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Abstract 
Impact vibration such as a floor vibration caused by jumping of children or 
vibration of a press machine is very important engineering problem. The 
momentum exchange impact damper has been proposed to solve these problems. 
The basic principle of this damper is based on the energy transfer on collision of 
three body systems. However energy or momentum transfer at the impact is not 
explained theoretically. This paper considers the energy transfer incurred during 
collisions in three body systems. The three body systems considered herein consists 
of an impact mass, a main body and an absorber mass. When the impact mass 
collides with the main body, part of its kinetic energy is transferred to the main 
body. When the main body simultaneously collides with the absorber mass, part of 
the kinetic energy of the main body is transferred to the absorber mass. 
Consequently, the main body receives a small amount of shock and it is possible to 
keep the main body nearly stationary. In this study, the influence of contact 
frequency and natural frequency of the system on the energy transfer during 
collision is analyzed. A theoretical model is developed to analyze the effect of 
various system parameters. It is shown that the maximum transfer of energy that 
can be obtained occurs when the contact frequencies are the same. The theoretical 
analysis is validated with experimental results. 

Key words: Impact, Vibration Control, Momentum Exchange, Absorber, Three 
Body Systems 

1. Introduction 

Impact vibration such as a floor vibration caused by jumping of children or vibration of 
a press machine is very important engineering problem. Adverse noise generation and large 
impact force transmission to the surrounding are the primary motivation for studying such 
problems. Many researchers have carried out studies in this area and a number of methods 
have been developed to solve such problems. In the early studies, the conventional tuned 
mass damper was used for control of impact induced vibration (1). This method was shown 
to reduce the steady state response, but it fails to suppress the maximum peak of the 
transient response due to the delay of the damper motion. Application of active shock 
control with preview action was studied by Tanaka (2,3). Even though this method could 
suppress the transient response, but it requires costly sensors and actuators to realize active 
control.  

A method involving momentum exchange using an impact damper was proposed by 
Matsuhisa(4,5) to reduce the vibration and force transmission in impact vibration of floors 
and press machines. In the floor shock vibration control as reported in Matsuhisa(4), the 
impact damper is placed between the slab and the floor. The impact damper mass is 
contacted with the floor. When the floor receives an impact load, a part of kinetic energy of 
the floor is transferred to the absorber mass during collision. As the result, the floor 
vibration and the transmitted force to the slab decrease. In another application as reported in 
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Matsuhisa(5), the impact damper is contacted to the press machine bed. The impact force 
received by this bed is partly transmitted to the impact damper during collision. Thus, the 
impact damper can reduce the bed vibration and the transmitted force to the ground. 
However, the effect of the contact condition between the main body such as floor and press 
machine and both the impact mass and the absorber mass has not yet been investigated. 

In the case of collision between free rigid bodies, the energy transfer is influenced by 
the mass ratio and the coefficient of restitution. Generally the coefficient of restitution is 
used to introduce the energy losses during collision. However, in actual engineering 
application, the assumption of free rigid body collision is not valid, because the main body 
is elastic and it is supported by elastic structures. 

 Previously, researchers have conducted several studies focusing on the collision 
between free elastic balls. Herrmann and Seitz (6,7) conducted experimental and theoretical 
studies focusing on the modeling of collisions between several elastic balls. Reinsch(8) 
analyzed the perfect transmission of a linear chain of elastic balls. Ceanga and Hurmuzlu(9) 
developed an analytical method to predict the post impact velocities of several colliding 
elastic balls.  
 In this paper, two simple models, a spring-supported rigid rod and a free elastic rod, 
are used as the main body to study the energy exchange within an impact damper. The 
relationship between the natural frequency of the main body and the contact frequencies of 
the impact source and the impact damper are investigated theoretically and experimentally. 
 

2. Rigid body collision 

2.1 Solution by assumption of contact spring  
 The main body consists of a mass m supported by spring k. An impact source mass mb 
collides m with initial velocity vb-. Before collision, the impact damper mass md is 
contacting with m. When the collision takes place, as shown in Fig. 1, the momentum and 
the kinetic energy of mb is transferred to m and md. The momentum and energy exchanges 
continue while the masses remain in contact with each other.  

mb md m 

k 

mb md m 

k vb- 

Before collision After collision 

vd+ vb+ 

 
Fig. 1 Rigid body collision. 

 
 In this study, the contact condition is assumed to be given by linear springs kb and kd as 
shown in Fig. 2. 

mb md 
kb kd 

m 

k

xb x xd  
Fig. 2 Collision model of rigid body. 

 
The governing equations of the three rigid bodies in Fig. 2 are given by  

 0b b bm x f+ = , (1) 

 0b dmx kx f f+ − + = , (2) 



 

 

Journal of  System 
Design and  
Dynamics  

Vol. 2, No. 1, 2008

427 

 0d d dm x f− = , (3) 

where xb, x and xd are the displacements of the impact mass, main body, and absorber mass, 
respectively. The variable fb is the contact force between m and mb and fd is the contact force 
between m and md. These forces are given by 

 ( ) , 0,
0, 0,

b b b
b

b

k x x for x x
f

for x x
− − ≥

=  − <
 (4) 

 ( ) , 0,
0, 0.

d d d
d

d

k x x for x x
f

for x x
− − ≥

=  − <
 (5) 

 Integration of Eqs. (1)~(3) was carried out with MatLab/Simulink by using the 
fifth-order Dormand-Prince method with variable time steps. The transfers of energy from 
mb to md and m after collision are calculated as 

 
2
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d d
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where vb+ and vd+ are the velocity of mb and md after collision.  
 When fb ≠ 0 and fd ≠ 0, the three masses remain in contact with each other. In this state 
the solution of Eqs. (1)~(3) is given by the combination of three harmonic functions relating 
to the natural frequencies of the system. The response of mass md is calculated as 

( ) ( )( ) ( )( )
2 2

1 22 2 2 2 2 2 2 2
1 1 2 1 3 2 1 2 2 3

1 1sin sind b b d bx t r v t tω ω ω ω
ω ω ω ω ω ω ω ω ω ω−
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− − − −
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
+

− − 
, (8) 

where  

 b
b

b

k
m

ω = ,  d
d

d

k
m

ω = .   (9) 

ω1, ω2 and ω3 are the natural frequencies when the masses remain in contact. These natural 
frequencies are obtained by solving the characteristic equation of the system

 ( ) ( )( ) ( )( )6 2 2 2 4 2 2 2 2 2 2 21 1 1b b d d b b d b d ds r r s r r sω ω ω ω ω ω ω ω ω+ + + + + + + + + +   

 2 2 2 0b dω ω ω+ = , (10) 

where 
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b

m
r

m
= , d

d
m

r
m

= , k
m

ω = . (11) 

The velocity of md is obtained by differentiating Eq. (8) 
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( )( ) 32 2 2 2
1 3 2 3

1 cos tω
ω ω ω ω


+

− − 
. (12) 

 Suppose that mb looses contact at t = π/ωb and md looses contact after mb, the velocity 
of md at t = π/ωb is given by 
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The maximum value of the first term in Eq. (13) is found when 

 1cos 1
b

πω
ω

= , (14) 

 1 0,2,4,
b

ω
ω

= . (15) 

The maximum value of the second term in Eq. (13) is given by 

 2cos 1
b

πω
ω

= − , (16) 

 2 1,3,5,
b

ω
ω

= . (17) 

The maximum value of the third term in Eq. (13) is obtained when 

 3cos 1
b

πω
ω

= , (18) 

 3 0,2,4,
b

ω
ω

= . (19) 

Eqs. (15), (17) and (19) indicate that the maximum kinetic energy of md can be achieved 
when the ratio of the natural frequencies to ωb are integer numbers.  
 In ideal case, ωb should be as larger as possible to transfer a large amount of kinetic 
energy from mb to md. Regarding this condition, the optimum value for the first term in Eq. 
(13) is achieved when 

 1 0
b

ω
ω

= , → 1 0ω = . (20) 

Substitution of ω1= 0 into Eq. (10), indicates that the zero value of the characteristic root is 
obtained when  

 2 2 2 0b dω ω ω = , → 0ω = . (21) 

For ratios of ωr/ωb =1, (r = 1,2,3, ), an optimum condition is obtained by substitution of 
2 2

bs ω= −  into Eq. (10), which yields, 

 b dω ω= . (22) 

 Equation (22) indicates that the optimum condition for transferring the energy is 
obtained when the contact frequencies are the same. Table 1 shows the parameter values 
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used in the simulation. One value of mass ratio mb/m and four values of mass ratio md/m 
were used in the simulation. The natural frequency of mass m is fixed at 200π rad/s.  
 

Table 1 Simulation parameters for rigid body collision. 
Parameter Value  

mb/m 0.5  
m 1.8 kg 

md/m 0.25, 0.5, 1, 1.5 
ω 200π rad/s 
vb- 1 m/s 

 
 Simulation results for the energy transfer with mass ratios md/m = 0.25, 0.5, 1 and 1.5 
are depicted in Fig. 3. The solid line is the transfer of energy (Ed+/Eb-) and the dashed line is 
the energy absorbed by the main body m (E/Eb-). It can be shown that the transfer of energy 
increases with increasing values of ωb/ω. The peak transfer of energy and the point of 
minimum energy absorption are located close to point ωb = ωd as indicated by Eq. (22). The 
mass ratio md/m is the significant factor in determining energy transfer. The minimum 
energy of main body is obtained when md/m =1. In this condition, wherein ωb/ω =100, 
almost all of the kinetic energy of main body is transferred to the absorber mass as shown in 
Fig. 3(c).  
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Fig. 3 Transfer of energy in collision of rigid bodies.  
(solid line: Ed+/Eb-, dashed line : E/Eb-)   
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 Figure 4 and 5 show two sets of typical time responses of the system for ωb/ω =1.25 
and ωb/ω = 2.5. These responses are obtained for mass ratios mb/m = 0.5 and md/m 0.5. In 
these figures, force variables fb, fd and fk were normalized by dividing them by mbωbvb-. The 
velocity and time variables were also normalized by dividing them by vb- and π(mb/kb)1/2, 
respectively. As one might observe from these figures, the contact force fb follows a nearly 
sinusoidal path for half a period after the impact. Figure 4 and Fig. 5 show that the velocity 
of md has a maximum value when ωd/ω is located at the peak ratio of Ed+/Eb- (denoted by 
point P and Q in Fig. 3(b)). When ωd/ω = 0.1, the velocity of md is small compared to the 
initial velocity of mb. The reason for this is that the contact force fd is small so that the 
transfer of momentum from m to md is low. The contact force fd follows an un-smooth path 
for ωd/ω =15. This phenomenon may be caused by multiple collisions. The multiple 
collision at ωd/ω =15 occurs because the higher order mode of three bodies system are 
excited when mass m collide with mass md. 
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Fig. 4 Time history for ωb/ω=1.25. 
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Fig. 5 Time history for ωb/ω=2.5. 

 
2.2 Solution using the coefficient of restitution  
 When ωb >>ω and ωd >>ω, more energy is stored within the contact spring than in the 
oscillator spring (10). This state can be regarded as a free collision problem. For this special 
case, the conservation of momentum and coefficient of restitution can be applied to the 
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collision between mass m and both mb and md. 
 By using the conservation of momentum and coefficient of restitution for the first 
collision between mb and m, yields 

 b b b bm v mv m v mv+ + − −+ = + , (23) 

 
( )
( )

b
b

b

v v
e

v v
+ +

− −

−
=

−
, (24) 

 ( )bJ mv mv+ −= − , (25) 

where v- is velocity of m before the first collision, v+ is velocity of m after the first collision,  
eb is coefficient of restitution and Jb is impulse between m and mb. Eqs. (23)~(25) can be 
arranged to give 

 ( )( )1b
b b b
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J e v v
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. (26) 

By using the same procedure for the second collision between m and md the following is 
obtained,  

 d d d dmv m v mv m v++ + + −+ = + , (27) 
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where v++ is velocity of m after the second collision, vd- is velocity of md before the second 
collision, ed is coefficient of restitution and Jd is impulse between m and md, respectively. In 
this case, 

 0dv v− −= = . (31) 

By using Eqs. (23)~(24) and Eqs. (27)~(28), the final velocities of mb and md are given by 
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If eb = ed=1, the final energy of mass mb, md and m can be expressed as  
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Equation (34) shows that the reflected energy is a function of mb and m only. Increasing the 
mass ratio md/m only affects the final energy of mass m and md. When the mass ratio md/m 
=1, the final energy of m becomes zero. 
 Table 2 shows the results of final energy, calculated using Eqs. (34) ~ (36) for mb/m = 
0.5 and md/m = 0.25, 0.5, 1 and 1.5. The results in Table 2 agree well with the calculated 
results based on the contact spring model using Eqs. (1)~(5), as shown in Fig. 3 for 
ωb/ω ≥ 100.  
 

Table 2  Final energy given by the coefficient of restitution method. 
 

md/m 
b

E
E −

 b

b

E
E
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−

 d

b

E
E
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−

 

0.25 0.33 0.11 0.56 
0.5 0.1 0.11 0.79 
1 0 0.11 0.89 

1.5 0.03 0.11 0.85 
 

3. Elastic rod collision 

Figure 6 shows the model of a free one-dimensional elastic rod in collision with an impact 
source mass mb. Mass md is initially in contact with the rod with zero initial velocity.  

xb 

mb md ρ 

kb kd 

u(x,t) xd 

L 
radius R radius R  

Fig. 6  Collision of free elastic rod.  
 

The governing equations of motion are expressed as 
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 0b b bm x f+ = , (38) 

 0d d dm x f− = , (39) 

where E is Young modulus, A is the cross section area and fb and fd are the contact force 
between rod and both mb and md, respectively. The contact forces are given by 
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Longitudinal vibration of the rod can be given by summation of the normalized 

eigenfunctions ( )r xψ as 
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 ( ) ( ) ( )
0

, r r
r

u x t x q tψ
∞

=

= ∑ , (42) 

where 

 cosr
r x

L
πψ = , 0, ,r = ∞ , (43) 

and qr is the general coordinate. ψ0 represents the non-vibrational rigid body transverse 
motion. By substituting Eq. (42) for u and using the orthogonality of the eigenfunctions, the 
differential equation of motion Eq. (37) can be written as (11)  

 
( )2 r

r r r

f t
q q

m
ω+ = , (44) 

where ( )rf t is given by  

 ( ) ( ) ( ) ( )
0

0
L

r b d rf t f x f x L x dxδ δ ψ= − − −  ∫ , (45) 

and where m = ρA is the mass per unit length, ωr = rπc/L is the natural frequency and c is 
the speed of sound for the rod and δ is delta function. 
 Two simulations using a steel rod with differing lengths were conducted to simulate 
the collision of rigid masses with an elastic rod. The simulation parameters were shown in 
Table 3, where ω0 ~ ω3 are the natural frequencies of the rod.  

Table 3  Simulation parameters of elastic rod collision. 
Parameter L = 2m L = 3m 

mb 1 kg 1 kg 
mL 5 kg 7.5 kg 
md 1 kg 1 kg 
A 7.85× 10-5m2 7.85× 10-5m2 
vb- 1m/s 1m/s 
ω0 0 rad/s 0 rad/s 
ω1 7.92× 103 rad/s 5.28× 103 rad/s 
ω2 1.58× 104 rad/s 1.06× 104 rad/s 
ω3 2.38× 104 rad/s 1.58× 104 rad/s 

 
 Numerical simulation was carried in MatLab/Simulink computational environment by 
using the fifth-order Dormand-Prince method with variable time steps. Variables ωb and ωd 
were varied within the range ωb ∈ [6.6×103,4 × 104] rad/s and ωd ∈ [1.6×103,1.6 × 105] 
rad/s.  
 Because the elastic rod is modeled as a continuous component, the system has an 
infinite number of vibration modes. Each mode contributes to the transfer of energy during 
the collision. Regarding to this condition, the simulation is conducted using 50 lowest 
modes of the rod.  
 Figure 7 shows the energy ratio (EK+EP) of the rod during collision. Before 
transferring the energy to md, the energy component of the rigid body mode (Energy mode 
1) and the lowest elastic mode (Energy mode 2) are 37 % and 43% of the initial energy of 
mb . After collision, the amount of energy transferred to md by the rigid body and the lowest 
elastic mode are 32.1 % and 39.5%, respectively. These results indicate that the contribution 
of the rigid mode and the lowest elastic mode to the transfer of energy is about 71.6% of the 
total energy. The contributions of other modes to the response are small compare to the rigid 
body and the lowest elastic mode contribution. Figure 7 shows that contribution of the 3rd 
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mode to the transfer of energy is about 13% and the contribution of the 4th, 5th and 6th mode 
are less than 5%. Regarding to this condition, only the first elastic mode is used for the 
discussion in this section. 
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Fig. 7  Energy ratio of the rod during collision. 
 
 Figure 8 shows the simulation result of energy ratios as a function of ωb/ω1 and ωd/ω1 

for rod lengths of 2 and 3 m. The solid line represents the transfer of energy (Ed+/Eb-) and 
the dashed line the energy absorbed by main body m (E/Eb-). Similarly to the previous case, 
the peak energy transfer and minimum absorbed energy are located near the point ωb = ωd. 
The transfer of energy is increases as ωb/ω1 is increased. For ωd/ω1 >5 the transfer of energy 
is nearly constant.  
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Fig. 8 Transfer of energy of the free rod. 

        (solid line: Ed+/Eb-, dashed line : E/Eb-)   
 

 It should be pointed out that the transfer of energy in the free elastic rod problem is 
partly governed by the elastic modes of the rod. This phenomenon is different from the 
transfer of energy in the free rigid body case described previously. For example, when the 
rod is assumed to be rigid, the transfer of energy calculated using Eq. (34) for a 2 m rod, 
yields 

  
( ) ( )
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2 2

16
31%d b d

b d b

E m m m
E m m m m

+

−

= =
+ +

. (46) 

 This result is clearly lower than the resultant energy transfer shown in Fig. 8 (a) for the 
elastic rod. This is because its one-dimensional vibration modes were ignored in the 
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calculation.   
 Figures 9, 10 and 11 show three sets of typical time responses of the system for ωb/ω1 

= 0.8, 1.1 and 2. These responses were obtained for L = 2m. In these figures, all variables 
were normalized according to the previously described criteria. Figure 9 shows that the 
velocity of md has a maximum value when ωd/ω is located at the peak of the Ed+/Eb- curves 
(denoted by point P in Fig. 8(a)). The contact force fd has two peaks for ωd/ω1  = 0.2 
because the contact stiffness is small and the contact force is not large enough to make md 
loose contact simultaneously.  
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Fig. 9 Time history for ωb/ω1=0.8. 
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Fig. 10 Time history for ωb/ω1=1.1. 

 
 For small values of ωb/ω1 as shown in Fig. 9, the reflected velocity is almost 42% of 
the initial velocity of mb (indicated by final velocity of mb). In contrast, for large values of of 
ωb/ω1, as shown in Fig. 11, the reflected velocity is only 7%. In this case, nearly all of the 
kinetic energy of mb is transferred to the rod. 
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Fig. 11 Time history for ωb/ω1=2. 

 
 Figure 12 shows the displacement response of some lowest modes at the end of the rod 
where contacting with md. The displacement response from the 1st mode (the rigid body 
mode) has no time lag. The displacement response of the 2nd mode (the first elastic mode) 
occurs at different direction with the rigid body displacement. The responses from other 
modes are smaller in comparing to the 1st and the 2nd mode response. The total response of 
the rod (shown in the continuous line) is superposition of these modes response. As shown 
in Fig. 12, the total response has a time lag 0.4 ms. Regarding to this result, it can be 
concluded that the response of the rigid body mode has no time lag. The time lag obtained 
in the total response is due to superposition of the responses from each vibration modes. 
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Fig. 12 Displacement response of some lowest modes at the end of the rod. 

 

4. Experiment 

In this chapter, two kinds of experiments the rigid body collision and elastic rod 
collision are carried out. In the experiment of rigid body collision problem on chapter 4.1, 
the contact surfaces are made of the golf ball and a short rod (0.6m). By using this 
configuration, the contact frequency between the rod and the rigid masses are much lower 
than the natural frequency of the rod elastic mode. In this case the collision problem can be 
regarded as the rigid body collision problem. For the experiment of elastic body collision 
problem on chapter 4.2, the contact surfaces are made of the steel ball and a long rod (2m). 
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By using this configuration, the contact frequency between the rod and the rigid masses are 
close to the natural frequency of the rod elastic mode so that the collision can be regarded as 
the elastic body collision problem. 

 
4.1 Rigid body collision 
 An experimental apparatus consisting of two steel rigid masses and one short rod was 
used to validate the mathematical simulations. A golf ball was attached to each end of the 
rigid masses. The rigid masses were hung from a support frame by an aluminum arm (see 
Fig. 13). The impacts were obtained by releasing the first mass from a predetermined height. 
Table 4 shows the experimental parameters defining the rod and rigid masses. With this 
configuration it is possible to assume that the elastic modes of vibration can be neglected 
during impacted because ωb and ωd are small compared with the natural frequencies of 
elastic vibration.  

Table 4  Experimental parameters for rigid body collision.  
Parameter Value 

mb 0.9 kg 
mL 1.8 kg 
md 0.45, 0.9 kg 
hb- 0.15 m 
kb 1 × 106 N/m 
kd 1 × 106 N/m 
ωb 1 × 103 rad/s 
ωd 1 × 103, 1.5× 103 rad/s 

 
 The rod was supported by leaf springs on two supporting points to avoid yawing 
motion. The natural frequency of the supported rod was varied by altering the spring length 
and thickness. Table 5 shows the natural frequencies of the supported rod.   
 

Table 5  Natural frequency of the supported rod. 
No Length of leaf 

spring (mm) 
Thickness of leaf 

spring (mm) 
k 

(N/m) 
ω 

(rad/s) 
1 32.15 4 6.1 × 106 2835.3  
2 53.35 4 2.2 × 106 1562.9 
3 31.30 1 1.8 × 105 477.5 
4 42.85 1 7.3 × 104 318.9 
5 97.50 1 8.9 × 103 95.5 

  
 The maximum height of mb before collision and the maximum heigh of md after 
collision are measured by using a high speed camera. The transfer of energy from mb to md 
was calculated by comparing the maximum height of md after collision to the maximum 
height of mb before collision. 

 maxd d

b b

E h
E h

+

− −

= .   (47) 
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Computer
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Leaf spring support frame

mb(1 kg) 

Rod(Steel, d=0.02m, L=0.6m)

cylinder

golf ball

 
Fig. 13 Experimental apparatus for collision of rigid body. 

 
 Figure 14 shows the simulation and experimental result of the energy transfer, Ed+/Eb-. 
It should be pointed out that the results shown in Fig. 14 are for the special case, depicted in 
Fig. 3, wherein kb = kd. The transfer of energy that was obtained in the experimental was 
smaller than that calculated in the simulation. The difference is mainly due to energy losses 
from contact damping.  

0 5 10 15
0

10

20

30

40

50

60

70

E d+
/E

b-
  (

%
)

Frequency ratio(ω
d
/ω)

md
/m=0.5(simulation) 

md
/m=0.25(simulation) 

md
/m=0.25(experiment) 

md
/m=0.5(experiment) 

 
Fig. 14 Transfer of energy of rigid body. 

 
 Figure 15 shows the comparison of the acceleration time history of md obtained from 
the simulation and the experiment. T in Fig. 15 denotes the contact time obtained 
experimentally. As shown in Fig. 15, the acceleration at the end surface of the second 
cylinder resembled a single pulse and the amplitude of the subsequent periodic waves was 
reduced. 
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Fig. 15 Acceleration of md during collision.  

 
4.2 Elastic rod collision  
 Figure 16 shows the experimental apparatus for the elastic rod problem. A long rod 
with a 2m length and 0.02 m diameter was hung using two wires. Two rigid masses mb and 
md were positioned on each side of the rod. The initial height of mb from its equilibrium 
position was 0.05 m, while md was initially contacting the rod. The rigid mode natural 
frequency of the rod is 6.2 rad/s. This frequency is small compared to the natural frequency 
of its first elastic mode and the contact frequencies ωb and ωd, which allows the rod to be 
assumed to be in a freely supported condition.  

hb- 

mb(1 kg) 

Rod (steel, d= 0.02m, L=2m) 
md(1 kg) 

Wire (0.25 m) 

High speed camera 

Computer 

Rigid mass Rigid mass 

 

Fig. 16  Experimental setup for collision of elastic rod. 
 
 Variation of frequency ratio was obtained by using different contact stiffness. The 
contact stiffness between the rod and both mb and md were determined by collisions with a 
rigid wall using the experiment set-up shown in Fig. 17. A mass is shown colliding with a 
rigid wall with initial velocity vb-. The response of the mass during the collision was 
measured using an accelerometer. The contact duration was measured by using an electrical 
contact switch. The contact stiffness is obtained by reconciling the simulation results and 
the experimental data. Table 6 shows the calculated contact stiffness for four kinds of 
contact surfaces.  
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Fig. 17  Experimental setup for determining the contact stiffness. 

 
Table 6  Contact stiffness and contact frequency. 

Material of contact type Contact 
stiffness (N/m) 

Contact 
frequency(rad/s)

Steel ball(R=12.5mm)-steel plate 1.5× 108 12000 
Steel ball(R=12.5mm)-brass plate 8 × 107 8900 

Steel ball(R=12.5mm)-aluminum plate 6 × 107 7700 
Steel ball(R=12.5mm)-plastic plate 6 × 106 2400 

   
 The transfer of energy from mb to md is shown in Fig. 18. Figure 18 shows that the 
simulation results and the experimental data are in good agreement. The differences in 
magnitude between simulation and experimental results are mainly due to contact damping.  
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Fig. 18 Elastic rod energy transfer.  

 
 The difference between the experiment and the simulation result obtained from rigid 
body collision is larger than that obtained in elastic rod collision. For the rigid body 
collision, the rod is supported by the elastic spring. This supporting condition will introduce 
some energy loss due to friction damping. However, for the elastic rod collision, the rod is 
hanged by the wires so that the energy lose is very small. 

 

5. Conclusions 

The formulation and analysis of collision problems consisting of two rigid masses with 
a supported rigid rod and a free elastic rod has been presented. Although these are idealized 
systems, they can be used to simply model systems involving momentum exchange impact 
dampers.  

For collision between rigid bodies, the maximum transfer of energy is obtained when 
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the natural frequency of the system in the contact state is the same as contact frequency 
between main body and both the impact mass (ωb) and the absorber mass (ωd). In this 
collision case, the mass ratio is significant in determining the transfer of energy. The 
amount of energy transfer increases as the contact frequency ωb increases. When the 
frequency ratio between ωb and natural frequency of main body greater than 100, the 
collision can be regarding as a free collision problem and the transfer of energy can be 
calculated using energy and momentum conservation.  

For collision problems involving a free elastic rod, the maximum transfer of energy is 
obtained when the value of ωb is close to that of ωd. The transfer of energy is primarily 
governed by its elastic modes of vibration. In this case, changing the mass ratio does not 
significantly influence the energy transfer.   
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