

Title	Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Aryl Sulfides and Alkenyl Alkyl Sulfides with Alkyl Grignard Reagents Using (Z)-3,3-Dimethyl-1,2- bis(diphenylphosphino)but-1-ene as Ligand				
Author(s)	Kanemura, Shigenari; Kondoh, Azusa; Yorimitsu, Hideki; Oshima, Koichiro				
Citation	Synthesis : international journal of methods in synthetic organic chemistry (2008), 16: 2659-2664				
Issue Date	2008-08				
URL	http://hdl.handle.net/2433/88968				
Right	© 2008 Georg Thieme Verlag Stuttgart New York				
Туре	Journal Article				
Textversion	author				

Nickel-Catalyzed Cross-Coupling Reactions of Alkyl Aryl Sulfides and Alkenyl Alkyl Sulfides with Alkyl Grignard Reagents by Using (Z)-3,3-Dimethyl-1,2-bis(diphenylphosphino)-1-butene as Ligand

Shigenari Kanemura, Azusa Kondoh, Hideki Yorimitsu,* and Koichiro Oshima*

Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-daigaku Katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Fax: +81-75-383-2438

E-mail: yori@orgrxn.mbox.media.kyoto-u.ac.jp; oshima@orgrxn.mbox.media.kyoto-u.ac.jp **Received:** The date will be inserted once the manuscript is accepted.

Abstract: A combination of nickel(II) acetylacetonate and (*Z*)-3,3-dimethyl-1,2-bis(diphenylphosphino)-1-butene catalyzes cross-coupling reactions of alkyl aryl sulfides and alkenyl alkyl sulfides with alkyl Grignard reagents. Not only primary alkyl Grignard reagents but also secondary ones can be employed.

Key words: Cross-coupling, Nickel, Sulfur, Ligands, Magnesium

Transition-metal-catalyzed cross-coupling reactions are extremely useful in organic synthesis. Among them, the reactions of organosulfur compounds with organometallic reagents will be promising because of the ready availability of organosulfur compounds. However, such reactions have not been well established¹ compared to those of organic halides. The strong carbon–sulfur and metal–sulfur bonds retarded the oxidative addition and transmetalation, respectively. Organosulfur compounds can thus deteriorate transition metal catalysts. Hence, development of new procedures for the cross-coupling reactions of organosulfur compounds with organometallic reagents has been awaited.

Although there are several reports on the cross-coupling reactions of sulfides with Grignard reagents,^{1a,2} the use of secondary alkyl Grignard reagents always resulted in very low yields^{1a} because of the possible β -hydride elimination from *sec*-alkylmetal intermediates. Here we report a new catalyst that realizes the cross-coupling reaction with secondary alkyl Grignard reagents as well as primary ones.

We chose the nickel-catalyzed cross-coupling reaction of dodecyl phenyl sulfide (1a) with butylmagnesium bromide as a model reaction. As reported previously,^{1a} monodentate triphenylphosphine was not a good ligand (Table 1, entry 1). Bidentate ligands such as 1,2bis(diphenylphosphino)ethane and 1,2bis(diphenylphosphino)benzene improved the yield (entries 2 and 3). Interestingly, *tert*-butyl-substituted (Z)-1,2-bis(diphenylphosphino)ethene **3a**³ that we recently developed proved to be the best ligand among we tested (entry 4). Cyclohexyl- and phenyl-substituted **3b** and **3c** were inferior to **3a** (entries 5 and 6).

With effective 3a in hand, various combinations of aryl dodecyl sulfides and alkyl Grignard reagents were subjected to the nickel-catalyzed reaction (Table 2). The reactions with butylmagnesium bromide proceeded smoothly (entries 1–6). In the reactions of aryl sulfides having an electron-donating group (entries 4–6), the

more bulky and less volatile ethereal solvents, diisopropyl ether (b.p. 69 °C) or cyclopentyl methyl ether (b.p. 106 °C), enhanced the efficiency of the reaction. It is worth noting that cyclohexylmagnesium bromide, a secondary alkyl Grignard reagent, participated in the crosscoupling reaction (entries 8-14). Cyclopentyl methyl ether is the choice of the solvent in the cyclohexylation reaction. A substituent at the ortho position of 1b and 1f retarded the cyclohexylation reaction (entries 9 and 13). The reactions of aryl sulfides 1h, 1e, and 1g with isopropylmagnesium bromide under the nickel catalysis provided the desired products 2p-2r, along with small amounts of the corresponding *n*-propylated products 2p'-2r' (entries 15-17). The formation of 2p'-2r' would result from isomerization of isopropylmetal to npropylmetal through the β -hydride elimination from isopropylnickel followed by anti-Markovnikov hydronickelation to propene. Unfortunately, tertbutylbenzene (2s) was not obtained in the reaction with *tert*-butylmagnesium bromide (entry 18).

Table 1 Ligand Screening

Ph 1a (-S ⁿ C ₁₂ H ₂₅ + ⁿ BuMgBr - (0.50 mmol) 1.5 equiv	5 mol% Ni(acac) ₂ 5 mol% Ligand Et ₂ O, reflux, 5 h	Ph− ⁿ Bu 2a
Entry	Ligand	Yield /%	1a Recovery /%
1	PPh ₃ (10 mol%)	24	6
2	DPPE	79	0
3	Ph ₂ P PPh ₂	75	9
4	Ph_2P PPh_2 Bu H PPh_2 Bh_2 PPh_2 $PPh_$	88	0
5	Ph_2P PPh_2 $3b$	82	0
6	$Ph H H Ph_2P PPh_2 3c$	51	28

				5 mol% Ni(acac) ₂ 5 mol% 3a	2		
			Ar-S ⁿ C ₁₂ H ₂₅ + RMgBr -	5 mor/6 0 4	→ Ar-R		
			1 (0.50 mmol) 1.5 equiv	solvent, reflux	2		
Entry	Ar	1	R	Solvent	Time /h	2	Yield /%
1	2-MeC ₆ H ₄	1b	"Bu	Et ₂ O	5	2b	95
2	3-CF ₃ C ₆ H ₄	1c	"Bu	Et ₂ O	5	2c	70
3	2-pyridyl	1d	"Bu	Et ₂ O	5	2d	70
4	4-MeOC ₆ H ₄	1e	"Bu	ⁱ Pr ₂ O	5	2e	93
5	2-MeOC ₆ H ₄	1f	"Bu	ⁱ Pr ₂ O	5	2f	90
6	4-Me ₂ NC ₆ H ₄	1g	"Bu	^c C ₅ H ₉ OMe	12	2g	82
7	Ph	1a	$Ph(CH_2)_3$	Et ₂ O	5	2 h	95
8	Ph	1a	${}^{c}C_{6}H_{11}$	^c C ₅ H ₉ OMe	5	2i	97
9	2-MeC ₆ H ₄	1b	${}^{c}C_{6}H_{11}$	^c C ₅ H ₉ OMe	5	2j	65
10	3-CF ₃ C ₆ H ₄	1c	${}^{c}C_{6}H_{11}$	^c C ₅ H ₉ OMe	5	2k	86
11	2-pyridyl	1d	${}^{c}C_{6}H_{11}$	^c C ₅ H ₉ OMe	5	21	95
12	4-MeOC ₆ H ₄	1e	${}^{c}C_{6}H_{11}$	^c C ₅ H ₉ OMe	12	2m	87(93 ^a)
13	2-MeOC ₆ H ₄	1f	${}^{c}C_{6}H_{11}$	^c C ₅ H ₉ OMe	12	2n	29
14	4-Me ₂ NC ₆ H ₄	1g	${}^{c}C_{6}H_{11}$	^c C ₅ H ₉ OMe	5	20	60
15	4^{-i} PrC ₆ H ₄	1h	ⁱ Pr	^c C ₅ H ₉ OMe	13	2p	89 ^b
16	4-MeOC ₆ H ₄	1e	ⁱ Pr	^c C ₅ H ₉ OMe	12	2q	80 ^c
17	4-Me ₂ NC ₆ H ₄	1g	ⁱ Pr	^c C ₅ H ₉ OMe	13	2r	90 ^d
18	Ph	1a	'Bu	Et ₂ O	5	2s	0

Table 2 Nickel-Catalyzed Reactions of Aryl Dodecyl Sulfides with Alkyl Grignard Reagents by Using 3a as Ligand

^a Performed in a 5-mmol scale. ^b An 88:12 mixture of isopropylated 2p and 1-propyl-4-isopropylbenzene (2p). ^c A 77:23 mixture of isopropylated 2q and 4-propylanisole (2q). ^d A 77:23 mixture of isopropylated 2r and *N*,*N*-dimethyl-4-propylaniline (2r).

We chose dodecylthio group as the leaving group because 1-dodecanethiol is odorless.^{4,5} In addition, 1dodecanethiol is involatile enough to recover 1dodecanethiol quantitatively after the cross-coupling reaction (See experimental section). On the other hand, cheap and commercially available methyl phenyl sulfide (1a') reacted under the reaction conditions (eqs 1 and 2).

Ph-SMo +	^{//} BuMaBr	5 mol% Ni(acac) ₂ /3a	DI ⁰ D	(1)
1a' (0.50 mmol)	(1.5 equiv)	Et ₂ O, reflux, 5 h	2a 91%	(1)
Ph-SMe + 1a' (0.50 mmol)	^c C ₆ H ₁₁ MgBr (1.5 equiv)	$\frac{5 \text{ mol\% Ni}(\text{acac})_2/3a}{^{c}\text{C}_5\text{H}_9\text{OMe, reflux, 5 h}}$	Ph- <i>°</i> C ₆ H ₁₁ 2i 95%	(2)

The reactions of 1-alkenyl dodecyl sulfides proceeded smoothly as well (Table 3). In most cases, the reaction

proceeded with retention of configuration. In the reactions of (Z)-4b (entries 3, 7, and 11), significant amounts of the corresponding *E* products were formed. The loss of the stereospecificity was due to the isomerization of initially formed the *Z* products into the *E* products under the reaction conditions, which we confirmed. In contrast to the reactions of aryl sulfides with isopropylmagnesium bromide (Table 2, entries 15–17), formation of *n*propyl-substituted alkenes were not observed (Table 3, entries 9–12). Unfortunately, the yield of (*Z*)-5f was low, and 1-octene was mainly obtained (entry 11). The reactions of α -dodecylthiostyrene (6) were inefficient, providing the corresponding coupling products 7 in moderate yields (eqs 3 and 4).

Table 3 Nickel-Catalyzed Reactions of 1-Alkenyl Dodecyl Sulfides with Alkyl Grignard Reagents by Using 3a as Ligand

R ¹ s ^{S/C} ₁₂ H ₂₅ + R ² MgBr 4 (0.50 mmol) 1.5 equiv				$5 \text{ mol% Ni}(\text{acac})_2 \\ 5 \text{ mol% } 3a \\ \hline Conditions A \text{ or B} \\ 5 \\ \hline $		
Entry	\mathbb{R}^1	4	R^2	Conditions ^a	5	Yield /%
1	Ph	(Z)-4a $(E/Z = 4:96)$	"Bu	А	(Z)-5a $(E/Z = 8:92)$	75
2	Ph	(E)-4a $(E/Z = 90:10)$	"Bu	А	(E)-5a $(E/Z = 91:9)$	70
3	${}^{n}C_{6}H_{13}$	(Z)-4b $(E/Z = 9:91)$	"Bu	B^b	(Z)-5b $(E/Z = 27:73)$	78
4	"C ₆ H ₁₃	(E)-4b $(E/Z > 99:1)$	"Bu	А	(E)-5b $(E/Z > 99:1)$	74
5	Ph	(Z)-4a $(E/Z = 4:96)$	${}^{c}C_{6}H_{11}$	В	(Z)-5c $(E/Z = 8:92)$	93
6	Ph	(E)-4a $(E/Z = 90:10)$	${}^{c}C_{6}H_{11}$	В	(E)-5c $(E/Z > 99:1)$	70
7	${}^{n}C_{6}H_{13}$	(Z)-4b $(E/Z = 9:91)$	${}^{c}C_{6}H_{11}$	В	(Z)-5d $(E/Z = 11:89)$	84
8	${}^{n}C_{6}H_{13}$	(E)-4b $(E/Z > 99:1)$	${}^{c}C_{6}H_{11}$	В	(E)-5d $(E/Z = 94:6)$	95
9	Ph	(Z)-4a $(E/Z = 4:96)$	ⁱ Pr	В	(Z)-5e $(E/Z = 8:92)$	72
10	Ph	(E)-4a $(E/Z = 90:10)$	ⁱ Pr	В	(E)-5e $(E/Z > 99:1)$	72
11	${}^{n}C_{6}H_{13}$	(Z)-4b $(E/Z = 9:91)$	ⁱ Pr	В	(Z)- 5f $(E/Z = 36:64)$	37
12	"C ₆ H ₁₃	(E)-4b $(E/Z > 99:1)$	ⁱ Pr	В	(E)- 5f $(E/Z = 95:5)$	80

^a Conditions A: diethyl ether, reflux, 5 h. Conditions B: cyclopentyl methyl ether, reflux, 12 h. ^b Performed for 13 h.

In summary, we have developed a new protocol for the nickel-catalyzed cross-coupling reaction of organic sulfides with Grignard reagents. The protocol allows for the use of secondary alkyl Grignard reagents as well as primary ones as efficient alkylating agents. Ligand **3a** serves as a useful ligand in the present reactions.

¹H NMR (500 MHz) and ¹³C NMR (125.7 MHz) spectra were taken on a Varian UNITY INOVA 500 spectrometer and were obtained in CDCl₃ with tetramethylsilane as an internal standard. IR spectra were taken on a SHIMADZU FTIR-8200PC spectrometer. Mass spectra were determined on a JEOL MStation 700 spectrometer. TLC analyses were performed on commercial glass plates bearing a 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Wakogel 200 mesh) was used for column chromatography unless otherwise noted. Gel permeation chromatography was performed by using LC-908 (Japan Analytical Industry Ltd., two in-line JAIGEL-2H, toluene, 3.8 mL/min, UV and RI detectors). Elemental analyses were carried out at the Elemental Analysis Center of Kyoto University.

Materials obtained from commercial suppliers were used without further purification. Diethyl ether was purchased from Kanto Chemical and stored under argon. Cyclopentyl methyl ether was obtained from ZEON or purchased from Wako Pure Chemical. Nickel(II) acetylacetonate was purchased from Wako Pure Chemical. Ligand **3** was prepared according to the literature.³ Sulfides **1** and **4** were prepared according to the procedures shown below, except for (Z)-**4a**.^{5b}

Preparation of Didodecyl Disulfide: THF (15 mL), 1dodecanethiol (2.0 g, 10 mmol), and triethylamine (1.1 g, 11 mmol) were placed in a 50-mL reaction flask under argon. Iodine (2.8 g, 11 mmol) was then added to the solution at 0 °C. After being stirred at 25 °C for 6 h, the mixture was poured into a 1 M sodium thiosulfate solution (20 mL). The product was extracted with ethyl acetate (20 mL \times 3). The combined organic layer was dried over anhydrous sodium sulfate and concentrated in vacuo. The residue was purified by silica gel column chromatography to afford didodecyl disulfide (2.0 g, 5.0 mmol) in 100% yield.

Typical Procedure for the Preparation of Aryl Dodecyl Sulfides: The preparation of 1e is representative. Didodecyl disulfide (2.0 g, 5.0 mmol) and THF (10 mL) were placed in a 50-mL reaction flask under argon. 4-Methoxyphenylmagnesium bromide (1.1 M THF solution, 6.8 mL, 7.5 mmol) was then added to the reaction mixture at 25 °C. After being stirred at 25 °C for 10 h, the mixture was poured into water (10 mL). The product was extracted with ethyl acetate (10 mL \times 3). The combined organic layer was dried over anhydrous sodium sulfate. After concentration in vacuo, the resulting residue was purified on silica gel to afford **1e** (1.5 g, 5.0 mmol) in 100% yield. 1-Dodecanethiol (1.0 g, 5.0 mmol, 100% yield) was recovered, and was used for the synthesis of didodecyl disulfide.

Typical Procedure for the Preparation of 1-Alkenyl Dodecyl Sulfide: The preparation of (E)-4a is representative. β -Bromostyrene (0.55 g, 3.0 mmol, E/Z > 99:1) and diethyl ether (6.0 mL) were placed in a 30-mL reaction flask under argon. *t*-Butyllithium (1.6 M pentane solution, 3.8 mL, 6.0 mmol) was then added to the reaction mixture at -78 °C. After the mixture was stirred at -78 °C for 30 min, didodecyl disulfide (1.1 g, 2.7 mmol) was added. After the mixture was stirred at 5 h, the dry ice-acetone bath was removed. After being stirred for 1 h at room temperature, the mixture was poured into water (10 mL). The product was extracted with ethyl acetate (10 mL \times 3). The combined organic layer was dried over anhydrous sodium sulfate. After evaporation, the resulting residue was purified by silica gel column chromatography and gel permeation chromatography to afford (*E*)-4a (0.82 g, 2.7 mmol, E/Z = 90:10) in 100% yield.

Typical Procedure for the Cross-Coupling Reactions: The reaction of **1b** with butylmagnesium bromide is representative. Nickel(Π) acetylacetonate (6.4 mg, 0.025 mmol) and ligand 3a (0.011 g, 0.025 mmol) were placed in a 20-mL reaction flask. Anhydrous diethyl ether (3.0 mL) and substrate **1b** (0.15 g, 0.50 mmol)were added under argon. Butylmagnesium bromide (1.0 M diethyl ether solution, 0.75 mL, 0.75 mmol) was then added to the reaction mixture at ambient temperature. After being stirred at reflux for 5 h, the mixture was poured into a saturated ammonium chloride solution (10 mL). The product was extracted with ethyl acetate (10 mL \times 3). The combined organic layer was dried over anhydrous sodium sulfate. Concentration followed by silica gel column purification afforded **2b** (0.070 g, 0.48 mmol) in 95% yield.

Cross-Coupling Reaction of 1e with Cyclohexylmagnesium Bromide Performed in a 5-mmol Scale (Table 2, entry 12): Nickel(II) acetylacetonate (0.064 g, 0.25)mmol), ligand 3a (0.11 g, 0.25 mmol), and substrate 1e (1.5 g, 5.0 mmol) were dissolved in cyclopentyl methyl ether (30 mL) in a 100-mL reaction flask under argon. Cyclohexylmagnesium bromide (1.0 M diethyl ether solution, 7.5 mL, 7.5 mmol) was then added to the reaction mixture. After being stirred at reflux for 5 h, the mixture was poured into a saturated ammonium chloride solution (20 mL). The product was extracted with ethyl acetate (20 mL \times 3) and the combined organic layer was dried over anhydrous sodium sulfate. After evaporation, the resulting residue was purified by silica gel column chromatography to afford 2m (0.88 g, 4.7 mmol) in 93% yield. 1-Dodecanethiol (0.93 g, 4.6 mmol) was recovered in 92% yield.

Characterization Data

Template for SYNLETT and SYNTHESIS © Thieme Stuttgart · New York

Compounds 1a, ⁶ 1e, ⁷ 1g, ⁸ 2a, ⁹ 2b, ¹⁰ 2d, ¹¹ 2e, ¹⁰ 2f, ¹² 2g, ¹⁰ 2i, ¹³ 2j, ¹⁴ 2k, ¹⁵ 2l, ¹⁶ 2m, ¹⁷ 2o, ¹⁸ 2q, ¹⁹ (Z)-4a, ^{5b} (Z)-5a, ²⁰ (E)-5a, ²¹ (Z)-5b, ²² (E)-5b, ²³ (Z)-5c, ²⁴ (E)-5c, ²² (E)-5d, ²⁵ (Z)-5e, ²⁶ (E)-5e, ²⁷ (E)-5f, ²⁸ 7a, ²⁹ and 7b³⁰ showed the identical spectra reported in the literature. Products 2h and 2p are identical to commercially available reagents.

Dodecyl 2-Methylphenyl Sulfide (1b) : Colorless oil. IR (neat) 2924, 2854, 1590, 1456, 1379, 1066, 1048, 741 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H), 1.20– 1.34 (m, 16H), 1.40–1.46 (m, 2H), 1.66 (tt, *J* = 7.0, 7.0 Hz, 2H), 2.36 (s, 3H), 2.89 (t, *J* = 7.0 Hz, 2H), 7.07 (dd, *J* = 7.0, 7.0 Hz, 1H), 7.13–7.17 (m, 2H), 7.25 (d, *J* = 7.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.11, 20.31, 22.68, 28.96, 28.98, 29.19, 29.34, 29.50, 29.57, 29.62, 29.64, 31.91, 32.76, 125.19, 126.28, 127.21, 129.96, 136.41, 137.12. Found: C, 78.26; H, 10.78%. Calcd for C₁₉H₃₂S: C, 78.01; H, 11.03%.

Dodecyl 3-trifluoromethylphenyl sulfide (1c) : Brown oil. IR (neat) 2928, 2855, 1583, 1468, 1423, 1323, 1168, 1130, 1074, 791, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, J = 7.0 Hz, 3H), 1.20–1.34 (m, 16H), 1.39–1.46 (m, 2H), 1.66 (tt, J = 7.5, 7.5 Hz, 2H), 2.95 (t, J = 7.5 Hz, 2H), 7.36–7.41 (m, 2H), 7.43–7.47 (m, 1H), 7.50–7.54 (m, 1H); ¹³C NMR (CDCl₃) δ 14.10, 22.69, 28.79, 28.82, 29.12, 29.35, 29.47, 29.56, 29.62, 29.64, 31.91, 33.10, 122.04 (q, J = 3.9 Hz), 123.87 (q, J = 271.0 Hz), 124.61 (q, J = 3.9 Hz), 129.06, 131.21 (q, J = 32.5 Hz), 131.23, 138.91. Found: C, 66.08; H, 8.67%. Calcd for C₁₉H₂₉F₃S: C, 65.86; H, 8.44%.

Dodecyl 2-pyridyl sulfide (1d) : Colorless oil. IR (neat) 3045, 2924, 2854, 2360, 1580, 1557, 1456, 1125, 756 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H), 1.20–1.36 (m, 16H), 1.41–1.47 (m, 2H), 1.70 (tt, *J* = 7.5, 7.5 Hz, 2H), 3.15 (t, *J* = 7.5 Hz, 2H), 6.95 (dd, *J* = 5.0, 8.0 Hz, 1H), 7.16 (d, *J* = 8.0 Hz, 1H), 7.43 (dd, *J* = 5.0, 5.0 Hz, 1H), 8.42 (d, *J* = 5.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.11, 22.68, 28.96, 29.20, 29.30, 29.33, 29.51, 29.59, 29.62, 29.64, 30.12, 31.90, 119.12, 122.10, 135.75, 149.41, 159.63. Found: C, 73.31; H, 10.44%. Calcd for C₁₇H₂₉NS: C, 73.06; H, 10.46%.

Dodecyl 2-methoxyphenyl sulfide (1f) : White solid. IR (neat) 2853, 1734, 1700, 1569, 1429, 1242, 1072, 1022, 712 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H), 1.20–1.34 (m, 16H), 1.40–1.48 (m, 2H), 1.66 (tt, *J* = 7.5, 7.5 Hz, 2H), 2.88 (t, *J* = 7.5 Hz, 2H), 3.89 (s, 3H), 6.84 (d, *J* = 8.5 Hz, 1H), 6.93 (dd, *J* = 8.5, 8.5 Hz, 1H), 7.17 (dd, *J* = 8.5, 8.5 Hz, 1H), 7.24 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.11, 22.68, 28.88, 28.96, 29.20, 29.33, 29.49, 29.57, 29.61, 29.63, 31.83, 31.90, 55.73, 110.27, 120.99, 125.26, 126.53, 128.54, 156.97. Found: C, 73.85; H, 10.59%. Calcd for C₁₉H₃₂OS: C, 73.97; H, 10.45%. Mp 30.5–31.0 °C.

Dodecyl 4-isopropylphenyl sulfide (1h) : Colorless oil. IR (neat) 2959, 2925, 2854, 1497, 1460, 1093, 817 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 3H), 1.20–1.32 (m, 22H), 1.36–1.44 (m, 2H), 1.63 (tt, *J* = 7.5, 7.5 Hz, 2H), 2.87 (sep, *J* = 7.0 Hz, 1H), 2.88 (t, *J* = 7.5 Hz, 2H), 7.14 (d, *J* = 8.5 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 14.10, 22.68, 28.92, 28.82, 29.16, 29.27, 29.33, 29.51, 29.57, 29.62, 29.64, 31.91, 33.66, 34.19, 126.95, 129.54, 133.62, 146.74.

3-Butyl-1-trifluoromethylbenzene (**2c**) : Colorless oil. IR (neat) 2933, 2862, 2360, 1448, 1326, 1164, 1127, 1074, 799 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (t, *J* = 7.5 Hz, 3H), 1.37 (qt, *J* = 7.5, 7.5 Hz, 2H), 1.62 (tt, *J* = 7.5, 8.0 Hz, 2H), 2.67 (t, *J* = 8.0 Hz, 2H), 7.34–7.41 (m, 2H), 7.42–7.46 (m, 2H); ¹³C NMR (CDCl₃) δ 13.88, 22.29, 33.43, 35.47, 122.47 (q, *J* = 3.8 Hz), 124.32 (q, *J* = 270.6 Hz), 125.06 (q, *J* = 3.8 Hz), 128.59, 130.51 (q, *J* = 31.9 Hz), 131.80, 143.72.

N,*N*-Dimethyl-4-isopropylaniline (2r) : Brown oil. IR (neat) 2958, 2870, 2799, 1616, 1521, 1340, 1219, 1166, 948, 816 cm⁻¹; ¹H NMR (CDCl₃) δ 1.24 (d, *J* = 7.0 Hz, 6H), 2.84 (sep, *J* = 6.5 Hz, 1H), 2.92 (s, 6H), 6.73 (d, *J* = 8.5 Hz, 2H), 7.13 (d, *J* = 8.5 Hz, 2H); ¹³C NMR (CDCl₃) δ 24.21, 33.02, 40.94, 112.98, 126.91, 128.99, 137.20.

Dodecyl (*E*)-2-phenylethenyl sulfide ((*E*)-4a) : Colorless oil. IR (neat) 2923, 2853, 2360, 1599, 1468, 1315, 1125, 933, 734, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 5.0 Hz, 3H), 1.20–1.36 (m, 16H), 1.38–1.46 (m, 2H), 1.69 (tt, *J* = 7.5, 7.5 Hz, 2H), 2.80 (t, *J* = 7.5 Hz, 2H), 6.46 (d, *J* = 15.5 Hz, 1H), 6.73 (d, *J* = 15.5 Hz, 1H), 7.16–7.22 (m, 1H), 7.27–7.31 (m, 4H); ¹³C NMR (CDCl₃) δ 14.11, 22.68, 28.81, 29.18, 29.33, 29.43, 29.50, 29.58, 29.62, 29.64, 31.90, 32.61, 125.35, 125.42, 126.61, 126.73, 128.60, 137.16. Found: C, 78.69; H, 10.53%. Calcd for C₂₀H₃₂S: C, 78.88; H, 10.59%.

Dodecyl (Z)-1-octenyl sulfide ((Z)-**4b**) : Brown oil. IR (neat) 2925, 2854, 2360, 1609, 1467, 1267, 938, 721, 690 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 6.0 Hz, 6H), 1.20–1.42 (m, 26H), 1.61 (tt, *J* = 7.5, 7.5 Hz, 2H), 2.11 (dt, *J* = 7.5, 7.5 Hz, 2H), 2.64 (t, *J* = 7.5 Hz, 2H), 5.54 (dt, *J* = 9.5, 7.0 Hz, 1H), 5.89 (d, *J* = 9.5 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.08, 14.10, 22.62, 22.68, 28.61, 28.93, 28.96, 29.15, 29.20, 29.34, 29.51, 29.59, 29.62, 29.64, 30.33, 31.71, 31.91, 33.90, 124.93, 129.56. Found: C, 76.97; H, 13.08%. Calcd for C₂₀H₄₀S: C, 76.85; H, 12.90%.

Dodecyl (*E***)-1-octenyl sulfide** ((*E*)-4b) : Brown oil. IR (neat) 2925, 2854, 1734, 1653, 1558, 1457, 938 cm⁻¹; ¹H NMR (CDCl₃) δ 0.88 (t, *J* = 7.0 Hz, 6H), 1.20–1.42 (m, 26H), 1.61 (tt, *J* = 7.5, 7.5 Hz, 2H), 2.06 (dt, *J* = 7.5, 7.5 Hz, 2H), 2.62 (t, *J* = 7.5 Hz, 2H), 5.61 (dt, *J* = 15.0, 7.0 Hz, 1H), 5.90 (d, *J* = 15.0 Hz, 1H); ¹³C NMR (CDCl₃) δ 14.08, 14.11, 22.61, 22.68, 28.73, 28.79, 29.21, 29.32, 29.35, 29.48, 28.51, 29.59, 29.63, 29.65, 31.67, 31.91, 32.74, 33.21, 122.63, 130.81. Found: C, 76.91; H, 12.79%. Calcd for C₂₀H₄₀S: C, 76.85; H, 12.90%.

(Z)-1-cyclohexyl-1-octene ((Z)-5d) : Colorless oil. IR (neat) 2999, 2925, 2853, 1653, 1558, 1448, 966, 890, 735 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (t, J = 7.0 Hz, 3H), 1.00–1.10 (m, 2H), 1.14–1.38 (m, 11H), 1.57–1.74 (m, 5H),2.03 (dt, J = 7.0, 7.0 Hz, 2H), 2.21–2.29 (m, 1H), 5.16–5.28 (m, 2H); ¹³C NMR (CDCl₃) δ 14.10, 22.67, 26.02, 26.10, 27.44, 28.99, 29.98, 31.79, 33.41, 36.30,

Template for SYNLETT and SYNTHESIS © Thieme Stuttgart · New York

128.05, 135.98. Found: C, 86.82; H, 13.70%. Calcd for $C_{14}H_{26}$: C, 86.52; H, 13.48%.

Dodecyl 1-phenylethenyl sulfide (6) : Brown oil. IR (neat) 3059, 2925, 2360, 1675, 1599, 1456, 1276, 1069, 843, 699 cm⁻¹; ¹H NMR (CDCl₃) δ 0.90 (t, *J* = 7.0 Hz, 3H), 1.20–1.34 (m, 16H), 1.36–1.44 (m, 2H), 1.64 (tt, *J* = 7.5, 7.5 Hz, 2H), 2.69 (t, *J* = 7.5 Hz, 2H), 5.16 (s, 1H), 5.46 (s, 1H), 7.30–7.37 (m, 3H), 7.54–7.57 (m, 2H); ¹³C NMR (CDCl₃) δ 14.11, 22.68, 28.46, 28.91, 29.16, 29.34, 29.47, 29.57, 29.62, 29.63, 31.90, 32.13, 110.16, 127.08, 128.26, 128.29, 139.82, 145.28. Found: C, 79.16; H, 10.47%. Calcd for C₂₀H₃₂S: C, 78.88; H, 10.59%.

Acknowledgment

This work was supported by Grants-in-Aid for Scientific Research and COE and GCOE Research Programs from JSPS. A.K. acknowledges JSPS for financial support. Cyclopentyl methyl ether was a gift from ZEON Corp.

References

- Reviews: (a) Sugimura, H.; Okamura, H.; Miura, M.; Yo-shida, M.; Takei, H. *Nippon Kagaku Kaishi* 1985, 416–424.
 (b) Naso, F. *Pure Appl. Chem.* 1988, 60, 79–88. (c) Fiandanese, V. *Pure Appl. Chem.* 1990, 62, 1987–1992. (d) Luh, T.-Y. Acc. Chem. Res. 1991, 24, 257–263. (e) Dubbaka, S. R.; Vogel, P. Angew. Chem., Int. Ed. 2005, 44, 7674–7684. (f) Prokopcová, H.; Kappe, C. O. Angew. Chem., Int. Ed. early view, DOI: 10.1002/anie.200800449.
- (2) (a) Okamura, H.; Miura, M.; Takei, H. *Tetrahedron Lett.* 1979, 20, 43–46. (b) Takei, H.; Miura, M.; Sugimura, H.; Okamura, H. *Chem. Lett.* 1979, 1447–1450. (c) Takei, H.; Sugimura, H.; Miura, M.; Okamura, H. *Chem. Lett.* 1980, 1209–1212. (d) Okamura, H.; Takei, H. *Tetrahedron Lett.* 1979, 20, 3425–3428. (e) Wenkert, E.; Ferreira, T. W.; Michelotti, E. L. J. *Chem. Soc., Chem. Commun.* 1979, 637–638. (f) Wenkert, E.; Fernandes, J. B.; Michelotti, E. L.; Swinndell, C. S. *Synthesis* 1983, 701–703. (g) Itami, K.; Mineno, M.; Muraoka, N.; Yoshida, J. J. Am. Chem. *Soc.* 2004, *126*, 11778–11779. (h) Itami, K.; Yamazaki, D.; Yoshida, J. J. Am. Chem. Soc. 2004, *126*, 15396–15397.
- (3) Kondoh, A.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2007, 129, 4099–4104.
- (4) (a) Nishide, K.; Node, M. J. Synth. Org. Chem., Jpn. 2004, 62, 895–910. (b) Node, M.; Kumar, K.; Nishide, K.; Ohsugi, S.; Miyamoto, T. Tetrahedron Lett. 2001, 42, 9207–9210.
- (5) The ability of dodecylthio group as a leaving group in cross-coupling reactions has scarcely been investigated: (a) Miyazaki, T.; Han-ya, Y.; Tokuyama, H.; Fukuyama, T. *Synlett* 2004, 477–480. (b) Kondoh, A.; Yorimitsu, H.; Oshima, K. *J. Org. Chem.* 2005, *70*, 6468–6473.
- (6) Rout, L.; Sen, T. K.; Punniyamurthy, T. Angew. Chem., Int. Ed. 2007, 46, 5583–5586.
- (7) Ajiki, K.; Hirano, M.; Tanaka, K. Org. Lett. 2005, 7, 4193–4195.
- (8) Comasseto, J. V.; Lang, E. S.; Tercio, J.; Ferreira, B.; Simonelli, F.: Correia, V. R. J. Organomet. Chem. 1987, 334, 329–340.
- Zafrani, Y.; Gershonov, E.; Columbus, I. J. Org. Chem. 2007, 72, 7014–7017.
- (10) Kondolff, I.; Doucet, H.; Santelli, M. Organometallics 2006, 25, 5219–5222.
- (11) Haase, M.; Günther, W.; Görls, H.; Anders, E. Synthesis 1999, 2071–2081.

- (12) Kwong, F. Y.; Chan, K. S.; Yeung, C. H.; Chan, A. S. C. *Chem. Commun.* **2004**, 2336–2337.
- (13) Powell, D. A.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 7788–7789.
- Bedford, R. B.; Betham, M.; Bruce, D. W.; Danopoulos, A. A.; Frost, R. A.; Hird, M. J. Org. Chem. 2006, 71, 1104–1110.
- (15) Coxon, J. M.; Schuyt, H. A.; Steel, P. J. Aust. J. Chem. 1980, 33, 1863–1867.
- (16) Kitamura, M.; Kudo, D.; Narasaka, K. *Arkivoc* **2006** (3), 148–162.
- (17) Protti, S.; Fagnoni, M.; Mella, M.; Albini, A. J. Org. Chem. 2004, 69, 3465–3473.
- (18) Oosterbaan, W. D.; van Gerven, P. C. M.; van Walree, C. A.; Koeberg, M.; Piet, J. J.; Havenith, R. W. A.; Zwikker, J. W.; Jenneskens, L. W.; Gleiter, R. Eur. J. Org. Chem. 2003, 3117–3130.
- (19) Strotman, N. A.; Sommer, S.; Fu, G. C. Angew. Chem., Int. Ed. 2007, 46, 3556–3558.
- (20) Moussaoui, Y.; Saïd, K.; Salem, R. B. Arkivoc 2006 (12), 1–22.
- (21) Herve, A.; Rodriguez, A. L.; Fouquet, E. J. Org. Chem. 2005, 70, 1953–1956.
- (22) Concellon, J. M.; Rodriguez-Solla, H.; Simal, C.; Huerta, M. Org. Lett. 2005, 7, 5833–5835.
- (23) Hrubiec, R. T.; Smith, M. B. *Tetrahedron* **1984**, *40*, 1457–1467.
- (24) Satoh, T.; Kondo, A.; Musashi, J. *Tetrahedron* 2004, 60, 5453–5460.
- (25) Blue, C. D.; Nelson, D. J. J. Org. Chem. 1983, 48, 4538–4542.
- (26) Goering, H. L.; Seitz, Jr., E. P.; Tseng, C. C. J. Org. Chem. 1981, 46, 5304–5308.
- (27) Jang, Y.-J.; Yan, M.-C.; Lin, Y.-F.; Yao, C.-F. J. Org. Chem. 2004, 69, 3961–3963.
- (28) Hrubiec, R. T.; Smith, M. B. *Tetrahedron* **1984**, *40*, 1457–1467.
- (29) Fiandanese, V.; Marchese, G.; Naso, F.; Ronzini, L. Synthesis 1987, 1034–1036.
- (30) Hansen, A. L.; Ebran, J.-P.; Gogsig, T. M.; Skrydstrup, T. J. Org. Chem. 2007, 72, 6464–6472.

Short Title: Cross-Coupling of Sulfides with Alkyl Grignard Reagents