilarity between classes. After features

are ranked, the subset that maximises the classification result is selected. Prin-

cipal Component Analysis (PCA) and truncated Singular Value Decomposition

(SVD) are also explored. These two approaches perform an orthogonal transfor-

mation of the data into a new coordinate system where the new coordinates are

those which maximise the variance of the data, being the difference between the

two approaches that PCA centres the data before computing the singular value

decomposition.

4.4.5 Classification

As shown in the description of the dataset in Section 3.2.2.1, seven activities

are investigated in this study. The performance of three different classification

models, namely K-Nearest Neighbours (KNN), Random Forest (RF) and Support

Vector Machine (SVM) using a Radial Basis Kernel (RBS), is evaluated. The

optimal classifier is selected during the feature selection stage, along with the

optimal number of features/components.

A 3-fold cross-validation method is used to test the robustness of the clas-

sification results. Each fold includes three different sets -the training set, the
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validation set and the test set. The validation set is used to identify refinement

opportunities and the test set to validate the performance improvement during

the different refinement steps. In other words, once the model is trained, the

test set is used to report the classification performance of the system and the

validation set is used to identify those activities with lower classification perfor-

mances. For clarification purposes, after a random shuffle, 60% of the dataset is

used as the training set and the remaining 40% is split into the test set (20%) and

the validation set (20%). With this, alongside the 3-fold cross-validation strategy

employed, whereby each of the training, test and validation sets are split into

three further respective subsets, the algorithm proposed is designed to ensure a

competent robustness while dealing with the expected variability of the different

actions or activities performed by the different experimental subjects.

4.4.6 Multi-Level Refinement

The proposed multi-level refinement can be defined as an algorithm that aims at

optimising the classification accuracy of a group of classes by an improvement

on the recognition rate of those classes which lower the classification rate of the

whole group. Its implementation is justified by the fact that in a classification

problem, a classification accuracy lower than 100% is normally caused by the

difficulty to classify specific classes, unless the recognition rate is identical for all

the classes, though this is not a common occurrence.

After the activity classification takes place, the confusion matrix is further

analysed and activities are compared in pairs. If the classification accuracy be-

tween a pair of activities is lower than that on the whole model, those activities

are grouped together for refinement. Activities which are found to lower the ac-

curacy of the system due to their misclassification rate with an activity already

pertaining to a refinement group are added to that same group; otherwise a new

refinement group is constructed with these pair of activities. At this point, the

feature selection is optimised for each group selecting the most informative fea-

ture set for each of them. This process is repeated until groups of two activities

are reached.

The multi-level refinement, therefore, focuses the computational efforts on the
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classification of those activities that are more difficult to classify in the first place.

A pseudo-code of the multi-level refinement algorithm is shown in Algorithm 1.

Algorithm 1 Multi-level Refinement
1: top:
2: accuracy← classification accuracy
3: c m← confusion matrix
4: i← rows confusion matrix
5: j← columns confusion matrix
6: for n rows do
7: for n columns do
8: if (row 6= column) then

9: if ( (c m[j,j]+c m[i,i])
(c m[j,j]+c m[i,i]+c m[i,j]+c m[j,i])

< accuracy) then

10: activity pairs.append[(i, j)]
11: end if
12: end if
13: end for
14: end for
15: for activity pair ∈ activity pairs do
16: for activity ∈ activity pair do
17: if (activity belongs to a group) then (add its pair to the group)
18: else(create new group and add both activities)
19: end if
20: end for
21: end for
22: if All activities belong to the same group then

(remove activity with the highest accuracy)
23: end if
24: for group ∈ groups do
25: Feature Selection
26: Run Classifier
27: if (grouplength > 2) then
28: goto top.
29: end if
30: end for

It should be mentioned that the refinement of a specific pair or group of ac-

tivities does not affect the classification of other classes since only the instances

previously classified as belonging to any of the classes in that pair or group, are

taken forward for refinement.
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4.5 Results

In this section, the experimental results achieved are presented, explained and

discussed. This section is divided as follows;

Section 4.5.1 examines the feature selection methods proposed for dimension-

ality reduction. Section 4.5.2 presents the classification results and the improve-

ment achieved by the multi-level refinement algorithm. Ultimately, Section 4.5.3

discusses the results obtained.

4.5.1 Feature Reduction

ANOVA K-best, PCA and SVD are computed to find out the optimal subset

of features/components for the description of the data set. To do so, the perfor-

mance of the different feature selection methods is examined across all the possible

number of features ranging from n=1 to n=266 (whole feature set). These three

feature reduction techniques are examined on the three different classifiers pro-

posed; RF, KNN and SVM. The best classification performance (average per-class

classification accuracy = 99.15%) is achieved using ANOVA K-Best alongside a

Random Forest classifier when n=149, with n being the number of features after

being ranked according to their F ratio. The performance of the different feature

selection methods with Random Forest across the number of dimensions of the

feature vector can be observed in Figure 4.2.

4.5.2 Classification and Refinement

The first step of deploying the multi-level refinement algorithm is to train and

evaluate a 7-class classification model representing the 7 studied activities using

the train set and test set respectively. The classification, as reported by the test

set, resulted in the confusion matrix and classification metrics presented in Figure

4.3 and Table 4.2 respectively.

The average per-class classification accuracy achieved by the model is 99.15%.

However, there exist relevant differences in terms of precision and recall between

different activities. At this point, the multi-level refinement algorithm is used

to identify the activities lowering the performance of the model. This is per-
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Figure 4.2: Classification performance of the feature selection methods based on
a Random Forest classifier.

Figure 4.3: Confusion matrix before refinement using a Random Forest classifi-
cation model.

formed using the validation set. “Teeth Brushing”, “Walking Downstairs” and

“Walking Upstairs” were identified to need refinement. For the benefit of reading

convenience, this group of activities are referred to as “Group 1”.

Taking into account the activities within Group 1, feature selection is per-
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formed and a new 3-class model including the outlined set of activities was trained

using the training set. The aim of this step is to optimise the feature vector for

the classification of the identified set of activities, which was found to have a

dimensionality of n=131. Such new 3-class model is now used to reclassify the

samples which were previously predicted as to pertain to Group 1. The classifi-

cation metrics and resultant confusion matrix after the first refinement step, as

reported by the test set, can be seen in Table 4.3 and Figure 4.4 respectively.

After the first refinement step, the same process was repeated. In this case,

the 3-class classification model alongside the validation set was used to identify

activities which needed further refinement. The new set of activities found was

formed by the activities “Walking Downstairs” and “Walking Upstairs”. This

group of activities are referred to as “Group 2”. A new 2-class model was trained

(using the training set) with an optimised feature vector for the classification of

Table 4.2: Classification metrics of the 7-class model before refinement.

Accuracy Precision Recall
Hands Washing 98.88% 96.55% 99.34%
Teeth Brushing 99.12% 91.22% 99.55%
Stand 99.84% 99.86% 99.04%
Sit 99.74% 99.29% 99.39%
P. Object 98.77% 98.78% 96.78%
W. Downstairs 98.94% 83.81% 70.40%
W. Upstairs 98.73% 75.23% 68.33%
Average 99.15% 92.11% 90.40%

Table 4.3: Classification metrics after the first refinement step.

Accuracy Precision Recall
Hands Washing 98.89% 96.55% 99.34%
Teeth Brushing 99.33% 93.32% 99.55%
Stand 99.84% 99.86% 99.04%
Sit 99.74% 99.29% 99.39%
P. Object 98.77% 98.78% 96.78%
W. Downstairs 99.20% 86.84% 79.20%
W. Upstairs 99.08% 82.88% 76.67%
Average 99.26% 93.93% 92.85%
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Figure 4.4: Confusion matrix after the first refinement step.

Figure 4.5: Confusion matrix after the second refinement step.

the activities within Group 2. The dimensionality of the vector, in this case,

was n=186. It can be noticed that the number of dimensions has now increased

as compared to previous classifications. This may be due to the high similarity

in terms of acceleration between walking downstairs and walking upstairs. The

samples from the test set previously classified as to pertain to Group 2 were

reclassified using the new 2-class model, leading to the classification metrics shown

in Table 4.4 and the confusion matrix illustrated in Figure 4.5, as reported by

the test set.
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Table 4.4: Classification metrics after the second refinement step.

Accucacy Precission Recall
Hands Washing 98.89% 96.55% 99.34%
Teeth Brushing 99.33% 93.32% 99.55%
Stand 99.84% 99.86% 99.04%
Sit 99.74% 99.29% 99.39%
P. Object 98.77% 98.78% 96.78%
W. Downstairs 99.26% 83.33% 86.07%
W. Upstairs 99.14% 89.90% 72.36%
Average 99.28% 94.43% 93.22%

Figure 4.6: Comparison of activity classification accuracy before and after the
different refinement steps.

The different refinement steps show an improvement in terms of per-class

classification accuracy of the refined classes. This led to a better performance

of the multi-level refinement approach proposed as compared to standard state-

of-the-art classification approaches. Such improvement can be better visualised

in Figure 4.6 where the per-class classification accuracy of the refined activities

and the average per-class classification accuracy of the 7-class model across the

different refinement steps are shown.

4.5.3 Validation and Discussion

To validate the multi-level refinement algorithm, a test is run on the [109] bench-

mark data set. The data set contains data collected from 30 volunteers performing
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a group of six different Activities of Daily Living (ADLs) while wearing a tri-axial

accelerometer and a tri-axial gyroscope on the waist. After the first classification,

two groups of activities were suggested for refinement: 1) Sitting and Laying, 2)

Walking Downstairs and Walking Upstairs. An improvement in the classification

performance is observed in all activities after refinement. The per-class classifica-

tion accuracy is improved from 98.29% to 100% for sitting, from 98.29% to 100%

for laying, from 99.19% to 99.37% for walking downstairs, and from 99.39% to

99.56% for walking upstairs.

The results achieved in this chapter go in line with those achieved by the state-

of-the-art. On the one hand, it can be observed that, as in the work in [109], higher

classification recalls are obtained on static activities such as sitting or laying with

classification recalls in the range of 95% to 100% as compared to those achieved

on similar walking-related activities such as walking downstairs and walking up-

stairs, which are in the range of 72% to 86%. On the other hand, it is found that

the overall classification results achieved on the utilised benchmark dataset tend

to be high. For instance, in [154], a classification accuracy of 97.59% is achieved.

In [132], the classification accuracy achieved is 95.75%.

With regards to hygiene related activities, the works in [149] and in [153]

achieved classification accuracies of 83.9% and 90.1% on their respective datasets,

which include teeth brushing among two other hygiene-related activities (shave

and wash). Although a fair comparison cannot be made given the different datasets

utilised, as compared to the results achieved in these two research works, a sig-

nificantly higher classification accuracy is achieved in this work. In this regard,

it should be outlined that the works in [149, 153] make use of 16 features only,

whereas a feature vector with a significantly higher dimensionality (266) is pro-

posed in this work.

Besides, the results obtained also suggest that the use of the proposed multi-

level refinement can improve the classification accuracy on those activities that

are more difficult to classify between when following a traditional classification

approach. In addition, this method can benefit unbalanced experiments where

data from specific activities are more difficult to collect as compared to others.

After cross-validating the data-set, the amount of data from those specific activ-

ities may not be enough to classify them against similar activities. This problem
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could be mitigated by applying the multi-level refinement approach proposed.

4.6 Conclusions

From the work undertaken in this chapter, it can be concluded that it is plausible

to accurately recognise hygiene-related activities from other quotidian activities

using tri-axial accelerometer data with long-established hand-crafted features and

state-of-the-art classification models commonly employed for the recognition of

other continuous quasi-periodic activities. In addition, the successful performance

exhibited by the proposed multi-level refinement algorithm suggests that feature

informativeness depends on the activity set chosen. Computational efforts should

be given to particular groups of activities (or classes) with lower classification

performance, in order to optimise the selection of features and consequently their

classification rate. This approach could have a significant positive impact when

the recognition of a specific class is crucial for the interest of the study, as well

as when performing feature selection with imbalanced datasets. An example of

this is a fall detection system.
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Chapter 5

Gesture Recognition Through the

Use of Hand-Crafted Features

5.1 Introduction

Following the recognition of hygiene-related activities, the remaining chapters of

this thesis are aimed at the recognition of food and fluid intake gestures to fur-

ther recognise meal periods from continuous sensory recordings. Recent statistics

outline eating difficulties as a prevalent issue among the elderly population. For

instance, the study carried out in [155], which includes 520 elderly patients in hos-

pital rehabilitation, shows that 82% of them suffer some form of eating difficulty.

The survey conducted in [156], including 3000 patients from 11 different hospitals,

reveals that 21.1% of the patients younger than 80, and 36.4% of those aged 80

or older require some form of eating assistance. Eating difficulties are those that

alone or in combination, hamper the intake or the preparation of food and/or bev-

erages [157], with significant causes including poor appetite, cognitive impairment

or feeding dependency. Incidentally, a poor diet can contribute to weight loss and

malnutrition, leading to potential functional limitations, metabolic abnormalities

and diminished immunity [158].

Additionally, maintaining an adequate hydration level is an essential aspect

of dietary management [159]. Mainly, fluid intake is a severe issue in elderly

care, where diminished thirst perception is frequently related to reduced cog-
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nitive capabilities, leading concurrently to difficulty at remembering to drink

enough [160]. Approximately 17 million people suffer a stroke yearly [161], with

77% of them enduring an upper extremity disability or a function loss of the

limb upper motor [162]. Such function loss may lead stroke patients to difficulty

at performing basic actions like eating or drinking, therefore limiting their own

independence [140].

As opposed to quasi-periodic activities, which exhibit continuous behaviour in

time, the difficulty of spotting gestures lies in their rather sparse nature. Further,

spotting naturally learned gestures such as grasping a fork is harder than detect-

ing gestures which have been purposely trained within a constrained environment,

e.g. human-machine interaction gestures [123]. Given this, this chapter explores

computational solutions to spot and recognise eating and drinking gestures from

continuous sensory recordings.

The remainder of this chapter is organised as follows: Section 5.2 reviews

relevant work on gesture spotting and recognition with the use of wearable sen-

sors. Section 5.3 presents the motivation behind the work undertaken in this

chapter. Section 5.4 presents the method proposed for the development of a fluid

and food intake tracking system. Section 5.5 presents the results achieved and

compares them to those of previous similar published works. Section 5.6 reports

the conclusions drawn from the obtained results.

5.2 Review of Work on Gesture Recognition

Various solutions for spotting and recognising gestures have been proposed in

recent years. In [124] a solution to recognise a set of seven basic hand gestures

for human-machine interaction purposes using bi-axial data from a tri-axial ac-

celerometer is proposed. In this work, a set of ten features is used to determine the

gesture termination points. Once segments are found, three different models are

proposed for the recognition of the gestures. Among the three models, the best re-

sults are achieved by a template matching model (95.6% classification accuracy).

Similar work by [163] employs an LSTM network to recognise a set of six different

hand gestures using tri-axial accelerometer and tri-axial gyroscope data from five

users, achieving a classification accuracy of 95.85%. An adaptive segmentation
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technique to spot a set of four transitional activities (sit-to-stand, stand-to-sit,

sit-to-lie and lie-to-sit) is developed in [120] using data from a waist-worn ac-

celerometer. First, a set of thirteen features is used on windows of fixed length

to determine whether the different windows contain a transitional, a dynamic

or a static activity. Windows classified as a transitional activity are extended

until a decrease in likelihood for a particular transitional activity, given by the

Gaussian probability density function, is identified. The results demonstrate an

improvement in classification recall from 89.9% using an artificial segmentation

approach to 93.0% with the adaptive segmentation technique. A solution for

spotting and recognising smoking gestures using data from a wrist-worn quater-

nion is proposed by [61]. In this work, gestures are firstly spotted using a rest

position tracking algorithm alongside a peak detector used to detect peaks on

the distance between the most recent rest position and the current position. A

posteriori, a feature vector from the extracted segments is calculated and used to

train a Conditional Random Field (CRF) classifier. A classification precision of

91.0% and a classification recall of 81.0% are achieved by the proposed system.

Regarding the recognition of food and fluid intake gestures, the authors in

[140] report a classification recall of 91.3% for the recognition of drinking gestures

using a single wrist-worn IMU alongside an SVM classifier fed with a feature vec-

tor calculated over windows of 0.25 seconds. The work in [85] proposes a semi

hierarchical approach for the recognition of recognition of eating and drinking in

free-living conditions based on data collected from wrist-worn tri-axial accelerom-

eters and gyroscopes. Through such approach, windows are firstly identified as

‘eating’ or ‘not eating’ using an artificial segmentation approach, namely a sliding

window. A posteriori a dynamic segmentation technique is used to identify ‘drink-

ing’ versus ‘not drinking’ actions using a threshold based adaptive segmentation

technique using the magnitude of the gyroscope signal. To classify the different

gestures, a feature vector composed of ten time-domain features is used as in-

put to a range of six different classifiers, achieving a classification recall of 77%

and 62% and a classification precision of 39% and 37% for eating and drinking

respectively. In [65] a Gaussian Mixture Hidden Markov Models (GMM-HMMs)

network is used for recognising drinking gestures. The experimental data is col-

lected from 7 users following their usual daily activities while wearing a single
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wrist-worn inertial sensor which includes a tri-axial accelerometer, a tri-axial gy-

roscope and a tri-axial magnetometer. An average classification precision and

classification recall of 75.2% and 76.1% are achieved respectively. A drinking

spotting solution based on a Feature Similarity Search (FSS) is proposed in [64].

In this work, the data is collected from six users wearing a single wrist-worn

inertial unit containing a tri-axial accelerometer, a tri-axial gyroscope and a tri-

axial compass while performing a set of various experimental scenarios. With

this method, a classification recall of 84.0% is achieved. In [123], a solution for

spotting and recognising a set of four dietary gestures (cutlery, drink, spoon and

hand-held) using five inertial sensors (two on each arm and one on the trunk)

is proposed. This solution is based on a two-stage gesture spotting approach

through the combination of a sliding-window and bottom-up (SWAB) adaptive

segmentation technique and an FSS. Once potential segments are identified by

the two-stage gesture spotting technique, a Hidden Markov Model (HMM) is em-

ployed to classify the gestures of interest. This approach achieves a classification

precision of 73.0% and a classification recall of 79.0%.

5.3 Motivation

The motivation behind the work in this chapter comes from the need to provide

unobtrusive means of recognising eating and drinking gestures, as well as from the

different limitations found in work concerning this matter. First, some studies rely

on extremely constrained environments. For example, in [140] it is reported that

on the recognition of drinking gestures, chairs are height-adjusted to individuals.

In addition, individuals are told how to perform the drinking actions and the

data is only composed of drinking gestures. The work by [164] on recognising

door opening gestures makes no mention of a ‘Null’ class. The ‘Null’ class in a

gesture recognition problem is the class composed by gestures outside the studied

gesture set. This fact implies the experimental data set is built only with the

gestures of interest. In the research work conducted by [124] on the recognition

of a set of seven hand gestures, participants are told to hold the accelerometer

horizontally during the experiments. Gesture spotting and recognition should be

undertaken in realistic scenarios where participants perform the studied actions
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freely. In addition, the resultant data sets should include a reasonable ‘Null’

class with a range of additional gestures outside the sought gesture set. Second,

the classification performance of gesture spotting and recognition systems under

unconstrained environments still lies far away from that in HAR systems. The

main reason is that given the sparsity of gestures and the consequent difficulty

of being accurately spotted from continuous data streams, a great number of

true positives are missing at the segmentation (spotting) step. For example, the

work presented by [123] results in a recall of 80% at the segmentation stage. The

results in [64] indicate an 84% recall at spotting drinking gestures.

Besides, various fluid and food intake tracking solutions proposed are found to

require the use of several sensor units [123,165]. This could make such solutions

be excessively intrusive for a daily use. Overall, the drawbacks above suggest

there are still many open challenges in gesture spotting and recognition. The

mitigation of the above drawbacks has motivated the work in this chapter, which

aims at improving the performance achieved by previous work on the recogni-

tion of food and drink intake gestures while preserving unobtrusiveness and user

comfort by the use of a single wrist-worn wearable device and the introduction

of a novel adaptive segmentation technique able to accurately spot sparse eating

and drinking gestures when these are perform freely, as well as of a novel feature

descriptor based on the DTW distance that incorporates additional information

to long-established feature sets.

5.4 Methods

This section presents the steps undertaken to develop the proposed fluid and food

intake system based on hand-crafted features. The different stages of the proposed

system are illustrated in Figure 5.1. First, potential segments containing eating or

drinking gesture are identified using the Crossings-based Adaptive Segmentation

Technique (CAST) proposed in this thesis and described in Section 3.3.4.2. A

posteriori, four different Computational Solutions (CS) are proposed as follows:

CS1:- Dynamic Time Warping (DTW) Distance + K-Nearest Neighbours

(KNN)
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Figure 5.1: Schematic diagram of the proposed methodology to spot and recognise
eating and drinking gestures.

CS2:- Feature set + range of state-of-the-art classification models

CS3:- Gesture discrepancy + range of state-of-the-art classification models

CS4:- Feature set+ gesture discrepancy + range of state-of-the-art classifi-

cation models

The above computational solutions are used to methodically justify the addition

of a gesture discrepancy measure to long-established features used in previous

HAR work. In CS1, the use of Dynamic Time Warping is evaluated. Given the
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challenging gesture set proposed, modest results are expected from CS1. How-

ever, this serves as a basis to justify the further exploration of DTW as a feature

descriptor as well as to validate the CAST on the identification of eating and

drinking gestures. In this context, such a justification can be based on the achieve-

ment of a fair classification performance by a computational solution employing

DTW alongside a simple non-parametric distance-based classification model, such

as KNN. CS2 explores the use of long-established features employed in previous

HAR applications for the recognition of eating and drinking gestures. CS3 in-

troduces the use of gesture discrepancy as a feature descriptor. Ultimately, CS4

evaluates the combination of the long-established range of features with the ges-

ture discrepancy measure proposed. The achievement of an improvement on the

classification performance of CS4 as compared to previous computational solu-

tions will justify the addition of the gesture discrepancy measure in future activity

and gesture recognition work. The performance of the proposed computational

solutions is studied across three different gesture sets as follows:

2-Class: Null, Drinking or Eating

3-Class: Null, Drinking, Eating

5-Class: Null, Drinking, Spoon, Fork, Hand

where ‘Null’ refers to any gesture within the ‘Null’ class. That is any gesture

which is not eating or drinking gesture.

5.4.1 Experimental Setup

The work in this chapter is based on the Dataset 2 presented in Section 3.2.2.2.

This data comprises the tri-axial acceleration and the tri-axial angular velocity

of the wrist of the different participants.

5.4.2 Signal Pre-processing

In order to minimise the computational cost of the system, a limited initial

pre-processing is carried out on the raw inertial signals. The directions of the

accelerometer y-axis and the gyroscope x and z axes are shifted 180◦ for the
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left-handed participant, given the opposite orientation of these signals when the

sensor unit is worn on the left hand.

5.4.3 Signal Segmentation and Gesture Spotting

The signal segmentation is carried out by the use of the proposed Crossings-based

Adaptive Segmentation Technique (CAST) presented in Section 3.3.4.2. With

this, the potential segments containing eating or drinking gestures are retrieved

for further inspection.

5.4.4 Gesture Recognition

Once the potential segments containing an eating or drinking gesture are iden-

tified, gesture recognition is tackled as a classification problem. For the four

proposed computational solutions (CS1, CS2, CS3, CS4), four different feature

sets are employed as follows:

FS1:- Dynamic Time Warping

FS2:- Feature Vector

FS3:- Gesture Discrepancy

FS4:- Feature Vector and Gesture Discrepancy

More detail about these approaches is provided in the following sections.

5.4.4.1 Dynamic Time Warping

Let q[t] = [q1, q2, ...qn] and s[t] = [s1, s2, ...sn] be two temporal sequences with

values at every time instant t=[1,2,...n]. The distance d(q, s) is typically measured

as their Euclidean distance:

d(q, s) =

√√√√ n∑
t=1

(q[t]− s[t])2 (5.1)
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Figure 5.2: Difference between the Euclidean distance and the DTW distance of
two signals; a) Euclidean distance, b) DTW distance: the distance between two
points is calculated as their Euclidean distance (vertical distance) after alignment.

Two major constraints are found on the use of the Euclidean distance on time-

dependent sequences: 1) the length of the sequences must be equal, i.e. |q| = |s|,
2) it does not consider the temporal distortion that may exist between q and s,

since it measures the vertical distance between pairs of points according to their

indexes at their respective sequences.

To overcome the above constraints, the optimal alignment between time-

dependent sequences is calculated with the use of DTW [166]. The alignment

can be explained as follows: Considering the two temporal sequences q and s of

respective lengths |q| and |s|, DTW finds a mapping path {(p1, r1), ..., (pj, rj)}
such that the distance on the mapping path

∑j
i=1 |x(pi)− y(ri)| is minimised

with the following two constraints:{
Anchored beginning: (p1, r1) = (1, 1)

Anchored end: (pj, rj) = (|q|, |s|)
(5.2)

The DTW distance between q and s is then calculated as the cost of the optimal

alignment as follows:

Di,j := D(q(i), s(j)) +min


D(i− 1, j)

D(i− 1, j − 1)

D(i, j − 1)

 (5.3)
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where D(q(i)− s(j)) is calculated as the Euclidean distance.

Figure 5.2 illustrates the use of the Euclidean distance and DTW to measure

the similarity between temporal sequences. From the figure, it can be seen that

DTW overcomes the drawbacks encountered when using the Euclidean distance.

First, it can measure the distance between signals with different lengths, since one

point of the sequence q can be aligned to more than one point of the sequence s

and vice versa. Second, the alignment performed is able to capture the temporal

distortion between the signals.

Ultimately, the DTW distance is used for gesture recognition. To do so, a

K-Nearest Neighbours (KNN) classification model is employed, whereby unseen

segments are assigned to the most common class among its k-nearest neighbours,

with DTW being the distance measure between the different segments.

5.4.4.2 Feature Vector

This computational solution makes use of a long-established set of features used

within the field of HAR [14, 15, 77, 167]. The feature vector has been conscien-

tiously culled to provide a knowledgeable description of the data regarding a wide

array of signal characteristics. These include measures of central tendency, pe-

riodicity, dispersion, changes in direction, frequency distribution and magnitude

area. The range of features proposed was calculated over the mediolateral ax,

anteroposterior ay and vertical az acceleration corresponding to the tri-axial ac-

celerometer readings, as well as on the yaw ωx, roll ωy and pitch ωz corresponding

to the tri-axial gyroscope readings across the potential segments. On top of the

above, the duration of each segment is also incorporated into the feature set. The

resultant dimensionality of the feature vector proposed is n = 85.

5.4.4.3 Gesture Discrepancy

This computational solution introduces a gesture discrepancy measure as a signal

descriptor. To do so, the Soft-DTW differentiable loss function proposed by [168]

is employed to calculate a gesture barycenter for each of the gestures within

the different proposed gesture sets through a minimisation problem. Further, the

DTW distances to each of the calculated barycenters are used to build the feature
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set.

Let’s consider multivariate time series of varying length taking values in Ω ⊂
IRp, whereby they are represented as a matrix of p rows. Soft-DTW unifies the

original DTW distance [166] and the Global Alignment Kernel (GAK) proposed

by [169], both used to compare two time series x[t] = [x1, x2, ..., xn] ∈ IRp×n and

y[t] = [y1, y2, ..., ym] ∈ IRp×m.

Given the cost matrix ∆(x, y) := [δ(xi, yj]ij ∈ IRn×m and the set of binary

alignments matrices An,m ⊂ {0, 1}, the inner product 〈A,∆(x, y)〉 of the cost

matrix with an alignment matrix A in An,m gives the score of A. DTW and GAK

consider respectively the cost of all possible alignment matrices as follows:

DTW (x, y) := min
A∈An,m

〈A,∆(x, y)〉, (5.4)

κγGA(x, y) :=
∑

AεAn,m

e−〈A,∆(x,y)〉/γ (5.5)

From the equations above, a unified algorithm can be formulated as:

minγ{a1, ..., an} :=

{
mini ≤n ai, γ = 0,

−γ log
∑n

i=1 e
−ai/γ, γ > 0.

(5.6)

where γ is a smoothing parameter taking values in IR≥0. Given the above, γ-soft-

DTW can be defined as:

dtwγ(x, y) := minγ{〈A,∆(x, y)〉, A ∈ An,m.} (5.7)

Therefore, the original DTW score is recovered when γ is set to 0 and dtwγ =

−γlogkγGA when γ > 0.

Ultimately, given a group of N time series y1, ..., yN , that is, N matrices of

p rows and varying number of columns, m1, ..., mN , the interest is to define a

single barycenter time series x for that group under a set of normalised weights

λ1, ..., λN ∈ IR+ such that
∑N

i=1 λi = 1. Thus, the barycenter is calculated by
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Figure 5.3: Distance to the drinking barycenter (accelerometer y-axis) of one
of the experiment participants; a) Different drinking gestures from the partici-
pant, b) Calculation of the participant’s drinking barycenter, c) Distribution of
distances to the barycenter in (b) across the gestures from the rest of the partic-
ipants.

approximately solving the following problem:

min
x∈IRpxn

N∑
i=1

λi
mi

dtwγ(x, yi) (5.8)

where it is assumed that x has fixed length n. Given the proposed gesture sets

G1, G2, G3 of respective lengths |G1|, |G2|, |G3|, a barycenter was calculated for

each of the gestures different from the ‘Null’ class g1, ..., g|Gi|−1 within G1, ...G3,

for each of the experiment participants P1, ..., P6, for each of the time series in

ax, ay, az, ωx, ωy, ωz, corresponding to the tri-axial accelerometer and the tri-axial

gyroscope readings. A posteriori, the DTW distances to the set of calculated

barycenters were computed and further used as feature descriptors.
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Figure 5.4: Distance to the spoon barycenter (accelerometer y-axis) of one of
the experiment participants; a) Different spoon gestures from the participant, b)
Calculation of the participant’s spoon barycenter, c) Distribution of distances to
the barycenter in (b) across the gestures from the rest of the participants.

Two pictorial examples of the calculation of a gesture barycenter and the

distribution of the DTW distances to the calculated gesture barycenter across

the different gestures are shown in Figure 5.3 and Figure 5.4. Further, the bi-

dimensional distribution of the DTW distances to the barycenters exposed in

Figure 5.3 and Figure 5.4 across the different gestures is shown in Figure 5.5

for illustration purposes. As a result of the above distance computations, the

resultant dimensionality of the feature vector is n = 36 for the 2-class classification

problem, n = 72 for the 3-class classification problem and n = 144 for the 5-class

classification problem.
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Figure 5.5: Bi-dimensional distribution of the DTW distances to the drinking
and spoon barycenters of one of the participants across the gestures from the rest
of the participants.

Table 5.1: Post-segmentation data summary

Class. Problem Dim. Inst. Class 1 Class 2 Class 3 Class 4 Class 5

2-class 121 813 Null (72.2%) Eat and Drink (27.8%) - - -

3-class 157 813 Null (72.2%) Drink (7.3%) Eat (20.5%) - -

5-class 229 813 Null (72.2%) Drink (7.3%) Hand (8.7%) Spoon (7.5%) Fork (4.3%)

5.4.4.4 Feature Vector and Gesture Discrepancy

Feature set FS4 is a combination of the features introduced in FS2 and FS3 to

evaluate whether the addition of a gesture discrepancy measure to long-established

feature vectors improves the recognition rate of the system. The combination of

both feature sets gives a resultant dimensionality of n = 121 for the 2-class clas-

sification problem, n = 157 for the 3-class classification problem and n = 229

for the 5-class classification problem. A summary of the feature vector dimen-

sionality, the total number of instances and the class distribution for each of the

classifications problems is given in Table 5.1.
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5.4.5 Evaluation

A leave-one-out cross-validation strategy is employed for evaluating the different

computational solutions. That is, a different participant was used as the test set

on each of the cross-validation steps. For the feature sets including the gesture

discrepancy measure (FS3 and FS4), the distances to the barycenters of the par-

ticipant used as the test set on each cross-validation cycle were removed from the

feature set.

Given the special structure of the feature set FS1 proposed in CS1, its per-

formance was evaluated by the employment of a KNN classifier. The rest of the

computational solutions were evaluated across a range of state-of-the-art classifi-

cation models, including ANN, SVM, RF and KNN.

5.5 Results

This section presents the results obtained by the implementation of the presented

methodology. Section 5.5.1 shows the performance of the proposed CAST seg-

mentation technique at spotting potential eating and drinking gestures. Section

5.5.2 presents the results achieved by the different computational solutions pro-

posed for gesture recognition. A discussion upon the results obtained is given in

Section 5.5.3.

5.5.1 Gesture Spotting

As explained in Section 5.4, the first step on the development of the proposed

fluid and food intake recognition system is to spot potential segments containing

an eating or a drinking gesture. This is tackled by the implementation of CAST,

which uses the crosses between two moving averages to spot those potential seg-

ments. A pictorial example for one of the experiment participants is shown in

Figure 5.6.

Given that more computational intensive tools are to be applied at the gesture

recognition step, the aim at this preliminary spotting step was to optimise the

classification recall, that is, minimising the number of ‘False Negatives’, in this

case eating or drinking gestures classified as pertaining to the ‘Null’ class. The
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Figure 5.6: Performance of the Crossings-based Adaptive Segmentation Tech-
nique for one of the experiment participants.

Figure 5.7: Spotting performance of CAST.

achieved spotting results shown in Figure 5.7 outline an average precision of 29%

and an average recall of 100%, showing that this is successfully achieved by the

segmentation technique proposed.

5.5.2 Gesture Recognition

After the segments potentially containing an eating or a drinking gesture are

identified, gesture recognition comes into place. Four different computational
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Figure 5.8: Classification performance of the four computational solutions pro-
posed on the 2-class classification problem.

solutions were proposed across three different experiments. A comprehensive

study upon the performance of the implemented computational solutions was

performed and the best results obtained in each of the three experiments are

presented below:

5.5.2.1 Experiment 1: 2-Class Classification Problem

In this experiment, eating and drinking gestures are grouped together and classi-

fied against the ‘Null’ class. The results presented in Table 5.2 outline an average

per-class classification accuracy of 97.4%, a precision of 97.2% and a recall of

96.3% using a Random Forest Classifier on the feature set composed of the pro-

posed range of features alongside the gesture discrepancy measure (FS4). Figure

5.8 shows the performance of the four computational solutions proposed.

Table 5.2: Classification metrics for the 2-class classification problem using CS4
with RF.

Accuracy (%) Precision (%) Recall (%)

Null 97.4 97.6 98.8

Eating or Drinking 97.4 96.8 93.8

Average per-class 97.4 97.2 96.3
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5.5.2.2 Experiment 2: 3-Class Classification Problem

This experiment aims at the recognition of eating and drinking gestures sepa-

rately. This is therefore tackled as a 3-Class classification problem, with the

classes being ‘Null’, ‘Drinking’ and ‘Eating’. The classification metrics shown

in Table 5.3 report an average per-class classification accuracy of 98.2%, a pre-

cision of 95.7% and a recall of 95.0%. The reported results are achieved using

an Artificial Neural Network (ANN) on the feature set (FS4). The classification

performance achieved by each of the computational solutions proposed are shown

in Figure 5.9.

Table 5.3: Classification metrics for the 3-class classification problem using CS4
with an ANN

Accuracy (%) Precision (%) Recall (%)

Null 97.9 98.1 99.0

Drinking 99.0 93.3 93.3

Eating 97.7 95.7 92.8

Average per-class 98.2 95.7 95.0

Figure 5.9: Classification performance of the four computational solutions pro-
posed on the 3-class classification problem.
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Figure 5.10: Classification performance of the four computational solutions pro-
posed on the 5-class classification problem.

5.5.2.3 Experiment 3: 5-Class Classification Problem

In this experiment, the ‘Eating’ class is further divided into 3 different classes

(‘Spoon’, ‘Fork’ and ‘Hand’), leading to a 5-class classification problem, with the

classes being ‘Null’, ‘Drinking’, ‘Spoon’, ‘Fork’ and ‘Hand’. The classification

metrics in Table 5.4 report an average per-class classification accuracy of 97.8%,

a precision of 88.7% and a recall of 85.8%, using an ANN on the feature set (FS4).

The classification performance of the four computational solutions are shown in

Figure 5.10.

Table 5.4: Classification metrics for the 5-class classification problem using CS4
with an ANN.

Accuracy (%) Precision (%) Recall (%)

Null 97.0 97.2 98.8

Drinking 98.6 90.2 91.7

Spoon 99.0 96.5 90.2

Fork 97.6 75.0 68.6

Hand 97.0 84.4 80.0

Average per-class 97.8 88.7 85.8
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Table 5.5: Comparison of the proposed approach with previous work on the
recognition of drinking gestures.

Method Sensor Units Spot. Recog. Accuracy Precision (%) Recall (%)

Junker et al (2008) [123] 5 X X - 88.0 83.0

Amft et al (2010) [64] 1 X X - 84.0 90.0

Chen et al (2017) [140] 1 X X - 96.5 91.3

Serrano et al (2017) [170] 4 X X - 82.28 84.42

Ramos-Garcia et al (2014) [171] 1 X X 86.5 - -

Proposed Approach (3-class) 1 X X 99.0 93.3 93.3

Proposed Approach (5-class) 1 X X 98.6 90.2 91.7

5.5.3 Discussion

The methodology proposed addressed the problem of spotting and recognising

fluid and food intake gestures with the use of a single wrist-worn inertial unit. At

the spotting step, the aim was to minimise the number of false negatives. This

was based on the fact that more computational intensive tools, namely classifi-

cation models, were to be applied at the recognition step. The novel adaptive

segmentation technique proposed (CAST) correctly identified all the drinking

and eating gestures. Although the average precision is considerably low (29%),

a 100% recall is achieved, indicating the aim proposed is successfully accom-

plished. Further, a range of four different feature sets was proposed for gesture

recognition. As expected, the addition of the gesture discrepancy measure as

a feature descriptor consistently improves the classification performance of the

system across the three experiments proposed. This can be explained by the fact

that the signal alignment performed through the use of DTW accounts for the

gestures intra-person and inter-person temporal distortion, thus adding crucial

information to long-established feature sets used in previous activity or gesture

recognition problems.

Given the great variety of gestures involved in an eating activity, previous

research has varied the way of tackling its recognition. To fairly evaluate the

proposed methodology against previous similar work, the performance of the

recognition of drinking gestures is considered. For fairness, and given the lack of

a benchmark dataset concerning eating and drinking (each of the works in Table
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5.5 were evaluated using different experimental datasets), the comparison is made

with similar controlled or semi-controlled experiments undertaken in lab settings.

As shown in Table 5.5, the proposed methodology shows competent results when

compared to other drinking gestures recognition work, including both the spotting

and recognition stages. Only the classification precision achieved in [140] shows

a higher value. However, in [140], a spotting step was not included since the data

set lacked a ‘Null’ class as well as other gestures different from drinking gestures.

As a result of this, the precision and recall metrics were clearly boosted, since the

experiment proposed was evidently biased towards the recognition of drinking

gestures.

5.6 Conclusions

This chapter has proposed a novel approach for the spotting and recognition of

eating and drinking gestures in a semi-controlled experimental setting using a

single wrist-worn inertial unit as a means of data collection. Two major con-

clusions can be drawn from the results achieved. First, the CAST is shown to

overcome the two major drawbacks observed in previous similar work. On the one

hand, as contrary to previous adaptive segmentation techniques in the field, the

CAST achieves a 100% spotting recall, thus preventing the system from having

false negatives at the preliminary spotting phase. This is crucial since the errors

at the spotting phase will propagate to the recognition phase, therefore limiting

the performance of the whole system. Second, while long-established feature sets

only incorporate shallow (normally statistical) characteristics of the signals, the

Soft-DTW based gesture discrepancy measure proposed accounts for the intra

and inter-personal temporal distortion at performing eating and drinking ges-

tures. As shown by the results obtained, this clearly offers an advantage to the

system, which has seen a consistent improvement across the three experiments

proposed. In terms of the average per-class classification recall, the addition of

the gesture discrepancy measure improves the performance of the system from

0.950 to 0.963, from 0.931 to 0.95 and from 0.783 to 0.858 for the 2-class, 3-class

and 5-class classifications problems respectively. Regarding the average per-class

classification precision, the performance improvements seen are from 0.952 to
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0.972, from 0.948 to 0.957 and from 0.874 to 0.887 for the 2-class, 3-class and

5-class classifications problems respectively.
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Chapter 6

Exploring Deep Learning

Techniques for Gesture

Recognition

6.1 Introduction

This chapter explores the use of deep learning techniques, and in particular,

that of Convolutional Neural Networks (CNNs) for the recognition of eating and

drinking gestures. As outlined in Section 2.3.7, CNNs are increasingly employed

for activity recognition purposes given their good performance across different

studies. In contrast to traditional classification models such as KNN, RF or

SVM, CNNs do not require specific domain-knowledge, since the features are au-

tomatically learned throughout the training phase of the network. Provided the

effectiveness of the CAST at spotting potential eating and drinking gestures, this

technique is further made use of for the work undertaken in this chapter. With

this, a study upon the complexity of the CNN architecture, through which the

optimal hyper-parameters of the CNN for the recognition of eating and drinking

gestures are identified, is carried out. These hyper-parameters include the number

of layers, the number of filters or kernels, and the size of these filters. In addition,

multi-input architectures are explored through the use of three time series to im-

age encoding techniques, namely the signal spectrogram, the Markov Transition
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Field (MTF) and the Gramian Angular Field (GAF), and the extraction of a

low-dimensional feature vector.

The remainder of this chapter is organised as follows: Section 6.2 reviews

relevant work on Deep Learning for activity recognition. Section 6.3 presents

the motivation behind the work undertaken in this chapter. Section 6.4 presents

the CNN-based method proposed for the development of a fluid and food intake

tracking system. Section 6.5 presents the results achieved and compares them

to those of previous similar published works. Section 6.6 reports the conclusions

drawn from the obtained results.

6.2 Review of Work on Deep Learning for Ac-

tivity Recognition

The use of deep learning, and especially that of CNNs has revolutionised the

state-of-the-art of challenging problems such as speech recognition and image

classification [90]. Likewise, CNNs are gaining increasing attention within the

field of HAR due to the numerous advantages they provide as compared to tradi-

tional state-of-the-art HAR feature extraction and classification methods. First,

conventional HAR solutions typically require the computation of hand-crafted or

self-engineered features, thus relying on human domain knowledge. Second, ac-

cording to human expertise, only shallow features, such as basic signal statistics,

can be learned through the use of conventional hand-crafted feature extraction

methods [130]. Despite the good performance exhibited by the use of shallow

features on the recognition of low-level activities such as walking, sitting or jog-

ging, gaining insights into context-aware activities such as using the toilet or

having lunch, may require more complex computations [172]. Third, in contrast

to traditional HAR approaches, CNNs are able to exploit the translation invari-

ant nature of human gestures/activities as well as the local dependency attribute

of temporal sequences [90].

The advantages presented above have recently deviated the attention of hu-

man activity/gesture recognition research work towards the implementation of

CNN frameworks, which as shown by recent work in the field [129–131], can out-
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perform traditional state-of-the-art approaches such as Random Forest, Support

Vector Machines or K-Nearest Neighbours. However, despite the good perfor-

mance exhibited by CNNs, major discrepancies are found among the literature.

One of such discrepancies is found on the segmentation of the sensory signals,

which is mainly due to the differing duration of different gestures or activity cy-

cles. While excessively short segments would miss fundamental characteristics of

a gesture/activity, long sequences may retrieve characteristics from multiple ges-

tures/activities, thus lowering the ultimate classification performance. Generally,

the length of the segments is either roughly estimated based on the characteristics

of the gesture or activity set studied [90,132], or calculated as a hyper-parameter

of the classification problem itself [108,131].

Different approaches are also found on the pre-processing of the signals. Typ-

ically, 1D filters are directly used on the raw sensor data [90,130–132]. However,

alternative solutions have also been proposed. In [108], the accelerometer signals

are unified into the magnitude of the tri-dimensional vector. While this approach

can reduce the computational cost of the network, a poor performance (classifi-

cation accuracy = 92.95%) at recognising a basic set of three high-level activities,

suggests that crucial information is thrown away at such unification step. Vari-

ous studies employing multiple sensor nodes for data collection [136,154], propose

time series to image encoding frameworks to capture the spatial dependency be-

tween the different sensors, as well as the local dependency over time. A posteriori

2D CNNs are used for feature learning and classification. As proven in [136], 2D

CNNs can outperform 1D CNNs on time series classification tasks; however, the

exhibited improvement is considerably low.

The network architecture has also varied considerably between different HAR

works. While some studies propose shallow networks with only one convolutional

layer [108, 131], other studies have opted for the employment of networks with

two convolutional layers [136, 154] or yet deeper architectures [90, 130]. In the-

ory, increasing the number of convolutional layers allows for the computation of

more complex features, which as shown in [90], can lead to better classification

performance. However, employing deep architectures may also lead to network

overfitting and consequently to a worse classification performance [131].

Ultimately, the learning rate employed during the training phase of the net-
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work is another factor open to discussion. While the majority of the studies

employ an arbitrary learning rate [90,130,131], the work in [132] demonstrates

the adequate tuning of the learning rate can have a significant positive effect on

the overall classification performance of deep learning models aiming at activity

recognition. To do so, the authors in [132] evaluate the classification performance

of the network across different learning rates, ranging from 0.001 to 0.1, obtaining

classification accuracies in the range (91.882% to 94.022%). This implies a rele-

vant improvement of 2.3% in the classification accuracy of the model is achieved

when comparing the worst and the best performing learning rates.

6.3 Motivation

As with the work undertaken in Chapter 5, the motivation of the work in this

chapter comes from the many open challenges that exist on the implementation

of systems for eating and drinking gesture recognition. In addition, the review of

the literature concerning the use of CNNs for activity recognition, suggests there

are still many unanswered questions with regards to the impact of the archi-

tecture of the network on the classification performance of CNN-based systems.

Furthermore, the ability shown by CNNs to extract informative features and to

accurately classify different activities, suggest that it is plausible to propose an

accurate domain-knowledge independent eating and drinking recognition system.

6.4 Methods

This section presents the methodology employed to develop the proposed CNN-

based fluid and food intake recognition system. The section is divided regarding

the different methodology phases as follows. Section 6.4.1 presents the experi-

mental setup, Section 6.4.2 describes the signal pre-processing step employed to

correct the orientation of the accelerometer signal for left-handed participants,

Section 6.4.3 presents the signal segmentation technique employed and the signal

padding step applied to the accelerometer signals. Section 6.4.4 defines the time

series to image encoding frameworks employed, ultimately Section 6.4.5 describes
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the single-input and the multi-input multi-domain CNN-based frameworks pro-

posed for gesture classification. The recognition of the gestures is tackled as a

3-class classification problem with the classes being ‘Null’, ‘Eat’, ‘Drink’.

6.4.1 Experimental Setup

The work in this chapter is based on the Dataset 2 presented in Section 3.2.2.2.

In this case, only the data incorporating the tri-axial acceleration of the wrist of

the different participants are used for the development of the different CNN ar-

chitectures. It must be noted that gyroscope data was also considered. However,

the use of this data constantly led to network overfitting issues. Given this, the

use of gyroscope data was disregarded.

6.4.2 Signal Pre-processing

To account for the difference in terms of sensor orientation found when the sensory

device is worn on the left hand, the direction of the accelerometer y-axis is shifted

180◦ for the left-handed participant.

6.4.3 Signal Segmentation

As in the work presented in Chapter 5, an adaptive segmentation technique,

namely the CAST (see Section 3.3.4.2), is employed to identify potential segments

containing an eating or a drinking gesture. Contrary to traditional sliding-window

approaches, the CAST adapts the segments of the signal to the duration of the

gestures themselves, leading to a gesture set of signal segments with varying

lengths. The segments are a posteriori padded to the length of the longest segment

retrieved by the CAST (n = 394) to allow for network batch training. The

GAF and the MTF time series to image encoding frameworks utilise such padded

segments of length (n = 394). In the case of the signal spectrogram framework,

n is rounded up to the nearest higher power of 2 (n = 512).
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6.4.4 Time Series Imaging

Inspired by the work in [173, 174], three different frameworks are employed for

encoding the accelerometer signal segments into images, namely the signal spec-

trogram, the Markov Transition Field (MTF) and the Gramian Angular Field

(GAF). In this work, the image encoding is independently applied to the mag-

nitude of the 3-dimensional accelerometer signal as well as to the y-axis signal

(previously employed for signal segmentation). Examples of the time series to

image encoding frameworks employed in this work are shown in Figure 6.1. It

should be noticed that the different time series imaging-based frameworks are

not employed independently. Instead, these are individually combined with the

1D CNN benchmark model at the fully connected layer to explore whether the

classification performance achieved by the benchmark model fed with raw ac-

celerometer signals can be further improved by the incorporation of additional

features.

6.4.4.1 Signal Spectrogram

The signal spectrogram is a visual representation which depicts the strength

spectrum of frequencies of a signal as it varies with time. Given a time series

X = {x1, x2, ..., xn}, X is first converted into the frequency domain using the

Fast Fourier Transform (FFT) as follows:

FFT (X) =

∑n
k=1 |ak|

2

n
(6.1)

where a1,a2,... an are the FFT components of the corresponding window of length

n. In this case, a window length n of 32 samples with 50% overlapping is used

across the padded segments (N = 512).

A posteriori, the signal spectrogram is calculated as follows:

spectrogram{x(t)}(τ, ω) = |X(τ, ω)|2 (6.2)

Eventually, the resulting signal spectrogram is encoded into a 2-dimensional

(time and frequency) graph, with a third dimension (signal amplitude of a par-
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Figure 6.1: Examples of the employed imaging techniques for each of the classes
(‘Drink’, ‘Eat’, ‘Null’). In the examples provided, the plot and the correspond-
ing spectrogram, MTF and GAF, are visual representations of the y-axis of the
accelerometer signal.

ticular frequency at a specific time) represented by a colour scale.

6.4.4.2 Markov Transition Field

The Markov Transition Field (MTF) framework is employed to encode dynamical

transition statistics of the signal. To preserve the sequential information enclosed

within the signal, the framework proposed by [173] is employed, whereby the

Markov transition probabilities are represented sequentially, thus preserving in-

formation in the time domain. Given a time series X = {x1, x2, ..., xn}, Q quantile

bins are identified and each xi is assigned to the corresponding bins qj (j ∈ [1, Q]).

A posteriori a QxQ weighted adjacency matrix W is constructed with the count

of the transitions among quantile bins in the form of a first order Markov chain
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along the time axis. wi,j is then estimated as the frequency at which a point in

the quantile qj is followed by a point in the quantile qi. This, after normalisation∑
j wi,j = 1 gives as a result the Markov transition matrix W . However, W is

insensitive to the distribution of X and the temporal dependency on time steps

ti.

To overcome the loss of the temporal dependency, the Markov Transition Field

(MTF) matrix M is defined as follows:

M =


wij|x1∈qi,x1∈qj . . . wij|x1∈qi,xn∈qj
wij|x2∈qi,x1∈qj . . . wij|x2∈qi,xn∈qj

...
. . .

...

wij|xn∈qi,x1∈qj ... wij|xn∈qi,xn∈qj

 (6.3)

The QxQ Markov transition matrix (W ) is computed by dividing the data

into Q quantile bins, where the quantile bins that contain the data at time stamp

i and j are qi and qj respectively (q ∈ [1, Q]). Mij in MTF denotes the transition

probability of qi → qj. That is, the matrix W is spread out into the MTF matrix

M by considering temporal position.

6.4.4.3 Gramian Angular Field

The Gramian Angular Field (GAF) is a time series to image encoding technique

by which a time series is encoded into a polar coordinate system from its original

Cartesian coordinates while preserving the temporal correlation. Given a time

series X = {x1, x2, ..., xn} where each xi is normalised as:

x̃i =
(xi −max(X) + (xi −min(X))

max(X)−min(X)
(6.4)

X̃ can be represented in polar coordinates as follows:{
φ = arccos(x̃i),−1 ≤ x̃i ≥ 1, x̃i ∈ X̃
r = ti

N
, ti ∈ N

(6.5)

where ti is the time stamp and N is a constant regularisation factor of the polar

coordinate system.
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The above encoding offers two major advantages. First, the function is bi-

jective. That is, each value in the original signal correspond to one value in the

polar coordinate representation and vice versa. Second, the absolute temporal

relations are preserved through the r coordinate.

Further to the conversion, the angular perspective can be easily exploited by

considering the trigonometric sum between each pair of points. Thusly, the GAF

is defined as:

G =


cos(φ1 + φ1) . . . cos(φ1 + φn)

cos(φ2 + φ1) . . . cos(φ2 + φn)
...

. . .
...

cos(φn + φ1) . . . cos(φn + φn)

 (6.6)

Taken the definition of the inner product of two vectors x and y as:

< x, y >= x · y −
√

1− X̃2 ·
√

1− X̃2 (6.7)

G is therefore a Gramian matrix as shown in Equation 6.8:

G =


< x̃1, x̃1 > . . . < x̃1, x̃n >

< x̃2, x̃1 > . . . < x̃2, x̃n >
...

. . .
...

< x̃n, x̃1 > . . . < x̃n, x̃n >

 (6.8)

6.4.5 Network Architectures

This work proposes a range of single-input and multi-input multi-domain CNNs

for the recognition of eating and drinking gestures from continuous accelerometer

readings (see Figure 6.2). The intuition behind this is the great potential of

CNNs to identify the relevant patterns from accelerometer temporal sequences

given the translation invariant nature of gestures. In addition, CNNs are domain-

knowledge independent since the features are automatically learned through the

training step. Such feature learning takes place following a hierarchical structure,

whereby the most elementary patterns are captured at the left-most layers, and

more complex patterns are learned at the right-most ones. It should be mentioned
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that the use of LSTMs was also considered. However, the significantly worse per-

formance seen through initial experiments where LSTMs were employed alone

and in combination with convolutional layers as compared to the performance

achieved by networks using only convolutional layers, led to focusing the research

efforts on optimising CNN architectures.

6.4.5.1 Benchmark Model - 1D CNN

A 1D CNN fed with raw accelerometer data is proposed as a benchmark model.

Given the accelerometer time series x0
i = [x1, ..., xN ], where N is the length of

the accelerometer segments (in this case, N=394 samples), the output of the

convolutional layers is given by:

cl,ji = σ

(
blj +

M∑
m=1

wl,jm x
l−1,j
i+m−1

)
, (6.9)

where l is the layer index, M is the kernel size, wjm is the weight for the jth map

and mth filter index, blj is the bias term for the jth filter at layer l, and σ is the

activation function.

In this case, the activation function employed is the rectified linear unit

(ReLU):

σ(z) = max(0, z) (6.10)

Following the convolutional layer, a pooling layer performs a non-linear down-

sampling by retrieving the maximum value among a set of nearby inputs. This

is given by:

pl,ji = max
r∈R

(
C l.j
ixT+r

)
(6.11)

where T is the pooling stride and R the pooling size (in this study, 1 and 2

respectively).

Several convolutional and pooling layers can be stacked to form deeper net-

work architectures. The output from the stacked convolutional and pooling layers

is flattened to form the feature vector f I = [f1, ..., fI ], where I is the number of

units in the last pooling layer. f I is then used as input to the fully-connected
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layer:

hli =
∑
j

wl−1
ji

(
σ(f l−1

i ) + bl−1
i

)
(6.12)

where wl−1
ji is the connection weight term from the ith node on layer l − 1 to the

jth node on layer l, σ is the activation function (ReLU) and bl−1
i is the bias term.

The output from the fully connected layer is then used as input to the softmax

function, by which the gesture classification is computed as:

P (c|p) = argmax
c∈C

e(f l−1wL+bL)∑NC

k=1 e
(fL−1wk)

(6.13)

where L is the index of the last layer, c is the gesture class and NC is the total

number of gesture classes.

The network training is conducted using the Adaptive Moment Estimation

(Adam) optimiser on batches of 32 accelerometer segments for a total of 30 epochs.

Categorical cross-entropy is used as the loss function. A dropout rate of 0.5 is

used on the fully connected layer to mitigate overfitting issues.

6.4.5.2 Benchmark Network Optimisation

The performance of the 1D CNN is studied across various key network parameters.

These include the number of layers (l), the number of filters within a layer (j)

and the filter size (M) as follows:

• l = [1,2,3]

• j = [16,32,64,128,256]

• M = [6,12,25,50,75,100,125,150]

Given the sampling frequency employed for data collection (25 Hz), the filter size

ranges from M = 0.24 seconds to M = 6 seconds. The learning rate employed is

0.001.
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Figure 6.2: Diagram showing the different single-input and multi-input multi-
domain networks proposed. It should be noticed that the top part (1) is a common
factor on all the proposed networks. The rest of the models are built on top of that
one by combining the respective learned features at a common fully connected
layer. That is, the features learned by Model 1 in the figure are combined inde-
pendently at the fully connected layer with the features learned by each of the
1.1, 1.2, 1.3 and 1.4 models after flattening.

6.4.5.3 CNN Frameworks Description

Once the 1D benchmark network is optimised, various multi-input multi-domain

networks are built on top to evaluate whether a further improvement on the clas-

sification performance can be achieved. The different proposed CNN frameworks

are described below (see also Figure 6.2):

• 1. 1D CNN: Optimised 1D CNN benchmark network fed with raw ac-

celerometer data.

• 1.1.1. Spec(Mag): Optimised 1D CNN benchmark network fed with raw ac-
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celerometer data combined with a 2-layered 2D CNN fed with spectrogram

images of the magnitude of the tri-dimensional accelerometer signal.

• 1.1.2. Spec(y): Optimised 1D CNN benchmark network fed with raw ac-

celerometer data combined with a 2-layered 2D CNN fed with spectrogram

images of the y-axis of the accelerometer signal.

• 1.2.1. MTF(Mag): Optimised 1D CNN benchmark network fed with raw

accelerometer data combined with a 2-layered 2D CNN fed with MTF im-

ages of the magnitude of the tri-dimensional accelerometer signal.

• 1.2.2. MTF(y): Optimised 1D CNN benchmark network fed with raw ac-

celerometer data combined with a 2-layered 2D CNN fed with MTF images

of the y-axis of the accelerometer signal.

• 1.3.1. GAF(Mag): Optimised 1D CNN benchmark network fed with raw ac-

celerometer data combined with a 2-layered 2D CNN fed with GAF images

of the magnitude of the tri-dimensional accelerometer signal.

• 1.3.2. GAF(y): Optimised 1D CNN benchmark network fed with raw ac-

celerometer data combined with a 2-layered 2D CNN fed with GAF images

of the y-axis of the accelerometer signal.

• 1.4. F.V: Optimised 1D CNN benchmark network fed with raw accelerom-

eter data combined with a 2-layered NN fed with a 31-dimensional hand-

crafted feature vector.

The architecture of the 2D CNNs employed for the feature learning of the

resultant spectrogram, MTF and GAF images is defined by l = 2, j = 5x5

and M = 16. The framework, including the hand-crafted feature vector (F.V),

employs a 2-layered Neural Network (NN) with 16 neurons on each layer. Such a

F.V includes a wide range of descriptive signal statistics as well as the duration

of the different gestures.

A posteriori, the classification performance of each of the frameworks is eval-

uated by adopting a leave-one-out cross-validation strategy, whereby on each

validation step one of the experiment participants is used as the test set and
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Figure 6.3: Classification performance of the 1D CNN across the parameters l,
j and M , where (a) depicts the average per-class classification accuracy of the
1-layered CNN, (b) of the 2-layered CNN and (c) of the 3-layered CNN.

the remaining subjects as the training set. Ultimately, making use of the best

performing network architecture, the impact of the learning rate is studied across

the following values: [0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05,

0.1].

6.5 Results

The results achieved by the different CNN-based frameworks for the recognition

of eating and drinking gestures are presented in this section. The problem has

been tackled as a 3-class classification problem, with the classes being ‘Drink’,

‘Eat’ and ‘Null’. The ‘Null’ class embodies all the irrelevant gestures retrieved

by the segmentation technique. That is, all the gestures which are not an eating

or a drinking gesture.

A parametrically optimised 1D CNN fed with raw accelerometer data is first

proposed as a benchmark classification model. Such optimisation is achieved

by studying the performance of the network across the number of layers l, the

number of filters j and the filter size M .

This can be better observed in Figure 6.3 where the average per-class classifica-

tion accuracy of the networks is plotted against the different studied parameters.

The optimisation process is performed layer by layer. That is, once the values
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j and M are optimised for the 1-layered CNN, a second convolutional layer is

added to that optimised network. This process is then repeated for the imple-

mentation of the 3-layered CNN. From Figure 6.3, it can be seen that while an

increase on the classification performance is achieved by increasing the number

of layers (this is confirmed by an ANOVA-Tukey HSD test), no direct relation-

ship can be observed between the classification performance and the number of

filters or the filter size. Despite the improvement seen on the classification perfor-

mance achieved by the increase made to the number of layers, further analysis is

made by analysing the distribution of the average per-class classification accuracy

across the different configurations. As it can be seen in Figure 6.4, the perfor-

mance distribution exhibited by the 1-layered and the 3-layered CNNs exhibit a

negative skewness. This indicates the use of a 1-layered network and that of a

3-layered network for this specific problem can lead to underfitting and overfitting

issues respectively. Therefore, a 2-layered network would be recommended as the

more conservative architecture for future similar problems where the execution

of network optimisation is not possible.

In this case, as shown in Table 6.1, the best average performance across j

and M is achieved by the 3-layered CNN with an average per-class classification

accuracy of 96.06%. The best classification performance is also achieved using

a 3-layered CNN (the configuration is described in the table). Such network

achieves an average per-class classification accuracy of 97.10%, an average per-

class classification precision of 93.01% and an average per-class classification recall

of 93.96%. The results achieved for each specific class are shown in Table 6.2.

After the optimisation of a 1D CNN, the different frameworks proposed in

Section 6.4.5.3 are evaluated. The classification performance achieved by each of

Table 6.1: Summary of results. The Avg. perform. (%) column reports the mean
of the average per-class classification accuracy across j and M . Acc. (%), Prec.
(%) and Rec. (%) report the respective values achieved by the best network
configurations described in the Best Configuration column.

1D CNN Avg. perform. (%) Best Configuration Acc. (%) Prec. (%) Rec. (%)
1 Layer 93.36 j1=64 filters, M1=50 94.82 86.46 90.23
2 Layers 95.59 j2=64 filters, M2=125 96.69 91.40 94.28
3 Layers 96.06 j3=16 filters, M3=25 97.10 93.01 93.96
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Figure 6.4: Study upon network architecture (number of layers). (a) shows the
distribution of the classification accuracies achieved by the 1-layered, 2-layered
and 3-layered CNNs. (b) shows the corresponding violin plot.

Table 6.2: Classification metrics for the CNN showing the best classification
performance.

Accuracy (%) Precision (%) Recall (%)

Null 96.29 98.60 96.25

Drinking 98.73 92.98 89.83

Eating 96.29 87.43 95.81

Average per-class 97.10 93.01 93.96

the frameworks can be seen in Figure 6.5. The results indicate the benchmark 1D

CNN model outperforms the rest of the proposed frameworks, with only the F.V

framework obtaining comparable results. Despite the additional implicit informa-

tion provided by the rest of the frameworks, the required additional complexity

of the network led to overfitting issues.

Using the best performing architecture, further hyper-parameter tuning is

performed to evaluate the impact of the learning rate on the classification perfor-

mance of the network. To do so, the classification performance is studied across

the following learning rate values [0.00001, 0.00005, 0.0001, 0.0005, 0.001, 0.005,

0.01, 0.05, 0.1], starting from the highest value (0.1). With this, it is observed

that high learning rates, including 0.1, 0.05, 0.01 and 0.005 lead the network to
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Figure 6.5: Classification performance achieved by the proposed CNN-based
frameworks

Table 6.3: Classification performance comparison of the different learning rates.

Performance/ Learning Rate 0.00001 0.00005 0.0001 0.0005 0.001

Max. Accuracy (%) 86.64 91.78 93.43 94.17 94.63

Mean Accuracy (%) 83.44 87.40 89.62 91.37 90.78

converge too quickly to a sub-optimal solution whereby all the instances are clas-

sified as the dominating class (‘Null’). The maximum and the mean classification

performances achieved by each of the remaining learning rates are reported in

Table 6.3. As it can be seen in the table, the maximum classification accuracy

(94.63%) is achieved using the default learning rate (Lr) of 0.001. The classifica-

tion performance of this network across the different epochs can be seen in Figure

6.6.

6.5.1 Discussion

The CNN-based system proposed addressed the problem of spotting and recog-

nising eating and drinking gestures with the use of a single wrist-worn tri-axial
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Figure 6.6: Classification performance of the benchmark architecture using the
best performing learning rate (Lr=0.001).

accelerometer. As demonstrated in Chapter 5, the adaptive segmentation tech-

nique employed (CAST), correctly spots all the eating and drinking gestures

embedded in the accelerometer readings. This overcomes the drawback found

in previous work at trying to estimate a suitable segment length for the specific

classification problem [108,131].

Despite the efforts given to improve the classification performance of the 1D

CNN fed with raw accelerometer data, these mostly led to overfitting issues.

However, the satisfactory results achieved outline the suitability of CNNs for

gesture recognition. As compared to the system proposed in Chapter 5, the

CNN-based system presented in this chapter achieves slightly worse classification

performance. However, it must be noted that despite the lower classification

performance, two major advantages are identified. First, the CNN-based system
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Table 6.4: Comparison of the proposed system to previous work on the recognition
of drinking gestures.

Method Sensor Units Spot. Recog. Accuracy Precision (%) Recall (%)

Chapter 5 1 X X 99.0 93.3 93.3

Proposed System 1 X X 98.73 92.98 89.83

Junker et al (2008) [123] 5 X X - 88.0 83.0

Amft et al (2010) [64] 1 X X - 84.0 90.0

Chen et al (2017) [140] 1 X X - 96.5 91.3

Serrano et al (2017) [170] 4 X X - 82.28 84.42

Ramos-Garcia et al (2014) [171] 1 X X 86.5 - -

is domain-knowledge independent. Second, the presented system only makes

use of accelerometer data, whereas the system proposed in Chapter 5 makes use

of both accelerometer and gyroscope data. Table 6.4 shows the comparison of

the system proposed with similar work based on controlled or semi-controlled

experiments run in laboratory settings.

6.6 Conclusions

This chapter has presented a CNN-based system to address gesture recognition

with a case study on eating and drinking. First, an adaptive segmentation tech-

nique, namely the CAST, was employed for spotting potential eating and drinking

gestures within the continuous accelerometer readings. This technique exhibits

a 100% spotting recall, therefore overcoming the drawbacks found in previous

literature, where true positives are missing at this preliminary step. This is cru-

cial since the errors taking place at this step propagate to the classification step,

therefore affecting the overall performance of the system.

Further to signal segmentation, a thorough study on CNNs for eating and

drinking gesture recognition was undertaken. A 1D CNN fed with raw accelerome-

ter data was parametrically optimised and proposed as a benchmark classification

model. The best classification results were obtained with a network architecture

composed of 3 convolutional layers with an overall per-class classification accuracy

of 97.10%. However, certain architectural configurations of the 3-layered CNN,
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6. Exploring Deep Learning Techniques for Gesture Recognition

show symptoms of model overfitting. Thus, it is crucial not to assume complex

networks will perform better and keep an adequate balance between the com-

plexity of the network, the data available and the complexity of the classification

problem itself.

Further to defining a 1D CNN benchmark classification model, various at-

tempts were made to enrich the feature learning process performed through such

a benchmark model. These included the use of various 2D CNNs fed with the

resultant images obtained by the employment of three different time series to

image encoding frameworks, as well as a NN fed with a 31-dimensional hand-

crafted feature vector. A posteriori, the above feature learning techniques were

combined with the resultant features of the benchmark network at a common

fully connected layer. Despite the good performance exhibited by the employed

time series to image encoding frameworks in different applications such as au-

dio analysis [175] or EEG-based sentiment classification [173], in this case, their

use did not lead to a better classification performance when added to the 1D

benchmark network. The model incorporating the 31-dimensional feature vector

did not improve the classification performance of the benchmark model either.

This suggests problems of model overfitting may occur when fitting excessive in-

formation into the network. Thus, it can be concluded that raw accelerometer

data alongside the use of a 1D CNN is the preferred solution, since it offers an

adequate balance between underfitting and overfitting, leading to a better clas-

sification performance when unseen data is fed into the network. In addition, as

shown by the differing results achieved by the employment of different learning

rates, the tuning of this hyper-parameter should be carefully considered in future

activity classification work using deep learning models, since the employment of

an excessively high learning rate may lead to a quick convergence at a sub-opti-

mal solution, and the employment of a excessively low learning rate may lead the

network to get stuck at a sub-optimal local minimum.

Overall, the results obtained suggest that the use of domain-knowledge in-

dependent CNNs for the recognition of eating and drinking gesture is plausible.

However, attention should be given to overfitting issues, since these can signifi-

cantly compromise the performance of the network.
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Chapter 7

Identification of Meals Intake

Through Gesture Distribution

7.1 Introduction

In previous chapters, the recognition of food and fluid intake gestures across pe-

riods of eating was studied. Following this, this chapter exploits the good perfor-

mance exhibited by the previously proposed algorithms at recognising eating and

drinking gestures in a semi-controlled environment, to investigate whether that

can be further taken advantage of to propose a means of identifying the intake

of the main daily meals, namely breakfast, lunch and dinner, under free-living

conditions.

Results reported by nutrition research work [176] suggest that bad eating

habits such as eating before bedtime are risk factors for new-onset hypertension

in older seniors. In addition, as reported in [177], regular eating habits reduce

the incidence of mental illness in older population groups. This means that

adequate and balanced nutrition is decisive not only to maintain good physical

health but also to avoid undesired psychological problems. Dietary behaviour

thus plays a vital role in our day to day lives and health. While obesity is a

significant risk factor for heart diseases, stroke, high blood pressure or diabetes

[178], malnutrition is considered as a confounding factor for developing chronic

diseases [74]. As of now, dietary behaviour is usually tracked in the form of
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self-assessment questionnaires. However, two major drawbacks are found in the

use of conventional dietary tracking approaches. First, the data entry process

may result cumbersome, since questionnaires have to be filled manually by the

subjects typically. Second, numerous studies indicate self-reported estimates of

daily activities are subjective and variable [179,180].

Given this, the investigation of unobtrusive alternative ways of monitoring

personal dietary behaviour would be highly beneficial to understand the dietary

needs of older adults living independently. In line with this, this chapter studies

the distribution of eating gestures across time by investigating the suitability of

low computational cost signal processing techniques, namely an entropy measure

and a moving average, to identify the intake of the main meals across continuous

free-living recordings. The intuition behind the employment of these two signal

processing techniques is that the number of eating gestures is expected to vary

and be higher when a meal takes place. In other words, it is expected that

outside meal periods, eating gestures will occur less often, therefore leading to a

potentially lower variation in the number of eating gestures as well as to a lower

number of them. By contrast, when a meal takes place, a greater number of eating

gestures caused by the intake of the meal is expected. This should potentially

lead to an increase in both the variation (or unpredictability) as well as in the

count of the gestures which at the same time should be reflected by the entropy

measure and the moving average respectively.

Two different approaches are proposed to determine whether those periods

actually correspond to the intake of a meal; 1) A threshold-based approach. 2) A

2-class classification problem (‘Meal’ Vs ‘Non-meal’) for which a low-dimensional

feature vector incorporating two features is proposed.

The remainder of this chapter is organised as follows: Section 7.2 reviews rele-

vant work on the detection of meal intake and eating periods using inertial sensors.

Section 7.3 presents the motivation behind the work undertaken in this chapter.

Section 7.4 presents the proposed methodology for the detection of meals. Sec-

tion 7.5 presents the results achieved and discuss the performance achieved by

the proposed approach. Ultimately, Section 7.6 reports the conclusions drawn

from the obtained results.
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7.2 Review of Work on the Recognition of Eat-

ing Periods

As compared to the work undertaken on the recognition of other daily activities,

a much narrower body of research has studied the recognition of periods of eating

based on the signals provided by wearable motion sensors.

In [9], a two-stage approach for spotting periods of eating using data from

a single wrist-worn inertial sensor is proposed. First, a custom-peak algorithm

based on wrist motion energy is used as a means of identifying potential periods of

eating. The intuition behind this approach is that periods of eating are preceded

and followed by periods of larger wrist motion energy caused by pre-meal food

preparation-related actions and post-meal tidying up-related actions. Once the

potential periods of eating are identified, an array of four features extracted across

those periods is used to train a Naive Bayes classifier, by which a classification

recall of 86.2% and a classification precision of 20.9% are achieved.

The work in [85] combines a traditional activity recognition approach (a slid-

ing window segmentation technique with a window length of 10 seconds, a range of

10 hand-crafted features and a range of classification models) with a set of ad-hoc

restrictions to identify eating windows of 1 minute across free-living recordings of

wrist tri-axial acceleration and angular velocity data. Among the ad-hoc restric-

tions proposed to enhance the performance given by the classification models, it

is assumed, as in [9], that periods of eating are preceded by periods of higher

wrist motion energy. The authors also assume the duration of each meal should

be at least 5 minutes. In addition, a time-based probability function with re-

gards to the time at which each instance occurs is used to classify the eating

gestures. The classification is assessed in 1 minute periods, whereby an eating

period is only considered when three or more out of the six windows within that

minute are classified as eating. By following this approach, the authors achieve

a classification precision of 64% and a classification recall of 69%.

In [84], the recognition of eating periods is attempted in a two-fold process

using data from a wrist-worn tri-axial accelerometer. With this approach, eating

gestures are firstly classified using a sliding window segmentation alongside a set of

five hand-crafted features and a Random Forest classification model. A posteriori,
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the density of those gestures are studied across time using the Density-based

Spatial Clustering (DBSCAN) to predict whether a meal has taken place over a

window of time. To do so, different window sizes are employed, with windows of

60 minutes (50% overlap) achieving the best performance. The results using such

window size report a classification precision of 66.7% and a classification recall of

88.8%.

7.3 Motivation

As mentioned above, only a narrow body of literature has concerned the recog-

nition of periods of eating using inertial sensors under free-living conditions. In

addition, within those works, various limitations can be outlined. For instance,

in work by [9] it is assumed that periods of eating are preceded and followed by

periods of larger wrist motion energy caused by the tasks related to the prepa-

ration of the food and the tiding and cleaning related post-meal tasks. This

idea is also incorporated in most recent work by [85] to prevent false positives.

While this may be the natural behaviour for individuals with some specific cul-

tural background, this approach may lack generality when applied to societies in

which a meal may be simply composed by a ready-to-eat food item (e.g. a sand-

wich). In addition, the performance exhibited by the research works attempting

the recognition of periods of eating [9, 84] still lies far away from those achieved

by works attempting the recognition of other quotidian activities. Specially, very

moderate values for the classification precision are reported across the different

works studying the recognition of eating periods.

This confirms the challenges exposed in Section 1.4 with respect to the differ-

ing nature and structure of activities. Unlike continuous quasi-periodic activities,

an eating activity can incorporate a large variety of gestures and actions, which

result in a significant challenge when attempting the modelling of the activity as

a whole. In addition, the moderate classification precision reported by previous

work suggests that, in free-living conditions, gestures which share some similar-

ity with eating gestures such as face touching or smoking gestures, can be easily

confounded with eating gestures.

Overall, the above suggests that there are still many opportunities for further
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research and the exploration of novel approaches to recognise eating periods from

inertial signals. In line with this, the remainder of this chapter exploits the good

performance exhibited by the gesture recognition approach proposed in Chapter 5

in a semi-controlled lab-based experiment to explore alternative means of tackling

the challenging task of recognising the intake of meals in free-living conditions.

7.4 Methods

This section presents the steps undertaken to develop the proposed periods of

eating detection system based on the distribution of the occurrence of eating

gestures across time. To do so, the gesture recognition system proposed in Section

5.4.4.4 is employed to tackle the recognition of eating gestures embedded in the

experimental data streams. The predictions made by the recognition system

are used to transform the collected signals into binary time series where a non-

eating gesture is represented by a ‘0’ and an eating gesture is represented by

a ‘1’. With this, a moving average and an entropy measure are employed as a

means of detecting potential segments containing a meal period by accounting

for the dissimilarity in the number of eating gestures identified across consecutive

minutes. A posteriori, a threshold-based approach and a classification based-

approach proposed to predict whether each potential segment retrieved by the

signal processing techniques contains a meal period. The intuition behind this

approach is that unlike other quotidian activities of continuous nature, periods of

eating can embody a variety of actions and movements which do not correspond

to the gestures of interest. That is, between two consecutive eating gestures, an

individual may perform other actions unrelated to the activity of interest. The

different stages of the proposed system are illustrated in Figure 7.1 and further

described in detail below.

7.4.1 Experimental Setup

The work in this chapter is based on the Dataset 3 presented in Section 3.2.2.3.

This dataset, collected in free-living conditions, comprises the tri-axial accelera-

tion and tri-axial angular velocity of the wrist of the different participants who
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Figure 7.1: Schematic diagram of the proposed methodology to recognise periods
of eating.

were asked to annotate the beginning and the end of their main periods of eating

during the day, namely breakfast, lunch and dinner.

7.4.2 Gesture Recognition

The first step of the proposed approach to recognise periods of eating from the

collected wrist-worn tri-axial accelerometer and tri-axial gyroscope signals is the

recognition of eating gestures from the continuous data streams. To do so, the

computational solution for gesture recognition proposed in Section 5.4.4.4 is em-
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ployed. This is based on the a better classification performance on the recog-

nition of eating gestures exhibited by this approach as compared to the rest of

the gesture recognition approaches proposed in Chapters 5 and 6. In particular,

it is important to notice the significantly higher classification precision (95.7%)

achieved by this approach as compared to that achieved by the best performing

CNN-based model (87.43%) for the ’Eating’ class. As the analysis of the results

achieved by previous work [9, 84, 85] suggest, the classification precision is a key

challenge for identifying eating periods in free-living conditions. Therefore, this

should be considered carefully at this preliminary step.

As a remainder, the selected computational solution incorporates the CAST

as a signal segmentation mechanism, a range of hand crafted features and the

proposed gesture discrepancy measure as the feature set, and an ANN as the

classification model. The performance achieved by this computational solution

at recognising eating gestures during a meal period can be seen in Table 5.3

With this, the collected time series, corresponding to the wrist tri-axial ac-

celeration and angular velocity of the wrist of the experimental participants, are

converted into sequences of labels embodying the following classes: ‘Null’, ‘Drink-

ing’ and ‘Eating’, which correspond to the gestures predicted by the employed

gesture recognition approach.

7.4.3 Signal Pre-processing

The different predicted gestures are utilised to build a binary sequence of gestures

G[n] as follows:

G[n] =

1, if n = ‘eating’

0, otherwise
(7.1)

that is, a ‘0’ is assigned to the gestures not predicted as being an eating gesture,

and a ‘1’ is assigned to those gestures predicted as being an eating gesture. For

illustration purposes, a visual example of a binarised signal corresponding to a

lunch period can be seen in Figure 7.2.

A binary sequence of eating gestures G[n] corresponding to the predictions

given by the gesture recognition system can then be encoded into a time series

S = [si : 1 ≤ i ≤ N ] where each si is the number of predicted eating gestures
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Figure 7.2: A binarised segment of a signal corresponding to the classifications
made by the gesture recognition system, where a ’1’ indicates an eating gesture
has been identified. The binarised signal corresponds to a reported lunch from
16:14 to 16:26

at a period of time i. For the purpose of the application studied in this work,

periods of 1 minute were considered. With this, the binary signals are encoded

so that values in S are equally spaced in time, representing, therefore the number

of eating gestures identified per minute. The intuition behind the employed en-

coding method is that, as outlined in Section 1.4, an activity can be broken down

into smaller actions or gestures which exhibit a clear connection with the activity

itself. For instance, the activity eating a sandwich can be divided into multiple

repetitive gestures which involve taking the sandwich towards the mouth to take

a bite. In this context, the continuous occurrence of eating gestures across time

can be associated with the occurrence of an eating activity. An example of a

resultant encoded time series can be seen in Figure 7.3.

7.4.4 Identification of Potential Meals

As mentioned above, it is hypothesised that the number of gestures is more vari-

able and higher during meal periods than outside such periods. Given these

hypotheses, two distinct methods, namely a moving average and an entropy mea-

sure, are explored as a means of identifying the hypothesised higher number of

gestures and higher variation respectively. This is ultimately aimed at the trans-

lation of these variables into the recognition of segments containing meal periods

within the resultant time series S. As suggested in [85] an eating activity is not

expected to last less than 5 minutes. Based on this, a window size of 5 was used
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Figure 7.3: Encoded time series representing the number of eating gestures per
minute predicted by the gesture recognition system. The plotted time series
corresponds to a reported lunch from 16:14 to 16:26.

for the calculation of both the entropy measure and the moving average. Further

details about these two techniques are presented below.

7.4.4.1 Approximate Entropy

Entropy can be defined as a measure that reflects the lack of order or predictability

of physical property or a signal, which can be employed to estimate the uncer-

tainty or degree of randomness in a system. The intuition behind the use of

entropy to spot potential periods of eating is that it is expected that before, dur-

ing and after the areas of interest, eating and non-eating gestures will alternate,

resulting in an increase in the unpredictability of S. By contrast, S is expected

to remain more stable outside periods of eating due to the lack or limited occur-

rence of eating gestures. In this context, the Approximate Entropy (ApEn) [181],

is employed to identify a potential dissimilarity between periods of eating and

non-eating. The selection of ApEn to measure the disorder in the sequences of

gestures is motivated by the good performance exhibited by this entropy measure

at reflecting the uncertainty present in binary signals pre-processed in a similar

way [30].

Given a time series S = [si : 1 ≤ i ≤ N ] with N samples, a non-negative

integer m ≤ N which represents the length of the blocks of data to be compared,

and a positive real number r which represents the tolerance or filtering level, the
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sequences or blocks of the vector Smi can be expressed as:

Smi = [si, si+1, ..., si+m−1], for i = 1, 2, ...,(N -m+1) (7.2)

The distance between two sequences Smi and Smj is calculated as the maximum

difference between their components given by:

d[Smi , S
M
j ] = max

k=0,1,...,m−1
(|si+k − sj+k)|) (7.3)

For each Smi , the number of j ≤ N −m + 1 such that d[Smi , S
m
j ] ≤ r, expressed

as Nm
i (r), is used to calculate the parameters Cm

i (r) as:

Cm
i (r) =

1

N −m+ 1
Nm
i (r) (7.4)

The mean value of the parameters Cm
i (r) is given by:

φm(r) =
1

N −m+ 1

N−m+1∑
i=1

lnCm
i (r) (7.5)

ultimately, with φm(r) and φm+1(r), the ApEn is calculated as:

ApEn(m, r,N) = φm(r)− φm+1(r) (7.6)

where N = 5 in this case, which corresponds to the length of the 5 minutes

window proposed. An example of the use of ApEn to identify the variations in S

is shown in Figure 7.4.

7.4.4.2 Moving Average

As an alternative to ApEn, a moving average is employed to identify segments

of the signal containing a meal period. The intuition behind the use of a moving

average is the expected increase in the number of identified eating gestures during

meal periods. Given this, the moving average is expected to reflect such increase

while filtering out false positives, that is, non-eating gestures classified as being

eating gestures. The moving average of S across windows of 5 minutes is given
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Figure 7.4: Encoded time series representing the number of eating gestures per
minute predicted by the gesture recognition system. The plotted time series
corresponds to a reported lunch from 12:23 to 12:30.

Figure 7.5: Encoded time series representing the number of eating gestures per
minute predicted by the gesture recognition system and the moving average cal-
culated across windows of 5 minutes. The plotted time series corresponds to a
reported lunch from 13:53 to 14:02.

by:

S̄[t] =
1

n

n−1∑
i=0

S[t+ i] (7.7)

where in this case, n = 5.

7.4.4.3 Observations

After preliminary observations with different configurations for m and r, it is

noticed the ApEn is excessively sensitive to the expected moderate gesture recog-

nition precision in free-living conditions, showing a counterproductive behaviour
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to the interests of the application of this work (see Figure 7.4). In contrast, by

looking at Figure 7.5, it can be observed that the moving average S complies with

two key aspects for it to be used as a means of identifying potential meal periods.

On the one hand, S acts as a filter to sparse false positives. On the other hand,

S reacts in consonance with the expected increase of eating gestures during meal

periods. Based on the above, it was decided to explore S further while dismissing

the use of ApEn.

7.4.5 Recognition of Meal Periods

Two different approaches are proposed to recognise meal periods based on the val-

ues of S, namely a threshold-based approach and a classification-based approach.

These are presented below.

7.4.5.1 Threshold-based approach

The threshold-based approach studies the performance of the system across the

following ingestion rates given in bites (eating gestures) per minute [1, 2, 3]. In

this context, a segment is predicted as a meal period if the moving average S

crosses over the corresponding threshold ingestion rate and remains above for at

least two minutes. The labelling of each segment above the threshold was done

considering the span of S. A segment is therefore labelled as a ‘meal’ if there is

an overlap between the area where S > threshold with the area delimited by the

reported beginning and end times of the meal by the corresponding experimental

participant, considering the span of S.

7.4.5.2 Classification-based Approach

Following the same labelling criteria, a classification-based approach is proposed.

To do so, a 2-dimensional feature vector is computed to train a range of three

state-of-the-art classification models. In this case, a unique ingestion rate of ’1’

is used to delimit the segments to evaluate the performance of the system. This

is based on the higher recall obtained as compared to the corresponding metrics

using higher ingestion rates. In order to account for possible meal interruptions,

it seems reasonable to state that 5 minutes without the occurrence of an eating
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gesture would mean the end of a meal. Given this, a threshold of S < 0.2 was

used to consider the end of a segment. This means, in the case of two consecutive

segments where S > 1, these are joined together.

Feature Extraction - The 2-dimensional feature vector proposed incorporates

the segment length (l) and the segment area (a) given by the sum of all values

of S where S > 1. The intuition behind the use of these features is that meal

periods are expected to have a longer duration and a higher number of eating

gestures as compared to those segments containing false positives or the intake

of little snacks. Based on this, both l and a are expected to show greater values

within meal periods than outside these.

Classification - The feature set above is used to train an SVM classification

model with a linear kernel. The intuition behind this is that the boundary be-

tween eating and non-eating periods is expected to be linear, potentially classi-

fying those with longer lengths and higher areas as meal periods. The problem is

tackled as a binary classification problem, where each area over the threshold is

classified as either being a ‘meal period’ or a ‘non-meal period’. A 10-fold cross-

validation strategy is adopted to evaluate the performance of the classification

model.

7.5 Results

The results of the threshold-based and the classification-based approaches for the

recognition of eating periods are presented in Sections 7.5.1 and 7.5.2 respectively.

A posteriori, a discussion upon the results are provided in Section 7.5.3.

7.5.1 Threshold-based Approach

As aforementioned, the threshold-based approach is evaluated across a range of

different ingestion rates. The results obtained by the different the use of the

different thresholds is provided in Table 7.5.1.
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7.5.2 Classification-based Approach

As aforementioned, an SVM classification model with a linear kernel is trained

with the proposed 2-dimensional feature vector to predict whether segments above

the threshold (ingestion rate = 1 bite per minute) are caused by eating gestures

within meal periods. The false negatives caused by the employment of the thresh-

old are added up to the ones resulting from the evaluation of the classification

model. With this, adopting a 10-fold cross-validation strategy, a classification

precision of 93.10% and a classification recall of 65.85.% are achieved.

7.5.3 Discussion

The results achieved in this chapter indicate that the approach proposed to recog-

nise the intake of meals through the study of the distribution of eating moments

across time using a signal processing technique with low computational cost,

namely a moving average, has a great potential to be employed as means of

monitoring dietary behaviour across the day.

A commonly occurring problem was found across the literature with regards

to showing certain imbalance between the classification recall and the classifica-

tion precision, with the latter showing rather moderate values. This suggests that

1) gestures alike eating gestures, such as face touching gestures or smoking ges-

tures may be easily confounded with eating gestures, 2) It is a challenge to build

datasets in lab-based semi-controlled environments to later make predictions in

free-living conditions with unseen environments.

As demonstrated by the evaluation made with the threshold-based approach

with different ingestion rates, the classification precision and the classification

recall can be reasonably balanced. This indicates two main points: 1) the gesture

Table 7.1: Classification metrics for the recognition of meal periods across the
different ingestion rate-based threshold values.

Threshold Precision (%) Recall (%)
1 56.10 90.2
2 78.04 71.1
3 92.60 61.98

125



7. Identification of Meals Intake through Gesture Distribution

recognition model trained in a semi-controlled environment was able to generalise

competently on the challenging task of spotting and recognising sparse gestures in

differing free-living conditions. 2) The moving average-based approach proposed

to model eating periods as a distribution of eating gestures across time was able

to filter out to a high degree the false positives, potentially coming in the form

of eating-alike gestures such as face touching gestures. According to work in this

area [182], the frequency of face touching can be as high as 153 times per hour

implying, therefore, face touching can occur as often as more than two times per

minute.

The results obtained with the linear SVM classification model trained with

the length and the area of the segments above the lower ingestion rate-based

threshold (1 bite per minute), with a high classification precision as compared

to the classification recall, suggest that the varying duration and abundance of

different meals can play an important role on the imbalance shown by these two

metrics. This is rather coherent, since for instance, the amount of food ingested

at different meals may differ significantly between individuals, as well as between

meals. Here, it should be noted that the experimental participants were only

asked to annotate the beginning and the end of the main meal periods, namely

breakfast, lunch and dinner. This implies that other traditional eating periods,

such as the intake of pre-meal snacks or post-meal coffee/tea and sweets, if took

place, were not annotated.

Overall, the results achieved suggest that the proposed approach alongside

the previously proposed gesture recognition system signifies a great contribution

towards the development of dietary behaviour monitoring with the use of a single

inertial sensor.

7.6 Conclusions

In this chapter, a novel approach to recognise the intake of meals under free-

living conditions has been proposed. Such an approach has been based on the

distribution of eating gestures across time, which was expected to show higher and

more variable values across the periods of time containing an intake of a meal. The

system proposed can be divided into two different steps. First, the food and fluid
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intake gesture recognition system proposed in Section 5.4.4.4 was employed to

recognise the different eating gestures across the wrist inertial recordings collected

in free-living conditions. Second, the count and the variation of the gestures across

time was investigated by the employment of a moving average and an entropy

measure respectively. This was based on the intuition that eating gestures should

occur more often inside meal periods, therefore causing a potential increase in

both the count and the variation and consequently in the moving average and

the entropy measure. While the moving average based on the count of gestures

per minute was found to be a suitable mechanism to identify potential periods

of eating, the entropy measure was shown to be too sensitive to the expected

moderate precision at recognising eating gestures in free-living conditions. Thus,

further efforts were given to the recognition of meal periods based on the use of

the moving average. With this, two distinct methods, namely a threshold-based

approach and a classification-based approach, were explored.

From the promising results achieved, it can be concluded that the recognition

of the intake of meals across free-living scenarios is plausible with the use of a

single wrist-worn inertial sensor. In this context, a set of recommendations for

further work are provided in the future work Section 8.4.
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Chapter 8

Conclusions and Future Work

8.1 Thesis Summary

The work undertaken in this thesis has presented a range of novel frameworks for

human activity and gesture recognition with the aim of enhancing the usability

of wearable technologies in the field of Ambient Assisted Living. The motivation

behind this work is the ageing population structure and the worrying upwards

trend shown by the number of older adults needing peripheral support during their

quotidian activities. Consequently, the efforts in the thesis have been directed to

the recognition of quotidian activities concerning essential personal needs, namely

hygiene and nutrition.

To answer the research question made in Chapter 1: “How can a single wrist-

worn motion sensing unit be used to recognise quotidian activities concerning

self-neglect issues?”, efforts throughout this work have been given to investigate

how the use of signal processing and Computational Intelligence techniques can

relate the acceleration and angular velocity of the dominant wrist of individuals

with the activities of interest. As a summary, in Chapter 4, the recognition of

hygiene-related activities was explored. Chapters 5 and 6 explored the recognition

of food and fluid intake gestures. Ultimately, Chapter 7 studied the recognition

of the main meals across the day, namely breakfast, lunch and dinner, based on

the distribution of food intake gestures across time.
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8.2 Concluding Remarks

The work in this thesis has demonstrated the plausibility of the development of

accurate frameworks for the recognition of quotidian daily activities based on

the use of a single wrist-worn inertial measurement unit. The efforts made to ex-

plore novel ways of segmenting inertial sensory signals and the extraction of novel

relevant features have led to the improvement on the classification performance

achieved by some of the existing methods across different activity classification

problems. Given the recognition rates achieved throughout the different experi-

mental chapters, and the previously reported acceptability of wrist-worn sensory

devices to monitor human activities in older population groups, it can be con-

cluded that these devices exhibit a great potential to be employed as “all-day”

monitoring mechanisms for older adults living independently. The conclusions

for the various aspects covered in this project are presented below.

8.2.1 Recognition of Quotidian Quasi-Periodic Activities

The results reported in Chapter 4 suggest that quotidian quasi-periodic activities

can be accurately recognised from accelerometer data with the use of an artificial

segmentation technique, namely the sliding window approach, alongside long-

established hand-crafted features and state-of-the-art classification models. In

addition, form the multi-level refinement approach proposed, it can be concluded

that feature informativeness depends on the activity set chosen to be studied.

Given this, feature refinement may be used in activity recognition problems,

especially in applications where the recognition of a specific activity is crucial for

the interest of the application (e.g. fall detection).

8.2.2 Gesture Recognition Through the Use of

Hand-Crafted Features

The results reported in Chapter 5 suggest that fluid and food intake gestures can

be accurately recognised from continuous wrist inertial recordings in a meal con-

text. Such results also indicate that the use of the proposed Soft-DTW gesture

discrepancy measure can lead to a notable gain in classification performance in
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experiments embodying the recognition of similar gestures. This outlines the reli-

ability of the Soft-DTW based gesture discrepancy measure as a feature descriptor

in human activity and gesture recognition problems. In addition, the good per-

formance exhibited by the proposed framework outlines the crucial role of the

development of accurate problem-specific adaptive segmentation techniques in

the spotting of sparsely occurring gestures in continuous data streams. Although

widely-used sliding windows exhibit good performance on the recognition of con-

tinuous quasi-periodic activities, their employment for spotting sporadic gestures

may lead to the loss of fundamental characteristics of the gestures or to the in-

corporation of unwanted signal fragments which can potentially compromise the

recognition performance of a gesture recognition system.

8.2.3 Exploring Deep Learning Techniques for Gesture

Recognition

This work was undertaken to explore alternative ways of recognising eating and

drinking gestures from inertial recordings to those proposed in Chapter 5. The

results reported in Chapter 6, with a slightly worse classification performance

to that achieved in Chapter 5, corroborate the potential of the employment of

convolutional neural networks to undertake human activity and gesture recog-

nition problems without the need of previous domain-specific knowledge. The

undertaken study upon network complexity and the incorporation of additional

features to those automatically extracted from raw recordings indicates the use

of deep complex architectures or that of further features may not necessarily lead

to better classification performance. Instead, problems of overfitting may occur.

Given this, a recommendation to future work in the field using CNNs is first to

explore the performance of shallow networks with two or three convolutional lay-

ers fed with raw data before trying to tackle the problem with complex network

architectures or further data inputs.
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8.2.4 Identification of Meals Intake through Gesture Dis-

tribution

The recognition of eating periods or that of the intake of meals is a very chal-

lenging task due to various reasons. First, the intake of a meal can take place

in distinct environments (e.g. on dining tables of different heights, no dining

table, etc.). Second, as opposed to continuous quasi-periodic activities such as

walking or running, the intake of a meal is composed of sparsely occurring ges-

tures. Therefore, to model the intake of a meal is crucial first to be able to spot

and recognise those gestures from continuous data streams. The results reported

in Chapter 7 outline the plausibility of recognising eating periods in free-living

conditions by the analysis of the distribution of eating gestures across time. In

addition, it was demonstrated that through the use of a low-cost signal process-

ing technique, a balance between the classification precision and the classification

recall could be achieved. Two main conclusions can be drawn: 1) Despite the

difficulty of training accurate models based on datasets collected in controlled or

semi-controlled lab-based environments to making predictions in free-living con-

ditions, the gesture recognition model was able to generalise competently on the

challenging task of spotting and recognising sparse gestures in differing free-living

conditions. 2) The moving average-based approach proposed to model eating pe-

riods as a distribution of eating gestures across time was able to filter out to

a high degree the false positives, potentially coming in the form of eating-alike

gestures such as face touching gestures.

Overall, it has been demonstrated that the recognition of the intake of meals

based on the distribution of eating gestures across time is feasible. To achieve

further advances in the recognition of complex activities such as meal intakes,

getting classification performances closer to those achieved on the recognition of

continuous quasi-periodic activities, a set of recommendations are provided in

Section 8.4. This will allow the potential of both the gesture recognition and the

meal intake detection approaches to be further exploited.
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8.3 Contributions

The major contributions of this thesis are outlined below:

• Propose accurate means of recognising hygiene-related activities among

other quotidian activities by the use of an artificial segmentation technique

alongside hand-crafted features and state-of-the-art classification models.

• Propose a novel multi-level refinement approach to optimise the selection

of features for activities which exhibit a lower classification performance as

compared to that presented by the overall activity recognition system. As

demonstrated, the employment of this approach can lead to an improvement

in the activity recognition system’s classification rate.

• Propose a novel adaptive signal segmentation technique (CAST) for spot-

ting potential eating and drinking gestures within continuous motion data

streams. This technique, with a 100% classification recall, overcomes the

main drawbacks encountered in attempting the spotting of sparse and du-

ration varying gestures with artificial signal segmentation techniques which

divide the continuous data streams into windows of equal length. Given

the outstanding performance and the flexibility of this technique in terms

of adjusting the moving averages according to the application needs, the

CAST may be used in future activity and gesture recognition work.

• Propose a novel DTW-based gesture discrepancy measure as a feature de-

scriptor to enrich the information gained through the extraction of long-

established hand-crafted feature vectors. As demonstrated in this work,

the use of the gesture discrepancy measure consistently improves the ges-

ture recognition rate across different experiments. This supports its em-

ployment as a feature descriptor in future activity and gesture recognition

work.

• Undertake a thorough investigation upon the use of convolutional neural

networks for gesture recognition by which the impact of the network com-

plexity and the use of additional features from those automatically extracted
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by the network were studied. With this, the use of CNNs can be recom-

mended for future gesture and activity recognition work, especially when a

lack of specific domain-knowledge exists.

• Propose novel frameworks for the recognition of similar eating and drinking

gestures during an eating period which show a great performance at such a

challenging task.

• Propose novel means of identifying meal periods in free-living conditions

through the analysis of the occurrence of eating gestures across time by the

use of a low-cost signal processing technique.

8.4 Future Work

Following the work undertaken in this thesis, this section outlines the main di-

rections for future work:

• The field of HAR with the use of wearable sensors continues to receive

increasing efforts by the research society. However, as outlined in Section

2.3, most of these efforts are directed towards fitness application. Further

work concerning quotidian activities which can be somehow associated with

the mental and the physical health of older individuals living independently

is still needed in order to employ wearable inertial sensors as standalone

mechanisms for continuous monitoring. In addition, it is proposed the ex-

ploration of action variability. This may help to identify common patterns

in the data, allowing for the optimisation of the signal-processing techniques

employed in an activity recognition work.

• Research work concerning the recognition of quasi-periodic activities has

often reported classification accuracies in the range of 95%-100%. On the

other hand, the performance reported by previous work aiming at the recog-

nition of sparse gestures such as food and fluid intake gestures or at the

recognition of meal intakes still lies far from these figures, specially, when

experiments are run in free-living conditions. An effort to improve the per-

formance shown in previous studies have been made in this work. Nonethe-

133



8. Conclusions and Future Work

less, there still exist areas for continued development. In line with this, the

further exploration and development of signal processing, feature extraction

and gesture classification techniques for food and fluid intake recognition is

recommended for future work.

In this context, the exploration of data augmentation techniques such as

the Synthetic Minority Oversampling Technique (SMOTE) on hand-crafted

feature vectors and the computation of image transformations on encoded

time series is recommended to mitigate the imbalance present on datasets

embodying the recognition of sparse gestures such as eating and drinking

gestures. In addition, the use of pre-trained deep learning models on larger

activity recognition datasets could benefit the training phase of deep learn-

ing models aiming at the recognition of sparse gestures. Based on this, an

investigation upon the use of transfer learning for the recognition of eating

and drinking gestures is proposed for future work.

• The way eating and drinking gestures are performed may not vary signifi-

cantly between healthy individuals. However, the performance of systems

aiming at the recognition of these gestures on participants with functional

limitations such as patients suffering from Parkinson’s disease or stroke

patients could potentially be compromised. In line with this, further exper-

iments embodying these social groups are recommended.

• A novel method to detect periods of eating is proposed in Chapter 7, achiev-

ing promising results. Gesture labelling can be a very cumbersome work

since, unlike continuous activities which can be labelled in chunks of data,

gestures have to be independently annotated. Nonetheless, such an effort

would be highly beneficial to achieve further improvements in recognition

of eating gestures and consequently on the identification of the intake of

meals. Given this, the collection of two extensive datasets is proposed as

follows: 1) A dataset incorporating a vast array of hand to face gestures.

2) A dataset incorporating gestures from the intake of meals in different

environments and positions. As shown in Chapter 5, the gesture recogni-

tion model proposed shows very good performance at recognising similar

food and drink intake gestures. The incorporation of new classes to the
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model should translate into further improvement of its performance and

consequently into potential further advances in dietary monitoring.

• Alongside the wrist-worn inertial sensor, low-cost ambient sensors such as

PIRs or strategically installed pressure sensors (mats) on specific chairs can

offer dietary monitoring systems the opportunity to get valuable context

awareness (i.e. the individual is sat at the dining table or in the kitchen).

With this, probabilistic functions could be used on the output given by the

food intake recognition system.

• A significant contribution towards the field of AAL will be the combination

of the above with the exploitation of trend analysis techniques to develop

intelligent systems able to identify anomalies on the dietary behaviour of

individuals so that cases in which eating assistance is required can be iden-

tified.
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galill R Hallberg, “Eating difficulties, assisted eating and nutritional status

in elderly ( 65 years) patients in hospital rehabilitation”, International

Journal of Nursing Studies, vol. 39, no. 3, pp. 341–351, 2002. 70

[156] Christa Lohrmann, Ate Dijkstra, and Theo Dassen, “The care dependency

scale: an assessment instrument for elderly patients in german hospitals”,

Geriatric Nursing, vol. 24, no. 1, pp. 40–43, 2003. 70

[157] Albert Westergren, Siv Karlsson, Pia Andersson, Ola Ohlsson, and In-

galill R Hallberg, “Eating difficulties, need for assisted eating, nutritional

status and pressure ulcers in patients admitted for stroke rehabilitation”,

Journal of Clinical Nursing, vol. 10, no. 2, pp. 257–269, 2001. 70

[158] Hélène Payette and Bryna Shatenstein, “Determinants of healthy eat-

ing in community-dwelling elderly people”, Canadian Journal of Public

Health/Revue Canadienne de Sante’e Publique, pp. S27–S31, 2005. 70

[159] Michael N Sawka, Samuel N Cheuvront, and Robert Carter III, “Human

water needs”, Nutrition Reviews, vol. 63, pp. S30–S39, 2005. 70

[160] W Larry Kenney and Percy Chiu, “Influence of age on thirst and fluid

intake.”, Medicine and Science in Sports and Exercise, vol. 33, no. 9, pp.

1524–1532, 2001. 71

[161] Judith Mackay, The atlas of heart disease and stroke, vol. 5, World Health

Organization, 2004. 71

[162] Enas S Lawrence, Catherine Coshall, Ruth Dundas, Judy Stewart, An-

thony G Rudd, Robin Howard, and Charles DA Wolfe, “Estimates of the

prevalence of acute stroke impairments and disability in a multiethnic pop-

ulation”, Stroke, vol. 32, no. 6, pp. 1279–1284, 2001. 71

155



REFERENCES

[163] Tsung-Ming Tai, Yun-Jie Jhang, Zhen-Wei Liao, Kai-Chung Teng, and

Wen-Jyi Hwang, “Sensor-based continuous hand gesture recognition by

long short-term memory”, IEEE Sensors Letters, vol. 2, no. 3, pp. 1–4,

2018. 71

[164] Mei-Chuan Tseng, Kai-Chun Liu, Chia-Yeh Hsieh, Steen J Hsu, and Chia-

Tai Chan, “Gesture spotting algorithm for door opening using single wear-

able sensor”, in International Conference on Applied System Invention

(ICASI). IEEE, 2018, pp. 854–856. 73

[165] Dario Ortega-Anderez, Ahmad Lotfi, and Caroline Langensiepen, “A hi-

erarchical approach in food and drink intake recognition using wearable

inertial sensors”, in Proceedings of the 11th PErvasive Technologies Related

to Assistive Environments Conference. ACM, 2018, pp. 552–557. 74

[166] Hiroaki Sakoe and Seibi Chiba, “Dynamic programming algorithm opti-

mization for spoken word recognition”, IEEE Transactions on Acoustics,

Speech, and Signal Processing, vol. 26, no. 1, pp. 43–49, 1978. 78, 80

[167] Dario Ortega-Anderez, Ahmad Lotfi, Caroline Langensiepen, and Kofi Ap-

piah, “A multi-level refinement approach towards the classification of quo-

tidian activities using accelerometer data”, Journal of Ambient Intelligence

and Humanized Computing, vol. 10, no. 11, pp. 4319–4330, 2019. 79

[168] Marco Cuturi and Mathieu Blondel, “Soft-DTW: a differentiable loss func-

tion for time-series”, in Proceedings of the 34th International Conference

on Machine Learning, Doina Precup and Yee Whye Teh, Eds., Interna-

tional Convention Centre, Sydney, Australia, 06–11 Aug 2017, vol. 70 of

Proceedings of Machine Learning Research, pp. 894–903, PMLR. 79

[169] Marco Cuturi, Jean-Philippe Vert, Oystein Birkenes, and Tomoko Matsui,

“A kernel for time series based on global alignments”, in IEEE Interna-

tional Conference on Acoustics, Speech and Signal Processing, ICASSP,

2007, vol. 2, pp. II–413. 80

[170] J Ignacio Serrano, Stefan Lambrecht, M Dolores del Castillo, Juan P

Romero, Julián Benito-León, and Eduardo Rocon, “Identification of ac-

156



REFERENCES

tivities of daily living in tremorous patients using inertial sensors”, Expert

Systems with Applications, vol. 83, pp. 40–48, 2017. 89, 110

[171] Raul I Ramos-Garcia, Eric R Muth, John N Gowdy, and Adam W Hoover,

“Improving the recognition of eating gestures using intergesture sequential

dependencies”, IEEE Journal of Biomedical and Health Informatics, vol.

19, no. 3, pp. 825–831, 2014. 89, 110

[172] Jindong Wang, Yiqiang Chen, Shuji Hao, Xiaohui Peng, and Lisha Hu,

“Deep learning for sensor-based activity recognition: A survey”, Pattern

Recognition Letters, 2018. 93

[173] Zhiguang Wang and Tim Oates, “Encoding time series as images for visual

inspection and classification using tiled convolutional neural networks”, in

Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence,

2015. 97, 98, 111

[174] Isah A Lawal and Sophia Bano, “Deep human activity recognition us-

ing wearable sensors”, in Proceedings of the 12th ACM International

Conference on PErvasive Technologies Related to Assistive Environments-

PETRA’19. ACM, 2019, pp. 45–48. 97

[175] Guoshen Yu and Jean-Jacques Slotine, “Audio classification from time-

frequency texture”, in 2009 IEEE International Conference on Acoustics,

Speech and Signal Processing. IEEE, 2009, pp. 1677–1680. 111

[176] Takeyasu Kakamu, Tomoo Hidaka, Tomohiro Kumagai, Yusuke Masuishi,

Hideaki Kasuga, Shota Endo, Sei Sato, Akiko Takeda, Makoto Koizumi,

and Tetsuhito Fukushima, “Unhealthy changes in eating habits cause acute

onset hypertension in the normotensive community-dwelling elderly3 years

cohort study”, Medicine, vol. 98, no. 15, 2019. 112

[177] Elizabeth A Gollub and Dian O Weddle, “Improvements in nutritional

intake and quality of life among frail homebound older adults receiving

home-delivered breakfast and lunch”, Journal of the American Dietetic

Association, vol. 104, no. 8, pp. 1227–1235, 2004. 112

157



REFERENCES

[178] Nancy S Wellman and Barbara Friedberg, “Causes and consequences of

adult obesity: health, social and economic impacts in the united states”,

Asia Pacific Journal of Clinical Nutrition, vol. 11, pp. S705–S709, 2002.

112

[179] Ben J Smith, Alison L Marshall, and Nancy Huang, “Screening for phys-

ical activity in family practice: evaluation of two brief assessment tools”,

American Journal of Preventive Medicine, vol. 29, no. 4, pp. 256–264, 2005.

113

[180] Elaine C. rush, Mauro E Valencia, and Lindsay D Plank, “Validation of

a 7-day physical activity diary against doubly-labelled water”, Annals of

Human Biology, vol. 35, no. 4, pp. 416–421, 2008. 113

[181] Steven M Pincus, “Approximate entropy as a measure of system complex-

ity.”, Proceedings of the National Academy of Sciences, vol. 88, no. 6, pp.

2297–2301, 1991. 120

[182] Yen Lee Angela Kwok, Jan Gralton, and Mary-Louise McLaws, “Face

touching: a frequent habit that has implications for hand hygiene”, Amer-

ican Journal of Infection Control, vol. 43, no. 2, pp. 112–114, 2015. 126

158


	Dedication
	Acknowledgements
	Abstract
	Publications
	Contents
	Nomenclature
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Overview of the Research
	1.3 Aim and Objectives
	1.4 Research Challenges
	1.5 Major Contributions
	1.6 Thesis Outline

	2 Literature Review
	2.1 Introduction
	2.2 Assistive Technologies
	2.2.1 Ambient Sensor-based Technologies
	2.2.2 Computer Vision-based Technologies
	2.2.3 Wearable Sensors-based technologies

	2.3 Activity and Gesture Recognition Using Wearable Sensors
	2.3.1 Sensor Modality
	2.3.2 Sensor Placement
	2.3.3 Sampling Frequency
	2.3.4 Signal Pre-processing
	2.3.5 Signal Segmentation
	2.3.6 Feature Extraction
	2.3.7 Classification Models

	2.4 Discussion and Research Opportunity

	3 Experimental Pipeline
	3.1 Introduction
	3.2 Data Collection
	3.2.1 Sensory Device
	3.2.1.1 Tri-axial Accelerometer
	3.2.1.2 Tri-axial Gyroscope

	3.2.2 Datasets
	3.2.2.1 Dataset 1 - Recognition of Quotidian Quasi-periodic Activities. Activities
	3.2.2.2 Dataset 2. Spotting and Recognition of Eating and Drinking Gestures
	3.2.2.3 Dataset 3. Recognition of Meal Periods
	3.2.2.4 Datasets Remarks and Inter-Subject Variability


	3.3 Signal Processing
	3.3.1 Filtering and Smoothing
	3.3.2 Gravity vs. Linear Motion
	3.3.3 Computation of Additional Signal Time Series
	3.3.4 Signal Segmentation
	3.3.4.1 Artificial Segmentation
	3.3.4.2 Adaptive Segmentation


	3.4 Feature Extraction
	3.5 Classification Models
	3.5.1 K-Nearest Neighbours
	3.5.2 Support Vector Machine
	3.5.3 Random Forest

	3.6 Model Evaluation
	3.6.1 Evaluation Measures
	3.6.2 Evaluation Strategy

	3.7 Conclusions

	4 Recognition of Quotidian Quasi-Periodic Activities
	4.1 Introduction
	4.2 Review of Work on Activity Recognition
	4.3 Motivation
	4.4 Methods
	4.4.1 Experimental Setup
	4.4.2 Signal Pre-processing
	4.4.3 Feature Extraction
	4.4.4 Feature Selection and Reduction
	4.4.5 Classification
	4.4.6 Multi-Level Refinement

	4.5 Results
	4.5.1 Feature Reduction
	4.5.2 Classification and Refinement
	4.5.3 Validation and Discussion

	4.6 Conclusions

	5 Gesture Recognition Through the Use of Hand-Crafted Features
	5.1 Introduction
	5.2 Review of Work on Gesture Recognition
	5.3 Motivation
	5.4 Methods
	5.4.1 Experimental Setup
	5.4.2 Signal Pre-processing
	5.4.3 Signal Segmentation and Gesture Spotting
	5.4.4 Gesture Recognition
	5.4.4.1 Dynamic Time Warping
	5.4.4.2 Feature Vector
	5.4.4.3 Gesture Discrepancy
	5.4.4.4 Feature Vector and Gesture Discrepancy

	5.4.5 Evaluation

	5.5 Results
	5.5.1 Gesture Spotting
	5.5.2 Gesture Recognition
	5.5.2.1 Experiment 1: 2-Class Classification Problem
	5.5.2.2 Experiment 2: 3-Class Classification Problem
	5.5.2.3 Experiment 3: 5-Class Classification Problem

	5.5.3 Discussion

	5.6 Conclusions

	6 Exploring Deep Learning Techniques for Gesture Recognition
	6.1 Introduction
	6.2 Review of Work on Deep Learning for Activity Recognition
	6.3 Motivation
	6.4 Methods
	6.4.1 Experimental Setup
	6.4.2 Signal Pre-processing
	6.4.3 Signal Segmentation
	6.4.4 Time Series Imaging
	6.4.4.1 Signal Spectrogram
	6.4.4.2 Markov Transition Field
	6.4.4.3 Gramian Angular Field

	6.4.5 Network Architectures
	6.4.5.1 Benchmark Model - 1D CNN
	6.4.5.2 Benchmark Network Optimisation
	6.4.5.3 CNN Frameworks Description


	6.5 Results
	6.5.1 Discussion

	6.6 Conclusions

	7 Identification of Meals Intake Through Gesture Distribution
	7.1 Introduction
	7.2 Review of Work on the Recognition of Eating Periods
	7.3 Motivation
	7.4 Methods
	7.4.1 Experimental Setup
	7.4.2 Gesture Recognition
	7.4.3 Signal Pre-processing
	7.4.4 Identification of Potential Meals
	7.4.4.1 Approximate Entropy
	7.4.4.2 Moving Average
	7.4.4.3 Observations

	7.4.5 Recognition of Meal Periods
	7.4.5.1 Threshold-based approach
	7.4.5.2 Classification-based Approach


	7.5 Results
	7.5.1 Threshold-based Approach
	7.5.2 Classification-based Approach
	7.5.3 Discussion

	7.6 Conclusions

	8 Conclusions and Future Work
	8.1 Thesis Summary
	8.2 Concluding Remarks
	8.2.1 Recognition of Quotidian Quasi-Periodic Activities
	8.2.2 Gesture Recognition Through the Use of Hand-Crafted Features
	8.2.3 Exploring Deep Learning Techniques for Gesture Recognition
	8.2.4 Identification of Meals Intake through Gesture Distribution

	8.3 Contributions
	8.4 Future Work

	References

