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Abstract 
 
The study on fluid flow and transport processes of rock fractures in most practical 
applications involves two fundamental issues: The validity of Reynolds equation for fluid 
flow (as most often assumed) and the effects of shear displacements on the magnitudes and 
anisotropy of the fluid flow velocity field. The reason for such concerns is that the impact of 
the surface roughness of rock fractures is still an unresolved challenging issue. The later has 
been systematically investigated with results showing that shear displacement plays a 
dominant role on evolutions of fluid velocity fields, for both magnitudes and anisotropy, but 
the former has not received examinations in details due to the numerical complexities 
involving solution of the Navier-Stokes (NS) equations and the representations of fracture 
geometry during shear. The objective of this paper aims to solve this problem through a FEM 
modeling effort. 
Applying the COMSOL Multiphysics code (FEM) and assuming a two-dimensional problem 
(for limitations in computational capacities and resources), we consider the coupled 
hydro-mechanical effect of fracture geometry change due to shear on fluid flow (velocity 
patterns) and particle transport (streamline/velocity dispersion), using measured topographical 
data of natural rock fracture surfaces. The fluid flow in the vertical 2-D cross-sections of 
single rock fractures was simulated by solving both NS and Reynolds equations, and the 
particle transport was predicted by the streamline particle tracking method with calculated 
flow velocity fields (vectors) from the flow simulations, obtaining results such as flow 
velocity profiles, total flow rates, particle travel time, breakthrough curves and the Péclet 
number, Pe, respectively. The results obtained using NS and Reynolds equations were 
compared to illustrate the degree of the validity of the Reynolds equation for general 
applications in practice since the later is mush more computationally efficient for large scale 
problems. 
The flow simulation results show that both the total flow rate and the flow velocity fields in a 
rough rock fracture predicted by NS equations were quite different from that as predicted by 
the Reynolds equation. The results show that a roughly 5-10 % overestimation on the flow 
rate is produced when the Reynolds equation is used, and the ideal parabolic velocity profiles 
defined by the local cubic law, when Reynolds equation is used, is no longer valid especially 
when the roughness feature of the fracture surfaces changes with shear. These deviations of 
flow rate and flow velocity profiles across the fracture aperture have a significant impact on 
the particle transport behavior and the associated properties, such as the travel time and Péclet 
number. The deviations increase with increasing flow velocity and become more significant 
when fracture aperture geometry changes with shear. 
 
 
Keywords: Rock fractures; fluid flow; particle transport; streamline/velocity dispersion; shear 
displacement; Navier-Stokes equation; Reynolds equation; Finite Element Method (FEM); 
particle tracking method.
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1. Introduction 
 
The coupled processes of shear displacement, fluid flow and solute/particle transport 
processes in rock fractures are increasingly important research topics mainly due to the 
demands for design, construction, operation and performance/safety assessments of 
underground radioactive waste repositories and other civil and environmental engineering 
works such as underground storage caverns and oil/gas reservoir engineering. 
Fluid flow and solute/particle transport in rock fractures have been extensively studied 
experimentally, theoretically and numerically in the past [1-19] and comprehensive review 
works was reported in [20, 21]. However, the effects of shear on the fluid flow and transport 
phenomena in the fractures were not considered in these early works. Many laboratory studies 
on the effect of both normal stress and shear displacements on fluid flow through rock 
fractures, so-called coupled shear-flow tests, have been performed due to its importance to 
understand and quantify the coupled stress-flow processes in fractured rocks recently [22-28]. 
However, no coupled shear-flow-tracer tests have been performed under combined normal 
stress and shear displacements, even though the effect of the mechanical processes on the 
transport phenomena has been investigated by considering normal stresses without shear 
[29-31], shear displacement without normal stress [32] or with both shear displacement and 
normal stress [33], respectively. These recent studies represent a significant step forward in 
deepening our qualitative understanding of the hydro-mechanical and transport behaviour of 
rough rock fractures. 
In the above theoretical and experimental works, the validity of the cubic law is generally 
assumed, and further a mean value of the velocity of the ideal parabolic velocity profile across 
the fracture aperture, which is equal to 2/3 of maximum velocity of the parabolic profile 
according to the Reynolds equation, was generally used for the flow calculations. The 
Navier-Stokes (NS) equation is rarely applied in fluid flow analysis in fractures due to the 
numerical difficulties for its solution with complicated geometry of rock fractures, especially 
in 3D. When particle transport is concerned, the representation of the complete velocity 
profiles across the aperture, ideally parabolic or not, are required. This is due to the fact that 
the different flow velocities across the aperture cause different particle travel paths and times, 
which is well known as streamline/velocity dispersion [6, 10, 13, 19], and therefore affect the 
final evaluation of the particle transport behaviour and properties, such as break-through 
curves and Péclet number. 
Transport simulations are usually carried out using mean flow velocity calculated by flow 
simulation. Transport properties have been evaluated for single rock fractures as reported in 
[3-4, 11, 15, 30-32]. The validity of Reynolds equation and local cubic law are usually 
applied and the common understanding is that their applicability can be guaranteed only when 
the Reynolds number is very small (where viscous forces dominate the inertial forces) and 
aperture does not change abruptly [5, 9]. In reality, these requirements may not be met with 
rough rock fractures. The deviation of the flow velocity fields from ideal parabolic profiles 
across the fracture aperture, which could happen when fractures are not planar and smooth as 
required by Reynolds equation, could have a significant impact on the particle transport 
properties in rock fractures. The mechanical shear also plays important roles to change the 
geometry of fracture aperture and, therefore, give an additional increment on the geometric 
complexity of fracture apertures, resulting in additional complexities in the flow and transport 
properties of rock fractures. These issues can only be examined when direct solution of NS 
equations with detailed representation of roughness of fracture surfaces, with or without 
shear, is obtained. Needless to say, due to the geometric complexity, numerical solution 
techniques must be applied. 
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The objective of this paper is to examine the differences in simulating fluid flow behavior of 
rock fractures when more theoretically complete and sound NS equation and much simplified 
Reynolds equation were used, and their impacts on the studies of fracture geometry and its 
change during mechanical shear on the flow velocity fields/profiles and particle transport 
phenomena, especially streamline/velocity dispersion. The simulations have to be conducted 
numerically using 2-D cross-section geometry models of rock fractures, through the 
numerical solutions of the fluid flow by FEM. The comparison of the two sets of results then 
can be used to evaluate the degree of validity of the Reynolds equation for practical problems 
quantitatively. We assumed a steady state fluid flow through a vertical cross section of a 
rough fracture, due to the reason that full 3D representation of the rough fractures can only be 
accommodated by main-frame super computers and transport properties can be calculated for 
steady state flows in a straightforward fashion for more efficient comparison. 
 
 
2. Methodology 
 
2.1 Model setup 
 
A natural rock fracture surface, labeled as J1, was taken from the construction site of Omaru 
power plant in Miyazaki prefecture in Japan and used as the parent surface for creating 
fracture replicas for a series of coupled shear-flow tests under different normal constraint 
conditions and this study. The rock type is granite and the size of the specimen is 100 mm in 
width and 200 mm in length. The fracture surface J1 is very flat (JRC = 0-2) with very few 
major asperities on its surface. A three-dimensional laser scanning profilometer system with 
an accuracy of ±20 μm and a resolution of 10 μm was employed to obtain the topographical 
data of fracture surface, with an interval of 0.2 mm in both x and y-axes [28]. The results of 
coupled flow shear tests, assuming local validity of the cubic law and using mean flow 
velocity across the fracture aperture (the 2/3 of the maximum velocity of the ideal parabolic 
profile according to the Reynolds equation) with shear induced fluid velocity channeling and 
enhanced flow rate in the direction perpendicular to the shear direction are reported in the 
previous works [28, 33]. 
For generation of 2D geometric models of the rough fracture, one vertical cross section of the 
fracture sample J1 was selected in the middle of the sample as the lower profile of a fracture 
model, as shown in Fig. 1. Figure 2 shows how to create the 2D fracture models using this 
lower profile. The upper profile of the fracture model was created by a rigid-lifting of the 
lower profile for a vertical separation of 1.0 mm along the whole fracture length. To simulate 
shear, the lower profile is fixed and the upper one is translated in the –x-direction up to 2.0 
mm, with a 1.0 mm shear displacement interval, and without any dilation, as shown in Fig.2a. 
At each shear displacement interval, aperture values along the fracture length was calculated 
in the direction perpendicular to the mean plane of the fracture model at 1000 measuring 
points. Along the fracture length, a (arithmetic) mean value of aperture over each 5 measuring 
points are calculated, thus the space between two rough profiles was modeled as an 
assemblage of 200 thin columns with an edge length of 1.0 mm (Fig.2b), distributed step-wise 
along the length of the fracture. The whole area of the fracture was divided into about 70,000 
FEM elements for solving flow and transport problems. 
 
 
2.2 Governing equations 
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The general description of fluid flow in a single fracture is given by the Navier-Stokes (NS) 
equations. In a steady state, the NS equations is expressed in a vector form as, 

 ( ) p∇−∇=∇ uuu 2μρ , (1) 

where ρ is the fluid density, μ is the fluid (dynamic) viscosity, u is flow velocity vector 
(u=(ux, uy, uz)), and p is the hydrodynamic pressure. Equation (1) is composed of a set of 
coupled nonlinear partial derivatives of varying orders. It is difficult and impractical to solve 
the Eq. (1) in closed-forms with very complicated geometry and under general boundary 
conditions, such as for flow through rough rock fractures. Therefore further simplifications 
are usually adopted for obtaining numerical solutions. The first level of simplification is to 
assume that inertial forces in the fluid are negligibly small compared with the viscous and 
pressure forces. Eq. (1) is then reduced to  

 , (2) p∇−∇= u20 μ

This equation is called the Stokes or ‘creeping flow’ equation. The Stokes equation has been 
solved numerically for rough fracture profiles and the validity of the simplification was 
examined in [7-8, 17]. However the use of Stokes equation for solving fluid flow problem in 
rock fractures is not common due mainly to its mathematical complexity. 
For the second level of simplification, some geometric and kinematic assumptions are 
necessary and the most common way is assuming the viscous flow under uniform pressure 
gradient between two smooth parallel plates. In this case, only one component of the flow 
velocity is nonzero and equations are much simplified, leading to the well-known Poiseuille 
flow with a parabolic velocity profile across the fracture aperture, b, defined by two parallel 
plates without roughness, with the fracture walls located at z=±b/2. The flow velocity fields 
are expressed as  
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The total volumetric flow rate per unit width perpendicular to the direction of flow is then 
given by 

 pgbQx ∇−=
μ

ρ
12

3

, (4) 

where b is the aperture of the idealized parallel smooth fracture. The term 123gbT ρ=  is 
commonly called as the fracture transmissivity. Since transmissivity is proportional to the 
third power of the aperture, this relation is also called as the ‘cubic law’. In this case, the NS 
equation is reduced to the much simplified two-dimensional Reynolds equation by averaging 
in the aperture direction under the following kinematic and geometric constrains: the 
Reynolds number is very small (where viscous forces dominate the inertial forces) and 
aperture does not change abruptly [5, 9]. The Reynolds equation is expressed as 

 0
12

3

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∇⋅∇ pgb

μ
ρ , (5) 

Aperture-averaged models have been widely used for both fluid flow and solute transport 
simulations in rock fractures [5, 9]. The applicability of the aperture-averaged models/cubic 
law has also been discussed theoretically and numerically in [1-2, 5, 7-9, 17-18]. 
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In this study, since a two-dimensional vertical cross section of a rough fracture was selected 
the aperture is no longer constant but varies along the fracture length. The unknown 
parameters in Eq. (1) include two components of flow velocity (in x- and z-directions, ux and 
uz,) and hydrodynamic pressure, p. Since Eq. (1) includes two equations for 2-D problems, 
one more equation is needed to solve for the three unknown parameters, ux, uz and p. The third 
equation is the continuity equation for incompressible Newtonian fluid and expressed as 
follows. 

 0=∇u  (6) 

To solve NS equations (Eq. (1)) together with continuity equation (Eq. (6)) for 2D problems, 
we used the commercial FEM software COMSOL Multiphysics [34]. The density and 
viscosity of water at 10°C were taken as 33109997.0 mkg×=ρ  and , 
and the gravitational acceleration is taken as g =

sPa ⋅×= −310307.1μ
2807.9 sm . We also solved Reynolds 

equation (Eq. (5)) for the same flow problem assuming ideal parabolic velocity profile of ux, 
from column to column, so that differences between the results using two equations can be 
compared. Solving the Reynolds equation is then further simplified into a 1-D problem. Flow 
simulation results such as flow rates and flow velocity profiles across aperture are compared 
between results using the NS and Reynolds equations under different hydraulic pressures (as 
explained in the next section) and different shear displacements. 
 
 
2.3 Boundary conditions 
 
The boundary conditions consist of: 1) no flow at the upper and lower fracture walls (profiles) 
representing impermeable rough rock surfaces; and 2) fixed hydraulic pressures at the inlet 
and outlet boundaries as shown in Fig. 3, with zero pressure at the outlet and pressure p=1 Pa, 
10 Pa, 100 Pa and 1000 Pa, respectively, at the inlet (x=0). The hydraulic pressure 1 kPa is 
nearly equal to the 10 cm hydraulic head which was applied in the laboratory coupled 
shear-flow tests for single rock fractures in the previous works by the authors [28, 33]. It 
should be noted that since sample size becomes slightly shorter during the shear, pressure 
gradient through the fracture is not kept constant but becomes slightly larger. 
 
 
2.4 Particle transport simulation – particle tracking method 
 
In this study, a Lagrangian approach using a particle tracking method was selected for particle 
transport simulations, considering only advection process. The random dispersion due to 
diffusion of the solute particles within the fluid in fractures and other retardation mechanisms 
such as diffusion, sorption or decay, were not taken into account. As the steady-state fluid 
flow was assumed, particle tracking along the streamlines was used. After solving the 
Navier-Stokes and Reynolds equations, flow velocity was calculated element by element and 
particles travel following the streamlines. It should be noted that particles are assumed to be 
massless in this study. 
For the particle injection at the inlet boundary, the number of particle injected at the elements 
along the inlet boundary is proportional to the element’s flow rates as defined by the velocity 
profile at the inlet [32], which was solved by using the pressure boundary condition while 
solving the NS equation. This means that more particles will be attracted to central or near 
central part of the fracture with higher flow velocities. Figure 4 shows the velocity profiles at 
the inlet boundary (without shear and hydraulic pressure is 1 kPa) and the number of the 
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particle injected is proportional to the flow rates for each section, which was calculated by 
multiplying flow velocity and section width. The location of particles injection is arranged 
regularly at an interval of 0.005 mm along the inlet boundary. This means that there are 199 
injection points initially (1.0 mm fracture aperture before shear displacement applied). 
From the particle tracking simulations, travel time for each particle was obtained and can be 
evaluated for breakthrough curves, represented as the percentages of the particles collected at 
the outlet as functions of time. The Péclet number can be defined in terms of the variance and 
mean travel time using the following equation [35] 

 
2

2 ⎟
⎠
⎞

⎜
⎝
⎛=

t

tPe
σ

, (7) 

where  and 2
tσ t  are the variance and mean travel time, respectively. Pe is therefore a 

function of travel time t. 
 
 
3. Results 
 
3.1 Flow simulation results 
 
Figure 5 shows the evolution of flow velocity fields (absolute value of the flow velocity 
vector, |u|) and flow velocity profiles along three sections x=0.025-0.030 m (I), 0.095-0.10 m 
(II) and 0.155-0.160 m (III), for three different shear displacements of 0, 1 and 2 mm, and 
under two hydraulic pressures of 10 Pa (Fig. 5a, b, and c) and 1 kPa (5d, e, and f), 
respectively. In Zone I and III, the variation of the fracture geometry is large, defined by the 
waviness of the upper and lower profiles. Flow goes up first and down afterwards in Zone I 
but vice versa in Zone III, as shown by figures with cross-sectional velocity profiles. On the 
other hand, the variation of fracture geometry is small (smooth) in Zone II. The high-velocity 
paths are located close to the central part of the fracture. It can be seen that the velocity 
profiles are almost ideal parabolic when fluid flows through relatively smooth sections of 
fractures (e.g. Section II), but much distorted when with sudden change in aperture geometry 
occurs, as highlighted in zones I and III in Fig. 5.  
In order to compare more closely and clearly about the local behaviour of flow velocity 
profiles, the evolution of the flow velocity profiles (representing changes in both x and 
z-components of the flow velocity vectors, ux, and uz) during shear, and for different hydraulic 
pressures of 1 Pa, 10 Pa and 1 kPa are plotted at the several cross sections selected from each 
zone: x=0.025125, 0.026125 and 0.026875 m from Zone I, x=0.097125 m from Zone II and 
x=0.15725 and 0.158125 m from Zone III. The ideal velocity profiles as defined by the 
Reynolds equation (Eq. (5)) were also plotted as dotted curves without symbols, and are 
compared with the distorted ones predicted by simulations using the Navier-Stokes equations 
(the solid curves with symbols) in Fig. 6. The pattern of the fracture geometry change at each 
cross section during shear was also shown at the top of this figure, as enlarging, reducing 
(converging) or smoother transition. More clearly, with the results of NS solutions, the 
distortion of the flow velocities are shown in directions, shapes and magnitudes, compared 
with the ideal symmetric parabolic profiles using the parallel plate models (parabolic profiles 
of ux and zero uz, see also Eq. (3)) with the Reynolds equation results. 
The vertical z-components of the flow velocity vectors, uz are not zero generally (as will be 
the case with the use of the Reynolds equation) at selected cross sections and have positive or 
negative values depending on the flow going up (plus) or down (minus) vertically. The most 
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dramatic profile changes of uz occur when the fracture space becomes narrower or wider 
suddenly (sudden decreases of increases of apertures). The uz values change from positive to 
negative along the z-direction when the fracture space becomes narrower suddenly and the 
flow field converges (see Fig. 6b and c). On the other hand, when the fracture space becomes 
wider suddenly, the uz values change from negative to positive along the z-direction and the 
flow field diverges (see Fig. 6f). At x=0.097125 m in Zone II (Fig. 6d), the velocity profiles 
are close to ideal situation for all shear displacement stages with very small vertical velocity 
components. This is due to the fact that the fracture geometry is relatively smoother and does 
not change much during the shear. Even thought, small negative non-zero uz values are 
generated consistently since the continuous downward trend of the fracture in Section II (cf. 
Fig. 5). 
Several velocity profiles for the horizontal ux predicted by NS have flatter peaks (see Fig.6b, c 
and f), which indicates the formation of an inertial core between the walls. Negative values of 
the horizontal ux also occur in some sections (see Fig. 6b, c, e and f). This negative ux area 
appears when large rising up or lowering down of the fracture walls occur. This means that 
fluid flows backwards and rotates near the corners cause by such changes on the fracture 
walls, and the streamlines of that part become closed numerically. This rotational flow area 
appears more frequently when higher hydraulic pressure is applied with faster flow velocities. 
More discussion is given about this effect in the discussion section.  
Figure 7 shows the trajectories of maximum absolute flow velocity under different hydraulic 
pressures of 1, 10, 100 Pa and 1 kPa for different shear displacements of 0 and 2 mm, 
respectively. With the results using the Reynolds equation, the location of the maximum 
absolute flow velocity is always the central line (the dotted line) of the fracture space and the 
maximum velocity lines under different hydraulic pressure (the solid lines in color) using NS 
equation deviate from it, but the two sets of results are very close to each other. Certain 
deviation from the ideal situation occurs when fracture geometry changes suddenly as 
highlighted in Fig. 7 at a few local places but the overall agreement maintains in general. This 
may indicate that for the total flow rate the two sets of equations may yield matched results. 
The trajectory for low hydraulic pressure (therefore low velocity) follows the central line of 
the fracture and is more sensitive to the variation of the rough surface geometry. On the other 
hand, trajectory for higher hydraulic pressures does not follow the change of the fracture 
geometry exactly with sometimes shortcuts, as a results it becomes straighter and less 
tortuous. In this study, very large deviation of the trajectories of maximum absolute flow 
velocity from the center line, as reported in [12] for the high velocity flow (Re=52), was not 
observed even though our calculated maximum Reynolds number is about 200. The reason 
may be differences in the roughness of the walls. 
Figure 8a, b and c shows the total flow rates calculated by the two sets of the flow equations 
and ratios between them, Q_NS/Q_ideal, where Q_NS is the total flow rate by using the NS 
equations and Q_ideal is the total flow rate by using the Reynolds equation with ideal 
symmetric parabolic profile of ux, as functions of hydraulic pressure and Reynolds number for 
different shear displacements of 0, 1 and 2 mm, respectively. From Fig. 8a, there is no 
significant difference between the total flow rates calculated by using NS and Reynolds 
equations for all shear displacement cases and the relation between hydraulic pressures and 
flow rates varies linearly with hydraulic pressure, even though the total flow rate by the NS 
equation is always slightly smaller that that by the Reynolds equation. From Fig. 8b, the ratio 
Q_NS/Q_ideal is always smaller than 1.0 and becomes smaller with higher hydraulic pressures. 
The Q_NS/Q_ideal ratio is about 0.95 when applied hydraulic pressure is 1 Pa and decreases to 
0.9 when applied pressure is 1 kPa. The comparison means that evaluated total flow rate by 
Reynolds equation (with assumed ideal parabolic flow velocity profiles or with averaged flow 
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velocity field in the aperture direction) is overestimated, from 5 to 10 % in this case. Figure 8 
also shows that the effect of shear displacements of 1 mm and 2mm on the Q_NS/Q_ideal ratio 
is not significant for the lower hydraulic pressure (up to 100 Pa) but it becomes more 
significant when hydraulic pressure is 1 kPa. The Q_NS/Q_ideal value for larger shear 
displacement is smaller when high hydraulic pressure (1 kPa) was applied. This is due to the 
fact that fracture aperture geometry becomes more complicated after applying shear 
displacements and as a result, flow velocity fields were more distorted when higher hydraulic 
pressure was applied (see also flow velocity profiles shown in Figs. 5 and 6).  
Figure 8c shows similar plots to Fig. 8b, but with ratio Q_NS/Q_ideal plotted as a function of 
calculated Reynolds numbers for each shear displacement. In this study, the Reynolds number 
for flow through single rock fractures is defined as  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

μ
ρ

μ
ρ bU
W
QRe , (8) 

where Q is the bulk flow rate through the fracture, W is the fracture sample width (equal to 1 
for the 2D problem), b  is mean fracture aperture, the product ( Wb ⋅ ) represents the average 
cross-sectional area and U is characteristic fluid velocity (such as the mean flow velocity 
using aperture–average). The calculated Reynolds numbers for each shear displacement from 
Eq. (8) are listed in Table 1. From Fig. 8c, the overestimation of the total flow by the 
Reynolds equation becomes larger when Reynolds number becomes larger, from 5 to 10 %. 
This overestimation is significant when Reynolds number will be more than 200 and larger 
shear displacement was applied, indicating the need for more careful evaluation of the flow 
behaviour and applicability of the Reynolds equation and cubic law under situations with 
higher Reynolds number and larger shear displacements. 
     
 
3.2 Particle transport simulation results 
 
In the previous section, flow velocity fields predicted by Navier-Stokes and Reynolds 
equations were compared and the flow velocity profiles using the NS equation do not agree 
generally with the ideal parabolic profiles between the parallel plates defined by the Reynolds 
equation. This deviation of the flow velocity behavior may affect the particle transport 
through the fractures since the particles may enter the fracture at different elevations in the 
aperture direction, following different velocity trajectories with different numbers (or solute 
concentrations). 
In this section, the effects of the flow velocity behaviour across the aperture on the particle 
transport properties were investigated. Figure 9 shows the particle movement paths in the 
fracture under hydraulic pressure of 10Pa, 100Pa and 1kPa for different shear displacements 
of 0, 1 and 2 mm, with the velocity variations predicted by using the NS equation. We 
assumed that particles follow the streamlines at the inlet without jumping on or off their initial 
streamlines during travel for simplicity since the actions of gravity, diffusion, 
electric-magnetic and chemical forces on the particles are not considered for this generic 
study. 
The breakthrough curves calculated using flow velocity fields predicted by Navier-Stokes and 
Reynolds equations were shown in Fig. 10. It should be noted that two different levels of 
averaging were adopted in the aperture direction (z-direction) for the simulation using 
Reynolds equation as introduced in Section 1: 1) using the ideal parabolic profile of ux (with 
zero uz), and 2) using a mean flow velocity of ux equal to 2/3 of the maximum flow velocity 
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predicted by the Reynolds equation, which was assigned to all elements along the aperture 
direction for each column, with uz=0. When the mean flow velocity option was adopted, 
particle travel time is identical for all particles across the fracture and all particles reach the 
outlet at the same time, which means that the shape of the breakthrough curves is a sharp 
stepwise function of time. When the velocity ux following ideal parabolic profiles of ux is used 
with Reynolds equation for flow simulations, the breakthrough curves are smooth curves with 
long tails due to the slow motions of particles near the wall. When the velocity fields 
predicted by NS equations were used, the breakthrough curves could not reach the 100 % 
level since some particles were trapped in the fracture and did not reach the outlet boundary, 
with two mechanisms: 1) some particles introduced too close to the walls with almost zero 
velocity so that they stay in the fracture; 2) some particles introduced near the fracture wall 
with small velocity but were trapped into rotational flow areas where fracture aperture 
changes suddenly (indicated by the negative values of the horizontal component of the flow 
velocity, ux (see Figs. 5 and 6). More detailed discussions about particle trapping zones are 
discussed in the next discussion section. The breakthrough curves using the NS flow solution 
is therefore truncated compared with that with Reynolds equation for flow simulations. 
The breakthrough curves calculated from velocity fields predicted by NS equations are always 
flatter than those calculated from the Reynolds equation, besides being truncated due to the 
loss of the trapped particles. They become flatter when higher hydraulic pressure was applied 
and flow velocity becomes faster. Since flatter breakthrough curves have larger dispersivity 
values, dispersion (streamline/velocity dispersion) becomes more significant when NS 
equation is used for the flow calculations. This is caused by the fact that disturbance to the 
flow velocity fields by the surface roughness of the fracture walls are more adequately 
represented in the NS equation and was ignored in the Reynolds equation. This effect will be 
more significant with increasing flow velocities (such as by increased hydraulic gradients). 
Table 2 shows the calculated mean and standard deviations of the particle travel time as 
functions of hydraulic pressure, using results by both NS and Reynolds (using the idealistic 
parabolic profile) equations at the identical percentage of particle collection at the outlet 
(since the truncated breakthrough curves using NS solutions). The mean travel time and 
standard deviation data are need to calculate the Péclet numbers characterizing the dispersion 
of the transport (cf. Eq. (7)), which is plotted in Fig. 11, corresponding to shear displacement 
of 0 mm, 1 mm and 2 mm, respectively. Since the NS solution generated trapping particles, it 
cannot be compared directly with the Reynolds equation results with 100% particle recovery. 
Therefore the Péclet numbers for both NS equation and Reynolds (with ideal parabolic 
profile) results were calculated at the same particle recovery percentage (cf. Fig. 10) defined 
by the NS solution, as shown in Fig. 11a for the Péclet number generated with NS solution 
and Fig. 11b for the Reynolds solution (with ideal parabolic profile of velocity). The Péclet 
numbers, Pe in Fig. 11, shows the similar evolution trend against applied hydraulic pressures, 
i.e. the Pe decreases with increasing applied hydraulic pressure, indicating increased 
dispersion. The effect of the shear displacements is not clear due to the fact that the shear 
displacement is small and dilation effects cannot be considered in 2D problems. It is 
important to note that the calculated Pe from the NS solution is always smaller than that using 
the Reynolds solution (with ideal parabolic velocity profiles). Since Péclet number, Pe and 
dispersivity, α has an inverse relation by definition ( αLPe = , where L is fracture length), 
the dispersivity is larger and streamline/velocity dispersion is more significant for the case 
using flow velocity fields predicted by NS equation. The effect of the streamline/velocity 
dispersion becomes more significant when the flow velocity becomes faster (smaller Pe for 
higher flow velocity). 
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4. Discussion and concluding remarks 
 
In this paper, the effect of fracture roughness and its change by shear on the flow velocity 
fields and particle transport behavior and properties (breakthrough curves and Péclet number) 
were investigated using 2-D cross-section models of rough rock fractures. The fluid flow was 
simulated by solving both the Navier-Stokes equations and its simplified form represented by 
the Reynolds equation, and particle transport was simulated by the streamline tracking 
method with flow velocity fields predicted by the solutions of the two sets of equations. The 
results obtained are the flow velocity profiles along the fracture length, total flow rates, 
particle travel time, breakthrough curves and the Péclet number, respectively. The flow 
simulation results show that the flow velocity fields predicted by NS equation were quite 
different from the ideal parabolic velocity fields defined by the local cubic law and Reynolds 
equation. This deviation gives a significant impact on the particle transport behavior and their 
properties. This deviation becomes larger especially when flow velocity becomes faster (or 
with higher pressure gradients). The mechanical shear plays important roles to change the 
fracture geometry, which, in turn, affects the flow and transport behaviour and properties of 
rock fractures. Besides the above general conclusions, a few specific scientific conclusions 
are drawn below. 
Currently, simplified models with different levels of geometric and physical representations 
using locally valid cubic law has been widely applied for the fluid flow simulations, and 
calculated mean flow velocity is often be used for transport simulations [3-4, 15, 30-33]. As 
shown by the results presented above, these simulations may be acceptable for total flow rate 
calculations with flow velocity fields averaged in the aperture direction, under appropriate 
hydraulic pressures and Reynolds numbers, but may not be suitable to simulate fluid flow 
behaviours without checking the suitable ranges of the Reynolds numbers and hydraulic 
gradients. A 5 to 10% overestimation of the total flow rate using the Reynolds equation may 
be acceptable for some applications as a conservative solution (such as safety assessment for 
nuclear waste repositories), but may be the opposite for others (such as geothermal energy 
extractions). 
It is especially important for laboratory experiments for coupled shear-flow processes to 
examine the test conditions in terms of hydraulic gradients and Reynolds numbers to ensure 
that the back calculated hydraulic apertures are reliable, preferably using the NS equation for 
the flow simulations, since the effects of the shear and hydraulic gradients affect the Reynolds 
number significantly. 
For particle transport simulations, the results from this study suggest that NS equation should 
be used for flow velocity simulations if the interactions between fracture surface and particles 
are needed, since adequate representation of the surface roughness is required in such cases. 
Such a study may not be practical for large scale applications, but detailed studies with 
representative fracture surface roughness features at representative fracture sizes can be 
investigated, based on experimental data, as the basis for extrapolation into the simplified 
large scale simulations. It may be especially needed for safety assessment of nuclear waste 
repositories where transport processes with more sophisticated particle retardation 
mechanisms requiring considerations for interactions between fracture surface, fluid and 
particles, electric-magnetic forces, and chemical reactions during the water-rock interactions. 
In addition to the above conclusions, a few outstanding issues involved in this paper are 
discussed in details below. 
 
a) Simplification from 3-D to 2-D problems 
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Although real flow and transport fields are much more complicated phenomena in 3-D and 
simulation model should be created in 3-D in theory at least, the 2-D vertical cross-section 
was selected as an analytical domain in this paper because the main purpose of this generic 
study is to investigate the effect of geometry roughness, and its change caused by mechanical 
shear, on the flow velocity and particle dispersion behaviors with the detailed representation 
of the velocity fields across the aperture direction inside a fracture, which has not been 
investigated in such details for rock fractures yet. The purpose of this approach is to examine 
how much difference in results is generated when simplified Reynolds equation is used 
instead of using the more complicated NS equations since solution of the later requires much 
more computational efforts. The drawback of using the simplified 2D vertical cross section 
model of rough rock fractures is that it cannot simulate large shear displacements and dilation 
due to the fact that larger shear displacement will cause contacts between the lower and upper 
surfaces of the fracture at some contacted asperities so that fluid flow is virtually blocked. 
This is the reason why two rough walls were separated by a 1.0 mm vertical gap initially to 
avoid any contact points during shear up to 2.0 mm. We also did not use any direct shear test 
data and do not consider any shear dilation since shear dilation at contact points were not 
present for open 2D fracture models as we considered here. This contact/dilation behavior can 
only be considered properly in 3D models with realistic rough surface representations since 
fluid flow bypassing contact areas can be simulated directly, as reported in [33]. However, 
numerical solution of NS equation for such 3D representations requires tremendous increase 
of computing power and resources that are not available to the authors at present. In any case, 
the 2D studies as presented in this paper can serve as generic example to detect quantitatively 
the theoretical differences in using NS and Reynolds equations.  
It needs to be noted that when fluid velocity field is predicted by using the Reynolds equation 
[3-4, 15, 30-33], the streamline/velocity dispersion behavior as we studied in this paper 
cannot be investigated since the flow velocity fields are averaged in the aperture direction. 
 
b) Validity of Reynolds equation and/or local cubic law 
The validity of Reynolds equation and/or local validity of the cubic law have been 
investigated extensively [1-2, 5, 7-9, 17-18]. From a theoretical study to investigate the 
validity of the cubic law though fractures with rough surfaces [1], it is concluded that a 
single-valued aperture cannot sufficiently characterize flow rates in rough fractures. Other 
physical and theoretical considerations such as the frequency distributions of apertures need 
to be incorporated into the cubic law. Some numerical experiments for solving Reynolds 
equation with a randomly generated fractal aperture distribution shows that surface roughness 
of natural rock fractures can cause a deviation from the cubic law prediction ranging from 
10% to 50% [2]. The Reynolds equation was also employed to establish the analytical 
expressions of permeability dependency on the fracture roughness and mean aperture for 
sinusoidal fracture surfaces [5]. The results showed that the fracture surfaces should be 
smooth over the length of the order of one standard deviation of the fracture aperture in order 
for the Reynolds equation to be valid, and the associated errors will be considerable if the 
fracture surfaces become very rough [5]. The comparison of the predicted flow in idealized 
sinusoidal roughness fractures from using Reynolds equation with that from using the 
lattice-gas automaton method showed that the Reynolds equation overestimates the flow 
velocity when the surfaces are placed very closely together or the amplitude of the roughness 
increases relative to its wave length [7]. Stokes equation has been solved using the finite 
element technique and the results were compared with results from Reynolds equation [8, 17], 
with the conclusion that a simulation based on the Reynolds equation yields results with a 
reasonable validity. The difference in the evaluated mean hydraulic apertures obtained from 
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Stokes and Reynolds equations was about 2% [8]. The inertial effects will not be significant 
for flow at Reynolds number, Re, smaller than 1, where aperture is taken as the representative 
length scale for calculation of Re [9, 17]. 
In this study, the flow rates predicted by the Reynolds equation is always higher from 5 to 10 
% than those predicted by the Navier-Stokes equation for the Reynolds number ranging from 
0.2 to 200, which is similar to the results reported in [2, 7, 17]. 
 
c) The applicability of the particle tracking method 
The streamline particle tracking is applicable when advective transport is dominant over 
diffusion. The particle movement in aperture direction caused by diffusion,  can be 
calculated from the following equation 

xΔ

 tDx w ⋅≈Δ  (9) 
where Dw is diffusivity in water (=10-9 m2/s) and t is time. 
In the present study, from Table 2, the mean particle travel time for advective transport is 
about 500~600 sec, 50~60 sec, 5~6 sec and 0.5~0.6 sec when the hydraulic pressures of 1 Pa, 
10 Pa, 100 Pa and 1 kPa were applied, respectively. From Eq. (9), the distances of particle 
movement caused by diffusion are 0.71~0.77 mm, 0.22~0.24 mm, 0.071~0.077 mm and 
0.022~0.024 mm. Comparing initial fracture aperture of 1 mm, the particle movement caused 
by diffusion will be more significant when flow velocity is lower. 
 
d) Particle injection methods – the flow rate-weighted particle injection method  
In this paper, the flow rate-weighted particle injection method was used. This injection 
method is more realistic because higher flow rate attracts more particles along the inlet 
boundary. However, evenly distributed particle numbers along the inlet were also used in 
some literature without evaluating its effect on the evaluated transport properties, such as 
breakthrough curves, dispersivity and Péclet number [10, 14, 19]. This issue is extensively 
investigated in [32]. 
 
e) Particle trapping 
In this paper, the flow velocity fields predicted by using Navier-Stokes show negative values 
for the x-component of flow velocity vectors as shown in Figs. 5 and 6. This indicates that 
rotational flow was induced at some sharp corners of fracture where sudden change of 
fracture aperture geometry occurs. This is the so-called particle trapping zone in this paper, as 
shown in Fig. 12. In theory, if particles travel by strictly following the streamlines, they will 
not go into these trapping zones with closed streamlines that will not occur in reality. 
However, if particles jump between streamlines due to other physical and/or chemical 
processes such as molecular diffusion, such trapping might occur to reduce the particle travel 
speed and generate long tails in the breakthrough curves. A similar particle trapping 
phenomena was observed from the fluid flow and colloid transport simulations by coupled 
lattice-Bolztman discrete element method (LBDEM) [19]. In our results, closed streamlines 
were formed at some sharp corners on the fracture walls that generated these trapping zones, 
as shown in Fig.12, and this is more likely a numerical artifact due to sudden change of 
aperture geometry. This numerical artifact can be eliminated or reduced when more smooth 
representation of rough surfaces with much refined meshes is used.  
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Table 1. Calculated Reynolds numbers for different hydraulic pressures and shear 
displacement. 
 

Shear displacement Hydraulic 
pressure 0 mm 1 mm 2 mm 

1 Pa 0.22930 0.22246 0.20538 
10 Pa 2.2926 2.2237 2.0534 
100 Pa 22.809 22.129 20.456 
1 kPa 225.22 213.69 194.63 

 
 
 
 
Table 2a. Mean and standard deviation of particle travel time (sec) predicted by flow 
velocities predicted by NS equation 
 

Shear displacement 
0 mm 1 mm 2 mm Hydraulic 

pressure Mean Std dev Mean Std dev Mean Std dev 
1 Pa 524.0102 109.876 535.1932 107.7334 582.8264 135.9745 
10 Pa 52.93717 10.92506 54.06299 10.67529 57.38174 11.58965 
100 Pa 5.456499 1.392188 5.359738 1.166904 5.968656 1.406722 
1 kPa 0.609727 0.196847 0.604778 0.183989 0.652674 0.209901 

 
 
 
Table 2b. Mean and standard deviation of particle travel time (sec) predicted by flow 
velocities predicted by Reynolds equation. Note that the same number of particles 
(percentage) collected for the NS case at the end was used for this case. 
 

Shear displacement 
0 mm 1 mm 2 mm Hydraulic 

pressure Mean Std dev Mean Std dev Mean Std dev 
1 Pa 468.7410 54.47328 484.0694 58.30925 519.6576 61.69441 
10 Pa 46.76576 5.315797 47.16709 4.338792 52.67371 7.073263 
100 Pa 4.829648 0.729773 4.889933 0.645898 5.183023 0.599848 
1 kPa 0.507525 0.10953 0.499345 0.078435 0.543325 0.093409 
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Fig. 1. a) 3-D topography of fracture surface specimen J1 (with a mesh size of 2 mm) and b) 
selected rough surface profile location at y=50 mm, with much magnified vertical scale. 
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Fig. 2. Model geometries of the 2D fracture. a) Parallel shift of the upper surface profile, with 
initial opening of 1.0 mm (b=1.0 mm), for simulating translational shear in the -x-direction, 
and b) Simplified geometry for numerical simulations using 200 thin columns with 1.0 mm 
width. Whole area was discretized with 70,000 triangle FEM elements.
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Fig. 3. Boundary conditions for fluid flow. 
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Fig. 4. Calculated flow velocity profile at the inlet boundary (Using NS equation and 
boundary pressure values) and flow rate weighted particle injection method. It should be 
noted that the actual interval for particle injection points is 0.005 mm. 
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Fig. 5. Evolutions of fluid flow velocity fields and cross-sectional profiles along sections x=25-30 
(I), 95-100 (II) and 155-160 mm (III) under pi=10 Pa for shear displacements of a) 0 mm b) 1 mm 
and c) 2 mm, respectively. The values in the legend indicate the absolute flow velocity (unit: m/sec).
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Fig. 5 (continued). Evolutions of velocity fields and cross-sectional profiles along sections x=25-30 
(I), 95-100 (II) and 155-160 mm (III) under pi=1 kPa for shear displacements of d) 0 mm e) 1 mm 
and f) 2 mm, respectively. The values in the legend indicate the absolute flow velocity (unit: m/sec).
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Fig. 6. Evolutions of representative cross-sectional velocity profiles at a) x=0.025125 m and b) 
x=0.026125 m (from section I in the Fig. 5) under different pressures of 1 Pa, 10 Pa and1 kPa 
during shear displacements of 0 mm, 1 mm and 2 mm, for both horizontal and vertical velocity 
components, ux and uz, respectively.
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Fig. 6 (continued). Evolutions of cross-sectional velocity profiles at c) x=0.026875 m (from section 
I in the Fig. 5) and d) x=0.097125 m (from section II in the Fig. 5) under different pressures of 1 Pa, 
10 Pa and1 kPa during shear displacements of 0 mm, 1mm and 2 mm, for both horizontal and 
vertical velocity components, ux and uz, respectively. 
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Fig. 6 (continued). Evolutions of cross-sectional velocity profiles at e) x=0.026875 m and f) 
x=0.097125 m (from section III in the Fig. 5) under different pressures of 1 Pa, 10 Pa and1 kPa 
during shear displacements of 0 mm, 1mm and 2 mm, for both horizontal and vertical velocity 
components, ux and uz, respectively.. 
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Fig. 7. Trajectories of the maximum absolute flow velocity under different hydraulic pressures of 1 
Pa, 10 Pa, 100 Pa and 1 kPa for different shear displacements of a) 0 mm and b) 2 mm, using the 
Reynolds equation (the dashed line) and the NS-equation (the solid lines).



 
Fig. 8. Flow simulation results: a) comparison of the flow rates calculated from Navier-Stokes and 
Reynolds equations for different shear displacements, b) calculated ratio of flow rates using NS 
equation (QNS) and Reynolds equation (Qideal), QNS/Qideal, as a function of hydraulic pressure and c) 
calculated ratio of flow rates (QNS/Qideal) as a function of Reynolds number. 
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Fig. 9. Particle motion trajectories with evolutions of velocity fields under hydraulic pressure of 
10Pa, 100Pa and 1kPa with shear displacement of a) 0 mm b) 1mm and c) 2mm, respectively. The 
values in the legend indicate the absolute flow velocity (unit: m/sec). 
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Fig. 10. Breakthrough curves using flow velocities profiles predicted by Navier-Stokes and 
Reynolds equations (with ideal parabolic velocity profiles and the mean flow velocity) for different
shear displacement of a) 0 mm, b) 1 mm and c) 2 mm. It should be noted that mean flow velocity is 
2/3 of the maximum flow velocity for the Reynolds equation case. 
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Fig.11. Calculated Péclet number, Pe by Eq. (7), using a) flow velocities predicted by NS equation 
and b) flow velocities using Reynolds equation with ideal parabolic velocity profiles. Note that the 
same number of particles (percentage) which was collected for the NS case at the end was used for 
both cases.



 
Fig. 12. Illustration for formation of a particle trapping zone generated by sudden change of 
aperture geometry, corresponding to particle movements for pi=1 kPa with fracture opening of 1.0 
mm and 2 mm shear displacement. 
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