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Exactly solvable birth and death processes
Ryu Sasakia�

Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan

�Received 28 May 2009; accepted 7 August 2009; published online 1 October 2009�

Many examples of exactly solvable birth and death processes, a typical stationary
Markov chain, are presented together with the explicit expressions of the transition
probabilities. They are derived by similarity transforming exactly solvable “matrix”
quantum mechanics, which is recently proposed by Odake and the author �S. Odake
and R. Sasaki, J. Math. Phys. 49, 053503 �2008��. The �q-� Askey scheme of
hypergeometric orthogonal polynomials of a discrete variable and their dual poly-
nomials play a central role. The most generic solvable birth/death rates are rational
functions of qx �with x being the population� corresponding to the q-Racah
polynomial. © 2009 American Institute of Physics. �doi:10.1063/1.3215983�

I. INTRODUCTION

The Brownian motion, a typical stationary Markov process with a continuous state space, is
known to be described well by the Fokker–Planck equation.1,2 A birth and death process, on the
other hand, being a typical stationary Markov chain with a set of non-negative integers as a state
space,2,3 can be naturally considered as a discretization of a one-dimensional �1D� Fokker–Planck
equation. Although birth and death processes have a wide range of applications,2,3 such as demog-
raphy, queueing theory, inventory models, and chemical dynamics, we will focus on their math-
ematical aspect, i.e., the exact solvability. In this paper, we present 18 exactly solvable birth and
death processes based on the �q-� Askey scheme of hypergeometric orthogonal polynomials hav-
ing discrete orthogonality measures. They are also called orthogonal polynomials of a discrete
variable.4–6 For example, they are the �q-� Racah, the �q-� �dual�Hahn, the �q-� Krawtchouk, the
�q-� Charlier, and the �q-� Meixner polynomials.4,5,7 Various expressions of the transition prob-
ability are given explicitly together with the totality of the eigenvalues and the measures of the
Karlin–McGregor type representation.8

It is well known that the 1D Fokker–Planck equation is related by a similarity transformation
to a corresponding 1D time-independent Schrödinger equation1 or the eigenvalue problem for a
suitable Hamiltonian. In other words, solutions of an exactly solvable Schrödinger equation give
the solutions of the corresponding Fokker–Planck equation, which is now exactly solvable. Exact
solvability means that the totality of the eigenvalues �in these cases, all are discrete� and the
corresponding eigenfunctions are obtained exactly. Here the Hamiltonian in quantum mechanics is
a Hermitian �self-adjoint� linear operator in a certain Hilbert space. A natural discretization of the
Hamiltonians of 1D quantum mechanics is Hermitian matrices of a finite or infinite dimensions.
Recently, exactly solvable “matrix” quantum mechanics was proposed by Odake and the present
author9 by adopting special types of tridiagonal Jacobi matrices of finite or infinite dimensions as
Hamiltonians. The eigenfunctions are spanned by the abovementioned orthogonal polynomials of
a discrete variable. The corresponding discretization of the Fokker–Planck equation is, as ex-
pected, the birth and death process with a reflecting wall�s� �3.20�. Among the 18 exactly solvable
birth and death processes to be explored in this paper, some are quite well known having the
linear2,3,10,11 and quadratic12 birth and death rates, corresponding to the Meixner �Sec. IV B 1�,
Charlier �Sec. IV B 2�, Krawtchouk �Sec. IV A 4�, and Hahn �Sec. IV A 2� polynomials. The
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others have rational functions �of the population x� of the birth and death rates corresponding to
the dual Hahn �Sec. IV A 3� and Racah �Sec. IV A 1� polynomials and some others have
q�x-linear, quadratic, and rational birth and death rates. The most generic one is the q-Racah
polynomial �Sec. IV A 5� having qx rational birth and death rates �4.21�.

This paper is organized as follows. In Sec. II, the general properties of the Hamiltonians in 1D
quantum mechanics �and/or the Hermitian matrices� are reviewed in Sec. II A. The relationship
between the Schrödinger equation and the corresponding Fokker–Planck equation is recapitulated
in Sec. II B and the solutions of the initial value problem of the Fokker–Planck equations and the
transition probabilities are expressed in terms of the orthogonal polynomials constituting the
eigenfunctions of the corresponding Schrödinger equation. In Sec. III the birth and death operator
is derived from the generic form of the Hamiltonian of the exactly solvable matrix quantum
mechanics of Ref. 9. The solutions of the initial value problem of the birth and death equations
and the transition probabilities are expressed in terms of the orthogonal polynomials constituting
the eigenfunctions of the corresponding Schrödinger equation of the matrix quantum mechanics.
Various equivalent expressions of the transition probabilities are derived in terms of the dual
polynomials. Section IV provides various data, the birth and death rates, the energy spectra and the
sinusoidal coordinates, the stationary probability, the normalization constants, and the eigenpoly-
nomials of the exactly solvable 18 models, which are sufficient to evaluate the transition prob-
ability explicitly. These 18 models are named after the eigenpolynomials, such as the �q-� Racah,
etc. Section V is for a brief summary and comments. The Appendix provides the collection of the
definitions of basic symbols and functions for self-containedness. Throughout this paper we use
the parameter q in the range of 0�q�1.

II. FOKKER–PLANCK OPERATOR FROM HAMILTONIAN

Here we recapitulate the well-known connection between the Fokker–Planck equation and the
Schrödinger equation1 in order to introduce appropriate notation and settings for the main purpose
of the paper; connecting the birth and death process to the matrix quantum mechanics to be
explored in Sec. III.

A. Properties of Hamiltonians

Throughout this paper we discuss one degree of freedom systems only. The Hamiltonians to
be discussed in this paper are time independent and share the properties listed below. Most
properties are common to the Hamiltonians having the continuous dynamical variable x �to be
used for the Fokker–Planck equation� and the discrete dynamical variable x �to be applied to the
birth and death processes�. They are expressed by the same symbols. When they need different
symbols, such as the L2 and �2 norms, two different expressions are shown in a curly bracket as
in �2.3� and �2.7�. The upper �lower� one is for the continuous �discrete� dynamical variable case.
The former �the continuous variable� case corresponds to the ordinary quantum mechanics and the
“discrete” quantum mechanics with the pure imaginary shifts,13 which gives rise to the “de-
formed” Fokker–Planck equations.14

�i� Factorizability,

H = A†A , �2.1�

in which † denotes the Hermitian conjugation with respect to the standard L2 ��2� inner
product �see �2.3��. This also means that the Hamiltonian H is positive semidefinite.

�ii� Completeness of its eigenfunctions �n�x� belonging to discrete eigenvalues �all distinct�,

H�n�x� = E�n��n�x�, E�0� � E�1� � ¯ , �2.2�

and all the eigenvectors are square normalizable and orthogonal with each other
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��n,�m� =
def�� �n�x���m�x�dx

�
x

�n�x���m�x� � =
1

dn
2�nm, 0 � dn � � . �2.3�

The range of the integration �summation� depends on the specific Hamiltonian. Any ele-
ment in the Hilbert space H is expanded by 	�n
,

∀ f � H ⇒ f = �
n

fn�̂n, �̂n =
def

dn�n, fn =
def

��̂n, f� . �2.4�

Here and hereafter, f̂ denotes a normalized vector f̂ =
def

f /��f , f�. We choose all the eigen-
functions 	�n
 to be real, which is always possible in 1D quantum mechanics.

�iii� The ground state wave function �0 is annihilated by A and is positive everywhere,

A�0�x� = 0 ⇒ H�0�x� = 0, E�0� = 0, �0�x� � 0. �2.5�

�iv� The eigenfunction �n�x� is �0�x� times a polynomial,

�n�x� = �0�x�Pn���x��, n = 0,1,2, . . . , P0 � 1, �2.6�

in which a real function ��x� is called a sinusoidal coordinate.15,9,13 In other words, Pn���
is an orthogonal polynomial with the orthogonality measure �0�x�2,

�� �0�x�2Pn���x��Pm���x��dx

�
x

�0�x�2Pn���x��Pm���x�� � =
1

dn
2�nm. �2.7�

�v� The similarity transformed Hamiltonian H with respect to �0�x�

H̃=
def

�0
−1 � H � �0 �2.8�

provides a differential (difference) equation governing the polynomial Pn���x��.

B. Fokker–Planck equation

The Fokker–Planck equation in one dimension reads as

�

�t
P�x;t� = LFPP�x;t�, P�x;t� � 0, � P�x;t�dx = 1, �2.9�

in which P�x ; t� is the probability distribution over certain continuous range of the parameter x; for
example, �−� ,��, �0,��, or �0,	�. The Fokker–Planck operator LFP corresponding to the Hamil-
tonian H �2.2� is defined by1,14

LFP =
def

− �0 � H � �0
−1, �2.10�

in which �0 is defined in �2.5�. �It should be emphasized that the inverse similarity transformation

in terms of �0 is used here: LFP=−�0
2 �H̃ ��0

−2.� This guarantees that the eigenvalues of LFP are
negative semidefinite. The square normalized ground state eigenfunction �0�x� provides the sta-
tionary distribution �̂0�x�2 of the corresponding Fokker–Planck operator,
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�

�t
�̂0�x�2 = LFP�̂0�x�2 = 0, � �̂0�x�2dx = 1. �2.11�

It is obvious that �0�x��n�x� is the eigenvector of the Fokker–Planck operator LFP,

LFP�0�x��n�x� = − E�n��0�x��n�x�, n = 0,1, . . . . �2.12�

Corresponding to an arbitrary initial probability distribution P�x ;0� �with P�x ;0�dx=1�, which
can be expressed as a linear combination of 	�̂0�x��̂n�x�
, n=0,1 , . . .,

P�x;0� = �̂0�x��
n=0

�

cn�̂n�x�, c0 = 1, cn =
def

��̂n,�̂0�x�−1P�x;0��, n = 1,2, . . . , �2.13�

we obtain the solution of the Fokker–Planck equation,

P�x;t� = �̂0�x��
n=0

�

cne−E�n�t�̂n�x�, t � 0. �2.14�

This is a consequence of the completeness of the eigenfunctions 	�n�x�
 �the polynomials� of the
Hamiltonian H. The positivity of the spectrum E�n��0, n�1 �2.2� guarantees that the stationary
distribution �̂0

2�x� is achieved at future infinity,

lim
t→�

P�x;t� = �̂0
2�x� . �2.15�

The transition probability from y at t=0 �i.e., P�x ;0�=��x−y�� to x at t is given by

P�y,x;t� = �̂0�x��̂0�y�−1�
n=0

�

e−E�n�t�̂n�x��̂n�y�, t � 0. �2.16�

In terms of the polynomial Pn���x�� �2.6�, it is expressed as

P�y,x;t� = �0�x�2�
n=0

�

dn
2e−E�n�tPn���x��Pn���y��, t � 0, �2.17�

in which dn is the normalization constants �2.3� and �2.7�.
As shown in Ref. 14 in some detail, various examples of exactly solvable quantum

mechanics16,17 and the discrete quantum mechanics with the pure imaginary shifts13,18,15 provide
many explicit cases in which the transition probability �2.16� and �2.17� can be obtained exactly.
The corresponding orthogonal polynomials are the Hermite, Laguerre, and Jacobi polynomials in
the ordinary quantum mechanics16,17 and the Meixner–Pollaczek, continuous �dual� Hahn, Wilson,
and Askey–Wilson polynomials14,13 and their degenerate polynomials, such as the continuous
q-Hermite polynomials.

III. BIRTH AND DEATH PROCESS FROM MATRIX QUANTUM MECHANICS

The birth and death equation is a discretization of the Fokker–Planck equation in one dimen-
sion �2.9�. It reads as

�

�t
P�x;t� = �LBDP��x;t�, P�x;t� � 0, �

x

P�x;t� = 1, �3.1�

in which P�x ; t� is the probability distribution over a certain discrete set of the parameter x. Here,
we simply take a set of consecutive non-negative integers, either finite or infinite,

x � Z, x � �0,N� or �0,�� . �3.2�
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The exactly solvable birth and death operator or a matrix LBD is derived from the generic form of
an exactly solvable Hamiltonian H of a discrete quantum mechanics with real shifts,

H=
def

− �B�x�e��D�x� − �D�x�e−��B�x� + B�x� + D�x� , �3.3�

in which the two functions B�x� and D�x� are real and positive but vanish at the boundary,

B�x� � 0, D�x� � 0, D�0� = 0, B�N� = 0 for the finite case. �3.4�

The explicit forms of the functions B�x� and D�x� are given in each subsection of Sec. IV, which
are named after the orthogonal polynomials appearing as the main part of the eigenfunctions. In
the Hamiltonian �3.3� e�� is a formal shift operator acting on a function f of x as

�e��f��x� = f�x � 1� .

Thus the Schrödinger equation H
�x�=E
�x� is a difference equation with real shifts,

�B�x� + D�x��
�x� − �B�x�D�x + 1�
�x + 1� − �B�x − 1�D�x�
�x − 1� = E
�x� ,

x = 0,1, . . . ,�N�, . . . . �3.5�

The boundary condition D�0�=0 is necessary for the term 
�−1� not to appear, and B�N�=0 is
necessary for the term 
�N+1� not to appear in the finite dimensional matrix case.

Although the Hamiltonian H �3.3� is presented in a difference operator form, it is, in fact, a
real symmetric tridiagonal �Jacobi� matrix,

H = �Hx,y�, Hx,y = Hy,x, �3.6�

Hx,y = − �B�x�D�x + 1��x+1,y − �B�x − 1�D�x��x−1,y + �B�x� + D�x���x,y . �3.7�

As mentioned above, the Hamiltonian is factorizable �2.1�, H=A†A,

A† = �B�x� − �D�x�e−�, A = �B�x� − e��D�x� . �3.8�

In the matrix form, A† has the diagonal and subdiagonal elements only and A has the diagonal and
superdiagonal elements only

�A†�x,y = �B�x��x,y − �D�x��x−1,y, Ax,y = �B�x��x,y − �D�x + 1��x+1,y . �3.9�

Equation �2.5� determining the ground state wave function �0 is easy to solve since A�0=0 is a
two term recurrence relation,

�0�x + 1�
�0�x�

=� B�x�
D�x + 1�

. �3.10�

It can be solved elementarily with the boundary �initial� condition �0�0�=1,

�0�x� =��
y=0

x−1
B�y�

D�y + 1�
, x = 1,2, . . . . �3.11�

With the standard convention �k=n
n−1� =1, the expression �3.11� is valid for x=0, too. For the infinite

matrix case, the requirement of the finite �2 norm of the eigenvectors
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�
x=0

�

�0�x�2 = �
x=0

�

�
y=0

x−1
B�y�

D�y + 1�
� � �3.12�

imposes constraints on the asymptotic behaviors of B�x� and D�x�.
With the above explicit form of the ground state wave function �0�x�, the similarity trans-

formed Hamiltonian �2.8� is easily obtained

H̃=
def

�0
−1 � H � �0 = B�x��1 − e�� + D�x��1 − e−�� . �3.13�

As mentioned above, H̃ provides the difference equation for the polynomial eigenfunctions,

�H̃Pn����x�� = E�n�Pn���x�� , �3.14�

that is,

B�x��Pn���x�� − Pn���x + 1��� + D�x��Pn���x�� − Pn���x − 1��� = E�n�Pn���x�� . �3.15�

The eigenpolynomials 	Pn
 are the orthogonal polynomials of a discrete variable. See Sec. 5 of
Ref. 9 for various forms of B�x� and D�x� and the corresponding orthogonal polynomials. It is also
recapitulated in Sec. IV of this paper. For example, they are the �q-� Racah, the �q-� �dual�Hahn,

the �q-� Krawtchouk, the �q-� Charlier, and the �q-� Meixner polynomials.4,5,7 As a matrix, H̃ is
another tridiagonal matrix

H̃ = �H̃x,y�, H̃x,y = B�x���x,y − �x+1,y� + D�x���x,y − �x−1,y� . �3.16�

Corresponding to �2.10�, the inverse similarity transformation of the Hamiltonian H supplies the
birth and death operator LBD,

LBD =
def

− �0 � H � �0
−1 = �e−� − 1�B�x� + �e� − 1�D�x� . �3.17�

Obviously, the stationary probability is given by �̂0�x�2=d0
2�0�x�2. In the matrix form, LBD is again

tridiagonal

LBD = �LBDx,y
�, LBDx,y

= B�x − 1��x−1,y − B�x��x,y + D�x + 1��x+1,y − D�x��x,y . �3.18�

In fact, −LBD is the transposed matrix of H̃,

− LBD = �H̃�t, − LBDx,y
= H̃y,x. �3.19�

With the explicit form of the birth and death operator LBD, the birth and death equation �3.1� in
our notation reads as

�

�t
P�x;t� = �

y

LBDx,y
P�y ;t� = − �B�x� + D�x��P�x;t� + B�x − 1�P�x − 1;t� + D�x + 1�P�x + 1;t� .

�3.20�

The standard interpretation is that x is the population of a group, P�x ; t� is the probability for the
group to have the population x at the time t, B�x� is the birth rate, and D�x� is the death rate when
the population is x. It is quite easy to remember. This is to be compared to the standard notation,
for example8 �Sec. XVII.5 of Ref. 2 and Sec. 5.2 of Ref. 5�,

�

�t
pn�t� = − ��n + �n�pn�t� + �n−1pn−1�t� + �n+1pn+1�t� , �3.21�
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in which �n is the birth rate and �n is the death rate. The above translation table of the notation
will be helpful �see Table I�.

The boundary condition for the finite case, �N=0 �B�N�=0� �3.4� is said that the system has a
reflecting wall at the population N.

The transition probability from y at t=0 �i.e., P�x ;0�=�x,y� to x at t has exactly the same
expression as that in the Fokker–Planck equation �2.16�,

P�y,x;t� = �̂0�x��̂0�y�−1�
n=0

e−E�n�t�̂n�x��̂n�y�, t � 0. �3.22�

In terms of the polynomial Pn���x�� �2.6�, it is expressed as

P�y,x;t� = �0�x�2�
n=0

dn
2e−E�n�tPn���x��Pn���y��, t � 0. �3.23�

It should be emphasized that in these formulas �3.22� and �3.23� everything is known including the
measure in contradistinction to the general formula by Karlin–McGregor.8

Let us mention several equivalent expressions of the transition probability �3.23� in terms of
the dual polynomials.19–21,9 It is well known that with proper normalization

��0� = 0 = E�0�, P0 � 1 � Q0, Pn�0� = Qx�0� = 1, �3.24�

the two polynomials, 	Pn���
, and its dual polynomial, 	Qx�E�
, coincide at the integer lattice
points9

Pn���x�� = Qx�E�n��, n = 0,1, . . . ,�N�, . . . , x = 0,1, . . . ,�N�, . . . . �3.25�

The dual polynomial 	Qx�E�n��
, x=0,1 , . . ., is a right eigenvector of the similarity transformed

Hamiltonian H̃ matrix with the eigenvalue E�n�,

�
y

H̃x,yQy�E�n�� = E�n�Qx�E�n�� . �3.26�

The above equation is the three term recurrence relation for the dual polynomials 	Qx�E�
,

�B�x� + D�x��Qx�E�n�� − B�x�Qx+1�E�n�� − D�x�Qx−1�E�n�� = E�n�Qx�E�n�� , �3.27�

Q0 = 1, Q1�E� = �B�0� − E�/B�0�, Q2�E� = �B�0� − E��B�1� + D�1� − E�/�B�0�B�1��, . . . .

�3.28�

For historical reasons, this polynomial Qx�E� is called the birth and death polynomial or the
Karlin–McGregor polynomial.8

In terms of the dual polynomials or the Karlin–McGregor polynomial, the transition probabil-
ity is

TABLE I. Translation table.

Standarda This paper

Population n=0,1 , . . . , �N� , . . . x=0,1 , . . . , �N� , . . .
Probability pn�t� P�x ; t�
Birth rate �n ��N=0� B�x� �B�N�=0�
Death rate �n ��0=0� D�x� �D�0�=0�

aReferences 2 and 5.
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P�y,x;t� = �0�x�2�
n=0

dn
2e−E�n�tQx�E�n��Qy�E�n��, t � 0. �3.29�

Following Ref. 5, let us introduce

Fx�E�n�� =
def

�0�x�2Qx�E�n�� . �3.30�

Since LBD and H̃ are related by

LBD = − �0
2 � H̃ � �0

−2, �3.31�

it is easy to see that Fx�E�n�� is a left eigenvector of H̃ and thus a right eigenvector of the birth and
death operator LBD,

�
y

LBDx,y
Fy�E�n�� = − �0�x�2�

y

H̃x,yQy�E�n�� = − E�n��0�x�2Qx�E�n�� = − E�n�Fx�E�n�� .

�3.32�

In terms of the right eigenvectors of LBD, we obtain another expression of the transition
probability5

P�y,x;t� =
1

�0�y�2 �
n=0

dn
2e−E�n�tFx�E�n��Fy�E�n��, t � 0. �3.33�

The explicit forms of the transition probability �3.22�, �3.23�, �3.29�, and �3.33� can be evalu-
ated straightforwardly if the Hamiltonian H of an exactly solvable discrete quantum mechanics is
given. Thus we may call the functions B�x� and D�x� in the Hamiltonian H of an exactly solvable
discrete quantum mechanics �3.3� the birth and death rates of an exactly solvable birth and death
process. As mentioned above, the association of the birth and death rates and the orthogonal
polynomial in this paper and in literatures8,5,12 are dual to each other. Therefore the names of the
polynomials in Sec. IV are the dual of the corresponding Karlin–McGregor polynomial except for
the self-dual cases of the Krawtchouk �Sec. IV A 4�, Meixner �Sec. IV B 1�, and Charlier �Sec.
IV B 2�.

In Sec. IV we will present 18 examples of exactly solvable birth and death processes.

IV. 18 EXAMPLES

Now let us proceed to give the 18 explicit examples of exactly solvable birth and death
processes. The input is simply the function forms of the birth and death rates B�x� and D�x�. The
rest is calculable. However, here we also provide other data, taken from Ref. 9, such as the energy
eigenvalue E�n�, the sinusoidal coordinate ��x�, the unnormalized stationary probability �0�x�2,
the normalization constants dn

2, and the polynomials Pn���. Following the order of our previous
work on the exactly solvable discrete quantum mechanics,9 we handle the most generic one first
and then followed by the simpler ones. There is a logical reason for this order. The simpler ones
are usually obtained by specializing or restricting the parameters of the generic ones. Each ex-
ample is called by the name of the corresponding orthogonal polynomial Pn��� with the number,
e.g., �KS3.2� attached to it indicating the subsection in the standard review of Koekoek and
Swarttouw.7 The finite �N� cases are discussed first and then the infinite ones. In each group the
Askey scheme of hypergeometric orthogonal polynomials �non-q polynomials� will be discussed
first and followed by the q-scheme polynomials.

Please note that the set of parameters is slightly different from the conventional ones4,5,7 for
some polynomials, the reason explained in Ref. 9. For some polynomials, for example, the �q-�
Racah, �dual, q-� Hahn, etc., there are many nonequivalent parametrizations of B�x� and D�x�,
which could lead to nonequivalent birth and death processes. Here we give only one of them as a
representative since the purpose of the paper is to show exactly solvable structure not to provide
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an exhaustive list of all solvable models. See Ref. 9 for more general parametrizations and the
allowed ranges of the parameters. In the same spirit, we did not include some of the polynomials
listed in Ref. 9.

A. Finite dimensional cases

1. Racah †KS1.2‡

The Racah polynomial is the most generic hypergeometric orthogonal polynomial of a dis-
crete variable. All the other �non-q� polynomials are obtained by restriction or limiting procedure.
The function B�x� and D�x� depend on four real parameters a, b, c, and d, with one of them, say
c, being related to N, c�−N,

B�x� = −
�x + a��x + b��x + c��x + d�

�2x + d��2x + 1 + d�
, D�x� = −

�x + d − a��x + d − b��x + d − c�x
�2x − 1 + d��2x + d�

. �4.1�

The other data are

E�n� = n�n + d̃�, ��x� = x�x + d�, d̃ =
def

a + b + c − d − 1, �4.2�

a � b, d � 0, a � N + d, 0 � b � 1 + d , �4.3�

�0�x�2 =
�a,b,c,d�x

�1 + d − a,1 + d − b,1 + d − c,1�x

2x + d

d
, �4.4�

dn
2 =

�a,b,c, d̃�n

�1 + d̃ − a,1 + d̃ − b,1 + d̃ − c,1�n

2n + d̃

d̃


�− 1�N�1 + d − a,1 + d − b,1 + d − c�N

�d̃ + 1�N�d + 1�2N

.

�4.5�

Here �a�n is the Pochhammer symbol �A1�. Throughout this section, the format for dn
2 consists of

two parts separated by a  symbol: dn
2= �dn

2 /d0
2�d0

2. The second part d0
2 satisfies the relation

�x�0�x�2=1 /d0
2. The polynomial is

Pn���x�� = 4F3��− n,n + d̃,− x,x + d

a,b,c
�1� , �4.6�

in which 4F3 is the standard hypergeometric series �A3�. The dual polynomial is again the Racah

polynomial with the parameter correspondence �a ,b ,c ,d�↔ �a ,b ,c , d̃�. The rational �a quartic
polynomial divided by a quadratic polynomial� birth and death rates �4.1� have not yet been
discussed but the Racah polynomial appears in Ref. 12.

2. Hahn †KS1.5‡

This is a well-known example of quadratic �in x� birth and death rates with two real positive
parameters a and b,

B�x� = �x + a��N − x�, D�x� = x�b + N − x� . �4.7�

It has a quadratic energy spectrum

E�n� = n�n + a + b − 1�, ��x� = x, �0�x�2 =
N!

x ! �N − x�!
�a�x�b�N−x

�b�N
, �4.8�
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dn
2 =

N!

n ! �N − n�!
�a�n�2n + a + b − 1��a + b�N

�b�n�n + a + b − 1�N+1


�b�N

�a + b�N
, �4.9�

Pn���x�� = 3F2��− n,n + a + b − 1,− x

a,− N
�1� . �4.10�

The dual polynomial is the dual Hahn polynomial of Sec. IV A 3 The quadratic birth and death
rates are discussed in Ref. 12 associated with the dual Hahn polynomial.

3. Dual Hahn †KS1.6‡

The set of parameters is the same as the Hahn polynomial case. The birth and death rates are
rational functions of x,

B�x� =
�x + a��x + a + b − 1��N − x�
�2x − 1 + a + b��2x + a + b�

, D�x� =
x�x + b − 1��x + a + b + N − 1�
�2x − 2 + a + b��2x − 1 + a + b�

, �4.11�

giving rise to a linear energy spectrum

E�n� = n, ��x� = x�x + a + b − 1�, �0�x�2 =
N!

x ! �N − x�!
�a�x�2x + a + b − 1��a + b�N

�b�x�x + a + b − 1�N+1
,

�4.12�

dn
2 =

N!

n ! �N − n�!
�a�n�b�N−n

�b�N


�b�N

�a + b�N
, �4.13�

Pn���x�� = 3F2��− n,x + a + b − 1,− x

a,− N
�1� . �4.14�

4. Krawtchouk †KS1.10‡ „self-dual…

The case of linear birth and death rates are a very well-known example �the Ehrenfest
model�11 of an exactly solvable birth and death processes2,3

B�x� = p�N − x�, D�x� = �1 − p�x, 0 � p � 1, �4.15�

E�n� = n, ��x� = x , �4.16�

�0�x�2 =
N!

x ! �N − x�!� p

1 − p
�x

, dn
2 =

N!

n ! �N − n�!� p

1 − p
�n�1 − p�N, �4.17�

Pn���x�� = 2F1��− n,− x

− N
�p−1� . �4.18�

This is a simplest example of self-dual polynomials. The stationary probability �0�x�2d0
2 is the

binomial distribution.

5. q-Racah †KS3.2‡

This is the first example of the q-scheme of the orthogonal polynomials. Among them the
q-Racah polynomial is the most generic. The set of parameters is four real numbers �a ,b ,c ,d�,
which is different from the standard one in the same manner as for the Racah polynomial. We
restrict them
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c = q−N, a � b, 0 � d � 1, 0 � a � qNd, qd � b � 1, d̃ � q−1, d̃ =
def

abcd−1q−1.

�4.19�

The functions B�x� and D�x� are

B�x� = −
�1 − aqx��1 − bqx��1 − cqx��1 − dqx�

�1 − dq2x��1 − dq2x+1�
, �4.20�

D�x� = − d̃
�1 − a−1dqx��1 − b−1dqx��1 − c−1dqx��1 − qx�

�1 − dq2x−1��1 − dq2x�
. �4.21�

The other data are

E�n� = �q−n − 1��1 − d̃qn�, ��x� = �q−x − 1��1 − dqx� , �4.22�

�0�x�2 =
�a,b,c,d;q�x

�a−1dq,b−1dq,c−1dq,q;q�xd̃
x

1 − dq2x

1 − d
, �4.23�

dn
2 =

�a,b,c, d̃;q�n

�a−1d̃q,b−1d̃q,c−1d̃q,q;q�ndn

1 − d̃q2n

1 − d̃


�− 1�N�a−1dq,b−1dq,c−1dq;q�Nd̃Nq1/2N�N+1�

�d̃q;q�N�dq;q�2N

,

�4.24�

Pn���x�� = 4�3��q−n, d̃qn,q−x,dqx

a,b,c
�q;q� , �4.25�

in which 4�3 is the basic hypergeometric series �A4� and �a ;q�n is the q-Pochhammer symbol
�A2�. The dual q-Racah polynomial is again the q-Racah polynomial with the parameter corre-

spondence �a ,b ,c ,d�↔ �a ,b ,c , d̃�.

6. q-Hahn †KS3.6‡

The q-Hahn polynomial has two positive parameters a and b and the birth and death rates are
quadratic polynomials in qx,

B�x� = �1 − aqx��qx−N − 1�, D�x� = aq−1�1 − qx��qx−N − b�, 0 � a, b � 1. �4.26�

The other data are

E�n� = �q−n − 1��1 − abqn−1�, ��x� = q−x − 1, �4.27�

�0�x�2 =
�q;q�N

�q;q�x�q;q�N−x

�a;q�x�b;q�N−x

�b;q�Nax , �4.28�

dn
2 =

�q;q�N

�q;q�n�q;q�N−n

�a,abq−1;q�n

�abqN,b;q�nan

1 − abq2n−1

1 − abq−1 
�b;q�NaN

�ab;q�N
, �4.29�

Pn���x�� = 3�2��q−n,abqn−1,q−x

a,q−N �q;q� . �4.30�

Obviously the q-Hahn and dual q-Hahn are dual to each other.
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7. Dual q-Hahn †KS3.7‡

For obvious reasons, we adopt the same parameters �a ,b� for the q-Hahn and dual q-Hahn
polynomials. The birth and death rates are rational functions of qx,

B�x� =
�qx−N − 1��1 − aqx��1 − abqx−1�

�1 − abq2x−1��1 − abq2x�
, 0 � a, b � 1, �4.31�

D�x� = aqx−N−1 �1 − qx��1 − abqx+N−1��1 − bqx−1�
�1 − abq2x−2��1 − abq2x−1�

, �4.32�

E�n� = q−n − 1, ��x� = �q−x − 1��1 − abqx−1� , �4.33�

�0�x�2 =
�q;q�N

�q;q�x�q;q�N−x

�a,abq−1;q�x

�abqN,b;q�xa
x

1 − abq2x−1

1 − abq−1 , �4.34�

dn
2 =

�q;q�N

�q;q�n�q;q�N−n

�a;q�n�b;q�N−n

�b;q�Nan 
�b;q�NaN

�ab;q�N
, �4.35�

Pn���x�� = 3�2��q−n,abqx−1,q−x

a,q−N �q;q� . �4.36�

8. Quantum q-Krawtchouk †KS3.14‡

This has one positive parameter p�q−N. The birth and death rates are quadratic polynomials
in qx,

B�x� = p−1qx�qx−N − 1�, D�x� = �1 − qx��1 − p−1qx−N−1� , �4.37�

E�n� = 1 − qn, ��x� = q−x − 1, �4.38�

�0�x�2 =
�q;q�N

�q;q�x�q;q�N−x

p−xqx�x−1−N�

�p−1q−N;q�x
, �4.39�

dn
2 =

�q;q�N

�q;q�n�q;q�N−n

p−nq−Nn

�p−1q−n;q�n
 �p−1q−N;q�N, �4.40�

Pn���x�� = 2�1��q−n,q−x

q−N �q;pqn+1� . �4.41�

9. q-Krawtchouk †KS3.15‡

This has one positive parameter p�0 and the birth and death rates are linear in qx,

B�x� = qx−N − 1, D�x� = p�1 − qx� , �4.42�

E�n� = �q−n − 1��1 + pqn�, ��x� = q−x − 1, �4.43�
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�0�x�2 =
�q;q�N

�q;q�x�q;q�N−x
p−xq1/2x�x−1�−xN, �4.44�

dn
2 =

�q;q�N

�q;q�n�q;q�N−n

�− p;q�n

�− pqN+1;q�npnq1/2n�n+1�
1 + pq2n

1 + p


pNq1/2N�N+1�

�− pq;q�N
, �4.45�

Pn���x�� = 3�2��q−n,q−x,− pqn

q−N,0
�q;q� . �4.46�

10. Affine q-Krawtchouk †KS3.16‡ „self-dual…

This has one positive parameter p and the birth and death rates are quadratic polynomials in
qx,

B�x� = �qx−N − 1��1 − pqx+1�, D�x� = pqx−N�1 − qx�, 0 � p � q−1, �4.47�

E�n� = q−n − 1, ��x� = q−x − 1, �4.48�

�0�x�2 =
�q;q�N

�q;q�x�q;q�N−x

�pq;q�x

�pq�x , dn
2 =

�q;q�N

�q;q�n�q;q�N−n

�pq;q�n

�pq�n  �pq�N, �4.49�

Pn���x�� = 3�2��q−n,q−x,0

pq,q−N �q;q� . �4.50�

B. Infinite dimensional cases

In contrast to the finite dimensional case, the structure of the polynomials is severely con-
strained by the asymptotic forms of the functions B�x� and D�x� �3.12�.

1. Meixner †KS1.9‡ „self-dual…

This is the best known example of exactly solvable birth and death processes10 and the birth
and death rates are both linear in x with simple linear energy spectra E�n�=n and ��x�=x. It has
two positive parameters � and c:

B�x� =
c

1 − c
�x + ��, D�x� =

1

1 − c
x, � � 0, 0 � c � 1, �4.51�

E�n� = n, ��x� = x , �4.52�

�0�x�2 =
���xc

x

x!
, dn

2 =
���ncn

n!
 �1 − c��, �4.53�

Pn���x�� = 2F1��− n,− x

�
�1 − c−1� . �4.54�

2. Charlier †KS1.12‡ „self-dual…

This is another best known example of exactly solvable birth and death processes with con-
stant birth rates a�0 and linear death rates,
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B�x� = a, D�x� = x , �4.55�

E�n� = n, ��x� = x , �4.56�

�0�x�2 =
ax

x!
, dn

2 =
an

n!
 e−a, �4.57�

Pn���x�� = 2F0��− n,− x

−
�− a−1� . �4.58�

The stationary probability �0�x�2d0
2 �4.57� is the Poisson distribution.

3. little q-Jacobi †KS3.12‡

This has two parameters a and b. The birth and death rates grow exponentially as x tends to
infinity,

B�x� = a�q−x − bq�, D�x� = q−x − 1, 0 � a � q−1, b � q−1, �4.59�

E�n� = �q−n − 1��1 − abqn+1�, ��x� = 1 − qx, �4.60�

�0�x�2 =
�bq;q�x

�q;q�x
�aq�x, �4.61�

dn
2 =

�bq,abq;q�nanqn2

�q,aq;q�n

1 − abq2n+1

1 − abq


�aq;q��

�abq2;q��

, �4.62�

Pn���x�� = �− a�−nq−1/2n�n+1� �aq;q�n

�bq;q�n
2�1��q−n,abqn+1

aq
�q;qx+1� . �4.63�

The normalization of the polynomial is different from the conventional one.

4. q-Meixner †KS3.13‡

This has two positive parameters b and c. The birth and death rates are quadratic in qx and as
x goes to infinity, the birth rates tend to zero and the death rates tend to unity,

B�x� = cqx�1 − bqx+1�, D�x� = �1 − qx��1 + bcqx�, 0 � b � q−1, c � 0, �4.64�

E�n� = 1 − qn, ��x� = q−x − 1, �4.65�

�0�x�2 =
�bq;q�x

�q,− bcq;q�x
cxq1/2x�x−1�, dn

2 =
�bq;q�n

�q,− c−1q;q�n


�− bcq;q��

�− c;q��

, �4.66�

Pn���x�� = 2�1��q−n,q−x

bq
�q;− c−1qn+1� . �4.67�

5. Little q-Laguerre/Wall †KS3.20‡

This has one positive parameter a and both the birth and death rates grow exponentially as x
tends to infinity,
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B�x� = aq−x, D�x� = q−x − 1, 0 � a � q−1, �4.68�

E�n� = q−n − 1, ��x� = 1 − qx, �4.69�

�0�x�2 =
�aq�x

�q;q�x
, dn

2 =
anqn2

�q,aq;q�n
 �aq;q��, �4.70�

Pn���x�� = 2�0��q−n,q−x

−
�q;a−1qx� . �4.71�

The normalization of the polynomial is different from the conventional one.

6. Al-Salam–Carlitz II †KS3.25‡

This has one positive parameter a and the birth and death rates are quadratic in qx. As x goes
to infinity the birth rates tend to zero and death rates tend to unity,

B�x� = aq2x+1, D�x� = �1 − qx��1 − aqx�, 0 � a � q−1, �4.72�

E�n� = 1 − qn, ��x� = q−x − 1, �4.73�

�0�x�2 =
axqx2

�q,aq;q�x
, dn

2 =
�aq�n

�q;q�n
 �aq;q��, �4.74�

Pn���x�� = 2�0��q−n,q−x

−
�q;a−1qn� . �4.75�

The normalization of the polynomial is different from the conventional one.

7. Alternative q-Charlier †KS3.22‡

This has one positive parameter a. The birth rates are constant a, whereas the death rates grow
exponentially as x goes to infinity,

B�x� = a, D�x� = q−x − 1, a � 0, �4.76�

E�n� = �q−n − 1��1 + aqn�, ��x� = 1 − qx, �4.77�

�0�x�2 =
axq1/2x�x+1�

�q;q�x
,dn

2 =
anq1/2n�3n−1�

�q;q�n

�− a;q��

�− aqn;q��

1 + aq2n

1 + a


1

�− aq;q��

, �4.78�

Pn���x�� = qnx
2�1��q−n,q−x

0
�q;− a−1q−n+1� . �4.79�

The normalization of the polynomial is different from the conventional one.

8. q-Charlier †KS3.23‡

This has one positive parameter a, and as x goes to infinity, the birth rates tend to zero and the
death rates tend to unity,

B�x� = aqx, D�x� = 1 − qx, a � 0, �4.80�
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E�n� = 1 − qn, ��x� = q−x − 1, �4.81�

�0�x�2 =
axq1/2x�x−1�

�q;q�x
, dn

2 =
qn

�− a−1q,q;q�n


1

�− a;q��

, �4.82�

Pn���x�� = 2�1��q−n,q−x

0
�q;− a−1qn+1� . �4.83�

V. SUMMARY AND COMMENTS

Following the simple line of arguments summarized in the following diagram, we presented
18 models of exactly solvable birth and death processes and their solutions, the transition prob-
abilities. In the diagram “ES” stands for exactly solvable.

ES 1d Quantum

Mechanical systems
give solutions−−−−−−−−−−−−−−−−−−→

ES 1d Fokker-Planck
equations

⏐
⏐
⏐
⏐
�

discretisation

⏐
⏐
⏐
⏐
�

discretisation

ES ‘Matrix’ Quantum

Mechanical systems
give solutions−−−−−−−−−−−−−−−−−−→

ES Birth and Death
processes

The exactly solvable matrix quantum mechanics or the 1D discrete quantum mechanics with
real shifts was explored in detail in Ref. 9 to cover most of the hypergeometric orthogonal
polynomials of a discrete variable in the �q-� Askey scheme.4,5,7 For the “explanation” of the exact
solvability, see a recent work.22 By comparing the present simple results with those in
literatures8,3,5,12 one would realize the essential role played by the energy spectrum E�n� and the
sinusoidal coordinate ��x�. They are the eigenvalues of the two operators, called the Leonard pair,
which characterize the orthogonal polynomials completely.19–21

In this paper we did not discuss the generalization of the birth and death processes which has
�0�0 �D�0��0�, the nonvanishing death rate at zero population, although this has led to a new
type of orthogonal polynomials in the cases when the birth and death rates B�x� and D�x� are
linear and quadratic in x.23,24 It would be interesting to try further generalization in this direction
for which B�x� and D�x� are rational, e.g., the Racah case �Sec. IV A 1� or q-linear, e.g., the
q-Krawtchouk �Sec. IV A 9�, or q-quadratic, e.g., the affine q-Krawtchouk �Sec. IV A 10�, or even
the q-rational, e.g., the q-Racah �Sec. IV A 5� cases.

It is a big challenge to try and find a closed form expression for

�
n=0

dn
2e−E�n�tPn���x��Pn���y�� , �5.1�

appearing as a part of the transition probability �2.17� and �3.23� for various examples in section
four. To the best of our knowledge, such expressions are known only for the linear energy spec-
trum E�n��n. For example, for the Fokker–Planck equation corresponding to the harmonic oscil-
lator Hamiltonian, or the Ornshtein–Uhlenbeck process,1,14 we have

H=
def

−
d2

dx2 + x2 − 1, LFP =
d2

dx2 + 2
d

dx
x, E�n� = 2n, ��x� = x , �5.2�

P�y,x;t� =
e−x2

�	
�
n=0

�
Hn�x�Hn�y�

2nn!
e−2nt =

1
�	�1 − e−4t

exp�−
�x − ye−2t�2

1 − e−4t � . �5.3�

The last equality was derived based on �6.1.13� of Ref. 4. Another example is
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H=
def

−
d2

dx2 + x2 +
g�g − 1�

x2 − �1 + 2g�, LFP =
d2

dx2 + 2
d

dx
�x −

g

x
� , �5.4�

En = 4n, ��x� = x2, � =
def

g − 1/2, 0 � x � � , �5.5�

P�y,x;t� = 2e−x2
x2g�

n=0

�
n ! Ln

����x2�Ln
����y2�

��n + � + 1�
e−4nt �5.6�

=
2x2g

�1 − e−4t�
exp�−

�x2 + y2e−4t�
�1 − e−4t� ��xye−2t�−�I�� 2xye−2t

1 − e−4t� , �5.7�

in which I� is the modified Bessel function of the order of �. The last equality was derived based
on �6.2.25� of Ref. 4. We would like to ask experts in special functions and orthogonal polyno-
mials to derive such bilinear generating functions for various energy spectra,

E�n� = n�n + d�, q−n − 1, 1 − qn, �q−n − 1��1 − dqn� . �5.8�
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APPENDIX: SOME DEFINITIONS RELATED TO THE HYPERGEOMETRIC AND
q-HYPERGEOMETRIC FUNCTIONS

For self-containedness we collect several definitions related to the �q-� hypergeometric
functions.7

• Pochhammer symbol �a�n,

�a�n =
def

�
k=1

n

�a + k − 1� = a�a + 1� ¯ �a + n − 1� =
��a + n�

��a�
. �A1�

• q-Pochhammer symbol �a ;q�n,

�a;q�n =
def

�
k=1

n

�1 − aqk−1� = �1 − a��1 − aq� ¯ �1 − aqn−1� . �A2�

• Hypergeometric series rFs,

rFs��a1, . . . ,ar

b1, . . . ,bs
�z� =

def

�
n=0

�
�a1, . . . ,ar�n

�b1, . . . ,bs�n

zn

n!
, �A3�

where �a1 , . . . ,ar�n =
def

� j=1
r �aj�n= �a1�n¯ �ar�n.

• q-hypergeometric series �the basic hypergeometric series� r�s,
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r�s��a1, ¯ ,ar

b1, ¯ ,bs
�q;z� =

def

�
n=0

�
�a1, ¯ ,ar;q�n

�b1, ¯ ,bs;q�n
�− 1��1+s−r�nq�1+s−r�n�n−1�/2 zn

�q;q�n
, �A4�

where �a1 , . . . ,ar ;q�n =
def

� j=1
r �aj ;q�n= �a1 ;q�n¯ �ar ;q�n.
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