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1. Introduction

We consider the classical three-body problem in the three-dimensional space, for which

the equation of motion is given by

mℓẍℓ =
∂V

∂xℓ

, xℓ ∈ R3, ℓ = 1, 2, 3, (1.1)

where an overdot denotes differentiation with respect to the time variable, mℓ (> 0) is

the ℓ-th mass and

V (x1,x2, x3) =
∑
i<j

mimj

|xi − xj|

represents the (negative-)potential energy with the unit gravitational constant. Letting

pℓ = mℓẋℓ be the momentum of mℓ and introducing a state variable vector x =

(x1,x2, x3,p1,p2, p3), we write (1.1) as

ẋ = f(x), (1.2)

where

f(x) =

(
1

m1

p1,
1

m1

p2,
1

m1

p3,
∂V

∂x1

,
∂V

∂x2

,
∂V

∂x3

)
.

Equation (1.2) (i.e., (1.1)) has several symmetries and permits special classes of solutions

called relative equilibria and relative periodic orbits as well as true equilibria and periodic

orbits.

Let G be a finite-dimensional Lie group such that for any g ∈ G f(gx) = gf(x). For

example, we can take a set of all rotations around any axis through the centre of gravity

as the Lie group G for (1.2). Obviously, when x(t) is a solution of (1.2), so is gx(t). Let

Φt denote the flow generated by (1.2). A point x̄ is said to lie on a relative periodic orbit

if there exists t > 0 such that Φt(x̄) ∈ Gx̄. We say that T = inf{t > 0 |Φt(x̄) ∈ Gx̄}
is the relative period of the relative periodic orbit. If T = 0, then x̄ is said to lie on a

relative equilibrium. We can regard the set {gΦt(x̄), t ∈ R, g ∈ G} as the same relative

periodic orbits for all g ∈ G.

Two simplest types of periodic solutions to the three-body problem (1.1) (i.e., (1.2))

were discovered by Euler and Lagrange in the eighteenth century (see chapter 2 of [1]).

They are now called Euler and Lagrange orbits after the discoverers’ names. In the Euler

orbits, three bodies keep a collinear configuration and move homographically like Kepler

orbits in an inertial coordinate system. In the Lagrange orbits, the three bodies keep an

equilateral triangle configuration. Especially, circular Euler orbits and Lagrange orbits,

in which all masses have circular trajectories, are relative equilibria such that the moving

bodies rotate rigidly with constant angular velocities around the centre of mass.

As a recent remarkable progress in the three-body problem, Chenciner and

Montgomery [2] proved that there exists a figure-eight (periodic) solution. Since then,

a number of new periodic and relative periodic orbits in the three-body problem have

been obtained. In particular, Chenciner et. al. [3] proved the existence of three families
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Figure 1. Spatial isosceles three-body problem. The xyz- and x′y′z-coordinate systems
represent inertial and rotational frames, respectively.

of relative periodic orbits bifurcated from the figure-eight solution while one family was

numerically computed by Hénon (see [3]) and the other one (the P12 family) was shown

theoretically to exist by Marchal [4] earlier. Chenciner and Féjoz [5] also showed that

there are Lyapunov families of relative periodic orbits bifurcated from relative equilibria

having regular N -gon configurations in the N -body problem with equal masses.

On the other hand, McGehee [6] introduced special coordinates, which are now called

McGehee’s coordinates after him, to blow-up triple collisions and treat them appropriately

in the collinear three-body problem. Subsequently, Devaney [7] extended the technique to

the so-called isosceles three-body problem: two masses are assumed to be equal, m1 = m2

(= m), and the three bodies maintain an isosceles triangle configuration in which the two

equal masses have symmetric positions about an axis passing through the centre of mass

(say the z-axis) and the other mass m3 moves along the axis (see figure 1). Especially,

the triple collision singularity was blown-up to an invariant manifold which is called the

collision manifold and contains some hyperbolic saddle-type equilibria. See section 2.4

for more details. His technique was also used to study orbits near triple collisions in

the isosceles three-body problem [7–13]. In particular, the existence of several types of

heteroclinic orbits to equilibria on the collision manifold has been proved [9–13] (see also

section 3.1). Moeckel [11] also developed a variation on Easton’s window theory [14] and

proved the existence of an invariant set including relative periodic orbits near heteroclinic

cycles. Recently, he remarkably extended the blow-up technique and constructed symbolic

dynamics to characterize orbits passing near triple collisions in the planar three-body

problem in [15].

3



In this paper we study the isosceles three-body problem and show that there exist

infinitely many families of “symmetric” relative periodic orbits converging to heteroclinic

cycles between equilibria on the collision manifold in Devaney’s blown-up coordinates.

The symmetry of the relative periodic orbits is a new feature, compared with the similar

result of Moeckel [11]. To our end, we prove that two types of heteroclinic orbits exist

in much wider parameter ranges than detected in [11], using self-validating interval

arithmetic calculations [16], as well as we appeal to the previous results of [11, 13] on

heteroclinic orbits. Moreover, we give numerical computations for heteroclinic and relative

periodic orbits to demonstrate our theoretical results. The numerical results also indicate

that the two types of heteroclinic orbits and families of relative periodic orbits exist in

wider parameter regions than detected in the theory and that some of them are related

to Euler orbits.

The outline of this paper is as follows. In section 2, we review some prerequisites on

the isosceles three-body problem: blow-up of the triple collision singularity, reversibility,

analytically obtained heteroclinic orbits and the collision manifold. In section 3, we

present theoretical results for heteroclinic and relative periodic orbits. We first review the

previous results of [11,13] on the existence of infinitely many heteroclinic orbits to triple

collisions and extend another result of Moeckel [11] for other two types of heteroclinic

orbits. The technical part based on self-validating interval arithmetic calculations in

the proof of the latter is given in appendix A. These heteroclinic orbits are transverse

and construct infinitely many heteroclinic cycles. Here we used the terminology

“transversality” in a topological meaning and do so through the paper. We next utilize

the window theory of Moeckel [11] to show that there exist infinitely many families of

relative periodic orbits which converge to the heteroclinic cycles detected. Finally, we

give numerical evidence of the theoretical results for heteroclinic and relative periodic

orbits in section 4. Our numerical approaches for stable and unstable manifolds, whose

intersections yield heteroclinic orbits, and relative periodic orbits are briefly explained.

For the computations the computer continuation tool AUTO [18] is effectively used.

2. Isosceles three-body problem

2.1. Equation of motion

In the spatial isosceles three-body problem, we can take the centre of gravity as the origin

and the symmetric axis as the z-axis, and assume that the equal masses are located at

(x, y, z) and (−x,−y, z) (2.1)

and the other mass m3 is located at

(0, 0,−2α−1z) (2.2)

in the inertial coordinate system, where α = m3/m. Note that the constant α is the

reciprocal of that used by Moeckel [10,11].
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Letting

z′ =

√
α + 1

α
z, (2.3)

we introduce the polar coordinate such that

x = r cos θ cos ϕ, y = r sin θ cos ϕ, z′ = r sin ϕ (2.4)

as in figure 1. We set m = 1/2 without a loss of generality and use (1.1) to obtain

ṙ = vr cos ϕ, ϕ̇ = w, v̇ =

(
U(ϕ) − 1

2
v2 + 2rh

)
cos ϕ,

(2.5)

ẇ =
dU

dϕ
(ϕ) cos2 ϕ − 1

2
vw cos ϕ −

(
2U(ϕ) − v2 + 2rh

)
sin ϕ cos ϕ,

where h represents the total energy and

U(ϕ) = sec ϕ +
4α3/2√

α + 2 sin2 ϕ
. (2.6)

Here the time variable is changed to eliminate singularities due to mass collisions, and the

two variables v and w are related to the velocities in the r- and ϕ-directions, respectively.

Equation (2.5) also has the conservation law

1

2

(
v2 cos2 ϕ + w2 +

ω2

r

)
− U(ϕ) cos2 ϕ = rh cos2 ϕ, (2.7)

where ω represents the angular momentum about the z-axis. Note that the θ-variable

does not appear in (2.5) due to its symmetric property.

Devaney [7, 8] introduced the variables (r, ϕ, v, w) in the planar isosceles three-body

problem (i.e. for ω = 0), now called Devaney’s coordinates. Subsequently, Moeckel [11]

extended them to the spatial isosceles three-body problem (i.e. for ω ̸= 0). See [11] for

the derivation of (2.5) and (2.7).

2.2. Reversibility and phase space structures

We express (2.5) as

ξ̇ = F (ξ), (2.8)

where ξ = (r, ϕ, v, w). Let

R1 : (r, ϕ, v, w) 7→ (r, ϕ,−v,−w) (2.9)

and let

R2 : (r, ϕ, v, w) 7→ (r,−ϕ,−v, w). (2.10)

They are linear involutions since R2
i , i = 1, 2, are the identity, and they satisfy

F (Riξ) + RiF (ξ) = 0, i = 1, 2. (2.11)
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Thus, the system (2.5) is reversible with respect to Ri, i = 1, 2 [19]. Let Fix(Ri) =

{ξ ∈ R4 |Riξ = ξ} denote the invariant plane for Ri for i = 1, 2. We easily see that

Fix(R1) = {v = w = 0} and Fix(R2) = {ϕ = v = 0}.
A fundamental characteristic of reversible systems is that if ξ(t) is a solution, then

so is Riξ(−t), i = 1, 2. We call a solution (and the corresponding orbit) Ri-symmetric if

x(t) = Riξ(−t). Moreover, an orbit is Ri-symmetric if and only if it intersects the space

Fix(Ri) (see [20]).

The function U(ϕ) is even and has three critical points on (−π/2, π/2), including

ϕ = 0. Let ϕ = ±ϕc denote the other critical points of U(ϕ), where

ϕc = arccos

√
α + 2

2(2α + 1)
> 0.

The system (2.5) has six equilibria at C = (0, 0, v0, 0), C∗ = (0, 0,−v0, 0), E± =

(0,±ϕc, vc, 0) and E∗
± = (0,±ϕc,−vc, 0) in the (r, ϕ, v, w)-phase space, where v0 =√

2U(0) and vc =
√

2U(ϕc). We easily see that these equilibria are hyperbolic saddles

and satisfy the relations E∗
± = R1E±, E∗

± = R2E∓ and C = RiC
∗, i = 1, 2. Moreover,

E± (resp. E∗
±) have two-dimensional stable and unstable manifolds, denoted by W s(E±)

and W u(E±) (resp. W s(E∗
±) and W u(E∗

±)), respectively, while C (resp. C∗) has three-

dimensional stable (resp. unstable) manifold denoted by W s(C) (resp. W u(C∗)) and one-

dimensional unstable (resp. stable) manifold denoted by W u(C) (resp. W s(C∗)). From

the reversibility of (2.5) and the above relations we see that W s,u(E∗
±) = R1W

u,s(E±),

W s,u(E∗
∓) = R2W

u,s(E±) and W s,u(C∗) = RiW
u,s(C), i = 1, 2.

2.3. Analytically obtained, heteroclinic orbits on invariant planes

Let us assume that ω = 0. We see that the planes {ϕ = w = 0} and {ϕ = ±ϕc, w = 0}
are invariant for (2.5) since by the energy relation (2.7)

1

2
v2 − U0 = rh, U0 = U(0) = 4α + 1 (2.12)

and

1

2
v2 − Uc = rh, Uc = U(ϕc) =

√
2(2α + 1)3

α + 2
, (2.13)

so that ϕ̇ = ẇ = 0 there. Hence, the system (2.5) reduces to

ṙ = vr, v̇ = U0 −
1

2
v2 + 2rh (2.14)

on {ϕ = w = 0} and

ṙ = vr cos ϕ, v̇ =

(
Uc −

1

2
v2 + 2rh

)
cos ϕc, (2.15)

on {ϕ = ±ϕc, w = 0}. Using (2.12) and (2.13), we can rewrite the second equations of

(2.14) and (2.15) as

v̇ =
1

2
(v2 − v2

0) (2.16)
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Figure 2. Collision manifold N . Here C, C∗, E± and E∗
± represent equilibria in (2.5).

and

v̇ =
1

2
cos ϕc(v

2 − v2
c ), (2.17)

which have solutions

v = −v0 tanh (1
2
v0 t) (2.18)

and

v = −vc tanh βt, β = 1
2
vc cos ϕc, (2.19)

respectively. It follows from (2.12) and (2.13) that equations (2.14) and (2.15) have

solutions

(r, v) =

(
− v2

0

2h
sech2(1

2
v0 t),−v2

0 tanh (1
2
v0 t)

)
(2.20)

and

(r, v) =

(
− v2

c

2h
sech2βt,−vc tanh βt

)
, (2.21)

which give heteroclinic orbits from C to C∗ on {ϕ = w = 0}, and from E± to E∗
± on

{ϕ = ±ϕc, w = 0}, respectively. These heteroclinic orbits were given earlier in [11] with

no explanation.

2.4. Collision manifold

We now give a key concept of a collision manifold in our study. Let

E (ω) = 1
2

(
v2 cos2 ϕ + w2 +

ω2

r

)
− U(ϕ) cos2 ϕ − rh cos2 ϕ, (2.22)
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Equation (2.7) defines a three-dimensional manifold

M (ω) = {(r, ϕ, v, w) | E (ω) = 0},

which consists of orbits with angular momentum ω and energy h. Let

E0 = 1
2

(
v2 cos2 ϕ + w2

)
− U(ϕ) cos2 ϕ (2.23)

and define

M+ = {(r, ϕ, v, w) | r ≥ 0,E (0) = 0},
M0 = {(r, ϕ, v, w) | r = 0,E0 > 0},
N = M+ ∩ M0 = {(r, ϕ, v, w) | r = 0, E0 = 0},
M = M+ ∪ M0.

In particular, we refer to N , which is sketched in figure 2, as a collision manifold. The

collision manifold was first introduced by Devaney [7, 8], and the other invariant sets

by Moeckel [11] later. We regard M as the limiting variety of M (ω) when ω → 0.

Topologically, N = ∂M0
∼= S2\{four points} and M0

∼= D3\{four points} (which,

respectively, represent the surface and the inside domain in figure 2). It is clear that

M+, M0 and M are invariant under the flow of (2.5). Moreover, for solutions of (2.5)

with r = 0 we have

Ė0 = −E0 v cos ϕ,

from which it follows that N is also invariant.

All the equilibria given in section 2.2 lie on N . In addition, W s(E±),W u(E∗
±) ⊂ M0

and W u(E±),W s(E∗
±) ⊂ M+, while W s(C),W u(C∗) ⊂ M0 and W u(C),W s(C∗) ⊂ M+.

See figure 2. Especially, all heteroclinic orbits given in section 2.3 are included in M+.

See [11] for more details.

3. Theoretical results

3.1. Heteroclinic orbits from E± to E∗
± or to E∗

∓

We now state theoretical results for the existence of heteroclinic orbits and relative

periodic orbits. We begin with heteroclinic orbits.

Moeckel [11] and Shibayama [13] showed that two classes of infinitely many

heteroclinic orbits from E± to E∗
± or to E∗

∓ exist other than ones in section 2.3. Their

results are stated as follows.

Theorem 1 (Moeckel). For 0 < α < 55
4

there exist infinitely many, R1- and

R2-symmetric, transverse heteroclinic orbits from E± to E∗
± and E∗

± passing any

neighbourhood of the heteroclinic orbit (2.20) from C to C∗.

Theorem 2 (Shibayama). For any α > 0 and k ∈ N, there exists an R1-symmetric,

transverse heteroclinic orbit from E± to E∗
± that experiences k binary collisions (i.e.,

passes ϕ = ±1
2
π k times).
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π/2−π/2

+∂N
0

Figure 3. Stable and unstable manifolds of Ē± in (3.1). A situation in the case of
α < 55

4 is depicted: The right branch of W s(Ē+) end at (ϕ, w) = ( 1
2π, 0) and its left

branch touch the above arc of ∂N+ while the left branch of W s(Ē−) end at (−1
2π, 0)

and its right branch touch the lower arc of ∂N+.

We say that an orbit is parabolic if r → ∞, v → 0 and ϕ → ±π
2

as t → +∞.

McGehee [21] showed that the set of all parabolic orbits consists of two two-dimensional

analytic manifolds P± which we now call parabolic manifolds. Simó and Mart́ınez [12]

also studied the dynamics of (2.5) near P± and proved the existence of infinitely many

heteroclinic orbits around P±. From the proof of [13] it turns out that the heteroclinic

orbits obtained in theorem 2 converge to P± as k → ±∞. Thus, for sufficiently large

k the heteroclinic orbits in theorem 2 yield the result in [12] although the proof is quite

different from theirs.

3.2. Heteroclinic orbits from E∗
± to E± and to E∓

Moeckel [11] proved the existence of heteroclinic orbits from E∗
± to E± exist for α ≥ 55

4

and from E∗
± to E∓ for α sufficiently small. We extend his result in the following. We

mainly consider the upper region v ≥ 0 below. The lower region v ≤ 0 can be analyzed

similarly.

We first take the section Σ = {(r, ϕ, v, w) | v = 0}, which is convenient to consider

since Fix(R1) and Fix(R2) are contained in it and simply represented as the planes

{w = 0} and {ϕ = 0}, respectively, on it. Let N+ = {(r, ϕ, v, w) ∈ N | v > 0,−1
2
π < ϕ <

1
2
π} ⊂ N . The boundary of N+ in N is represented by ∂N+ = {2U(ϕ) cos2 ϕ−w2 = 0}

and included by Σ except two points (ϕ,w) = (±1
2
π, 0). The restriction of (2.5) onto N+

is governed by a two-dimensional system

ϕ̇ = w, ẇ =
dU

dϕ
(ϕ) cos2 ϕ − 1

2
w

√
2U(ϕ) cos2 ϕ − w2 − w2 tan ϕ. (3.1)

Equation (3.1) has three equilibria at (ϕ,w) = (0, 0) and (±ϕc, 0), which correspond to

C and E± and are denoted by C̄ and Ē±, respectively, and they are all hyperbolic: C̄ is a

9
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Figure 4. Intersection between W s(E±) and Σ: (a) α > α1; (b) α < α2.

sink which is spiral for α < 55
4

and non-spiral for α ≥ 55
4
, and Ē± are saddles. Moreover,

the vector field of (3.1) is tangent to the boundary.

The behaviour of the stable and unstable manifolds of Ē± is drawn in figure 3. The

basin of C̄ includes the right (resp. left) branch of W u(Ē+) (resp. W u(Ē−)). The right

branches of W s(Ē±) touch the lower arc of ∂N 0
+ = ∂N+\{(ϕ,w) = (±1

2
π, 0)} or end at

(ϕ,w) = (1
2
π, 0) and the left branches of W s(Ē±) touch the upper arc of ∂N 0

+ or end

at (−1
2
π, 0), while the right (resp. left) branch of W u(Ē+) (resp. W u(Ē−)) must end at

(1
2
π, 0) (resp. at (−1

2
π, 0)) since v̇ > 0 except at the equilibria and ϕ = ±1

2
π. See [7,8,11]

for the details. Note that there exists no closed orbit encircling the one sink and two

saddles by the index theory [22], and that the vector field of (3.1) is antisymmetric about

the origin.

Orbits on W s(Ē±) finally intersect the section Σ even if the branches of W s(Ē±)

end at (ϕ,w) = (±1
2
π, 0). Let pℓ

± and pr
±, respectively, denote points on ∂N+ at which

orbits on the left and right branches of W s(Ē±) intersect Σ. Note that pℓ,r
± may be

(ϕ,w) = (±1
2
π, 0). We have the following lemma.

Lemma 1. (i) There exists a constant ᾱ1 < 6.52 such that for α > ᾱ1 pℓ
+ and pr

+,

respectively, lie on the lower and upper arcs of ∂N 0
+ .

(ii) There exists a constant ᾱ2 > 2.25 such that for α < ᾱ2 pℓ
+ and pr

+, respectively, lie

in the left and right half planes {ϕ < 0} and {ϕ > 0}.

The proof of this lemma is given in Appendix A. Moeckel [10] also proved the

statement of part (i) for α ≥ 55
4
.

Since

v̇ = (−E0 + 1
2
w2) sec ϕ > 0

for E0 < 0 and r = 0, all orbits on W s(E±) ⊂ M0 with E0 < 0 and v > 0 must also

intersect the section Σ in a point whose projection onto the (ϕ,w)-space is inside that of

10
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Figure 5. Windows around topologically transverse heteroclinic orbits on Σ.
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Figure 6. Half return map Π.

∂N+. This means that W s(E±) intersect Σ in a curve whose projection onto the (ϕ,w)-

plane is a curve connecting pr
± and pℓ

±. Hence, for ᾱ1 (resp. ᾱ2) W s(E±) also intersect

the invariant plane Fix(R1) (resp. Fix(R2), so that there exists a heteroclinic orbit from

E∗
± to E± (resp. to E∓). See figure 4. This proves the following result.

Theorem 3. There exist two constants α1 ≤ ᾱ1 and α2 ≥ ᾱ2 such that for α > α1 and

α < α2, respectively, there exist R1- and R2-symmetric transverse heteroclinic orbits from

E∗
± to E± and to E∓, respectively.

Moeckel proved a similar result for α1 < 55
4

= 13.75 and α2 > 0 in proposition 3.2

of [11]. Compared with his results, the estimates of theorem 3 on α-intervals for the

existence of heteroclinic orbits are very sharp. Simó [9] also showed numerically that the

intervals [α1,∞) and [0, α2] overlap in an interval including α = 1. In section 4 we will

see that our numerical results suggest α1 = 0 and α2 = 2.6 . . ..
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Figure 7. Correctly aligned windows and a symmetric periodic orbit.

3.3. Existence of one-parameter families of periodic orbits

Combining theorems 1 and 2 with theorem 3, we see that there exist infinitely many, R1-

symmetric (resp. R2-symmetric), transverse heteroclinic cycles connecting E± with E∗
±

(resp. with E∗
∓) for α > α1 (resp. for α < α2), where α1 ≤ 6.52 (resp. α2 ≥ 2.25) is given

in theorem 3. Using the window theory of Moeckel [11], we can prove the existence of

infinitely many families of R1- and R2-symmetric periodic orbits converging to the R1- and

R2-symmetric transverse heteroclinic cycles, respectively, when the angular momentum

ω > 0 is small, as follows.

Specifically, we consider an R1-symmetric transverse heteroclinic cycle. A similar

argument applies to an R2-symmetric transverse heteroclinic cycle. First, we choose two

small rectangles called windows, w0 and w1, on Σ near the heteroclinic orbits from E∗
+

to E+ and from E+ to E∗
+ for ω > 0, such that a pair of opposite sides of w0 and w1

do not intersect W s(E+) and W u(E+) (i.e., w0 and w1 are plus- and minus-transverse to

W s(E+) and W u(E+) in his terminologies), respectively, as shown in figure 5. When ω

is sufficiently small, the flow of (2.5) intersects w0 and w1 transversely in a geometrical

meaning since the heteroclinic orbits do. Let Π be the half return map taking a point on

w0 to a point on Σ for the flow of (2.5) (see figure 6). As in [11], we can show that for ω

sufficiently small, w1 and Π(w0) intersect transversely in a topological meaning (i.e., w0

and w1 are “correctly aligned” in his terminology). See figure 7. In particular, the image

of the diagonal of w0 intersects that of w1. Hence, if we choose w0, w1 on Σ such that

their diagonals are on Fix(R1), then the intersection point gives a symmetric periodic

orbit. Thus, we prove the following.

Theorem 4. There exist infinitely many families of R1-symmetric (resp. R2-symmetric)

periodic orbits converging to R1-symmetric (resp. R2-symmetric), transverse heteroclinic

cycles connecting E± with E∗
± (resp. with E∗

∓) given in theorems 1-3 for α > α1 (resp.

for α < α2).

12



p R(p)

Fix(R)

Figure 8. Symmetric transverse heteroclinic cycle and a one-parameter family of
symmetric periodic orbits. Here R represents the associated involution, and p and R(p)
are a symmetric pair of equilibria.

The situation of theorem 4 is depicted in figure 8. For geometrically transverse

heteroclinic cycles, the statement immediately follows from a corollary to theorem A in

Devaney [17] by noting that E∗
± = R1(E±) and E∗

∓ = R2(E±). This theorem also gives

infinitely many “new” families of relative periodic orbits which are symmetric about the

z-axis (resp. about the z-axis and xy-plane) in the three-dimensional three-body problem

(1.1), corresponding to the infinitely many families of R1-symmetric (resp. R2-symmetric)

periodic orbits in (2.5). Moreover, these families of relative periodic orbits converge to

triple collisions.

4. Numerical computations

4.1. Heteroclinic orbits

Now we give numerical evidence of the above theoretical results. We first compute the

stable and unstable manifolds and heteroclinic connections.

As stated in section 2.2, if we compute W s,u(E+), then we obtain W s,u(E∗
+) =

R1W
u,s(E+), W s,u(E∗

−) = R2W
u,s(E+) and W s,u(E−) = R1W

u,s(E∗
−) = R1R2W

s,u(E+)

by the reversibility. Similarly, we can also apply the involutions R1,2 to heteroclinic orbits

between E+ and E∗
+ or E∗

− to get heteroclinic orbits between E− and E∗
− or E∗

+. So we

concentrate only on the computation of W s,u(E+) and heteroclinic orbits between E+ and

E∗
+ or E∗

− below.

We begin with W u(E+). We first approximate W u(E+) by the unstable subspace of

13
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Figure 9. Unstable manifold of E+ on the section Σ: (a) α = 7; (b) α = 1; (c) α = 0.1.
The symbol “◦” represents an orbit with r = 0 on W u(E∗

+), and the symbol “•” and
alphabetical labels correspond to heteroclinic orbits which are the limits of one-parameter
families of periodic orbits in figures 14, 15 and 16.

the linearised system

η̇ = DF (E+)η (4.1)

near ξ = E+. Under this approximation, we obtain an orbit ξu(t) on W u(E+) as a solution

of (2.8) satisfying the boundary condition

Lsξ
u(0) = 0, ξu(T ) = ξu

0 , (4.2)

where T > 0 is a constant, Ls is an 2× 4 matrix consisting of row eigenvectors associated

with eigenvalues of negative real parts for the Jacobian matrix DF (E+), and ξu
0 is a point

on W u(E+). Thus, we solve the boundary value problem (2.8) and (4.2) and continue

the solution with ξu
0 to compute W u(E+) numerically. A quite related approach was used

to detect 512 heteroclinic connections in the Lorenz model in [23]. This approach can

also be extended to compute the unstable manifolds of normally hyperbolic invariant
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Figure 10. Unstable manifold of E+ on the section Σ: (a) α = 0.59; (b) α = 0.5884;
(c) α = 0.586; (d) α = 0.434; (e) α = 0.43201; (f) α = 0.43. The symbol “◦” represents
an orbit with r = 0 on W u(E∗

+).

manifolds [24]. Moreover, if W u(E+) intersects Fix(R1) (resp. Fix(R2)), then the
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Figure 11. Stable manifold of E+ on the section Σ: (a) α = 7; (b) α = 1; (c) α = 0.1.
The symbol “•”corresponds to heteroclinic orbits which are the limits of one-parameter
families of periodic orbits in figures 14, 15 and 16.

intersection gives a heteroclinic orbit from E+ to E∗
+ (resp. to E∗

−).

Similarly, we solve the boundary value problem (2.8) and

Luξ
s(0) = 0, ξs(−T ) = ξs

0 (4.3)

to compute W s(E+) numerically, where Lu is an 2×4 matrix consisting of row eigenvectors

associated with eigenvalues of positive real parts for DF (E+), and ξs
0 is a point on W s(E+).

The intersection of W s(E+) with Fix(R1) (resp. Fix(R2)) gives a heteroclinic orbit from

E∗
+ (resp. from E∗

−) to E+. We adopt as a starting solution the analytical heteroclinic

orbit (2.21) for W u(E+) or a small solution of the linearised system (4.1) for W s(E+),

and use the numerical continuation tool AUTO [18] to perform the above computations.

In these computations we can also take T and ξs,u(0) as free parameters.

Figure 9 shows the intersection of W u(E+) with Σ for α = 7, 1, 0.1. From the

figure we see that there are infinitely many heteroclinic orbits from E+ to E∗
+ and E∗

−,
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Figure 12. R1-symmetric heteroclinic connections between E+ and E∗
+: (a) and (b)

α = 7; (c) and (d) α = 1; (e) α = 0.1. Solid (resp. dashed) lines represent heteroclinic
orbits from E+ to E∗

+ (resp. from E∗
+ to E+) while dotted lines represent heteroclinic

orbits from C to C∗. The symbol “•” represents the equilibrium E+, E∗
+, C or C∗.

as predicted by theorems 1 and 2. Moreover, W u(E+) ∩ Σ has an isolated, connected

component whose right and left ends, respectively, approach a closed curve (the parabolic
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Figure 13. R2-symmetric heteroclinic connections between E+ and E∗
−: (a) α = 1;

(b) α = 0.1. Solid (resp. dashed) lines represent heteroclinic orbits from E+ to E∗
−

(resp. from E∗
− to E+) while dotted lines represent heteroclinic orbits from C to C∗.

The symbol “•” represents the equilibrium E+, E∗
−, C or C∗.

manifold P±) and the origin (i.e., a heteroclinic orbit from C to C∗) for α = 7, 1, and

it has a connected component whose right end lies on W u(E∗
+) ∩ {r = 0} and whose left

end approaches the origin for α = 0.1, while it has infinitely many connected components

lying between orbits on W u(E∗
+) ∩ {r = 0}, all of which can not be drawn in the figure,

in the three cases.

The behaviour of W u(E+) ∩ Σ in figure 9(c) for α = 0.1 is very different from that

in figures 9(a) and (b) for α = 7, 1. Figure 10 shows how it changes when the parameter

α decreases from α = 1. As shown in figure 10(a), a below branch of W u(E+) ∩ Σ first

approaches the outmost one of the upper-right branches. They touch at α ≈ 0.5884

and split into right and left after that, as shown in figures 10(b) and (c). When α

decreases further, one of the other below branches approaches one of the other upper-

right branches (see figure 10(d)), and they touch at α ≈ 0.43201 and split into right and

left (see figures 10(e) and (f)). After similar processes repeatedly occur, W u(E+) ∩ Σ

finally has such a structure as in figure 9(c) at α = 0.1.

Figure 11 shows the intersection of W s(E+) with the section Σ for α = 7, 1, 0.1.

Only the part of E0 ≤ 0 is depicted there. From the figure we see that there is a

heteroclinic orbit from E∗
− to E+ for α = 1, 0.1 as predicted by theorem 3, and that

there exists a heteroclinic orbit from E∗
+ to E+ not only for α = 7 but also for α = 1, 0.1

although theorem 3 says nothing about the latter two cases. In particular, two heteroclinic

orbits from E∗
+ to E+ exist for α = 0.1. Moreover, our numerical computation indicated

ᾱ1 = 0.37 . . ., α1 = 0 and ᾱ2 = α2 = 2.6 . . . in lemma 1 and theorem 3.

Figures 12 and 13, respectively, give R1- and R2-symmetric heteroclinic orbits

obtained in the computations of figures 11 and 9. We observe heteroclinic orbits

from E+ to E∗
+ such that they pass through a heteroclinic orbit from C to C∗ (see

figures 12(a),(c),(e) and 13) or from E∗
+ to E+ (see figures 12(b) and (d)). Thus, we
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numerically found an abundance of heteroclinic connections, as the theory predicted.

4.2. Relative periodic orbits

We now compute periodic orbits predicted by theorem 4 in (2.5), which correspond to

relative periodic orbits in the isosceles three-body problem.

We first compute periodic orbits near heteroclinic cycles obtained in section 4.1. We

consider the boundary value problem for an eight-dimensional system

ξ̇1 = −F (ξ1), ξ̇2 = F (ξ2) (4.4)

under boundary conditions

ξ1(0) = ξ10, ξ2(0) = ξ20, ξ1(T1), ξ2(T2) ∈ Fix(Ri). (4.5)

If ξ10 = ξ20, then

ξ(t) =

{
ξ1(−t) for t ∈ [−T1, 0);

ξ2(t) for t ∈ [0, T2]
(4.6)

gives an Ri-symmetric periodic orbit of (2.8) by the reversibility. We solve the boundary

value problem and continue the solution with ξ10, ξ20 or ∆ξ0 = ξ10 − ξ20 till ∆ξ0 = 0 is

satisfied. As the starting solution, we choose a heteroclinic cycle {ξ1(−t), ξ2(t)} obtained

in section 4.1 such that ξ1(t) ∈ W s(E+) and ξ2(t) ∈ W u(E+). In this computation we can

also take ω, T1, T2 > 0, rj(Tj), and ϕj(Tj) or wj(Tj), j = 1, 2, as free parameters, where

rj, ϕj and wj represent components of ξj.

Next we compute one-parameter families of periodic orbits containing the periodic

orbits detected in the above computations. We consider the boundary value problem for

(2.8) under boundary conditions

ξ(−T1), ξ(T2) ∈ Fix(Ri). (4.7)

By the reversibility, the solution ξ(t) gives an Ri-symmetric periodic orbit of (2.8). We

solve the boundary value problem and continue the solution with the angular momentum

ω to obtain a one-parameter family of periodic orbits. As the starting solution we take

(4.6) for a solution of the boundary value problem (4.4) and (4.5) satisfying ξ10 = ξ20.

In this computation we can also take T = T1 + T2 > 0, r(∓Tj), and ϕ(∓Tj) or w(∓Tj),

j = 1, 2, as free parameters. Again, we use the numerical continuation tool AUTO [18]

to perform the above computations.

Figures 14, 15 and 16 show numerically computed one-parameter families of R1- or

R2-symmetric periodic orbits for α = 7, 1 and 0.1, respectively. Heteroclinic cycles chosen

as starting solutions for each families are indicated in figures 9 and 11. We observe that

the one-parameter family contains a both R1- and R2-symmetric periodic orbit and lies

between a symmetric pair of heteroclinic cycles in figures 14(a)-(c), 15(a)-(c) and 16(b),

and that it starts on a heteroclinic cycle and terminates on a periodic orbit with ω = 0

in figures 14(d),(e) and 16(a),(c).
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Figure 14. One-parameter families of R1-symmetric periodic orbits in (2.5) for α = 7.
Thick solid and dashed lines, respectively, represent periodic orbits near heteroclinic
connections and both R1- and R2-symmetric periodic orbits.

Finally, we give relative periodic orbits in the isosceles three-body problem which

correspond to periodic orbits in figures 14, 15 and 16. We use (2.1)-(2.4) to compute the
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Figure 15. One-parameter families of R2-symmetric periodic orbits in (2.5) for α = 1.
Thick solid and dashed lines, respectively, represent periodic orbits near heteroclinic
connections and both R1- and R2-symmetric periodic orbits.

relative periodic orbits and display them in the rotational x′y′z-coordinate system. Note

that x′ = r cos θ, y′ = 0 and z =
√

α/(α + 1) r sin θ.

Figure 17 shows relative periodic orbits corresponding to periodic orbits in

figure 14(a) for α = 7. The three masses approach very closely and a triple collision

almost occurs in figures 17(a) and (e). We easily see that this family consists of symmetric

pairs of relative periodic orbits about the x′-axis. Moreover, the relative periodic orbit of

figure 17(c) is included in a class theoretically detected by a variational method in [25]

and it bifurcates from an Euler orbit. Thus, the obtained relative periodic orbits are

closely related to Euler orbits. See [25] for the details. Numerical results revealing this

relation are also given there.

Figures 18-21 show relative periodic orbits corresponding to periodic orbits in

figure 14(b)-(e) for α = 7. Especially, in figure 19(c) the third mass is at rest and

the relative periodic orbits is an Euler orbit. Thus, the family of figure 19 bifurcates
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Figure 16. One-parameter families of R1-symmetric periodic orbits in (2.5) for α = 0.1.
Thick solid and dashed lines, respectively, represent periodic orbits near heteroclinic
connections and both R1- and R2-symmetric periodic orbits.

from an Euler orbit. Moreover, we see that one, two and three double collisions almost

occur in figures 18(a), 20(a) and 21(a), respectively. This is due to the fact that the

corresponding periodic orbits are born from heteroclinic orbits having the same number

of double collisions. Again, the relative periodic orbit of figure 18(c) is included in the

class theoretically detected in [25] and it bifurcates from an Euler orbit. Although not

proven theoretically, it follows from the numerical results of figures 11 and 9 that families

of relative periodic orbits similar to those in figures 17-21 also exist for α = 1, 0.1.

Figures 22-24 and 25-27, respectively, show relative periodic orbits corresponding to

periodic orbits in figure 15(a)-(c) for α = 1 and in figure 16(a)-(c) for α = 0.1. The relative

periodic orbits in figure 24(c) is an Euler orbit and the family of figure 19 bifurcates from

the Euler orbit. One and two double collisions almost occur in figures 27(a) and 24(a),

respectively. In addition, the relative periodic orbits of figure 22(c) and 26(c) are included

in the class theoretically detected in [25] and they bifurcate from Euler orbits.
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Figure 17. Relative periodic orbits in the isosceles three-body problem for α = 7: (a)
ω = 0.01; (b) ω = 6; (c) ω = 10.6353; (d) ω = 6; (e) ω = 0.01. These orbits correspond
to periodic orbits of figure 14(a).
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Figure 18. Relative periodic orbits in the isosceles three-body problem for α = 7: (a)
ω = 0.01; (b) ω = 1.69324; (c) ω = 1.61913. These orbits correspond to periodic orbits
of figure 14(b).

Appendix A. Proof of lemma 1

We begin with the proof of part (i). The statement was proved in lemma 1 of [10]

for α ≥ 55
4
. So we only have to prove it for α ∈ [6.52, 55

4
). Our proof is also based
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Figure 19. Relative periodic orbits in the isosceles three-body problem for α = 7: (a)
ω = 0.0001; (b) ω = 0.03; (c) ω = 0.0416605. These orbits correspond to periodic orbits
of figure 14(c).
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Figure 20. Relative periodic orbits in the isosceles three-body problem for α = 7: (a)
ω = 0.001; (b) ω = 0.918331; (c) ω = 0. These orbits correspond to periodic orbits of
figure 14(d).

on the idea of [10] and assisted by numerical computations: We use a Matlab toolbox

called INTLAB [16], by which we can easily perform self-validating interval arithmetic

calculations.

First we rewrite (2.5) on N as

ϕ̇ = ±
√

2U(ϕ) − v2, v̇ = U(ϕ) − 1
2
v2

in the (ϕ, v)-coordinates, where the plus and minus signs are taken if w is positive and

negative, respectively. Hence, when v ∈ (0, vc), noting that v̇ > 0, we can regard ϕ as a

function of v to obtain
dϕ

dv
= ± 2√

2U(ϕ) − v2
, (A.1)

where the sign changes only at ϕ = ±1
2
π. To detect the loci of pℓ,r

+ , we estimate

∆ϕ =

∫ vc

0

2dv√
2U(ϕ) − v2

, (A.2)
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Figure 21. Relative periodic orbits in the isosceles three-body problem for α = 7: (a)
ω = 0.001; (b) ω = 0.753089; (c) ω = 0. These orbits correspond to periodic orbits of
figure 14(e).
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Figure 22. Relative periodic orbits in the isosceles three-body problem for α = 1: (a)
ω = 0.01; (b) ω = 1.5; (c) ω = 1.76706. These orbits correspond to periodic orbits of
figure 15(a).

which represents the total variation of ϕ while v changes from 0 to vc, i.e., while an orbit

on W s(Ē+) moves from Σ to E+. Letting Ū(ϕ) = U(ϕ)/Uc and changing the variable

from v to ζ = v/vc in (A.2), we obtain

∆ϕ =

∫ 1

0

2dζ√
Ū(ϕ) − ζ2

. (A.3)

Obviously,

∆ϕ <

∫ 1

0

2dζ√
1 − ζ2

= π (A.4)

since Ū(ϕ) ≥ 1.

Let ϕ = ϕa > ϕc be a point at which Ū(ϕa) ≥ Ū(0). When

(ζ1, ζ2) ∈ {ζ ∈ [0, 1) | |ϕ(ζ)| ≤ ϕa}
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Figure 23. Relative periodic orbits in the isosceles three-body problem for α = 1: (a)
ω = 0.003; (b) ω = 0.7; (c) ω = 0.788677. These orbits correspond to periodic orbits of
figure 15(b).
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Figure 24. Relative periodic orbits in the isosceles three-body problem for α = 1: (a)
ω = 0.01; (b) ω = 1.2; (c) ω = 1.23862. These orbits correspond to periodic orbits of
figure 15(c).

with ζ1 < ζ2, the variable ϕ changes by

∆ϕ12 >

∫ ζ2

ζ1

2dζ√
ζ2
a − ζ2

= 2

(
arcsin

(
ζ2

ζa

)
− arcsin

(
ζ1

ζa

))
(A.5)

while ζ changes from ζ1 to ζ2, where ζa =
√

Ū(ϕa) > 1. On the other hand, when

|ϕ| > ϕa, we regard ζ as a function of ϕ and obtain by (A.1)∣∣∣∣ dζ

dϕ

∣∣∣∣ ≤ 1
2

√
Ū(ϕ) < 1

2

√√√√ 1

Uc

(
sec ϕ +

4α3/2√
α + 2 sin2 ϕa

)

=
1√
2 vc

√
sec ϕ − sec ϕa + 1

2
v2

cζ
2
a .

Using a general inequality
√

µ + ν ≤ √
µ −√

µ0 +
√

µ0 + ν for µ ≥ µ0 ≥ 0 and ν > 0
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Figure 25. Relative periodic orbits in the isosceles three-body problem for α = 0.1: (a)
ω = 0.001; (b) ω = 0.0314837; (c) ω = 0. These orbits correspond to periodic orbits of
figure 16(a).
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Figure 26. Relative periodic orbits in the isosceles three-body problem for α = 0.1: (a)
ω = 0.001; (b) ω = 0.2; (c) ω = 0.392851. These orbits correspond to periodic orbits of
figure 16(b).

as in the proof of lemma 1 of [10], we get√
sec ϕ − sec ϕa + 1

2
v2

cζ
2
a ≤

√
sec ϕ + 1 −

√
sec ϕa + 1 +

√
1
2
vcζa,

where we set µ = sec ϕ + 1, µ0 = sec ϕa + 1 and

ν = 1
2
v2

cζ
2
a − sec ϕa − 1 = U(ϕa) − sec ϕa − 1 =

4α3/2√
α + 2 sin2 ϕa

− 1,

which is assumed to be positive below (and it is actually positive if α > 0.541578 . . . for

any ϕa ∈ [0, 2π)). Hence, when ϕ changes from ±ϕa to ±1
2
π and vice versa, the variable

ζ changes by

∆ζ <
1√
2 vc

∫ 1
2

π

ϕa

(√
sec ϕ + 1 −

√
sec ϕa + 1 +

√
1
2
vcζa

)
dϕ

<
1√
2 vc

[
(π − 2 arctan

√
sec ϕa − 1)
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Figure 27. Relative periodic orbits in the isosceles three-body problem for α = 0.1: (a)
ω = 0.001; (b) ω = 0.00691365; (c) ω = 0. These orbits correspond to periodic orbits of
figure 16(c).

+

(√
1
2
vcζa −

√
sec ϕa + 1

) (
1
2
π − ϕa

)]
(A.6)

since
d

dϕ
(2 arctan

√
sec ϕ − 1) =

√
sec ϕ + 1.

Here we note that Uc and vc are increasing functions of α and

Ū(0) =
(4α + 1)

√
α + 2√

2(2α + 1)3

is an increasing and decreasing function of α in [0, 5
8
) and in (5

8
,∞), respectively. Moreover,

we show that Ū(ϕ) is a decreasing function of α for ϕ fixed in any α-interval satisfying

ϕ > ϕc as follows. First, we easily see that

∂

∂α
(U(ϕ) − Uc) < 0. (A.7)

Choose any α∗ and ϕ∗ and let κ∗ = Ū(ϕ∗) with α = α∗. Then U(ϕ∗)−κ∗Uc < 0 at α > α∗

since κ∗ > 1 and

∂

∂α
(U(ϕ) − κ∗Uc) < 0

by (A.7). Hence, Ū(ϕ∗) < κ∗ for α > α∗, which verifies our claim.

Now, in an α-interval [α̃1, α̃2) given, we can show that ∆ϕ > 1
2
π +ϕc (recall that ∆ϕ

is given in (A.2) or (A.3)) for an orbit arriving at pℓ
+ as follows. Suppose in contradiction

to the claim that ∆ϕ ≤ 1
2
π +ϕc. Then, we have |ϕ(ζ)| ≤ ϕa for ζ ∈ (∆ζ, 1) and use (A.5)

with ζ1 = ∆ζ and ζ2 = 1 to obtain

ϕa + ϕc > 2

(
arcsin

(
1

ζa

)
− arcsin

(
∆ζ

ζa

))
. (A.8)

We take ϕa for each α ∈ [α̃1, α̃2) such that ζa is the same and greater than but close to√
Ū(0) with α = α̃1, and choose ϕa,j, j = 1, 2, such that ϕa,j is close to ϕa at α = α̃j

28



Table A1. Self-validating computations via the Matlab toolbox INTLAB for the proof of
part (i) of lemma 1. Here the u.b. of ∆ζ and the l.b. of ψc are estimated by (A.6) and
(A.8), respectively, where “u.b.” and “l.b.” denote upper and lower bounds, respectively.

[α̃1, α̃2) ζa ϕa,1 ϕa,2 u.b. of ∆ζ l.b. of ϕc ϕc(α̃2)

[9.1, 55
4 ) 1.02338 1.33492 1.38010 0.159783 1.01961 1.0173 . . .

[7.6, 9.1) 1.02717 1.32980 1.35057 0.167015 1.00335 1.0031 . . .

[7.1, 7.6) 1.02872 1.32763 1.33568 0.170017 1.00015 0.9952 . . .

[6.8, 7.1) 1.02973 1.32616 1.33132 0.172016 0.992839 0.9918 . . .

[6.65, 6.8) 1.03027 1.32541 1.32810 0.173056 0.989939 0.9896 . . .

[6.58, 6.65) 1.03053 1.32505 1.32634 0.173555 0.988772 0.9884 . . .

[6.55, 6.58) 1.03064 1.32489 1.32545 0.173774 0.988410 0.9879 . . .

[6.53, 6.55) 1.03071 1.324768 1.325138 0.1739283 0.98789 0.9876 . . .

[6.52, 6.53) 1.03075 1.32472 1.32491 0.173999 0.98768 0.9875 . . .

but ϕa,1 < ϕa at α = α̃1 and ϕa,2 > ϕa at α = α̃2. Then we have ϕa,j < ϕa < ϕa,2 for

α ∈ [α̃1, α̃2) since Ū(ϕ) is a decreasing function of α for ϕ fixed and an increasing function

of ϕ for α fixed when ϕ > ϕc. Thus, the upper bound of ∆ζ is estimated by (A.6) with

α = α1 and ϕa = ϕa,1. Finally, we use (A.8) with ϕa = ϕa,2 and estimate the lower bound

of ϕc, which may yield a contradiction: it may be greater than ϕc for α = α̃2. This means

that ∆ϕ > 1
2
π + ϕc in [α̃1, α̃2) as in the claim.

We divide the α-interval [6.52, 55
4
) into nine subintervals and numerically carry out

the above procedure in a self-validating way via the Matlab toolbox INTLAB to show that

∆ϕ > 1
2
π + ϕc in the α-interval. The numerical computation results are summarised in

table A1. Thus, we prove along with (A.4) that pℓ
+ ∈ {ϕ < 0, w < 0} in the α-interval.

Note that the value of ᾱ1 = 6.52 is not optimal and our computation can still be extended

to a slightly lower value.

Next assume that ∆ϕ ≤ 1
2
π − ϕc for an orbit arriving at pr

+ and let the orbit pass

through ϕ = ϕa at ζ = ζ1. Since ϕ < ϕa for ζ > ζ1, as in (A.5), the variable ϕ changes by

∆ϕ1 >

∫ 1

ζ1

2dζ√
ζ2
a − ζ2

= 2

(
arcsin

(
1

ζa

)
− arcsin

(
ζ1

ζa

))
(A.9)

when ζ changes from ζ = ζ1 to 1. Moreover, the upper bound of the change of ζ when ϕ

increases from ϕa to ∆ϕ + ϕc is given by the right hand side of (A.6). From table A1 we

have ζa < 1.0375 and ζ1 < 0.173999 for α ∈ [6.52, 55
4
]. So we estimate (A.9) as

∆ϕ1 > 2

(
arcsin

(
1

1.0375

)
− arcsin

(
0.173999

1.0375

))
> 2.265 >

π

2
,

which yields a contradiction. Hence, we have ∆ϕ > 1
2
π − ϕc which means pr

+ ∈ {w > 0}.
Thus, we complete the proof of part (i).

We turn to the proof of part (ii). First, we easily see that ∆ϕ > ϕc for an orbit

arriving at pℓ
+, as follows. Assume that this is not true, i.e., ∆ϕ ≤ ϕc for the orbit. Then
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Ū(ϕ) < Ū(0) so that by (A.3)

∆ϕ >

∫ 1

0

2dζ√
ζ2
0 − ζ2

= 2 arcsin

(
1

ζ0

)
> 1

2
π > ϕc, ζ0 =

√
Ū(0),

which yields a contradiction, since
√

Ū(0) ≤ 4

√
73

35 = 1.0899 . . .. Hence we have ∆ϕ > ϕc,

so that pℓ
+ ∈ {ϕ < 0}.

We can also show that ∆ϕ < π − ϕc for an orbit arriving at pr
+ in an α-interval

[α̃1, α̃2) given, as follows. Suppose the contradiction that ∆ϕ ≥ π − ϕc and let the orbit

pass through ϕ = ϕa at ζ = ζ3, ζ4 (0 < ζ3 < ζ4 < 1). Recall that ϕa(> ϕc) satisfies

Ū(ϕa) ≥ Ū(0). As in (A.6), the variable ϕ changes by

π − ϕa <

∫ ζ3

0

2 dζ√
1 − ζ2

= 2 arcsin ζ3 (A.10)

and

ϕa − ϕc <

∫ 1

ζ4

2 dζ√
1 − ζ2

= π − 2 arcsin ζ4 (A.11)

while ζ changes from ζ = 0 to ζ3, and from ζ4 to 1, respectively, since Ū(ϕ) ≥ 1.

Combining (A.10) and (A.11), we obtain

ζ4 − ζ3 < cos 1
2
(ϕa − ϕc) − cos 1

2
ϕa. (A.12)

On the other hand, when ζ3 ≤ ζ ≤ ζ4 so that ϕ ≥ ϕa, we have via (A.1)∣∣∣∣ dζ

dϕ

∣∣∣∣ > 1
2

√
Ū(ϕ) − 1 ≥ 1

2

√√√√ 1

Uc

(
sec ϕ +

4α3/2√
α + 2 sin2 ϕa

− Uc

)

>
1√
2 vc

√
sec ϕ − sec ϕa >

1√
2 vc

(√
sec ϕ + 1 −

√
sec ϕa + 1

)
.

Hence,

ζ4 − ζ3 >

√
2

vc

∫ 1
2

π

ϕa

(√
sec ϕ + 1 −

√
sec ϕa + 1

)
dϕ

>

√
2

vc

[
(π − 2 arctan

√
sec ϕa − 1) −

(
1
2
π − ϕa

)√
sec ϕa + 1

]
.(A.13)

Noting that Ū(0) is an increasing (resp. decreasing) function of α in [0, 5
8
) (resp. in

[5
8
,∞)), we take ϕa for each α ∈ (α̃1, α̃2] with α̃2 ≤ 5

8
(resp. α̃1 ≥ 5

8
) such that ζa is the

same and greater than but close to
√

Ū(0) with α = α̃2 < 5
8

(resp. with α = α̃1), and

choose ϕa,j, j = 1, 2, such that ϕa,j is close to ϕa at α = α̃j but ϕa,1 < ϕa at α = α̃1

and ϕa,2 > ϕa at α = α̃2. We easily see that ϕa,1 < ϕa < ϕa,2 for α ∈ (α̃1, α̃2], as before.

Hence, the upper bound of ζ4 − ζ3 can estimated by (A.12) with ϕa = ϕa,2 and ϕc at

α = α̃2 and its lower bound can be estimated by (A.13) with ϕa = ϕa,2 and vc at α = α̃2,

since ϕc and vc are increasing functions of α. These estimates may yield a contradiction,

which means that ∆ϕ < π − ϕc in (α̃1, α̃2] as in the claim.
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Table A2. Self-validating computations via the Matlab toolbox INTLAB for the proof
of part (ii) of lemma 1. Here the u.b. and l.b. of ζ4 − ζ3 are estimated by (A.12) and
(A.13), respectively.

(α̃1, α̃2] ζa ϕa,2 u.b. of ζ4 − ζ3 l.b. of ζ4 − ζ3

(0, 5
8 ] 1.08999 1.09122 0.126281 0.372895

( 5
8 , 1.9] 1.08999 1.28358 0.178655 0.186277

(1.9, 2.1] 1.06863 1.26363 0.175827 0.183098
(2.1, 2.23] 1.06537 1.26661 0.177081 0.177123
(2.23, 2.25] 1.06339 1.26410 0.176660 0.177017

We divide the α-interval (5
8
, 2.25] into four subintervals and numerically carry out

the above procedure for five subintervals including (0, 5
8
] in a self-validating way via

the Matlab toolbox INTLAB to show that ∆ϕ < π − ϕc in the α-interval (0, 2.25].

The numerical computation results are summarised in table A2. Thus, we prove that

pr
+ ∈ {ϕ > 0, w > 0} in the α-interval. This completes the proof of part (ii). 2
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