
Title Network design with edge-connectivity and degree constraints

Author(s) Fukunaga, Takuro; Nagamochi, Hiroshi

Citation Theory of Computing Systems (2009), 45(3): 512-532

Issue Date 2009-10

URL http://hdl.handle.net/2433/87748

Right c Springer Science+Business Media, LLC 2008.

Type Journal Article

Textversion author

Kyoto University

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kyoto University Research Information Repository

https://core.ac.uk/display/39219392?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Network design

with edge-connectivity and degree constraints

Takuro Fukunaga Hiroshi Nagamochi

{takuro, nag}@amp.i.kyoto-u.ac.jp
Department of Applied Mathematics and Physics,

Graduate School of Informatics, Kyoto University, Japan

Abstract

We consider the following network design problem; Given a vertex set V with a

metric cost c on V , an integer k ≥ 1, and a degree specification b, find a minimum

cost k-edge-connected multigraph on V under the constraint that the degree of each

vertex v ∈ V is equal to b(v). This problem generalizes metric TSP. In this paper,

we show that the problem admits a ρ-approximation algorithm if b(v) ≥ 2, v ∈ V ,

where ρ = 2.5 if k is even, and ρ = 2.5 + 1.5/k if k is odd. We also prove that

the digraph version of this problem admits a 2.5-approximation algorithm and discuss

some generalization of metric TSP.

Keywords: approximation algorithm, degree constraint, edge-connectivity, (m, n)-

VRP, TSP, vehicle routing problem

1 Introduction

It is a main concern in the field of network design to construct a graph of the least cost

which satisfies some connectivity requirement. Actually many results on this topic have

been obtained so far. In this paper, we consider a network design problem that asks to

find a minimum cost k-edge-connected multigraph on a metric edge cost under degree

specification. This provides a natural and flexible framework for treating many network

design problems. For example, it generalizes the vehicle routing problem with m vehicles

(m-VRP) [5, 9], which will be introduced below, and hence contains a well-known metric

traveling salesperson problem (TSP), which has already been applied to numerous practical

problems [12].

Let Z+ and Q+ denote the sets of non-negative integers and non-negative rational

numbers, respectively. Let G = (V,E) be a multigraph with a vertex set V and an edge

set E, where a multigraph may have some parallel edges but is not allowed to have any

loops. For two vertices u and v, an edge joining u and v is denoted by uv. Since we

consider multigraphs in this paper, we distinguish two parallel edges e1 = uv and e2 = uv,

which may be simply denoted by uv and uv. For a non-empty vertex set X ⊂ V , d(X;G)

(or d(X)) denotes the number of edges joining vertices in X and those in V − X. In

particular d(v;G) (or d(v)) denotes the degree of vertex v in G. The edge-connectivity

1

s

Figure 1: A solution for 4-VRP

λ(u, v;G) (or λ(u, v)) between u and v is the maximum number of edge-disjoint paths

between them in G. The edge-connectivity λ(G) of G is defined as min
{u,v}∈(V

2
) λ(u, v;G),

where
(V

2

)

stands for the set of non-ordered pairs of vertices in V . If λ(G) ≥ k for some

k ∈ Z+, then G is called k-edge-connected. For a function r :
(V

2

)

→ Z+, G is called

r-edge-connected if λ(u, v;G) ≥ r(u, v) for every u, v ∈ V . For an edge cost c :
(

V
2

)

→ Q+,

c(E) or c(G) denotes
∑

e∈E c(e). The edge cost c is called metric if it obeys the triangle

inequality, i.e., c(uv) + c(vw) ≥ c(uw) for every u, v,w ∈ V .

For a degree specification b : V → Z+, a multigraph G with d(v;G) = b(v) for all

v ∈ V is called a perfect b-matching. In this paper, we focus on the following network

design problem.

k-edge-connected multigraph with degree specification (k-ECMDS):

A vertex set V , a metric edge cost c :
(V

2

)

→ Q+, a degree specification b : V → Z+, and

a positive integer k are given. We are asked to find a minimum cost perfect b-matching

G = (V,E) of edge-connectivity k. �

In this paper, we suppose that b(v) ≥ 2 for all v ∈ V unless stated otherwise, and

propose approximation algorithms to k-ECMDS in this case.

Problem k-ECMDS is a generalization of m-VRP, which asks to find a minimum cost

set of m cycles, each containing a designated initial city s, such that each of the other

cities is covered by exactly one cycle (see Fig. 1). Observe that this problem is 2-ECMDS

where b(s) = 2m for the initial city s ∈ V and b(v) = 2 for every v ∈ V − s. If m = 1,

then m-VRP is exactly TSP. Since TSP is known to be NP-hard [16] even if a given cost is

metric (metric TSP), k-ECMDS is also NP-hard. If a given cost is not metric, TSP cannot

be approximated unless P = NP [16]. For m-VRP, there is a 2-approximation algorithm

based on the primal-dual method [9].

The problem of finding a minimum cost multigraphs subject to either degree or con-

nectivity constraints are well-studied. It is known that finding a minimum cost k-edge-

connected graph is NP-hard since it is equivalent to metric TSP when k = 2 and a given

edge cost is metric. It is 2-approximable by using Jain’s algorithm [10] even if solutions are

restricted to subgraphs of the given graph and the cost is not metric. On the other hand, it

is known that a minimum cost perfect b-matching can be constructed in polynomial time

(for example, see [1]). As a prior result on problems equipped with both edge-connectivity

requirements and degree constraints, Frank [3] showed that it is polynomially solvable to

2

find a minimum cost r-edge-connected multigraph G with ℓ(v) ≤ d(v;G) ≤ u(v), v ∈ V

for degree lower and upper bounds ℓ, u : V → Z+ and a metric edge cost c such that

c(uv) is defined by w(u) + w(v) for some weight w : V → Q+ (in particular, c(uv) = 1

for every uv ∈
(V

2

)

). Recently Fukunaga and Nagamochi [6] presented approximation

algorithms for a network design problem with a general metric edge cost and some de-

gree bounds; For example, they presented a (2 + 1/⌊minu,v∈V r(u, v)/2⌋)-approximation

algorithm for constructing a minimum cost r-edge-connected multigraph that meets a

local-edge-connectivity requirement r with r(u, v) ≥ 2, u, v ∈ V under a uniform de-

gree upper bound. Lau et. al. [11] considered the problem to find a minimum cost

r-edge-connected subgraph of the given multigraph with degree bounds and general edge

cost, and proposed an algorithm which outputs a solution of cost at most twice the op-

timal although the degree upper bound for a vertex v may be violated up to 2u(v) + 3.

Fukunaga and Nagamochi [7] also gave a 3-approximation algorithm for the case where

r(u, v) ∈ {1, 2} for every u, v ∈ V and ℓ(v) = u(v) for each v ∈ V . In this paper, we

extend the 3-approximation result [7] to k-ECMDS. Concretely, we prove that k-ECMDS

is ρ-approximable if b(v) ≥ 2, v ∈ V , where ρ = 2.5 if k is even and ρ = 2.5 + 1.5/k if k is

odd. Moreover, we show that this factor can be improved when a degree specification is

uniform.

To design our algorithms for k-ECMDS, we take an approach similar to famous 2- and

1.5-approximation algorithms for metric TSP [16]. These algorithms for metric TSP first

construct Eulerian multigraphs, and transform them into Hamiltonian cycles by replacing

two edges uv and vz with a new edge uz repeatedly. The edges uv and vz are chosen so

that they appear successively in an Eulerian walk of the multigraph. In our algorithms,

we first construct the union of a minimum cost perfect b-matching and ⌈k/2⌉ copies of

Hamiltonian cycles constructed by the 1.5-approximation algorithm for metric TSP. We

then transform it into a feasible solution by applying the same operation in the algorithms

for metric TSP. Two edges to be replaced in the operation are decided based on the

structure of the graph in a more sophisticated way than in the algorithms for metric TSP.

We also generalize k-ECMDS to a network design problem in digraphs. We denote an

arc (i.e., a directed edge) from a vertex u to another vertex v by uv. Two arcs from u to

v are called parallel. Let D = (V,A) be a multi-digraph, where a multi-digraph may have

some parallel arcs but is not allowed to have any loops. For an ordered pair of vertices u

and v, λ(u, v;D) (or λ(u, v)) denotes the arc-connectivity from u to v, i.e., the maximum

number of arc-disjoint paths from u to v in D. The arc-connectivity λ(D) of D is defined

as min(u,v)∈V ×V λ(u, v;D). If λ(D) ≥ k for some k ∈ Z+, D is called k-arc-connected.

Moreover, d−(v;D) (or d−(v)) and d+(v;D) (or d+(v)) denote in- and out-degree of vertex

v in digraph D, respectively. Arc cost c : V ×V → Q+ is called symmetric if c(uv) = c(vu)

for every u, v ∈ V , and metric if it obeys the triangle inequality, i.e., c(uv)+ c(vz) ≥ c(uz)

for every u, v, z ∈ V .

We call a multi-digraph D with d−(v;D) = b−(v) and d+(v;D) = b+(v) for all v ∈

V perfect (b−, b+)-matching for in- and out-degree specifications b−, b+ : V → Z+. A

minimum cost perfect (b−, b+)-matching can be found by computing a minimum cost

perfect b-matching in a bipartite graph. The digraph version of the problem is described

3

as follows.

k-arc-connected multi-digraph with degree specification (k-ACMDS):

A vertex set V , a symmetric metric arc cost c : V × V → Q+, in- and out-degree spec-

ifications b−, b+ : V → Z+, and a positive integer k are given. We are asked to find a

minimum cost perfect (b−, b+)-matching D = (V,A) of arc-connectivity k. �

We also introduce a problem (m,n)-vehicle routing problem ((m,n)-VRP), which gen-

eralizes m-VRP so that each city other than a special city is visited by exactly n of

the m cycles. Although m-VRP is a special case of k-ECMDS, (m,n)-VRP is not con-

tained in k-ECMDS. However, we show that our algorithm for k-ECMDS also delivers

a 2.5-approximate solution to (m,n)-VRP. Moreover, we improve this algorithm to an

(1.5 + (m − n)/m)-approximation algorithm.

This paper is organized as follows. Section 2 presents an algorithm for the k-ECMDS.

Section 3 provides a 2.5-approximation algorithm for the k-ACMDS. Section 4 improves

the approximation factors of these algorithms assuming that a degree specification is uni-

form. Section 5 shows how to apply our algorithm for k-ECMDS to (m,n)-VRP. Section 6

makes some concluding remarks.

2 Algorithm for k-ECMDS

This section describes an approximation algorithm for k-ECMDS. Let (V, b, c, k) be an

instance of k-ECMDS. Our algorithm consists of the following three steps.

Feasibility check: The algorithm checks that the given degree specification b satisfies

a necessary condition for existence of feasible solutions, which will be found to be

also sufficient. If the condition is violated, it outputs message “INFEASIBLE”.

Otherwise, it goes to the following steps.

Initialization: The algorithm constructs an initial graph whose edge set is the union

of k′ = ⌈k/2⌉ Hamiltonian cycles and a perfect b-matching. This initial graph is

k-edge-connected by the existence of Hamiltonian cycles. However, it is not feasible

because the degree of each v ∈ V is b(v) + 2k′. We will see that its cost is at most

2.5 (resp., 2.5 + 1.5/k) times the optimal value if k is even (resp., odd).

Transformation into a feasible solution: The algorithm transforms the initial graph

into a feasible solution without increasing its cost. This step consists of two phases.

Phase 1 modifies only edges in the perfect b-matching while Phase 2 modifies only

edges in Hamiltonian cycles.

Now we describe each step one by one. After that, we observe validity of the algorithm.

2.1 Feasibility check

The following theorem describes a necessary and sufficient condition for a degree specifica-

tion to admit a perfect b-matching. Our algorithm first check the condition and b(v) ≥ k

4

for all v ∈ V , which are apparently necessary for an instance to have a k-edge-connected

perfect b-matching.

Theorem 1 Let V be a vertex set with |V | ≥ 2 and b : V → Z+ be a degree speci-

fication. Then there exists a perfect b-matching if and only if
∑

v∈V b(v) is even and

b(v) ≤
∑

u∈V −v b(u) for each v ∈ V .

Proof: The necessity is trivial. We show the sufficiency by constructing a perfect b-

matching. We let V = {v1, . . . , vn} and B =
∑n

ℓ=1 b(vℓ)/2. For j = 1, . . . , B, we define ij
as the minimum integer such that

∑ij
ℓ=1 b(vℓ) ≥ j, and i′j as the minimum integer such that

∑i′j
ℓ=1 b(vℓ) ≥ B + j. Notice that

∑ij−1
ℓ=1 b(vℓ) < j holds by the definition if ij ≥ 2. Then

we can see that ij 6= i′j since otherwise we would have b(vij) =
∑ij

ℓ=1 b(vℓ)−
∑ij−1

ℓ=1 b(vℓ) >

(B + j) − j = B if ij ≥ 2 and b(vij) ≥ B + j > B otherwise, which contradicts to the

assumption.

Let M = {ej = vijvi′
j
| j = 1, . . . , B}. Then M contains no loop by ij 6= i′j. Moreover

GM is a perfect b-matching since |{j | ij = ℓ or i′j = ℓ}| = b(vℓ) for every ℓ = 1, . . . , n, as

required. �

Note that this theorem is correct even if b(v) = 1 for some v ∈ V .

2.2 Initialization

In what follows, we suppose that a perfect b-matching exists and b(v) ≥ k for all v ∈ V .

If 2 ≤ |V | ≤ 3, then every perfect b-matching is k-edge-connected because any non-empty

vertex set X ⊂ V is {v} or V −{v} for some v ∈ V , and then d(X) = d(v) ≥ k. Hence we

assume without loss of generality that |V | ≥ 4.

For an edge set F on V , we denote graph (V, F) by GF . Let M be a minimum

cost edge set such that GM is a perfect b-matching, which is computable in polynomial

time [1]. In addition, let H be an edge set of a Hamiltonian cycle on V constructed

by the 1.5-approximation algorithm for TSP due to Christofides [16]. In this step, the

algorithm prepares M and k′ = ⌈k/2⌉ copies H1, . . . ,Hk′ of H. Let E denote the union

M ∪ H1 ∪ · · · ∪ Hk′ of them.

Notice that GE is 2k′-edge-connected by the existence of edge-disjoint k′ Hamiltonian

cycles. We call a vertex v in a handling graph G an excess vertex if d(v;G) > b(v)

(otherwise a non-excess vertex). In GE , all vertices are excess vertices since d(v;GE) =

b(v) + 2k′.

2.3 Transformation into a feasible solution

This step reduces the degrees of excess vertices until no excess vertex exists while gener-

ating no loops and keeping k-edge-connectivity (Notice that k < 2k′ if k is odd). This is

achieved by two phases, Phases 1 and 2, as follows.

Phase 1: In this phase, we modify only edges in M while keeping edges in H1, . . . ,Hk′

unchanged. We define the following two operations on an excess vertex v ∈ V .

5

Operation 1: If v has two incident edges xv and yv in M with x 6= y, replace xv and yv

by new edge xy.

Operation 2: If v has two parallel edges uv in M with d(u) > b(u), remove those two

edges.

Phase 1 repeats Operations 1 and 2 until none of them is executable. For avoiding

ambiguity, we let M ′ denote M after executing Phase 1, and M denote the original set in

what follows. Moreover, let E′ = M ′ ∪ H1 ∪ · · · ∪ Hk′ . Note that d(v) − b(v) is always a

non-negative even integer for all v ∈ V throughout (and after) these operations because

d(v;GE)−b(v) = 2k′ and each operation decreases the degree of a vertex by 2. If no excess

vertex remains in GE′ , then we are done. We consider the case in which there remain some

excess vertices, and show some properties on M ′ before describing Phase 2.

Lemma 1 Every excess vertex in GE′ has at least one incident edge in M ′. If it has more

than one incident edges in M ′, then they are parallel.

Proof: Since d(v;GE′) − b(v) is a positive even integer for an excess vertex v in GE′ , it

holds that d(v;GM ′) = d(v;GE′) − d(v;GH1∪···∪Hk′
) ≥ (b(v) + 2) − 2k′ > 0. Hence v has

at least one incident edges in M ′. If v has more than one incident edges in M ′, then they

are parallel since otherwise Operation 1 can be applied to v. �

For an excess vertex v in GE′ , let n(v) denote the unique neighbor of v in GM ′ . If n(v)

is also an excess vertex in GE′ , we call the pair {v, n(v)} by a strict pair.

Lemma 2 Let {v, n(v)} be a strict pair. Then d(v;GM ′) = d(n(v);GM ′) = 1, k is odd,

and b(v) = b(n(v)) = k.

Proof: Since both v and n(v) are excess vertices, only edges between u and v are incident

to them in M ′ by Lemma 1. Hence d(v;GM ′) = d(n(v);GM ′). Moreover, d(v;GM ′) =

d(n(v);GM ′) = 1 holds since otherwise Operation 2 can be applied to v and n(v).

Let u ∈ {v, n(v)}. Then it holds that d(u;GE′) = d(u;GH1∪···∪Hk′
) + d(u;GM ′) =

2k′ + 1 = 2⌈k/2⌉ + 1. Since d(u;GE′) − b(u) is even, b(u) must be odd. This fact and

d(u,GE′) > b(u) ≥ k indicates that b(u) = k and k is odd. �

If v is an excess vertex in no strict pair, n(v) is a non-excess vertex. In other words,

the existence of excess vertices in no strict pairs indicates that of some non-excess vertices.

Upon completion of Phase 1, let N denote the set of non-excess vertices in GE′ , and S

denote the set of strict pairs in GE′ . If N = ∅, all excess vertices are in some strict pairs.

By Lemma 2, k is an odd integer in this case, and furthermore k ≥ 3 by the assumption

that b(v) ≥ 2, v ∈ V if k = 1. From this fact and |V | ≥ 4, we have the following.

Lemma 3 If N = ∅, then |S| ≥ 2. �

Phase 2 (|V | = 4, |S| = 2): Now we describe Phase 2. First, we deal with a special case

of |V | = 4 and |S| = 2.

6

u uu

v vv w ww

z zz
M ′M ′ M ′M ′

M ′M ′

H1 H1 H1

H2 H2
GE′′

Figure 2: Operations when |V | = 4 and |S| = 2

Lemma 4 If |V | = 4 and |S| = 2 after Phase 1, we can transform GE′ into a k-edge-

connected perfect b-matching without increasing the cost.

Proof: Let V = {u, v,w, z} and H = {uv, vw,wz, zu}. Now E′ = M ′ ∪ H1 ∪ · · · ∪ Hk′

(k ≥ 2). Then either M ′ = {uv,wz} (or {vw, zu}) or M ′ = {uw, vz} holds. In both

cases, we replace M ′ ∪ H1 ∪ H2 by E′′ = {uv, vw,wz, zu, uw, vz} (see Fig. 2). Then, we

can see that d(x;GE′′) = 3 for all x ∈ V and GE′′ is 3-edge-connected. Since d(x;GHi
) =

2 for x ∈ V, i = 3, . . . , k′ and GHi
is 2-edge-connected for i = 3, . . . , k′, it holds that

d(x;GE′′∪H3∪···∪Hk′
) = 3 + 2(k′ − 2) = k = b(x) for x ∈ V and the edge-connectivity of

GE′′∪H3∪···∪Hk′
is 3 + 2(k′ − 2) = k (The existence of strict pair implies that k is odd by

Lemma 2.).

Hence it suffices to show that c(E′′) ≤ c(M ′) + c(H1) + c(H2). If M ′ = {uw, vz}, then

it is obvious since E′′ = M ′ ∪ H1 ⊆ M ′ ∪ H1 ∪ H2. Let us consider the other case, i.e.,

M ′ = {uv,wz} (or {vw, zu}). From M ′ ∪ H1 ∪ H2, remove {uv, uv}, replace {wz, zu} by

{wu}, and replace {vw,wz} by {vz}. Then the edge set becomes E′′ without increasing

edge cost, as required. �

Phase 2 (the other case): In the following, we consider the other case, to which

Lemma 4 cannot be applied, i.e., N 6= ∅ or |S| ≥ 3. In this case, Phase 2 modifies only

edges in Hi, i = 1, . . . , k′ while keeping the edges in M ′ unchanged. Let V (Hi) denote

the set of vertices covered by Hi. We define detaching v from cycle Hi to be an operation

that replaces the pair {uv, vw} ⊆ Hi of edges incident to v by a new edge uw. Note that

this decreases d(v) by 2, but Hi remains a cycle on V (Hi) := V (Hi) − {v}.

Let v be an excess vertex in GE′ . If v is in a strict pair (i.e., n(v) is also an excess

vertex), Phase 2 detaches v from a cycle Hi and n(v) from a cycle Hj such that v ∈ V (Hi),

n(v) ∈ V (Hj) and i 6= j. By this operation, v and n(v) become non-strict vertices since

d(x;GE′) = d(x;GH1∪···∪Hk′
) + d(x;GM ′) = 2k′ + 1 = b(x) + 2 holds for x ∈ {v, n(v)}

by Lemma 2. On the other hand, if v is in no strict pair, Phase 2 reduces d(v) to

b(v) by detaching v from (d(v;GE′) − b(v))/2 cycles in H1, . . . ,Hk′ each of which covers

larger number of vertices than the others. Notice that (d(v;GE′) − b(v))/2 ≤ k′ by

d(v;GE′) − b(v) ≤ d(v;GE) − b(v) = 2k′. Moreover, observe that |V (Hi)| ≤ |V (Hj)| + 1

always holds for any i, j ∈ {1, . . . , k′} during this phase.

In the following, we let H ′
i denote Hi after Phase 2. Moreover let E′′ = M ′∪H ′

1∪· · ·∪

H ′
k′. The algorithm outputs GE′′ .

7

2.4 Validity of our algorithm

The entire of our algorithm is described as follows.

Algorithm UNDIRECT(k)

Input: A vertex set V , a degree specification b : V → Z+, a metric edge cost c : V → Q+,

and a positive integer k

Output: A k-edge-connected perfect b-matching or “INFEASIBLE”

Feasibility check

1: if
∑

v∈V b(v) is odd, ∃v : b(v) >
∑

u∈V −v b(u) or k > b(v) then

2: Output “INFEASIBLE” and halt

3: end if ;

Initialization

4: Compute a minimum cost perfect b-matching GM ;

5: if |V | ≤ 3 then

6: Output GM and halt

7: end if ;

8: Compute a Hamiltonian cycle GH on V by Christofides’ algorithm;

9: k′ := ⌈k/2⌉; Let H1, . . . ,Hk′ be k′ copies of H;

Phase 1 of transformation into a feasible solution

10: M ′ := M ;

11: while Operation 1 or 2 is applicable to a vertex v ∈ V

with d(v;GM ′∪H1∪···∪Hk′
) > b(v) do

12: if ∃{xv, vy} ⊆ M ′ such that x 6= y then

13: M ′ := (M ′ − {xv, vy}) ∪ {xy} # Operation 1

14: else

15: if ∃{xv, xv} ⊆ M ′ such that d(x;GM ′∪H1∪···∪Hk′
) > b(x) then

16: M ′ := M ′ − {xv, vx} # Operation 2

17: end if

18: end if

19: end while;

Phase 2 (|V | = 4, |S| = 2) of transformation into a feasible solution

20: if V consists of only two strict pairs then

21: Rename vertices so that H = {uv, vw,wz, zu};

22: H ′
2 := ∅; M ′ := {uw, vz};

23: Output GM ′∪H′

1
∪···∪H′

k′
and halt

24: end if ;

Phase 2 (the other case) of transformation into a feasible solution

25: H ′
i := Hi for each i = 1, . . . , k′;

26: for all v ∈ V with d(v;GM ′∪H′

1
∪···∪H′

k′
) > b(v) do

27: if v and n(v) forms a strict pair then

28: Detach v from any H ′
i and n(v) from any H ′

j with i 6= j

8

29: else

30: while d(v;GM ′∪H′

1
∪···∪H′

k′
) > b(v) do

31: Choose i ∈ {1, . . . , k′} such that v ∈ V (H ′
i) and |V (H ′

i)| ≥ |V (H ′
j)| for all j 6= i

with v ∈ V (H ′
j);

32: Detach v from H ′
i

33: end while

34: end if

35: end for;

36: E′′ := M ′ ∪ H ′
1 ∪ · · · ∪ H ′

k′ ;

37: Output GE′′

The feasibility check takes running time of O(|V |). The Phase 1 of transformation

into a feasible solution takes running time of O(|V |3). Running time of Phase 2 seems to

depend on k. However, this phase can be implemented in O(|V |2). Hence the running time

of the entire algorithm is O(|V |3 +h+m), where h is the running time of the Christofides’

algorithm and m is that of computing a minimum cost perfect b-matching.

The following two lemmas states the feasibility of GE′′ .

Lemma 5 GE′′ is a perfect b-matching.

Proof: We have already seen the case of |V | = 4 and |S| = 2 in Lemma 4. Hence we

suppose the other case here. In the following, we show that Phase 2 in the algorithm keeps

V (Hi) ≥ 2 for i = 1, . . . , k′. This means that the algorithm transform GE into a perfect

b-matching without generating any loop.

First, let us consider the case of S 6= ∅. Recall k ≥ 3 and k′ = ⌈k/2⌉ ≥ 2 in this

case. For each strict pair {u, v} ∈ S, Phase 2 detaches u and v from different cycles in

H1, . . . ,Hk′ . After this, each of H1, . . . ,Hk′ is incident to at least one vertex of any strict

pair in S in addition to all vertices in N . Since |S| = 1 implies |N | > 0 by the assumption,

it holds that |V (Hi)| ≥ |S| + |N | ≥ 2 for each i = 1, . . . , k′, as required.

Next, let us consider the case of S = ∅. In this case, |N | ≥ 1 holds because the existence

of an excess vertex in no strict pair implies that of a non-excess vertex. If |N | ≥ 2, the

claim is obvious since each of H1, . . . ,Hk′ is always incident to all vertices in N . Hence

suppose that |N | = 1, and let x be the vertex in N . All edges in M ′ are incident to x

since otherwise S = ∅ implies that Operation 1 or 2 would be applicable to some vertex

in V − x. In other words, b(x) = d(x;GE′) = |M ′| + 2k′ holds before Phase 2. Moreover
∑

v∈V −x b(v) ≥ b(x) also holds by the assumption that b admits the existence of perfect

b-matchings.

Now assume that we have converted some excess vertices in GE′ into non-excess vertices

by detaching them from some of H1, . . . ,Hk′ while keeping |V (Hi)| ≥ 2, i = 1, . . . , k′, and

yet an excess vertex y ∈ V − x remains. Let Hi1 be a cycle covering y (such Hi1 always

exists). If |V (Hi1)| ≥ 3, then we are done. Hence let us suppose the otherwise (i.e.,

|V (Hi1)| = 2).

The existence of y implies that
∑

v∈V d(v) >
∑

v∈V b(v). Then there remains a cycle

9

Hi2 with |V (Hi2)| ≥ 3 because

2
∑

1≤j≤k′

|V (Hj)| =
∑

v∈V

d(v;GH1∪···∪Hk′
) =

∑

v∈V

d(v) − 2|M ′|

>
∑

v∈V −{x}

b(v) + b(x) − 2|M ′| ≥ 2(b(x) − |M ′|) = 4k′.

Let y 6∈ V (Hi2), i.e., y has already been detached from Hi2 . Before y is detached from

Hi2, it holds that |V (Hi2)| ≥ 4. Hence |V (Hi2)| > |V (Hi1)| + 1 holds at this moment.

However the algorithm preserves property |V (Hi)| ≤ |V (Hj)|+ 1 for any i, j ∈ {1, . . . , k′}

as stated above. Therefore we have a contradiction. �

Lemma 6 GE′′ is k-edge-connected.

Proof: We have already seen the case of |V | = 4 and |S| = 2 in Lemma 4. Hence we

suppose the other case here. Let u, v ∈ V . We show that λ(u, v;GE′′) ≥ k.

Case-1: First suppose that u and v are in some (possibly different) strict pairs in GE′ .

Moreover, let u 6∈ V (H ′
i) and v 6∈ V (H ′

j) (hence u ∈ V (H ′
ℓ) for all ℓ ∈ {1, . . . , k′}−{i} and

v ∈ V (H ′
ℓ) for all ℓ ∈ {1, . . . , k′} − {j}). For each ℓ ∈ {1, . . . , k′} − {i, j}, λ(u, v;GH′

ℓ
) = 2

holds because u, v ∈ V (H ′
ℓ). If i = j, λ(u, v;GH′

i∪M ′) = 1 holds because d(u;GM ′) =

d(v;GM ′) = 1 and n(u), n(v) ∈ V (H ′
i). Then it holds that λ(u, v;GE′′) = 2(k′−1)+1 = k

in this case (Recall that the existence of strict pairs implies that k is odd by Lemma 2).

Hence we let i 6= j, and show that λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3 from now on, from which

λ(u, v;GE′′) ≥ 2(k′ − 2) + 3 = k can be derived.

Suppose that V (H ′
i) ∩ V (H ′

j) = ∅. In this case, it can be seen that N = ∅, and hence

|S| ≥ 3 by the assumption about the relationship between N and S. Since at least one

vertex of each strict pair is covered by each cycle in H ′
1, . . . ,H

′
k′ , we can see that M ′

contains at least three vertex-disjoint edges that join vertices in V (H ′
i) and in V (H ′

j), two

of which are u and v. This indicates that λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3 holds (see the graph of

Figure 3 (b)).

Let us consider the case of V (H ′
i) ∩ V (H ′

j) 6= ∅ next. By the existence of u and v,

|S| ≥ 1 holds. If u and v forms a strict pair (i.e., uv ∈ M ′), λ(u, v;GM ′) = 1 holds.

Since V (H ′
i) ∩ V (H ′

j) 6= ∅ implies λ(GH′

i∪H′

j
) ≥ 2, we see that λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3

in this case. Thus let u and v belong to different strict pairs (i.e., |S| ≥ 2). Then there

exists two vertex-disjoint edges in M ′ joins vertices in V (H ′
i) and in V (H ′

j) (see Figure 3

(a)). If we split each vertex w ∈ V (H ′
i) ∩ V (H ′

j) into two vertices w′ and w′′ so that

H ′
i and H ′

j are vertex-disjoint cycles, and add new edges w′w′′ joining those two split

vertices to M ′, then we can reduce this case to the case of V (H ′
i) ∩ V (H ′

j) = ∅, in which

λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3 has already been observed in the above (see Figure 3). Accordingly,

we have λ(u, v;GH′

i∪H′

j∪M ′) ≥ 3 if u and v are in some strict pairs, as required.

Case-2: In the next, let both u and v be not in any strict pairs. For z ∈ {u, v}, let n′(z)

denote z itself if z ∈ N , and n(z) otherwise. Notice that n′(z) ∈ N for any z ∈ {u, v},

i.e., it is covered by all of H ′
1, . . . ,H

′
k′ . If z ∈ {u, v} is not covered by p > 0 cycles in

H ′
1, . . . ,H

′
k′ (and hence z is an excess vertex in GE′), then z has at least k − 2(k′ − p)

incident edges in M ′ because d(z;GM ′) = b(z) − d(z;GH′

1
∪···∪H′

k′
) ≥ k − 2(k′ − p). Hence

10

H ′
j

H ′
j

H ′
i H ′

iu u

v vw w′

w′′

(a) (b)

Figure 3: Reduction to the case of V (H ′
i) ∩ V (H ′

j) = ∅

λ(z, n′(z);GE′′) ≥ 2(k′ − p) + k − 2(k′ − p) = k holds for each z ∈ {u, v}, where we define

λ(z, z;GE′′) = +∞. Moreover it is obvious that λ(n′(u), n′(v);GE′′) ≥ 2k′. Therefore, it

holds that

λ(u, v;GE′′) ≥ min{λ(u, n′(u);GE′′), λ(n′(u), n′(v);GE′′), λ(n′(v), v;GE′′)} ≥ k.

Case-3: Finally, let us consider the remaining case, i.e., u is in a strict pair and v is a

vertex which is not in any strict pair. Let us define n′(v) as before. Then λ(v, n′(v);GE′′) ≥

k holds. Without loss of generality, let u be detached from H ′
1, and spanned by H ′

2, . . . ,H
′
k′ .

Since un(u) ∈ M ′ and n(u), n′(v) ∈ V (H ′
1), it holds that λ(u, n(u);GM ′∪H′

1
) = 1, and

λ(n(u), n′(v);GM ′∪H′

1
) ≥ 2. Then,

λ(u, n′(v);GE′′) ≥ min{λ(u, n(u);GM ′∪H′

1
), λ(n(u), n′(v);GM ′∪H′

1
)}

+ λ(u, n′(v);GH′

2
∪···∪H′

k′
) ≥ 1 + 2(k′ − 1) = 2k′ − 1 = k.

Therefore,

λ(u, v;GE′′) ≥ min{λ(u, n′(v);GE′′), λ(v, n′(v);GE′′)} ≥ k,

holds, as required. �

Let us consider the cost of the graph GE′′ . The following theorem on the Christofides’

algorithm gives us an upper bound on c(H). Here, we let δ(U) denote the set of edges

whose one end vertex is in U and the other is in V − U for nonempty U ⊂ V .

Theorem 2 ([8, 17]) Let

OPTTSP = min
∑

e∈E c(e)x(e)

subject to
∑

e∈δ(U) x(e) ≥ 2 for each nonempty U ⊂ V ,

x(e) ≥ 0 for each e ∈ E.

Christofides’ algorithm for TSP always outputs a solution of cost at most 1.5OPTTSP .

�

Lemma 7 c(E′′) is at most 1 + 3⌈k/2⌉/k times the optimal cost of k-ECMDS.

Proof: No operation in Phases 1 and 2 increases the cost of the graph since the edge cost is

metric. Hence it suffices to show that c(M ∪H1∪· · ·∪Hk′) is at most (1+3⌈k/2⌉/k) ·c(G),

11

where G denotes an optimal solution of k-ECMDS. Since G is a perfect b-matching, c(M) ≤

c(G) obviously holds. Thus it suffices to show that c(Hi) ≤ 3c(G)/k for 1 ≤ i ≤ k′, from

which the claim follows.

Let xG :
(V

2

)

→ Z+ be the function such that xG(uv) denotes the number of edges

joining u and v in G. Since G is k-edge-connected,
∑

e∈δ(U) xG(e) ≥ k holds for every

nonempty U ⊂ V . Hence 2xG/k is feasible for the linear programming in Theorem 2,

which means that OPTTSP ≤ 2c(G)/k. By Theorem 2, c(Hi) ≤ 1.5OPTTSP . Therefore

we have c(Hi) ≤ 3c(G)/k, as required. �

Lemmas 5, 6 and 7 establish the next.

Theorem 3 Algorithm UNDIRECT(k) is a ρ-approximation algorithm for k-ECMDS,

where ρ = 2.5 if k is even and ρ = 2.5 + 1.5/k if k is odd. �

Algorithm UNDIRECT(k) always outputs a solution for k ≥ 2 as long as there exists

a perfect b-matching and b(v) ≥ k for all v ∈ V . This fact and Theorem 1 imply the

following corollary.

Corollary 1 For k ≥ 2, there exists a k-edge-connected perfect b-matching if and only if
∑

v∈V b(v) is even and k ≤ b(v) ≤
∑

u∈V −v b(u) for all v ∈ V . �

We close this section with a few remarks. The operations in the transformation into

a feasible solution are equivalent to a graph transformation called splitting, followed by

removing generated loops if any. There are many results on the conditions for splitting

to maintain the edge-connectivity [4, 13]. In fact, these results are used for designing

algorithms computing a minimum cost multigraphs with edge-connectivity and degree

constraints [3, 6]. However, we can not use them in our problem because splitting in

these results may generate loops. Hence algorithm UNDIRECT(k) needs to specify a

sequence of splitting so that removing loops does not make the degrees lower than the

degree specification.

One may consider that a perfect (b−2k′)-matching is more appropriate than a perfect

b-matching as a building block of our algorithm, since there is no excess vertex for the

union of a perfect (b − 2k′)-matching and k′ Hamiltonian cycles. However, there is a

degree specification b that admits a perfect b-matching, and no perfect (b− 2k′)-matching

(for example, see V = {u, v, z}, b(u) = b(v) = 3, b(z) = 6 and k′ = 1). Furthermore,

even if there exits a perfect (b − 2k′)-matching, the minimum cost of perfect (b − 2k′)-

matchings may not be a lower bound on the optimal cost of k-ECMDS. Therefore we do

not use a perfect (b − 2k′)-matching in general case. In Section 4, we show that a perfect

(b − 2k′)-matching always exist and its cost can be estimated when a degree specification

b is uniform.

3 Algorithm for k-ACMDS

This section shows that k-ACMDS is 2.5-approximable. The algorithm for k-ACMDS

can be designed analogously with that for k-ECMDS. It also consists of feasibility check,

initialization, and transformation into a feasible solution. In what follows, let us describe

them.

12

3.1 Feasibility check

Let (V, b−, b+, c, k) be an instance of k-ACMDS. In this subsection, we state conditions

necessary for the instance to have a feasible solution, which will be found to be also

sufficient. The algorithm first check the condition and if it is violated, then output message

“INFEASIBLE”.

Frobenius’ classic theorem (see [14] for example) tells the relationship between the

existence of perfect bipartite matchings and the minimum size of vertex covers in bipartite

graphs.

Theorem 4 (Frobenius) A bipartite graph G has a perfect matching if and only if each

vertex cover has size at least |V (G)|/2. �

From this, we can immediately derive a condition for a digraph to have a perfect

(b−, b+)-matching.

Theorem 5 Let V be a vertex set, and b−, b+ : V → Z+ be in- and out- degree specifica-

tions, respectively. There exists a perfect (b−, b+)-matching if and only if
∑

v∈V b−(v) =
∑

v∈V b+(v), b−(v) ≤
∑

u∈V −v b+(u) for each v ∈ V , and b+(v) ≤
∑

u∈V −v b−(u) for each

v ∈ V .

Proof: The necessity is obvious. Hence we consider the sufficiency in the following. For

each v ∈ V , prepare two vertex sets V −
v and V +

v corresponding to v such that |V −
v | = b−(v)

and |V +
v | = b+(v). Furthermore, let V − = ∪v∈V V −

v , V + = ∪v∈V V +
v , and E = {u−v+ |

u− ∈ V −
u , v+ ∈ V +

v , u 6= v}. Then a perfect matching in a bipartite graph (V −, V +, E)

corresponds to a perfect (b−, b+)-matching on V . So by Theorem 4, it suffices to show

that each vertex cover of (V −, V +, E) has size at least (|V −| + |V +|)/2.

To the contrary, let us suppose that there exists a vertex cover C ⊂ V − ∪ V + of

(V −, V +, E) such that |C| < (|V −|+ |V +|)/2 under the assumption in this theorem. Since

|V −| =
∑

v∈V b−(v) =
∑

v∈V b+(v) = |V +|, it holds that |C| < |V −| = |V +|. This implies

the existence of vertices x ∈ V − − C and y ∈ V + − C. Let x correspond to u ∈ V (i.e.,

x ∈ V −
u) and y correspond to v ∈ V (i.e., y ∈ V +

v). If u 6= v, there exists an edge xy ∈ E,

which is not covered by any vertices in C, a contradiction. Hence u = v holds. Then

∪z∈V −v(V
−
z ∪ V +

z) ⊆ C holds. This implies that |C| ≥
∑

z∈V −v |V
−
z | +

∑

z∈V −v |V
+
z |.

Then it holds that

(
∑

v∈V

b−(v) +
∑

v∈V

b+(v))/2 = (|V −| + |V +|)/2 > |C|

≥
∑

z∈V −v

|V −
z | +

∑

z∈V −v

|V +
z | =

∑

z∈V −v

b−(z) +
∑

z∈V −v

b+(z),

implying b−(v) + b+(v) >
∑

z∈V −v b−(z) +
∑

z∈V −v b+(z). However, this indicates that

at least b−(v) >
∑

z∈V −v b−(z) or b+(v) >
∑

z∈V −v b+(z) holds, contradicting to the

assumption. �

The conditions in Theorem 5 is apparently necessary for feasibility of the given in-

stance. In addition, the algorithm checks b−(v) ≥ k and b+(k) ≥ k for all v ∈ V .

13

3.2 Initialization

In the subsequent steps, we assume that b−(v) ≥ k and b+(v) ≥ k for each v ∈ V , and

that a perfect (b−, b+)-matching exists.

Let M be a minimum cost perfect (b−, b+)-matching. Notice that the proof of The-

orem 5 indicates the reduction of the minimum cost perfect (b−, b+)-matching problem

to the minimum cost perfect b-matching problem. Hence M is computable in polynomial

time.

Let H be a directed Hamiltonian cycle constructed by Christofides’ algorithm for the

edge cost obtained from c by ignoring the direction of arcs (Recall that c is symmetric).

Moreover let H1, . . . ,Hk be k copies of H, A = M ∪ H1 ∪ · · · ∪ Hk, and DF denote the

digraph (V, F) for an arc set F . Our algorithm for k-ACMDS prepares DA as an initial

graph.

A vertex v ∈ V is called an excess vertex if d−(v) > b−(v) or d+(v) > b+(v) (otherwise

v is called a non-excess vertex). Notice that d−(v;DA)−b−(v) = d+(v;DA)−b+(v) because

both sides are equal to k. This condition will be maintained throughout the algorithm,

i.e., d−(v) > b−(v) is equivalent to d+(v) > b+(v).

3.3 Transformation into a feasible solution

This step decreases the degree of excess vertices in DA as k-ECMDS. One difference

between algorithms for k-ECMDS and for k-ACMDS is the definition of Operations 1 and

2. These will be executed for a pair of arcs entering and leaving the same vertex as follows.

Operation 1: If an excess vertex v has two incident arcs xv and vy in M with x 6= y,

replace xv and vy by new edge xy ∈ M .

Operation 2: If an excess vertex v has two arcs uv and vu in M with d−(u) > b−(u) (and

d+(v) > b+(v)), remove these arcs.

Phase 1 of this step modifies edges in M by repeating Operations 1 and 2 until none of

them is executable. We let M ′ denote M after Phase 1, and M denote the original set in the

following. Moreover let A′ = M ′∪H1∪· · ·∪Hk, and N denote the set of non-excess vertices

in DA′ . Note that the number of arcs in M ′ entering (resp., leaving) each excess vertex v in

DA′ has d−(v;DA′)− k ≥ d−(v;DA′)− b−(v) (resp., d+(v;DA′)− k > d+(v;DA′)− b+(v))

arcs. Each excess vertex has only one neighbor in GM ′ , and it is in N (i.e., a non-excess

vertex in DA′) since otherwise Operation 1 or 2 can be applied to v. This situation is

simpler than after Phase 1 of the transformation into a feasible solution in UNDIRECT(k)

since no correspondence of strict pairs exists. Notice that N 6= ∅ always holds here.

Phase 2 of this step modifies edges in H1, . . . ,Hk so as to decrease the degrees of

all excess vertices as in UNDIRECT(k). We repeat detaching each excess vertex v from

d−(v;DA′) − b−(v;DA′) cycles in H1, . . . ,Hk covering largest vertices, where detaching a

vertex v from Hi is defined as an operation that replaces the pair {uv, vw} ⊆ Hi of arcs

entering and leaving v by new arc uw. Notice that this keeps |V (Hi)| ≤ |V (Hj)| + 1 for

any i, j ∈ {1, . . . , k} as in UNDIRECT(k).

In the following, we let H ′
i denote Hi after Phase 2 in order to avoid the ambiguity.

Moreover let A′′ = M ′ ∪ H ′
1 ∪ · · · ∪ H ′

k. Our algorithm outputs DA′′ as a solution.

14

3.4 Validity of our algorithm

The entire of our algorithm is described as follows.

Algorithm DIRECT(k)

Input: A vertex set V , in- and out-degree specification b−, b+ : V → Z+, a symmetric

metric arc cost c : V × V → Q+, and a positive integer k

Output: A k-arc-connected perfect (b−, b+)-matching or “INFEASIBLE”

Feasibility check

1: if
∑

v∈V b−(v) 6=
∑

v∈V b+(v), ∃v : b−(v) >
∑

u∈V −v b+(u), ∃v : b+(v) >
∑

u∈V −v b−(u),

∃v : k > b−(v), or ∃v : k > b+(v) then

2: Output “INFEASIBLE” and halt

3: end if ;

Initialization

4: Compute a minimum cost perfect (b−, b+)-matching DM ;

5: Compute a Hamiltonian cycle DH on V by Christofides’ algorithm; Let H1, . . . ,Hk be

k copies of H;

Phase 1 of transformation into a feasibile solution

6: M ′ := M ;

7: while Operation 1 or 2 is applicable to a vertex v ∈ V

with d−(v;DM ′∪H1∪···∪Hk
) > b−(v) do

8: if ∃{xv, vy} ⊆ M ′ such that x 6= y then

9: M ′ := (M ′ − {xv, vy}) ∪ {xy} # Operation 1

10: else if ∃{xv, vx} ⊆ M ′ such that d−(x;DM ′∪H1∪···∪Hk
) > b−(x) then

11: M ′ := M ′ − {xv, vx} # Operation 2

12: end if

13: end while;

Phase 2 of transformation into a feasible solution

14: H ′
i := Hi for each i = 1, . . . , k;

15: for all v ∈ V with d−(v;DM ′∪H′

1
∪···∪H′

k
) > b−(v) do

16: while d−(v;DM ′∪H′

1
∪···∪H′

k
) > b−(v) do

17: Choose i ∈ {1, . . . , k} such that v ∈ V (H ′
i) and |V (H ′

i)| ≥ |V (H ′
j)| for all j 6= i;

18: Detach v from H ′
i

19: end while

20: end for;

21: A′′ := M ′ ∪ H ′
1 ∪ · · · ∪ H ′

k;

22: Output DA′′

Let us see the feasibility of DA′′ . We can show that DA′′ is k-arc-connected similarly

for UNDIRECT(k). Here we see that the algorithm transforms DA into a feasible solution

without generating any loop.

15

Lemma 8 Operations in Algorithm DIRECT(k) generates no loop.

Proof: It suffices to show that Phase 2 keeps V (Hi) ≥ 2 for 1 ≤ i ≤ k. Recall that N 6= ∅.

If |N | ≥ 2, the claim is obvious since each of H1, · · · ,Hk is incident to all vertices in N .

Hence suppose that |N | = 1, and let x be the unique vertex in N . Then all arcs in M ′

are incident to x since otherwise Operation 1 or 2 would be applicable to some vertex in

V −x. In other words, it holds that |M ′| = d−(x;DM ′)+d+(v;DM ′) = b−(x)+b+(x)−2k.

Recall that
∑

v∈V −x b+(v) ≥ b−(x) and
∑

v∈V −x b−(v) ≥ b+(x) hold by the assumption

that a perfect (b−, b+)-matching exists.

Now assume that we have converted some excess vertices in DA′ into non-excess vertices

by detaching them from some of H1, . . . ,Hk while keeping |V (Hi)| ≥ 2, i = 1, . . . , k, and

yet an excess vertex y ∈ V − x remains. Let Hi1 be a cycle covering y (such Hi1 always

exists). If |V (Hi1)| ≥ 3, then we are done. Hence let us suppose the otherwise (i.e.,

|V (Hi1)| = 2).

The existence of y implies that
∑

v∈V d−(v) >
∑

v∈V b−(v). Then there remains a

cycles Hi2 with |V (Hi2)| ≥ 3 because

∑

1≤i≤k

|V (Hi)| =
∑

v∈V

d−(v;DH1∪···∪Hk
) =

∑

v∈V

d−(v;DE′) − |M ′|

>
∑

v∈V −{x}

b−(v) + d−(x;DE′) − |M ′| ≥ b+(x) + b−(x) − |M ′| = 2k.

Let y 6∈ V (Hi2), i.e., y has already detached from Hi2 . Before y is detached from Hi2, it

holds that |V (Hi2)| ≥ 4. Hence |V (Hi2)| > |V (Hi1)| + 1 holds at this moment. However,

the algorithm keeps |V (Hi)| ≤ |V (Hj)| + 1 for any i, j ∈ {1, . . . , k} as stated above.

Therefore, we have a contradiction. �

Let OPT denote the optimal cost of k-ACMDS. We can show that c(M) ≤ OPT and

c(Hi) ≤ 1.5OPT/k for 1 ≤ i ≤ k similarly for UNDIRECT(k). As a conclusion, we have

the following theorem.

Theorem 6 Algorithm DIRECT(k) is a 2.5-approximation algorithm for k-ACMDS. �

Algorithm DIRECT(k) always outputs a solution when there exists a perfect (b−, b+)-

matching and b−(v) ≥ k, b+(v) ≥ k for all v ∈ V . This fact and Theorem 5 implies the

following corollary.

Corollary 2 For k ≥ 1, there exists a k-arc-connected perfect (b−, b+)-matching if and

only if
∑

v∈V b−(v) =
∑

v∈V b+(v), k ≤ b−(v) ≤
∑

u∈V −v b+(u) for each v ∈ V , and

k ≤ b+(v) ≤
∑

u∈V −v b−(u) for each v ∈ V . �

4 Uniform degree specification

In this section, we show that the approximation factor of our algorithms can be improved

when b(v) = ℓ in k-ECMDS or b−(v) = b+(v) = ℓ in k-ACMDS for all v ∈ V with some

integer ℓ ≥ k.

We call a perfect b-matching (resp., a perfect (b−, b+)-matching) M ℓ-regular if b(v) = ℓ

(resp., b−(v) = b+(v) = ℓ) for all v ∈ V .

16

Lemma 9 Assume that b−(v) = b+(v) = ℓ for all v ∈ V and a (b−, b+)-matching exists.

Let OPT denote the optimal cost of k-ACMDS. Then there exists an (ℓ−m)-regular digraph

DR with c(R) ≤ ℓ−m
ℓ OPT for an arbitrary non-negative integer m ≤ ℓ.

Proof: Let A denote an optimal arc set of k-ACMDS. As seen in Section 3, digraph

DA corresponds to the bipartite undirected graph (V −, V +, E), which is ℓ-regular. By

Theorem 4, we can show that every ℓ-regular bipartite graph has a 1-regular subgraph.

After removing the subgraph, the ℓ-regular bipartite graph becomes ℓ − 1-regular. By

applying this repeatedly, we can see that every ℓ-regular bipartite graph can be decomposed

into ℓ graphs each of which is 1-regular [14]. Let R be the set of arcs corresponding to

edges in least cost ℓ−m graphs of them. Then R is (ℓ−m)-regular and c(R) ≤ ℓ−m
ℓ c(A),

as required. �

The union of an (ℓ−k)-regular digraph and k Hamiltonian cycles are obviously feasible

to k-ACMDS if b−(v) = b+(v) = ℓ, v ∈ V . Therefore we can derive the following theorem.

Theorem 7 If b−(v) = b+(v) = ℓ for all v ∈ V , then k-ACMDS is approximable within

a factor of 1.5 + ℓ−k
ℓ . �

Next, we consider k-ECMDS.

Lemma 10 Assume that b(v) = ℓ for all v ∈ V and an ℓ-regular graph exists. Let OPT

denote the optimal cost of k-ECMDS. Then there exists an (ℓ − 2m)-regular graph GR

such that c(R) ≤ ℓ−2m
ℓ OPT if ℓ is even, and c(R) ≤ (ℓ−2m−1

ℓ + 1
k)OPT if ℓ is odd for an

arbitrary non-negative integer m with 2m ≤ ℓ.

Proof: Let E denote an optimal edge set of k-ECMDS. First suppose that ℓ is even. Then

E can be oriented into an arc set A such that DA is ℓ/2-regular by traversing an Eulerian

walk of E. Let c′ be an arc cost function on A naturally defined from c (i.e., c′(a) = c(e)

if a ∈ A corresponds to e ∈ E). As in the proof of Lemma 9, we can obtain an (ℓ/2−m)-

regular digraph R′ with c′(R′) ≤ ℓ/2−m
ℓ/2 c′(A). Let R be an edge set corresponding to R′.

Then clearly GR is (ℓ − 2m)-regular and c(R) ≤ ℓ/2−m
ℓ/2 c(E), as required.

Next, suppose that ℓ is odd. Let 2E denote the edge set obtained by duplicating each

edge in E. Then G2E is 2ℓ-regular. By the above argument about the case of ℓ is even, we

can obtain an (ℓ−2m−1)-regular graph GF such that c(F) ≤ ℓ−2m−1
2ℓ c(2E) = ℓ−2m−1

ℓ c(E)

(Notice that ℓ− 2m− 1 is even). Let M be a minimum cost 1-regular graph. Notice that

such M exists since |V | is even by the existence of an ℓ-regular graph with odd ℓ. Since

the minimum cost of Hamiltonian cycles spanning all vertices is at most 2c(E)/k as shown

in the proof of Lemma 7, we can see that c(M) ≤ c(E)/k. Let R = F ∪ M . Then GR is

(ℓ − 2m)-regular and c(R) = c(F) + c(M) ≤ (ℓ−2m−1
ℓ + 1

k)c(E), as required. �

Let k′ = ⌈k/2⌉. The union of an (ℓ−2k′)-regular graph and 2k′ Hamiltonian cycles are

obviously feasible to k-ECMDS if b(v) = ℓ, v ∈ V . Therefore we can derive the following

theorem.

Theorem 8 If b(v) = ℓ for all v ∈ V , then k-ECMDS is approximable within a factor of
ℓ−2k′

ℓ + 3k′

k if ℓ is even, and
(ℓ−2k′−1)

ℓ + 1+3k′

k if ℓ is odd, where k′ = ⌈k/2⌉. �

17

Recall that metric TSP can be formulated as k-ECMDS with b(v) = 2, v ∈ V and

k = 2. Theorem 8 indicates that this case can be approximated within 1.5 as Christofides’

algorithm.

5 Application for (m, n)-VRP

In this section, we consider the problem (m,n)-VRP. The formal definition of this problem

is as follows. An instance of (m,n)-VRP consists of a vertex set V containing a special

vertex s, a metric edge cost c :
(V

2

)

→ Q+, and two non-negative integers m and n. The

objective is to find a minimum cost set of m cycles, each containing s, such that each

vertex in V − s is contained in exactly n of those cycles. We can assume without loss of

generality that n ≤ m ≤ n(|V | − 1) since otherwise the instance is clearly infeasible.

An example of applying the (m,n)-VRP is the schedule of garbage collection. Let

us consider the case in which a garbage collecting truck must visit each city on n of 5

weekdays in a week. A solution of (5, n)-VRP gives a schedule of this truck minimizing

total length of routes.

Each solution to (m,n)-VRP is obviously feasible to 2n-ECMDS with b(s) = 2m and

b(v) = 2n for v ∈ V −s (Hence the optimal value of 2n-ECMDS with such b is at most that

of (m,n)-VRP). However, the opposite direction does not hold as an example in Figure 5

shows. Nevertheless we can see that algorithm UNDIRECT(2n) outputs a feasible solution

for (m,n)-VRP.

s

Figure 4: A solution to 4-ECMDS with b(v) = 4, v ∈ V , that is not feasible to (2, 2)-VRP

Theorem 9 Let b(s) = 2m, b(v) = 2n for each v ∈ V − s and k = 2n. Then algorithm

UNDIRECT(k) outputs a 2.5-approximate solution to (m,n)-VRP.

Proof: The solution given by algorithm UNDIRECT(k) consists of edge set M ′ and cycles

H ′
1, . . . ,H

′
n. In what follows, we see that this solution is feasible to (m,n)-VRP.

Let us consider the moment after Phase 1 of transformation into a feasible solution,

and define E′, M ′ and H ′
1, . . . ,H

′
k′ as in Section 2. Since k = 2n is even, there exists

no strict pair. Hence at least one end vertex of each edge in M ′ is a non-excess vertex.

Let v be such a vertex. Then b(v) = d(v;GE′) > d(v;GH1∪···∪Hn) = 2n (Recall that each

non-excess vertex is covered by all of H1, . . . ,Hn). However, a vertex of degree more than

2n is only s since b(u) = 2n for each u ∈ V −s. Hence we can see that (i) s is a non-excess

18

vertex after Phase 1, and (ii) one end vertex of each in M ′ is s. Condition (i) implies that

each of H ′
1, . . . ,H

′
n covers s. Condition (ii) indicates that edges between s and a vertex

v ∈ V − s forms d(v;M ′)/2 cycles whose vertex sets are {s, v} because d(v;M ′) is even.

Therefore, combining the fact that d(v;GM ′∪H′

1
∪···∪H′

n
) = b(v) for all v ∈ V , these show

that UNDIRECT(k) outputs a feasible solution to (m,n)-VRP. �

The approximation factor can be improved as follows.

Theorem 10 Problem (m,n)-VRP can be approximated within a factor of 1.5 + m−n
m .

Proof: Let b(s) = 2m, b(v) = 2n for each v ∈ V − s and k = 2n. Moreover, let E be an

optimal solution for (m,n)-VRP, and F be the set of edges contained by m − n cycles in

GE of least cost. Then it holds that d(s;GF) = 2m− 2n and d(v;GF) ≤ 2n for v ∈ V − s.

Besides this, we have c(F) ≤ m−n
m c(E) by the definition of F .

Now we let V − s = {v1, . . . , v|V |−1} so that c(sv1) ≤ c(sv2) ≤ · · · ≤ c(sv|V |−1).

Moreover we define R as an edge set which consists of 2n edges svi for each i = 1, . . . , p

and 2m − 2n(p + 1) edges svp+1, where p = ⌊(m − n)/n⌋. Then it is clear that R is

a minimum cost edge set such that d(s;GR) = 2np + 2m − 2n(p + 1) = 2m − 2n and

d(v;GR) ≤ 2n for all v ∈ V − s. This implies that c(R) ≤ c(F) ≤ m−n
m c(E).

By using R instead of M in UNDIRECT(k), we can obtain a feasible solution to k-

ECMDS. As in Theorem 9, this solution is also feasible to (m,n)-VRP. Moreover the cost

of the solution is at most c(H1)+ · · ·+ c(Hk′)+ c(R) ≤ (1.5+ m−n
m)c(E), which completes

the proof. �

6 Concluding Remarks

We note that some cases of k-ECMDS/k-ACMDS remain open. One is 1-ECMDS with

b(v) = 1 for some v ∈ V . Our algorithm cannot deal with this case because detaching

the vertices in a strict pair from the same Hamiltonian cycle in Phase 2 may lose the

connectivity. Also a key problem for approximating 1-ECMDS would be to find a minimum

cost spanning tree such that d(v) ≤ b(v), v ∈ V for a given b : V → Z+. However, no

constant factor approximation algorithm is known to this problem if b(v) = 1 for some

v ∈ V , although it can be approximated within a constant factor of 2 if b(v) ≥ 2 for all

v ∈ V [2]. In addition to this, it has been shown in [15] that a spanning tree T of optimal

cost is computable in polynomial time while they allow to violate the degree upper bound

by at most 1.

Another interesting open problem is a generalization of k-ECMDS (resp., k-ACMDS)

in which the k-edge-connectivity (resp., k-arc-connectivity) requirement is replaced by a

local-edge-connectivity requirement. It is also interesting to consider the problem in which

the number of multiple edges are constrained, to which our algorithm can not be applied.

It is also valuable to characterize the feasible solutions to (m,n)-VRP. In Section 5, we

noted that specifying the edge-connectivity and the degree of each vertex is not enough for

this although our algorithm always outputs a feasible solution to (m,n)-VRP. Moreover, it

is interesting to study a further generalization of (m,n)-VRP in which the number b(v)/2

of cycles containing each vertex v is not uniform.

19

Acknowledgement

This research was partially supported by the Scientific Grant-in-Aid from Ministry of

Education, Culture, Sports, Science and Technology of Japan. The authors would like to

thank anonymous referees for their helpful comments.

References

[1] R. P. Anstee, A polynomial algorithm for b-matchings: an alternative approach, In-

formation Processing Letters 24 (1987) 153–157.

[2] S. P. Fekete, S. Khuller, M. Klemmstein, B. Raghavachari, N. Young, A network-flow

technique for finding low-weight bounded-degree spanning trees, Journal of Algo-

rithms 24 (1997) 310–324.

[3] A. Frank, Augmenting graphs to meet edge-connectivity requirements, SIAM Journal

on Discrete Mathematics 5 (1992) 25–53.

[4] A. Frank, On a theorem of Mader, Discrete Mathematics 191 (1992) 49–57.

[5] G. N. Frederickson, M. S. Hecht, C. E. Kim, Approximation algorithms for some

routing problems, SIAM Journal of Computing 7 (1978) 178–193.

[6] T. Fukunaga, H. Nagamochi, Approximating minimum cost multigraphs of specified

edge-connectivity under degree bounds, Proceedings of the 9th Japan-Korea Joint

Workshop on Algorithm and Computation (2006) 25-32.

[7] T. Fukunaga, H. Nagamochi, Approximating a generalization of metric TSP, IEICE

Transactions on Information and Systems E90-D (2007) 432–439.

[8] M. X. Goemans, D. J. Bertsimas, Survivable networks, linear programming relax-

ations and the parsimonious property, Mathematical Programming 60 (1993) 145–

166.

[9] M. X. Goemans, D. P. Williamson, The primal-dual method for approximation al-

gorithms and its application to network design problems, PWS, 1997, Ch. 4, pp.

144–191.

[10] K. Jain, A factor 2 approximation algorithm for the generalized Steiner network

problem, Combinatorica 21 (2001) 39–60.

[11] L. C. Lau, S. Naor, M. Salavatipour, M. Singh, Survivable network design with degree

or order constraints, Proceedings of 39th ACM Symposium on Theory of Computing

(2007) 651–660.

[12] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, D. B. Shmoys (Eds.), The

Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization, John

Wiley & Sons, 1985.

20

[13] W. Mader, A reduction method for edge-connectivity in graphs, Annals of Discrete

Mathematics 3 (1978) 145–164.

[14] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, Springer, 2003.

[15] M. Singh, L. C. Lau, Approximating minimum bounded degree spanning trees to

within one of optimal, Proceedings of 39th ACM Symposium on Theory of Computing

(2007) 661–670.

[16] V. Vazirani, Approximation Algorithm, Springer, 2001.

[17] L. A. Wolsey, Heuristic analysis, linear programming and branch and bound, Math-

ematical Programming Study 13 (1980) 121–134.

21

