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COMMENSURABILITY ENERGY IN A ONE DIMENSIONAL

QUARTER-FILLED ELECTRON-PHONON SYSTEM

Y. Ohfuti and Y. Ono

Department of Physics, University of Tokyo
Hongo 7-3-1, Bunkyo-ku, Tokyo 113

Abstract

The commensurability energy of a one dimensional quarter-filled

electron-phonon system is evaluated by calculating the total energy

as a function of the phase ¢ of the fundamental (2kF ) order para­

meter in the case where ¢ is uniformly changing. The role of the

higher harmonic (4kF ) order parameter is also discussed.

§l. Introduction

Several quasi-one dimensional inorganic materials are known to

have a nearly quarter-filled electron band. l ,2) Some experiments

performed on those materials suggest the existence of non-linear

local excitations, the so-called solitons. 3 ,4) In order to discuss

the properties of the solitons in such systems, it is inevitable to

evaluate the commensurability energy. In this paper we show the

calculation of the commensurability energy in a quasi-one dimension­

al quarter-filled electron-phonon ~ystem. The case of the quarter­

filled band has not yet been investigated carefully enough in com­

parison with the half-filled and one-third-filled cases. 5- lO )

Several authors considered the quarter-filled case9 ) or the l/M­

filled case with a general intege:: M. lO ) They did not pay, however,

any attention to the role of the l:igher harmonic order parameters.

The higher harmonics need not be Explicitly considered for M ~ 3.

For example, in the one-third-filled case, the 4kF order parameter

is nothing but the complex conjugate of the 2kF order parameter,

and 6kF is equal to the reciprocal lattice vector; here kF is the

electron Fermi momentum. The quarter-filled case is the simplest

where the higher harmonic order parameter has a non-trivial meaning~)

In the quarter-filled electron-phonon system, the state of the

system is characterized by three parameters, namely the amplitude

and the phase of the fundamental (2kF ) order parameter (= ~lei¢)

and the higher harmonic (4kF ) order parameter (= ~2) which is a
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real number. The ground state of the system has a four-fold degen­

eracy in general, and the denenerate ground states are specified by

different values of~. The soliton in this system is a local exci­

tation connecting two semi-infinite segments of the chain which are

in different ground states and therefore have different values of

~. The commensurability energy is defined as the energy barrier

height to be overcome by the system when ~ changes from one ground

state value to another. In order to evaluate the commensurability

energy, we calculate the total energy E of the system as a function

of ~ by assuming the order parameters are uniform and by minimizing

E with respect to ~l and ~2 for each fixed~. In this way it is

possible to find a pass in the space of ~, ~l and ~2 with the mini­

mum energy barrier. As will be seen in the following, the effect

of ~2 is not negligible as far as the commensurability energy con­

cerns, though the absolute value of ~2 is much smaller than ~l'

§2. Model and Ground States

As a model of the one dimensional coupled electron-phonon

system, we take the Frohlich Hamiltonian of the following furm,

H = - kL 2t 0 cos k a ck+ c k + ~ k: L g (q) ck++ ck s (b +b + )
, S , S , S V' N _. ,..q,s q , s , q-q

+ L: W b+ b
q q q q (1)

where ck+ s and c k are the creation and annihilation operators for, ,s
an electron with spin s and wave vector k (-TI/a < k ~ TI/a), b~ and

bq the creation and annihilation operators for a phonon with wave

vector q and frequency wq , to the nearest neighbour transfer integ­

ral, a the lattice constant, N the total number of lattice sites,

and g(q) representing the strength of the electron-phonon coupling.

We investigate the quarter-filled case and therefore kF = TI/4a.

As is well known, the system described by the above Hamiltonian

undergoes the Peierls transition due to the 2kp-singularity of the

electron polarization function. Thus the condensation of phonons

with wave vectors Q(= 2kF ) and 2Q is expected; the condensation of

the 2Q-phonon is due to the higher order effect of the electron­

phonon coupling. Note that 3Q is equivalent to -Q and 4Q is equal

to the reciprocal lattice vector. Within the mean-field approxima­

tion, we replace the phonon field operators by the following aver-

ages,
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and

<b > = 0 (q ~ ±Q, 2Q)
q

(2. a)

(2.b)

(2. c)

where gl=g(Q} and g2=g(2Q}, ~lei~ and ~2 represe~ting the fundamen­

tal and higher harmonic dimensionless order parameters respectively.

It is convenient to introduce the electron operators in the

reduced zone (-'TT/4a < k ~ 'TT/4a) as ck(j} = ck+"Q with j = 0,1,2,3.,s J , s
The Hamiltonian H (eq. {I}} where the phonon operators are replaced

by the averages as eqs. <,2. a-c) is not diagonal in the c
k
{j} -repre­
,s

sentation. The diagonalization of H is straightforward and the

result is

H = t "E E(j} a (j}+a(j) + kIt (K ~2+K2~22)
o j#k, s k k , s k, s 2 0 1 1

(3)

2 2
where Kl (= wQtO/gl ) and K2 (= 2w2Qt O/g2 } are the inverse dimension-

less coupling constants, and E~j}, the electronic energy normalized

by to' is determined by the following fourth order equation,

(4 )

The field operators {ak(j}} are related to the original operators
( ") , s

{ck : S } through an appropriate unitary transformation. The lowest

energy of the system for given valUES of ~, ~l and ~2 is obtained

by summing up the electronic energy in the lowest band denoted by

j = O. Thus the total energy is written as follows,

(5)

From the fact that E~O} is the smallest solution of eq. (4), it is

easy ~~lsee that E takes the lowest value when ~ = n'TT/2 and sign(~2)

= (-) (n = 0,1,2,3). The system has four-fold degenerate ground

states, which are specified by ~ = n'TT/2, ~2 = (_)n+l~20 and ~l = ~10

with n = 0,1,2,3. The values of ~10 and ~20 are calculated numeri­

caly in general and depend on" K
l

and K
2

•
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Here we should mention about the inverse dimensionless cou­

pling constants Kl and K2 . usuallyKl can be estimated from the ex­

perimentally measured value of the energy gap in the electronic

energy spectre. As for K2 , however, we have few information, and

therefore we have to determine the ratio K2/Kl by assuming a ~roper

model. Here we take the Debye model for the phonon frequency wq a: q

and assume the dilation type interaction for the electron-phonon

coupling, i.e., g(q) a: q/;w,q. This model yields K2/Kl = 2 and in

the following we use this ratio.

§3. Commensurability Energy

Using eqs. (4) and (5), we can calculate the total energy E($),

which is minimized with respect to ~l and ~2 for each fixed $. In

Fig. 1, the curve 1 shows the minimized total energy as a function

Fig.l; Dependence of the total

energy E on $ for Kl = 2 and

K2 = 4. Meaning of the three

curves is explained in the

text. Note that E(~1'~2,$) =
E(~1'-~2,$+n/2) .

•

of $ for KI = 2 and K2 = 4, which are chosen as typical values and

for which the weak coupling approximation is thought to be valid.

The origin of the energy is taken at the ground state energy, and

therefore the curve 1 is nothing but the commensurability energy

scaled by to. For comparison, two other curves are shown in the

same figure: The curve 2 represents the total energy as a function

of $ which is minimized only with respect to ~2 with ~l fixed at

~lO (the ground state value), and the curve 3 is obtained by putting

~2 = 0 and minimizing with respect to ~l. From Fig. 1, we find

that the change of ~l with $ is not essential in determining the

commensurability energy and that the effect of ~2 is not negligible

quantitatively. The higher harmonic order parameter ~2 lowers the

ground state energy and as a result raises.the.commensurability

energy.
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Fig.2; ~-dependence of ~l and ~2

minimizing the total energy E

(Kl =2 and K2=4). Note that

~1(~+TI/2)=~1(~) and ~2(~+TI/2)=

-~2(~)·

Figure 2 shows the values of

~l (the upper curve) and ~2 (the

lower curve) minimizing the total

energy for each ~ in the case

where Kl = 2 and K2 = 4. The

relative change of ~l is in fact

small and it is reasonable that

the change of ~l did not affect

so much the commensurability

energy. This conclusion is ex­

pected to be valid for the weak

coupling case, where ~l «1. In

the weak coupling case, we can

derive an analytic expression for

the commensurability energy to

some extent.

Assuming ~2 ~ o(~l) and

neglecting terms higher order

than ~i in eq. (4), we obtain

(6)

Substituting this expression into eq. (5) and differentiating E

with respect to ~l' we have the equation determining the ground

state value of ~l' denoted by ~iO) ,
( 7)

where C = (2/TI)£n[cot(TI/8)] ~ 0.24. Within this lowest approxi­

mation, the commensurability energy does not appear. The commen­

surability energy is obtained by treating higher order terms in

eq. (4) perturbationally. Retaining only relevant terms to deter­

mine the commensurability energy, we have the following expression

for the contribution of the higher order terms to the total energy,
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where 1
2

is expressed in terms of the complete elliptic integral of

the first kind, K(z), as follows,

III
I 2 (x) = - ----2 K(---2)

7T l+x l+x
(9)

and a small correction to the last term on the r.h.s. of eg. (8)

arising from the electronic energy is neglected. From eg. (8), oE

is found to be minimized as a function of ~2 at ~2 =

-[I2(~lO» (~lO»2/K2]COS2~. Thus we obtain the following expression

for the commensurability energy scaled by to'

Ecom(~) = (~lO»4[(Kl-C)/8+(I2(t~iO»)2/4K2] (1-cos4~) (10)

where we have used the relation between Il(~lO» and Kl (eq. (7»,

and other $-independent contributions to oE are disregarded. The

second term in the square bracket is due to the appearance of ~2

and gives a contribution of the same order as the first term.

Numerical estimation shows that eq. (10) explains the curves in

Fig. 1 rather well.

§4. Discussions

In the previous section we have calculated the commensurability

in the case of the one-dimensional quarter-filled Frohlich model.

The analytic expression of the commensurability energy derived in

the weak coupling case consists of two parts, one coming from the

contribution of the fundamental (2kF ) order parameter only and the

other due to the appearance of the higher harmonic (4kF ) order

parameter ~2. Even without the contribution of ~2' however, the

expression (10) is different from that given by Lee, Rice and

AnderSon,lO) which can be read in the quarter-filled case as

(11)

The presence of Kl in eq. (10) is due to the logarithmic singularity

of the integral Il(~lO» for ~lO)+o. In the expression E~~($),
this logarithmic singularity seems not to be taken into account

properly. Furthermore, as has been already pointed out in the

introduction, Lee, Rice and Anderson did not take care of the effect

of the higher harmonic order parameter.

Here it would be worth while to discuss about the soliton in
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the present system. The soliton connects two of the four-fold

degenerate ground states; by locally changing the phase ~ of the

fundamental order parameter. Thereby the change of ~2 with ~ is

not negligible as has been discussed in the previous section. In

Fig. 3, the equipotential lines on the ~-~2 plane are depicted

Fig.3; Equipotential lines on

the ~-~2 plane (schematic).

~l is taken to be its ground

state value.

schematically when ~l is fixed at ~iO). The soliton pass on this

plane will be such that starting from one of the energy minimum

point (e.g. A in Fig. 3) and going to the nearest minimum point (B)

through the saddle point (S). The real pass may deviate from this

minimal pass because of the excess energy due to the spacial change

of ~ and ~2. It is, however, possible to give a very rough esti­

mation of the soliton creation energy in the form,

(12)

where 2~ is the soliton width in the unit of the lattice constant

a, Ecom(~/4) the height of the saddle point measured from the mini­

mum point, and a a factor of the i:>rder of unity. If we note that

Esol is the sum of the energies dlle to the commensurability energy

and the spacial derivatives o~ ~ emd ~2' then a is expected to be

larger than 1. If we apply the similar formula as eq. (12) for

the one-third-filled SU-Schrieffer-Heeger model, which was numeri­

cally investigated by Su and Schieffer,7) a should take the value

about 4.

Let us apply the present theory to TaS3 , for which the experi­

mentally obtained value of ~l is equal to 0.25. 12 ) This value of

~l corresponds to Kl = 1.418 and K2 = 2/836 and the ~-dependent

part of the total energy for this case is given in Fig. 4, where

the curves 1 to 3 have the same meaning as in Fig. 1. From the
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curve 1 in Fig. 4, we can estimate the soliton creation energy using

eq. (12). Assuming; ~ 10 and a ~ 4 we have Esol ~ 190K which is

near the experimentally observed value 250K.12) In Fig. 4, the

change of ~l with ¢ seems to give non-negligible contribution to

the commensurability energy. This will be because the values of

coupling constants are out of range of the weak coupling approxima­

tion. The present theory may not be applied directly to the strong

coupling case, but it will be plausible to conclude that the changes

of ~l and ~2 with ¢ become more and more important as the coupling

between electrons and phonons is getting stronger.

2

Fig.4; Dependence of the total

energy E on ¢ when Kl = 1.418

and K2 = 2.836. Three curves

have the same meaning as in

Fig. 1.

11)In a recent paper, we have dis~ussed the similar problem as

investigated in the present paper, for the case of the quarter­

filled Su-Schrieffer-Heeger model where the coupling between elect­

rons and phonons is derived from the dependence of the transfer

integral on the lattice spacing. In that case, the higher harmonic

order parameter ~2 is equal to zero in the ground state but becomes

finite to lower the commensurability energy when the phase ¢ changes

e.g. from 0 to ~/4. On the contrary, ~2 in the present Frohlich

model is finite in the ground state to lower the ground state ener­

gy and changes its sign as ¢ goes e'.g. from 0 to ~/4. The commen­

surability energy in this case is enhanced by the appearance of /12 '

The role of /1 2 in determining the commensurability energy looks

very different in the two models. This difference seems to origi­

nate from the fact that the Frohlich model does not have the elec­

tron-hole symmetry which the SU-Schrieffer-Heeger model has.
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