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Abstract 

 

 Ethanol was produced from the hydrolysate collected as a water-soluble (WS) portion and a 

residue after hot-compressed water (HCW) treatment of Japanese beech with and without 

fractionation. Simultaneous saccharification with β-xylosidase and isomerization with xylose 

isomerase followed by fermentation with Saccharomyces cerevisiae were applied to the ethanol 

production from the WS portion, and simultaneous saccharification with cellulase and fermentation 

with S. cerevisiae was applied to that from the residue. Integration of the processes for the WS portion 

and the residue was investigated to improve the conversion efficiency throughout the whole process. 

The ethanol yield in the integrated process without fractionation was comparable with that for the 

process with fractionation. Ethanol yields were improved for both of the processes by modifying the 

operation pattern in which cellulase was added prior to fermentation of the residue. 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

 

 Ethanol production from lignocellulosics with hydrolytic enzymes and microorganisms 

requires an effective pretreatment to optimize the subsequent enzymatic and microbial processes. 

Two portions are obtained after centrifugation and filtration of the hydrolysate: a water-soluble (WS) 

portion that is rich in hemicellulose-derived pentosan, and a residue that is rich in cellulose fiber. 

Hot-compressed water (HCW) treatment is among promising pretreatments, and has the potential to 

recover most of the pentosan in the WS portion and generate reactive fiber in the residue.1  

 This reactive cellulose fiber is effectively converted into glucose with cellulolytic enzymes, 

because degradation of glucose is minimized in the HCW treatment.2 In addition, hemicellulose 

degradation and lignin transformation due to high temperatures increase the potential of cellulose 

hydrolysis.1 Simultaneous enzymatic saccharification and fermentation (SSF) is an effective process 

for ethanol production from the cellulose in the hydrolysate.3, 4 In SSF, the concentration of glucose 

is constantly kept low because the microorganism ferments it to ethanol as soon as it is liberated 

from the residue,5 and inhibition of glucose on cellulase is mitigated. However, a conditions 

compromise must be reached for pH and temperature between the enzyme and microorganism. 

 For the WS portion, on the other hand, further conversion is necessary to recover 

monosaccharides because most of the pentosans are recovered in the form of oligosaccharides in the 

HCW treatment. In our previous study regarding an enzymatic saccharification of the WS portion 

after the HCW treatment of Japanese beech, xylooligosaccharides in the WS portion were found to 

be converted into xylose with β-xylosidase.6 Subsequently, enzymatic isomerization using xylose 

isomerase can be applied to the WS portion to convert xylose into its ketoisomer, xylulose using 

xylose isomerase which can be utilized by a yeast, Saccharomyces cerevisiae to produce ethanol. 

Integration of saccharification and isomerization, or isomerization and fermentation was found to 

enhance ethanol production from the WS portion, and the former process was found to be more 



effective.7  

 In this study, ethanol production from the WS portion and the residue with and without 

fractionation was performed. Simultaneous saccharification and isomerization followed by 

fermentation was applied to produce ethanol from the WS portion based on the results obtained in 

the previous study as mentioned above, whereas SSF was applied to produce ethanol from the 

residue. Each of the processes from the WS portion and the residue was integrated to investigate the 

effect of integration of these two processes on ethanol production. Modification of the operation 

pattern was also made to improve the ethanol yields. 

 

Experimental 

 

Materials and chemicals 

 

 Japanese beech (Fagus crenata) was subjected to HCW treatment. Wood chips of Japanese 

beech were milled into flours passing through 80 mesh to be used as raw materials. Glucose and xylose 

as standard monosaccharides were purchased from Nacalai Tesque, Inc. (Kyoto, Japan) and xylulose 

from Sigma-Aldrich (St.Louis, MO, USA). Distilled water and 97 % sulfuric acid in high performance 

liquid chromatography (HPLC) grade were purchased from Nacalai Tesque, Inc. (Kyoto, Japan).  

 

HCW treatments 

 

 The HCW treatment of Japanese beech was conducted in a batch reactor at 240oC for 90 s as 

described elsewhere.8, 9 Fractionation of the WS portion and the residue after the HCW treatment was 

made by centrifugation and filtration with a 0.45-μm membrane. The residue was washed several 

times with distilled water and dried in air until constant weight was attained. 



 

Enzymes 

 

 Cellulase (Celluclast 1.5L) was purchased from Novozymes A/S (Bagsvaerd, Denmark). 

According to the manufacturer’s descriptions, Celluclast 1.5L was purified from Trichoderma reesei 

ATCC 26921, its activity was 797 endoglucanase units (EGU) per gram in 1.2 g ml-1 enzyme solution, 

representing 956.4 EGU ml-1 enzyme solution. Endo-glucanase activity was measured in EGU was 

measured in relation to a reduction in viscosity of carboxymethyl cellulose substrate treated with 

cellulase at pH 6.0 at 40oC. 

 Cellobiase, Novozyme 188 was also purchased from Novozymes A/S (Bagsvaerd, Denmark). 

According to the manufacturer’s descriptions, Novozyme 188 was purified from Aspergillus niger, its 

activity was 277 cellobiase units (CBU) per gram, supplied in an enzyme solution. One cellobiase unit 

(CBU) was defined as the amount of enzyme that releases 2 μmol glucose per minute with cellobiose 

as substrate at pH 5.0 at 40oC. 

β-Xylosidase was purchased from MP Biomedicals, Inc. (Irvine, CA, USA). According to 

the manufacturer’s descriptions, β-xylosidase was purified from Trichoderma viride; its activity was 5 

U mg-1 solid. One unit of β-xylosidase was defined as the amount of enzyme required to liberate 

1μmol of p-nitrophenol from p-nitrophenyl-α-D-xylopyranoside per minute at pH 4.0 at 37oC. Five 

units of β-xylosidase solid was dispersed in 0.1 M acetate buffer to be adjusted to 2.9 U ml-1 and 

supplied as enzyme solution. 

 Xylose isomerase (Sweetzyme T) was purchased from Novozymes A/S. According to the 

manufacturer’s descriptions, Sweetzyme T was an immobilized xylose isomerase produced from 

Streptomyces murinus; its activity was 350 U g-1. One unit was defined as the amount of enzyme that 

converts glucose to fructose at an initial rate of 1 μmol per minute at pH 7.5 at 60oC. 

 



Fermentation 

 

 The yeast strain used was Saccharomyces cerevisiae (NBRC 0203). Inoculum was cultivated 

in a medium containing 10 g L-1 glucose, 3 g L-1 yeast extract, 3 g L-1 malt extract and 5g/L peptone for 

24 h at 28oC with shaking at 120 rpm. A nutrient broth was prepared containing 120 g L-1 yeast extract, 

120 g L-1 malt extract and 200 g L-1 peptone. The medium was sterilized by autoclaving at 121oC for 

20 min. The fermentation volume was 3 ml containing 2.775 ml of the WS portion or distilled water, 

0.15 ml of the inoculums and 0.075 ml of the nutrient broth. 

 

Simultaneous saccharification and fermentation of the residue 

 

 SSF was carried out on the residue with cellulase supplemented with cellobiase and the 

fermentation medium without agitation in a 7-ml glass bottle equipped with a cannula as an exhaust of 

carbon dioxide. The initial substrate concentration was adjusted to 10 g L-1 by adding 3 ml of the 

fermentation medium containing the WS portion or distilled water. Cellulase was loaded at 9.56 U ml-1 

and cellobiase was supplemented at 1.39 U ml-1. The pH was adjusted to 5.0 using solid Ca(OH)2 and 

HCl solution, and the temperature was set at 30oC or 40oC.  

 

Simultaneous saccharification and isomerization of WS portion 

 

 Simultaneous saccharification and isomerization was carried out on the WS portion with 

β-xylosidase and xylose isomerase without agitation in a 6-ml glass vial containing 3 ml of the WS 

portion. To the WS portion after HCW treatment, β-xylosidase was loaded at 0.03 U ml-1. Xylose 

isomerase was loaded at 12 U ml-1. The pH was adjusted to 6.0 using solid Ca(OH)2 and HCl solution, 

and the temperature was set at 50oC.  



 

Fermentation of the WS portion after simultaneous saccharification and isomerization 7 

 

 Fermentation was performed on the WS portion after simultaneous saccharification and 

isomerization without agitation in the 7-ml glass bottle. The WS portion was provided with inoculum 

and nutrient broth to be prepared as the fermentation medium. The pH was adjusted to 5.0 using solid 

Ca(OH)2 and HCl solution, and the temperature was set at 30oC.  

 

Process schemes for ethanol production 

 

 Ethanol production from the WS portion and the residue was performed as shown in Figure 1, 

which shows schemes 1-5 for comparison. Schemes 2 and 4 were processes with fractionation, and 

schemes 3 and 5 were processes with integration. Schemes 4 and 5 were modified processes of 

schemes 2 and 3 respectively, where cellulase was added prior to fermentation. 

 Scheme 1 was a process without fractionation and integration. In this scheme, a mixture of the 

WS portion and the residue was processed. Xylooligosaccharides (XO) and cellulose were the main 

substrates in the WS portion and the residue respectively. The mixture was divided into two parts; one 

part for the ethanol production from xylooligosaccharides (XO) in the WS portion (scheme 1A), and 

the other part for the ethanol production from cellulose in the residue (scheme 1B). 

 For scheme 1A, simultaneous saccharification and isomerization was performed for 96h by 

adding β-xylosidase and xylose isomerase to the mixture at pH 6.0 and 50oC, where 

xylooligosaccharides (XO) were converted into xylulose (XL). Then fermentation of the WS portion 

after simultaneous  saccharification and isomerization was performed for 48h by adding S. cerevisiae 

in the form of the fermentation medium at pH 5.0 and 30oC, where xylulose (XL) was converted into 

ethanol (EtOH).  



 For scheme 1B, SSF was performed for 72 h by adding cellulase and S. cerevisiae to the 

mixture at pH 5.0 and 30oC or 40oC, where cellulose was converted into ethanol (EtOH). 

 Scheme 2 was a process with fractionation and without integration. In this scheme, the WS 

portion and the residue were fractionated to be processed separately. Ethanol production from 

xylooligosaccharides (XO) in the WS portion (scheme 2A), and from cellulose in the residue (scheme 

2B) were performed in the same way as in scheme 1A and Scheme 1B respectively.  

 Scheme 3 was a process with integration and without fractionation. In this scheme, a mixture 

of the WS portion and the residue was processed. In the mixture of the WS portion and the residue, 

xylooligosaccharides (XO) in the WS portion were converted into ethanol via xylulose by 

simultaneous saccharification and isomerization followed by fermentation. Cellulose in the residue 

was converted into ethanol (EtOH) by SSF at the same time. 

 Simultaneous saccharification and isomerization was performed for 96h by adding 

β-xylosidase and xylose isomerase to the mixture of the WS portion and the residue at pH 6.0 and 50oC, 

where xylooligosaccharides (XO) were converted into xylulose (XL) in the WS portion. Then, 

fermentation of the WS portion after simultaneous saccharification and isomerization together with 

SSF of the residue were performed for 96h by adding cellulase and S. cerevisiae in the form of the 

fermentation medium at pH 5.0 and 30oC. Xylulose (XL) in the WS portion and cellulose in the 

residue were converted into ethanol (EtOH). 

 Scheme 4 was a modification of scheme 2. In this scheme, the WS portion and the residue 

were fractionated for separate processing. Ethanol was produced from xylooligosaccharides (XO) in 

the WS portion (scheme 4A) and from cellulose in the residue (scheme 4B). For the WS portion 

(scheme 4A), ethanol production was achieved in the same way as in scheme 2A. 

  For the residue (scheme 4B), enzymatic saccharification prior to fermentation was 

performed for 96 h by adding cellulase to the residue at pH 6.0 and 50oC, where cellulose was partly 

converted into glucose (G). Then, SSF was performed for 72 h by adding S. cerevisiae to the residue at 



pH 5.0 and 30oC or 40oC, where residual cellulose and glucose were converted into ethanol (EtOH). 

 Scheme 5 was a modified process of scheme 3. In this scheme, a mixture of the WS portion 

and the residue was processed as well as in scheme 3. In scheme 5, simultaneous saccharification and 

isomerization in the WS portion together with saccharification of the residue with cellulase prior to 

fermentation were performed for 96 h by adding β-xylosidase, xylose isomerase and cellulase to the 

mixture of the WS portion and the residue at pH 6.0 and 50oC. Xylooligosaccharides (XO) were 

converted into xylulose (XL) in the WS portion and cellulose was partly converted into glucose (G) in 

the residue. Then, fermentation of the WS portion after simultaneous saccharification and 

isomerization together with SSF of the residue were performed for 96h by adding S. cerevisiae in the 

form of the fermentation medium at pH 5.0 and 30oC. Xylulose (XL) in the WS portion and, residual 

cellulose and glucose (G) in the residue were converted into ethanol (EtOH). 

 

Analytical methods 

 

 Glucose, xylose, xylulose and ethanol were analyzed by HPLC (LC-10A, Shimadzu, Kyoto, 

Japan) with a refractive index detector (RID-10A, Shimadzu, Kyoto, Japan). A Shodex SUGAR 

KS-801 column (Showa Denko K. K., Tokyo, Japan) was used in a column oven set at 80oC with 

distilled water as the mobile phase at a flow rate of 1 ml min-1. Xylooligosaccharides larger than 

xylotriose in the WS portion and cellulose content in the residue were quantified based on the amount 

of xylose after sulfuric acid hydrolysis using an Aminex HPX-87H column.6  

 

Results and discussion 

 

HCW treatment 

 



 With the HCW treatment of Japanese beech at 240oC for 90 s, 47.8 % of the raw material was 

solubilized to be recovered as the WS portion. Xylose, xylobiose, xylotriose and larger 

xylooligosaccharides were recovered in the WS portion at 2.50 g L-1, 1.30 g L-1, 0.95 g L-1 and 4.63 g 

L-1. Glucose was also recovered at 0.34 g L-1 and cellooligosaccharides at less than 0.10 g L-1. 

Cellulose content in the residue was 82.6 %. 

 

Ethanol production without fractionation and integration (scheme 1) 

 

 In scheme 1, a mixture of the WS portion and the residue was processed. Simultaneous 

saccharification and isomerization followed by fermentation was performed on the WS portion of one 

part of the mixture (scheme 1A), and SSF was performed on the residue of the other part (scheme 1B). 

Figure 2 shows the time course of the concentrations of glucose, xylulose, and ethanol during ethanol 

production from the mixture.  

 For scheme 1A, after 96 h of simultaneous saccharification and isomerization xylulose 

reached the maximal concentration of 0.44 g L-1 before it was partly consumed in the subsequent 

fermentation. Ethanol concentration reached 0.94 g L-1 after 48 h of fermentation. This value was 

more than 0.15 g L-1 which was potentially produced from the apparent consumed xylulose 

concentration of 0.30 g L-1 as in Fig. 2. This could be owing to the effect of integration of 

saccharification and isomerization as described in our previous study. Equilibrium reactions of both 

saccharification with β-xylosidase and isomerization with xylose isomerase were assumed to be 

involved in this process. Decreased xylulose concentration pulled the equilibrium reaction of 

isomerization toward xylulose, and a decrease in xylose concentration pulled the equilibrium reaction 

of saccharification toward xylose, resulting into more xylulose being produced to be consumed in the 

following fermentation.7  

 For scheme 1B, the results obtained at 30oC are shown and similar results were obtained at 



40oC. Ethanol was hardly produced during 72 h of SSF, although glucose concentration increased to as 

high as 6.05 g L-1. It was indicated that fermentation by S. cerevisiae was severely inhibited and 

resulted in accumulation of glucose.  

 

Ethanol production with fractionation and without integration (scheme 2) 

 

 In scheme 2, simultaneous saccharification and isomerization followed by fermentation was 

performed on the WS portion and SSF was performed separately on the residue. Figure 3 shows the 

time course of the concentrations of xylulose and ethanol during ethanol production from the WS 

portion (scheme 2A), and glucose and ethanol from the residue (scheme 2B).  

 For the WS portion (scheme 2A), the results obtained were similar to those in scheme 1A, 

where the ethanol concentration was higher than the xylulose concentration consumed during the 

fermentation. Ethanol produced was 0.92g/L, which was almost equal to the value in scheme 1A. 

 For the residue (scheme 2B), the results obtained at 30oC are shown. Similar results were 

obtained at 40oC. Ethanol reached the maximal concentration of 3.27 g L-1 at 48 h. 

 The ethanol yield from the residue was 78 % of the theoretical value of 4.21 g L-1. The SSF 

yield of 60 % of the theoretical yield was reported from the washed solid fraction of pretreated poplar 

with HCW treatment at 240oC using a thermotolerant yeast.10 It was 55 % from washed, pretreated 

yellow poplar sawdust with HCW treatment at 240oC.11 Compared with these reports, the SSF yield in 

this study was higher. This was possibly because susceptibility of cellulose to cellulase in the residue 

was higher than that in the reported studies. There was no remarkable difference in the solubility of the 

raw material during the HCW treatment or in the cellulose content in the residue between this study 

and the reported studied. The solubility of the raw material was 47.8 % and the cellulose content in the 

residue was 82.6 % in this study, whereas the former was 40.0 %10 and 39.9 %11 and the latter was 

73.6 %10 and 86.7 %11 in the previous reports. Therefore, the difference in the susceptibility of 



cellulose in the residue was attributed to the physicochemical properties such as crystallinity, porosity, 

and specific surface area. The difference in the heating profiles could have changed theses properties. 

In this study, the heating time until the inner temperature of the reactor (5 ml) reached 240oC was 10 s, 

whereas in the earlier studies, the heating time until the inner temperature of the reactor (2 L10 and 500 

ml,11) reached 240oC was 70-75 min10 and 66 min,11 respectively., 

 As shown in scheme 1 and Scheme 2, the fermentation was severely inhibited during SSF in 

the mixture of the WS portion and the residue (scheme 1B), although SSF of the residue proceeded 

successfully proceeded (scheme 2B). The fermentation was probably inhibited by the compounds 

contained in the WS portion. Nevertheless, on the other hand, the fermentation after simultaneous 

saccharification and isomerization appeared to proceed without inhibition either for the mixture of 

the WS portion and the residue (scheme 1A) and for the WS portion (scheme 2A). This suggested that 

the inhibition of the fermentation after simultaneous saccharification and isomerization was somehow 

mitigated. The detailed mechanism of this effect was not investigated because that was not the main 

concern in this study, but it was presumed that the preceding saccharification and isomerization were 

possibly related to this effect. For example, saccharification with β-xylosidase and/or isomerization 

with xylose isomerase may have caused compositional or physicochemical changes in the WS 

portion.  

 

Ethanol production with integration and without fractionation (scheme 3) 

 

 In scheme 3, a mixture of the WS portion and the residue was processed. Simultaneous 

saccharification and isomerization followed by fermentation on the WS portion together with SSF on 

the residue were performed. Figure 4 shows the time course of the concentrations of glucose, xylulose, 

and ethanol during ethanol production from the mixture.  

 After 24 h of fermentation, the ethanol concentration reached 3.61 g L-1, then decreased 



gradually to be finally depleted. Ethanol was presumably reassimilated by Saccharomyces cerevisiae 

to be utilized as a carbon source. No particular inhibition of the fermentation in the mixture of the WS 

portion and the residue was found in this integrated process. This is in contrast to the results obtained 

in the process without integration (scheme 1B), suggesting that integration was effective in ethanol 

production possibly due to the reason mentioned above. 

 

Modification of operation pattern (schemes 4, 5)  

 

 To further improve the ethanol production, the operation pattern was modified by adding 

cellulase prior to SSF of the residue to be subjected to the processes in scheme 4B and 5. In scheme 

4B, cellulase was added at 0h prior to SSF, which was initiated by adding S. cerevisiae at 96 h. The 

results obtained at 30oC are shown in Fig. 5. Similar results were obtained at 40oC. Glucose 

concentration increased sharply within the first 24 h of enzymatic saccharification with cellulase and 

reached 7.66 g L-1 at the beginning of SSF, suggesting that cellulose contained in the residue at 8.26 g 

L-1 was almost completely converted into glucose during 96 h of saccharification with cellulase. After 

12 h of the SSF that followed, glucose and residual cellulose were completely converted into ethanol 

at 4.36 g L-1, and decreased gradually. The ethanol concentration produced in scheme 4B was higher 

than that in scheme 2B. This was possibly because cell mass growth was enhanced in the early stage of 

the SSF due to the higher initial glucose concentration, which caused higher ethanol productivity.12 

 In scheme 5, cellulase was added in combination with β-xylosidase and xylose isomerase at 0 

h prior to SSF, which was initiated by adding S. cerevisiae at 96h. The results obtained at 30oC are 

shown in Fig. 6. The results were similar to those from scheme 4B, in that glucose concentration 

increased during the enzymatic saccharification with cellulase to reach 4.25 g L-1 at the beginning of 

SSF, suggesting that 51 % of the cellulose contained in the residue was converted into glucose. This 

value was lower than that obtained in scheme 4B. This was probably because of the inhibitory effect of 



the compounds in the WS portion on cellulase, and loss of glucose by isomerization of glucose into 

fructose. After 24 h of the SSF that followed the glucose concentration decreased and the ethanol 

concentration increased to reach 4.81 g L-1, and then decreased gradually. The ethanol concentration 

produced in scheme 5 was higher than that in scheme 3, probably due to the same reason for scheme 

4B.  

  

Comparison of ethanol yields for process schemess 

 

 The ethanol yields for the different process schemes are compared in ethanol yields as in 

Table 1. The ethanol yield was defined as the produced ethanol concentration relative to  the 

theoretical ethanol concentration of 9.00 g L-1. This assumes that the xylose and xylooligosaccharides 

initially present in the WS portion and the cellulose initially present in the residue were completely 

converted into ethanol.  

 The yields obtained in scheme 4 and Scheme 5 were approximately 12%-13 % higher than 

those in scheme 2 and scheme 3, respectively as shown in Figs. 5 and 6. This result indicates that 

modifying the process by as adding cellulase prior to fermentation was effective in improving the 

ethanol yield.  

 Although the highest yield was obtained in scheme 4, the yield in scheme 5 was also 

comparable with that in scheme 4. It is suggested that an efficient ethanol production is possible 

without fractionation of the WS portion and the residue by integrating the processes for the WS 

portion and the residue. 

 From a practical viewpoint, fractionation by centrifugation and filtration is undesirable, 

where integration of different enzymatic and microbial processes is desirable. The results obtained in 

this study are thought to be useful in evaluating the process design of the ethanol production from the 

substrate hydrolysate after HCW treatment.  



 

Conclusions 

 

 Ethanol production from the mixture of the WS portion and the residue after the HCW 

treatment of Japanese beech without fractionation showed only slight loss in ethanol yield when 

integrating the processes for the WS portion and the residue. In the integrated process, the inhibitory 

effects of the compounds contained in the WS portion on fermentation were possibly mitigated. 

Ethanol yields were further improved in the integrated processes by adding cellulase prior to 

fermentation. 
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Fig. 1. Process schemes for ethanol production from the water-soluble (WS) portion and the residue 

obtained after the hot-compressed water (HCW) treatment of Japanese beech. 
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Fig. 2. Time course of the concentrations of glucose, xylulose, and ethanol during the process of 

scheme 1. Arrows show time of addition of process agents. Circles, ethanol; squares, glucose; 

triangles, xylulose 
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Fig. 3. Time course of the concentrations of glucose, xylulose, and ethanol during the process of 

scheme 2. Arrows show time of addition of process agents. Circles, ethanol; squares, glucose; 

triangles, xylulose 
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Fig. 4. Time course of the concentrations of glucose, xylulose, and ethanol during the process of 

scheme 3. Arrows show time of addition of process agents. Circles, ethanol; squares, glucose; 

triangles, xylulose 
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Fig. 5. Time course of the concentrations of glucose, xylulose, and ethanol during the process of 

scheme 4B. Arrows show time of addition of process agents. Circles, ethanol; squares, glucose 
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Fig. 6. Time course of the concentrations of glucose, xylulose, and ethanol during the process of 

scheme 5. Arrows show time of addition of process agents. Circles, ethanol; squares, glucose; 

triangles, xylulose 

 

 

 

 

 

 

 



 

 

Table 1 Ethanol yields from each of the schemes shown in Fig. 1. 

Scheme Ethanol produced 
(g/L) 

Ethanol yield  
(%) a 

Scheme 1 A + B 1.30 14.4  

 A  0.94 ___    

 B 0.36 ___    

Scheme 2 A + B 4.19 46.6  

 A  0.92 ___    

 B 3.27 ___    

Scheme 3  3.61 40.1  

Scheme 4 A + B 5.28 58.7  

 A  0.92 ___    

 B 4.36 ___    

Scheme 5  4.81 53.4  

  

 

 

 

a  Yield based on theoretical ethanol concentration from 
xylose and xylooligosaccharides in the water-soluble 
portion and cellulose in the residue 


