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Abstract 

 The elastic constants and thermal expansivities in monocrystals of three 

transition-metal diborides with the AlB2 structure, CrB2, TiB2 and ZrB2 have been 

investigated in the temperature range from 300 to 1373K and from 300 to 1073K, respectively. 

The anisotropic parameters deduced from the measured elastic constants and thermal 

expansivities indicate that of the three diborides, the anisotropy is the most and least 

significant in CrB2 and ZrB2, respectively. The factors determining the significance in 

anisotropy in atomic bonding in AlB2-type diborides are analyzed by an approach similar to 

the valence-force-field method and are discussed in terms of the deformation of the electronic 

charge around the metal atoms occurring to fit themselves in the (0001) basal plane. 
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1. Introduction 

Many transition-metal diborides, MB2 (M: transition-metal atom) with the hexagonal 

AlB2 structure (space group: P6/mmm) exhibit a wide variety of attractive properties such as 

high melting temperature, high stiffness and hardness, and high electrical and thermal 

conductivity [1-3] and thus have many different applications. For example, TiB2 has often 

been used as reinforcements in various composite materials such as steel [4]. TiB2 has also 

been considered in applications in diffusion barriers for preventing electromigration in very 

large-scale integrated (LSI) circuits because of the very low diffusion coefficient [5]. ZrB2 

and HfB2 have long been used as refractory crucibles and sheaths in steel making industries 

because of their high corrosion-resistance [6]. In addition, ZrB2 is recently under 

consideration for the use as a substrate for heteroepitaxial growth of GaN because of small 

mismatches in lattice constants and thermal expansivities with GaN [7-12]. 

The hexagonal AlB2 structure, into which these transition-metal diborides crystallize, 

is build up of hexagonal nets of pure transition-metal atoms and triangle nets of pure boron 

atoms, which are alternately stacked along the c-axis, as shown in Fig. 1. The crystal structure 

can hence be regarded as a layered structure. If we describe the crystal structure as a packing 

of touching spheres with RM and RB (radii of M and B atoms), simple geometrical 

consideration gives the M-M distance (=2RM) as a, the B-B distance (=2RB) as a/3
1/2

 and the 

M-B distance (=RM + RB) as (a
2
/3 + c

2
/4)

1/2
, where a and c denote the lattice constants along 

the a- and c- axes, respectively. Hence, the ideal c/a axial ratio of 1.0746 (=(4/3)
1/4

) is 

deduced together with the ideal atomic size ratio RM/RB =3
1/2

=1.732. In fact, c/a axial ratios 

for many transition-metal diborides are close to the above ideal value as shown in the 

left-hand side of Fig. 2 [13] while those for lanthanoid-metal diborides are larger than the 

ideal value as shown in the right-hand side of the figure. Close examination of the c/a axial 

ratios indicates that the c/a axial ratios of some diborides formed with, for example, Cr, V and 



 4 

Ta are a little smaller than the ideal value, while those of other diborides formed with, for 

example, Hf, Zr and most of lanthanoid-metals are a little larger than the ideal one, and that 

diborides formed with Al, Ti and Nb possess the c/a axial ratios very close to the ideal value. 

When considering the fact that the crystal structure can be regarded as a layered structure, 

physical properties are expected to be highly anisotropic and the extent of the anisotropy 

varies from diboride to diboride, depending on their c/a axial ratios. However, because mainly 

of the inherent difficulty in growing monocrystals of transition-metal diborides due to their 

high melting points (usually exceeding 2500 K, see Table 1) [14-16], almost nothing is known 

about how their physical properties vary with crystallographic directions (anisotropy) and 

how the extent of anisotropy varies from diboride to diboride for most of these 

transition-metal diborides. 

In the present study, we investigate monocrystal elastic constants and thermal 

expansivities as a function of crystal orientation with the use of monocrystals of CrB2, TiB2 

and ZrB2, whose c/a axial ratios are smaller than, almost identical with and larger than the 

ideal value, respectively, as shown in Fig. 2 and Table 1. We discuss anisotropy in physical 

properties of these transition-metal diborides in terms of chemical bondings. 

 

2. Experimental procedures 

 Monocrystals of CrB2 were grown with an optical floating-zone furnace while those of 

TiB2 and ZrB2 were grown with a radio-frequency (RF) heated floating-zone furnace as 

described previously [17, 18]. After determining the crystallographic orientations by the 

X-ray back reflection Laue method, specimens with a rectangular parallelepiped shape having 

three orthogonal faces parallel to the (0001), (11 2 0) and (1100) planes were cut from the 

crystals by spark-machining. Then, the specimen surface was mechanically polished with 

diamond paste. The maximum error in parallelism for each face was at most 3 m/mm. The 
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deviation from the respective crystallographic orientation was smaller than 0.2º for each face. 

The dimensions of specimens used for the measurements of elastic constants and thermal 

expansivities are summarized in Table 2. 

 Measurements of elastic constants were carried out by the rectangular parallelepiped 

resonance (RPR) method [19] in the temperature range from room temperature to 1373K. In 

this method, all elastic constants are derived from the frequencies of resonance vibrations of 

specimen [19]. Measurements of thermal expansivities were carried out with a push-rod type 

differential dilatometer (Shimazdu TMA-60) in the temperature range from room temperature 

to 1073 K at the heating rate of 5 K per minute under an Ar gas flow.  

 

3. Results 

3.1. Monocrystal elastic constants 

Monocrystal elastic constants of CrB2, TiB2 and ZrB2 are plotted respectively in Figs. 

3(a)-(c) as a function of temperature. Values of c11, c33 and c44 decrease monotonically with 

the increase in temperature, while those of c12 and c13 are virtually temperature independent 

for all transition-metal diborides investigated. Although actual temperature dependence of 

elastic constants is slightly nonlinear even in very-well-behaved materials, these data points 

for each of the five elastic constants are fitted to a linear equation in the form of  

)300()300( Tkcc Kijij ,       (1) 

where cij(300K), k and T stand respectively for the elastic constant at 300 K, numerical constant 

and temperature in Kelvin, as tabulated in Table 3. The values of elastic constants for TiB2 

determined in the present study agree well with those previously reported by Spoor et al. [20] 

but not completely with those reported by Gilman et al. [21]. In particular, the values of c12 

and c13 determined in the present study are considerably smaller than those reported by 

Gilman et al. [21]. While the values of c12 and c13 for CrB2 are comparable to that of c44, those 
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of c12 and c13 for TiB2 and ZrB2 are notably smaller than those of the other constants, 

indicating the brittleness of TiB2 and ZrB2. The values of anisotropic parameters defined in 

crystals with the hexagonal symmetry as c33/c11 and c44/c66 are both the largest for ZrB2 and 

the smallest for CrB2, as tabulated in Table 3.  

The orientation dependence of Young modulus on (11 00) prism plane at 300 and 1373 

K is depicted in Fig. 4(a) for CrB2, TiB2 and ZrB2. The curves in Fig. 4(a) are calculated with 

the following equation [22]: 

22

1344

4

33

4

11 21 cossin)ss(cosssinsE ,   (2) 

where θ is the angle between the corresponding loading direction and the c-axis, E is Young 

modulus along the loading direction, and sij is elastic compliance constants. The values of 

Young modulus increase monotonically as the angle θ increases for CrB2 and TiB2, whereas 

those for ZrB2 exhibit a maximum along a direction approximately θ=60º at both 300 and 

1373 K. The values of Young modulus along the a- (Ea) and c-axes (Ec) at 300 K as well as 

their ratio (Ec/Ea) are tabulated in Table 4 for CrB2, TiB2 and ZrB2. The value of Ec/Ea 

increases in the order of CrB2, TiB2 and ZrB2. The values of Ea and Ec are both the largest for 

TiB2 and the smallest for CrB2, but the value of Ec/ Ea is the largest for ZrB2 and the smallest 

for CrB2. 

 Linear compressibilities along the a- and c-axes, a and c, for a hexagonal crystal can 

be defined with the following equations [22]; 

 131211 sssa ,        (3) 

 33132 ssc .        (4) 

The reciprocal values of a and c and their ratio at 300 K are tabulated in Table 4 for CrB2, 

TiB2 and ZrB2. The value of a
-1

 is the largest for CrB2 and is the smallest for ZrB2, but that of 

c
-1

 is the largest for ZrB2 and is the smallest for CrB2. The value of c
-1

/ a
-1

 is the largest for 

ZrB2 and the smallest for CrB2. 
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3.2. Polycystalline elastic moduli 

Polycrystalline elastic moduli are evaluated from the monocrystal elastic constants by 

the Hill’s method [23]. The temperature dependence of Young (E), bulk (B) and shear (G) 

moduli as well as that of Poisson ratio are illustrated in Figs. 5(a)-(c) respectively for CrB2, 

TiB2 and ZrB2. As in the case of monocrystal elastic constants, the values of Young, bulk and 

shear moduli all decrease monotonically with increasing temperature. While the values of 

shear modulus are comparable with those of bulk modulus for TiB2 and ZrB2, those of shear 

modulus are smaller than those of Young and bulk moduli for CrB2. This is because of the 

exceptionally small values of c44 for CrB2 as shown in Fig. 3(a). Although the bulk moduli of 

the pure transition metals differ considerably [Cr: 190; Ti: 105; Zr: 83 (GPa)] [24], those of 

the boride compounds are similar, indicating the strong role of covalent B-B bonding. The 

values of Poisson ratio generally increase with increasing temperature and range from 0.206 

to 0.230, from 0.112 to 0.123, and from 0.133 to 0.151 for CrB2, TiB2 and ZrB2, respectively. 

The small values of Possion ratio again indicate the strong covalence in these diborides. The 

data points for each of these polycrystalline elastic moduli as well as Poisson ratio are fitted to 

a linear equation in the form of Eq. (1). The values of polycrystalline elastic moduli and 

Poisson ratio at 300 K are tabulated in Table 5 for CrB2, TiB2 and ZrB2, together with the 

numerical constants in the fitting equation. 

 

3.3. Thermal expansivities 

 Thermal expansivity data obtained along the a- and c-axes as relative elongation with 

respect to the original specimen length at room temperature were fitted with a quartic function. 

Thermal expansivities were, then, derived by differentiating the fitted quartic function with 

respect to temperature. The values of thermal expansivities thus determined are plotted in Figs. 
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6(a)-(c) as a function of temperature for CrB2, TiB2 and ZrB2, respectively. For CrB2, the 

value of thermal expansivity along the a-axis ( a) is as large as 14.0×10
-6

 K
-1

 at room 

temperature and rapidly decreases with increasing temperature up to around 700K, followed 

by a slight increase at higher temperatures. On the other hand, the value of thermal 

expansivity along the c-axis ( c) for CrB2 is as small as 2.9×10
-6

 K
-1

 at room temperature and 

monotonically increases with increasing temperature. We consider that the unusual 

temperature dependence of thermal expansivities for CrB2 may be related to the magnetic 

thermal expansion due to the antiferromagnetism of CrB2 as reported by Nishihara et al. [25]． 

On the other hand, the temperature dependence of thermal expansivities along the a- and 

c-axes for TiB2 and ZrB2 is rather small when compared to that for CrB2. The value of thermal 

expansivity along the c-axis is considerably larger (by almost 50 %) than the corresponding 

value along the a-axis for TiB2. For ZrB2, on the other hand, the value of thermal expansivity 

along the c-axis is slightly larger than the corresponding value along the a-axis at 

temperatures below around 700K while they are virtually identical to each other at higher 

temperatures. The values of thermal expansivities averaged over the temperature range from 

300 to 1073 K are tabulated in Table 6, together with the ratio of the thermal expansivities 

along the a- and c-axes. 

 

4. Discussion 

 The anisotropic parameters in elasticity, c33/c11, c44/c66，Ec/Ea and c
-1

/ a
-1

 for CrB2, 

TiB2 and ZrB2 are plotted in Fig. 7 as a function of the magnitude of their a-axis lattice 

constant together with those in thermal expansivity, c/ a. All the anisotropic parameters in 

elasticity are smaller than unity whereas those of thermal expansivity are larger than unity 

(except for the c/ a value for CrB2), indicating that atomic bonding along the a-axis is 

stronger than that along the c-axis for all the diborides, which is consistent with the fact that 
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the AlB2-type crystal structure is of the layered-type, in which hexagonal nets of pure 

transition-metal atoms and pure boron atoms stacked alternatively along the c-axis. Of the 

three diborides, the anisotropy is the least significant in ZrB2 since the values of c44/c66 and 

c/ a are close to unity. This is somewhat surprising when considering the fact that ZrB2 

exhibits the largest value of the c/a axial ratio, since the ratio of the strength of atomic 

bonding along the c-axis to that along the a-axis is considered to be the smallest on the rough 

assumption that the atomic bond strength decreases with the increase in the bond distance. In 

the following, we will discuss some possible reasons why ZrB2 with the largest c/a axial ratio 

exhibits the least significant anisotropic behavior and vise versa. 

If the B-B distance in the (0001) plane of an AlB2-type metal diboride is assumed to 

be identical with the covalent bonding distance of B atoms in pure α-boron (0.176 nm) [26], 

the magnitude of the a-axis lattice constant of the diboride should be 0.305 nm since the B-B 

distance (=2RB) corresponds to a/3
1/2

, as described in Introduction section. On the basis of a 

packing of touching spheres of M and B atoms in describing the crystal structure, the 

Goldschmidt radius (RM(G)) of the M atom should be 0.152 nm as the M-M distance (=2RM) 

corresponds to a. This value of the Goldschmidt radius (RM(G)) for the M atom is designated 

as the ideal Goldschmidt radius (RM(ideal)). In this circumstance, the ideal c/a axial ratio of 

1.0746 (=(4/3)
1/4

) is achieved with the ideal atomic size ratio RM/RB =3
1/2

=1.732. This is 

almost completely achieved for TiB2 with the Goldschmidt radius (RTi(G)) of 0.146 nm [27]. 

However, if the constituent M atom in a metal diboride possesses RM(G) larger than the ideal 

value (RM(ideal)=0.152 nm), the diboride should expand along the a-axis in the (0001) plane so 

as to make the B-B distance larger than 0.176 nm. This corresponds to the case of ZrB2, in 

which the B-B distance is 0.1807 nm. However, this expansion along the a-axis is not 

sufficient to allow Zr atoms packed hexagonally in the (0001) plane in ZrB2 and there still 

exist the overlapping of Zr atom spheres, as shown in Fig. 8(a). Then, the electronic charge 
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around Zr atoms in ZrB2 is considered to deform to elongate along the c-axis (Fig. 8(b)). As a 

result, the interaction along the c-axis is expected to become relatively stronger in spite of the 

c/a axial ratio (1.129) larger than the ideal one (1.0746). The atomic bonding in ZrB2 is thus 

considered to be more isotropic than that in TiB2. 

On the other hand, if the constituent M atom of a metal diboride possesses RM(G) 

smaller than the ideal value, the diboride should contract along the a-axis in the (0001) plane. 

This corresponds to the case of CrB2 whose a-axis lattice constant (0.2973 nm) [13] is smaller 

than the ideal one (0.305 nm). This contraction along the a-axis for CrB2 is not sufficient for 

hexagonally-arranged spheres of Cr atoms to touch each other in the (0001) plane and the Cr 

atom spheres are left separated in the (0001) plane, as shown in Fig. 8(c). Then, the electronic 

charge around Cr atoms in CrB2 is considered to deform to elongate along the a-axis (Fig. 

8(d)). As a result, the interaction along the c-axis is expected to become relatively weaker in 

spite of the c/a axial ratio (1.033) smaller than the ideal one (1.0746). The anisotropy in 

atomic bonding is thus considered to be more significant in CrB2 than in TiB2. 

The fact that the relative atomic bond strength in basal plane (along the a-axis) with 

respect to that out of basal plane (along the c-axis) increases in the order of ZrB2, TiB2 and 

CrB2 can be quantitatively validated by deriving force constants both in and out of basal plane 

from their elastic constants. These force constants are analyzed by adopting an approach 

similar to the valence-force-field method [28-31]. In this approach, all interatomic forces are 

resolved into bond-stretching and bond-bending forces and the elastic properties are described 

with the force constants corresponding to these two forces. Because of the strong role of 

covalent B-B bonding, the bond-bending (non-central) forces in CrB2, TiB2 and ZrB2 are 

considered to be significant. However, we here consider only the bond-stretching (central) 

interaction between a given atom and its first-nearest-neighbor atoms in order to deduce the 

bond-stretching force constants in and out of basal plane from the experimentally determined 
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elastic constants [32]. If we ignore the bond-bending interaction, the total elastic energy of a 

metal diboride, U can be written as follows, 

i

ic

i

ia )r(k)r(kU 22  ,      (5) 

where ka and kc are the force constants in and out of basal plane, respectively, and Δri is the 

change in the bond length between the given atom and the ith first-nearest-neighbor atom. The 

magnitude of Δri is calculated for the deformation matrix ε by the following equation, 

 
2

i

t

ii
ir

r

rr
 ,        (6) 

where ri is a position (row) vector for the ith first-nearest-neighbor atom while ri
t
 is the 

transposed (column) vector of ri. The elastic constants are derived as the second derivative of 

Eq. (5) as follows, 

 )(U
d

d
cij 2

2

 ,         (7) 

where ε is the magnitude of strain corresponding to cij. We will express c44 and c66 with the 

force constants, since the change in anisotropy in elastic properties for CrB2, TiB2 and ZrB2 is 

best described with the c44/c66 ratio (Fig. 7) although hexagonal crystals provide anisotropic 

parameters of c13/c12, c33/c11, c44/(c11-c12) and so forth other than c44/c66. If the following 

deformation matrices are used, 

00

00

000

2

1
44 )c( , 

000

00

00

2

1
66 )c( ,     (8) 

the elastic constants c44 and c66 are deduced with the force constants ka and kc as follows, 

 
ca k

)ac(

)ac(
kc

2

244
4

3
480 ,       (9) 

 ca k
)ac(

kc

2

266
4

3
163 .      (10) 
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The constants of the second term in Eqs. (9) and (10) vary with the c/a axial ratio and the 

values for CrB2, TiB2 and ZrB2 are tabulated in Table 7. The ratio of ka/kc with which the 

value of c44/c66 coincides with the experimentally determined value is tabulated in Table 7. 

The ratio of ka/kc is the largest for CrB2 and is the smallest for ZrB2, which is consistent with 

our qualitative expectation that the ratio of the atomic bond strength in basal plane to that out 

of basal plane is the largest for CrB2 and is the smallest for ZrB2.  

The value of RM(G)-RM(ideal) is thus considered to be a good indicator for predicting the 

extent of the anisotropy in atomic bonding in metal diborides with the AlB2 structure. The 

values of the anisotropic parameters c44/c66 derived by ab-initio calculations by Shein et al. 

[33] are plotted in Fig. 9 as a function of the value of RM(G)-RM(ideal). The experimental values 

of c44/c66 for CrB2, TiB2 and ZrB2 determined in the present study are also plotted with solid 

circles in the figure. The values of c44/c66 for all the metal diborides except for MgB2 and 

AlB2 generally increase with the increase in the value of RM(G)-RM(ideal). This is consistent with 

what is discussed in the present paper in terms of the anisotropy in atomic bonding of 

AlB2-type borides; the significance in anisotropy in atomic bonding is reduced as the 

Goldschmidt radius (RM(G)) of the M atom and thereby the c/a axial ratio of the AlB2-type 

borides increases due to the occurrence of the elongation of the electronic charge around the 

M atom along the c-axis by an amount corresponding to the value of RM(G)-RM(ideal). The 

values of c44/c66 for MgB2 and AlB2 are exceptionally small. This may be because the bonding 

nature for metal diborides without d electrons is quite different from that for metal diborides 

with d electrons.  

 

5. Conclusions  

(1) All the five independent monocrystal elastic constants of CrB2, TiB2 and ZrB2 have been 

determined in the temperature range from 300 to 1373K. The anisotropic parameters of c33/c11 
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and c44/c66 as well as the ratios of the Young moduli and reciprocals of linear compressibilities 

along the a- and c-axes (Ec/Ea, c
-1

/ a
-1

) are smaller than unity. These anisotropic parameters 

decrease in the order of ZrB2, TiB2 and CrB2. The small values of Possion ratio (CrB2: 0.207, 

TiB2: 0.111, ZrB2: 0.135 at 300 K) indicate the strong covalence in these diborides. 

(2) The values of thermal expansivities along the a- and c-axes of CrB2, TiB2 and ZrB2 have 

been determined in the temperature range from 300 to 1073K. The temperature dependence of 

the theramal expansivities along the a- and c-axes for CrB2 is considerably large whereas that 

for TiB2 and ZrB2 is relatively small. The ratio of the theramal expansivities along the a- and 

c-axes ( c/ a) for TiB2 is larger than that for ZrB2. 

(3) The ratio of the bond strength out of basal plane to that in basal plane increases in the 

order of CrB2, TiB2 and ZrB2, as evidenced with the force constant ratio of ka/kc calculated by 

an approach similar to the valence-force-field method. The significance in anisotropy in 

atomic bonding in AlB2-type diborides is reduced as the Goldschmidt radius (RM(G)) of the M 

atom and thereby the c/a axial ratio of the AlB2-type borides increases due to the occurrence 

of the elongation of the electronic charge around the M atom along the c-axis by an amount 

corresponding to the value of RM(G)-RM(ideal). 
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Figure captions 

Fig. 1.  (Color online) (a) Crystal structure of metal diborides with the hexagonal AlB2 

structure. The frame indicates a unit cell. Projection of the crystal structure along 

the (b) [0001] and (c) [11 2 0] directions. 

Fig. 2.  Experimental lattice constants of various metal diborides with the AlB2 structure. 

Data are taken after Ref. 13. 

Fig. 3.  (Color online) Five independent monocrystal elastic constants of (a) CrB2, (b) TiB2 

and (c) ZrB2 plotted as a function of temperature. Experimental error bars are 

smaller than the symbol sizes. 

Fig. 4.  (Color online) Orientation dependence of Young modulus at 300 and 1373 K on 

(11 00) prism plane for CrB2, TiB2 and ZrB2. 

Fig. 5.  (Color online) Young, bulk, shear moduli and Poisson ratio for polycrystals of (a) 

CrB2, (b) TiB2 and (c) ZrB2 plotted as a function of temperature. Experimental error 

bars for moduli are smaller than the symbol sizes. 

Fig. 6.  (Color online) Thermal expansivities for (a) CrB2, (b) TiB2 and (c) ZrB2 along the 

a- and c-axes plotted as a function of temperature. 

Fig. 7.  (Color online) Anisotropic parameters in elasticity, c33/c11, c44/c66，Ec/Ea and 

c
-1

/ a
-1

 for CrB2, TiB2 and ZrB2 as well as those in thermal expansivities, c/ a, 

plotted as a function of the magnitude of their a-axis lattice constant. Experimental 

error bars are smaller than the symbol sizes. 

Fig. 8. (Color online) Schematics of the distribution of the electronic charge around M 

atoms in the (01 10) plane. The value of )ideal(M)G(M RR  is (a,b) positive and (c,d) 

negative. (a,c) Uniform and (b,d) non-uniform distributions of the electronic charge 

around the M atoms are assumed. 

Fig. 9. Anisotropic parameters of c44/c66 for several metal diborides derived by ab-initio 
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calculations [33] (open circles) and those for CrB2, TiB2 and ZrB2 experimentally 

determined in the present study (solid circles) plotted as a function of the value of 

)ideal(M)G(M RR . Experimental error bars are smaller than the symbol sizes. 
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Table 1. Lattice constants, c/a axial ratio, B-B atomic distance, melting temperature, 

Goldschmidt radius of the constituent metal atom, RM(G), and the difference between the 

Goldschmidt radius of the metal atom and the ideal one (RM(ideal)) for CrB2, TiB2, ZrB2, and  

the ideal diboride. 

 a (nm) c (nm) c/a B-B (nm) Tm (K) 
RM(G) 

(nm) 

RM(G)-RM(ideal) 

(nm) 

CrB2 0.2973
a 0.3072

a 1.033 0.1716 2473
b
 0.128

f -0.024 

TiB2 0.3038
a 0.3239

a 1.066 0.1754 3193
c
 0.146

f -0.006 

ZrB2 0.3130
a 0.3533

a 1.129 0.1807 3518
d
 0.160

f +0.008 

Ideal 0.305 0.328 1.0746 0.176
e
 - 0.152 0 

 

a
 Ref. 13. 

b
 Ref. 14. 

c
 Ref. 15. 

d
 Ref. 16. 

e
 Ref. 26. 

f
 Ref. 27. 
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Table 2. Dimensions of specimens used for the measurements of elastic constants and thermal 

expansivities. 

Dimensions (mm) CrB2 TiB2 ZrB2 

Elastic constants 

[0001] 2.819 2.395 3.762 

[11 2 0] 2.792 3.752 3.673 

[11 00] 2.452 2.788 3.694 

Thermal expansivities 

(longitudinal axis) 

a-axis 6.142 6.245 6.862 

c-axis 8.709 7.244 7.910 
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Table 3. Monocrystal elastic constants at 300 K in the form of )300()300( Tkcc Kijij  

where cij(300K), k and T stand for the elastic constant at 300 K, numerical constant and 

temperature in Kelvin, respectively, and anisotropic parameters (c33/c11 and c44/c66) at 300 K. 

The numerical constants are shown in the parentheses. Previously reported monocrystal 

elastic constants for TiB2 are also tabulated for comparison [20, 21]. 

 
c11 

(GPa) 

c33 

(GPa) 

c12 

(GPa) 

c13 

(GPa) 

c44 

(GPa) 

c66* 

(GPa) 
c33/c11 c44/c66 

CrB2 
583.7 

(-0.0586) 
343.3 

(-0.0311) 
117.3 

(0.0044) 
119.7 

(-0.0044) 
143.1 

(-0.0284) 
233.2 

(-0.0315) 
0.588 0.614 

TiB2 
654.5 

(-0.0412) 
454.5 

(-0.0305) 
56.5 

(0.0060) 
98.4 

(-0.0016) 
263.2 

(-0.0253) 
299.0 

(-0.0236) 
0.694 0.880 

TiB2
a
 660 432 48 93 260 306 0.655 0.850 

TiB2
b
 690 440 410 320 250 140 0.638 1.786 

ZrB2 
567.8 

(-0.0431) 
436.0 

(-0.0294) 
56.9 

(0.0051) 
120.5 

(-0.0022)  
247.5 

(-0.0261) 
255.4 

(-0.0241) 
0.768 0.969 

 

* c66=(c11 - c12)/2 
a
 Ref. 20. 

b 
Ref. 21. 
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Table 4. Values of Young moduli and reciprocals of linear compressibilities along the a- and 

c-axes at 300 K. 

  Young moduli 
Reciprocals of linear 

compressibilities 

 Ea (GPa) Ec (GPa) Ec/Ea a
-1

 (GPa) c
-1

 (GPa) c
-1

/ a
-1

 

CrB2 531.4 302.4 0.569 948.2 459.3 0.484 

TiB2 631.2 427.2 0.677 853.1 590.8 0.692 

ZrB2 533.3 387.7 0.727 772.1 631.3 0.818 
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Table 5. Values of polycrystalline elastic moduli (Young (E), bulk (B), shear (G)) and Poisson 

ratio ( ) at 300 K obtained by linear fitting with Eq. (1). The numerical constants obtained by 

linear fitting are shown in the parentheses. 

 E (GPa) B (GPa) G (GPa)  

CrB2 
422.5 

(-0.0594) 
240.2 

(-0.0170) 
175.0 

(-0.0273) 

0.206 

(2.21×10
-5

) 

TiB2 
583.5 

(-0.0450) 
250.0 

(-0.0125) 
262.6 

(-0.0226) 

0.111 

(1.10×10
-5

) 

ZrB2 
526.0 

(-0.0457) 
240.1 

(-0.0127) 
231.7 

(-0.0225) 

0.135 

(1.32×10
-5

) 
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Table 6. Values of thermal expansivities averaged over the temperature range from 300 to 

1073 K and the ratio of the thermal expansivities along the a- and c-axes. 

 
a 

(×10
-6

 [K
-1

]) 

c 

(×10
-6

 [K
-1

]) 
c / a 

CrB2 9.66 8.81 0.91 

TiB2 6.35 9.30 1.46 

ZrB2 6.66 6.93 1.04 
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Table 7. Values of the coefficients of the second term in Eqs. (9) and (10) and the ratio of ka/kc 

with which the value of c44/c66 coincides with the experimentally determined value.  

 c44 c66 ka/kc 

CrB2 2.963 0.925 1.30 

TiB2 2.981 0.874 0.84 

ZrB2 2.998 0.784 0.77 
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