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Nuclear matter is considered to be inhomogeneous at subnuclear densities that are realized in supernova

cores and neutron star crusts, and the structures of nuclear matter change from spheres to cylinders, slabs,

cylindrical holes, and spherical holes as the density increases. In this Letter, we discuss other possible

structures, that is, gyroid and double-diamond morphologies, which are periodic bicontinuous structures

discovered in a block copolymer. Utilizing the compressible liquid drop model, we show that there is a

chance of gyroid appearance near the transition point from a cylinder to a slab and the volume fraction at

this point is also similar for nuclear and polymer systems. Although the five shapes listed initially have

been long thought to be the only major constituents of so-called nuclear pasta at subnuclear densities, our

findings imply that this belief needs to be reconsidered.

DOI: 10.1103/PhysRevLett.103.132501 PACS numbers: 21.65.�f, 26.50.+x, 26.60.Gj, 61.20.�p

Nature contains numerous examples of materials with
various morphologies at different levels of hierarchy.
Nuclear matter is no exception. Terrestrial atomic nuclei
are usually almost spherical. About a quarter of a century
ago, however, it was shown that nuclei deform at subnu-
clear densities from spheres (SP) to cylinders (C), slabs (S),
cylindrical holes (CH), and spherical holes (SH) as the
density increases to �1014 g=cm3, the density of the uni-
form nuclear matter [1,2]. Owing to the similarity of these
shapes to meatballs, spaghetti, lasagna, macaroni, and
Swiss cheese, respectively, these structures are called nu-
clear pasta. Nuclei with the pasta structures are important
because they are thought to actually exist inside the core of
supernovae and the crust of neutron stars and have an
impact on astrophysical phenomena such as supernova
explosions, protoneutron star cooling, pulsar glitches, and
so forth [3,4]. Assuming that only the five nuclear shapes
listed above exist, many detailed studies have been per-
formed since this discovery; for reviews, see Refs. [3,5].

Similar structure transitions are known to occur in nano-
structures of block copolymers and, more interestingly,
several complex structures have been discovered experi-
mentally [6]. Some of them have periodic bicontinuous
structures such as the so-called gyroid (G) and double-
diamond (D) morphologies, and are likely to appear be-
tween the C and S phases. In this Letter, we investigate the
possible appearance of G and D morphologies in nuclear
pasta by employing the compressible liquid drop model
(CLDM), which is a phenomenological model also used in
earlier studies [1,2,7]. In this approach, nuclei are approxi-
mated as charged liquid drops and the nuclear shape is
determined by minimizing the total energy density, in
which the surface tension competes with the Coulomb
repulsion. It is also noted that the nuclear shape is a
function of the volume fraction of the nucleus in a unit

cell, u, similarly to the case of polymer shapes [6]. We then
find that there is a good chance that the G morphology
appears near the transition point from the C phase to the S
phase. Furthermore, the volume fraction of nuclei at this
point is u� 0:35, which is very close to the value obtained
for the polymer system, suggesting common underlying
physical laws between the two systems. Because the nu-
clear pasta phases and the gyroid phase in the block
copolymer have separately attracted many researchers’
interest, our findings may offer a new field of interest.
Setup.—The bicontinuous structures observed in block

copolymers are thought to have a periodic minimum sur-
face [8], which is a stationary surface for variations of
surface area with a fixed volume fraction. Although the
D morphology was initially considered to be the most
likely structure, the G morphology is often thought to be
a more probable structure. In this Letter, we study the
double network structures of G and D minimum surfaces
as new types of nuclear pasta.
It is known that these bicontinuous structures can be

closely approximated by the following level surfaces:
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for D [9], where (x; y; z) are the spatial coordinates and a is
the size of the unit cube. Nucleons are assumed to reside in
the region that satisfies jfðx; y; zÞj> k, which is called the
‘‘nucleus.’’ k is a positive parameter that specifies the
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volume fraction, u, of the nucleus in the unit cube. k ! 0
corresponds to u ! 1 and u is a monotonically decreasing
function of k. Note that some neutrons may drip out of the
nucleus at high densities in the neutron-rich case. The
shapes of the ‘‘nuclei’’ are illustrated in Fig. 1.

Equations (1) and (2) are no longer good approximations
for very small values of u (and hence the corresponding
values of k): u < 0:0354 for G and u < 0:161 for D, since
the resultant configurations are not bicontinuous but
pinched off. Although this poses no problem for the fol-
lowing analysis, we do not consider these configurations.
On the other hand, the hole structures of the gyroid and
double diamond, for which nucleons reside in the region
satisfying jfðx; y; zÞj< k, are taken into account. Again the
configurations are bicontinuous only for u < 0:965 for the
gyroid hole (GH) and u < 0:839 for the double-diamond
hole (DH).

In our model, the volume of the unit cell is a3 and, as
already stated, the nucleus occupies the fraction u. The
number density of nucleons nin and the proton fraction xin

inside the nucleus as well as the number density of dripped
neutrons outside the nucleus nout, are set to be constant.
Electrons are uniformly distributed in the cell and their
number density is uxinnin, obtained from the charge
neutrality.

Analysis.—Our analysis is an improvement of the pre-
vious CLDM studies [1,2,7]. As shown below, it is mainly
based on a geometrical argument and is insensitive to
nuclear interaction models. We write the total energy in
the unit cell W as

W ¼ Wb þWs þWC; (3)

whereWb,Ws, andWC are the bulk energy both inside and
outside the nucleus including the kinetic energy of elec-
trons, the surface energy, and the Coulomb energy, respec-
tively. The use of Eq. (3) is motivated by the semiempirical
mass formula for terrestrial nuclei. The bulk energy in-
cludes not only the volume term but also the symmetry
term. Since Wb is proportional to the volume, we rewrite
it as

Wb ¼ wbðu; xin; nin; noutÞa3; (4)

where wbðu; xin; nin; noutÞ is the average energy density.
We assume that the surface energy is proportional to the

surface area and, hence, depends on the shape of the
nucleus. Note, on the other hand, that Wb is independent
of the shape. We rewrite the surface energy in the unit cell
as

Ws ¼ �ðxin; nin; noutÞgðu; shapeÞa2; (5)

where �ðxin; nin; noutÞ is the surface tension, gðu; shapeÞ is
the relative surface area, and shape ¼ SP, C, S, CH, SH, G,
D, GH, or DH.
The Coulomb energy of the unit cell can be expressed

similarly as

WC ¼ ðexinninÞ2wCðu; shapeÞa5; (6)

where e is the elementary charge and wCðu; shapeÞ is the
relative Coulomb energy, which depends on the fraction u
as well as on the nuclear shape, and is obtained by numeri-
cally solving the Poisson equation for the Coulomb poten-
tial by a discrete Fourier transform. Since the Coulomb
energy is proportional to the product of two charges di-
vided by their separation and because the total charge in
the unit cell is proportional to a3 (note that the charge
density is fixed in our model), the Coulomb term, WC, in
the energy expression is proportional to a5.
Substituting Eqs. (4)–(6) into Eq. (3), we minimize the

total energy density. This consists of two steps. First,
minimization with respect to the size of the unit cube, a,
is performed by a conventional derivation:
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This result is simply the well-known condition for size
equilibrium, Ws ¼ 2WC. Eliminating a, we obtain
�
W
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Second, we minimize Eq. (8) with respect to the shape
for a given u. This is performed by simply comparing the
energies for different shapes and finding the shape that
gives the lowest energy. Note that in Eq. (8) the shape
dependence is entirely encapsulated in the relative energy
density, Fðu; shapeÞ, defined as

Fðu; shapeÞ ¼ gðu; shapeÞ2=3wCðu; shapeÞ1=3: (9)

As a result, the nuclear shape does not depend on the
nuclear interaction models, which are encoded in the av-
erage energy density, wbðu; xin; nin; noutÞ, and the surface
tension, �ðxin; nin; noutÞ.

FIG. 1 (color online). Bird’s-eye views of unit cubes of
(a) gyroid and (b) double-diamond, in which bicontinuous
minimum surfaces are shown for volume fraction u ¼ 0:35.
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For the conventional pasta phases, the relative energy
densities are expressed as follows:

Fðu; SPÞ ¼ ð36�u2Þ2=9
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The numerically determined coefficients, cbcc ¼ 6:5620�
10�3 and chex ¼ 1:2475� 10�3, are corrections to the
Wigner-Seitz approximation, and the subscripts ‘‘bcc’’
and ‘‘hex’’ represent the body-centered cubic and hexago-
nal lattices, respectively, which are the most stable align-
ments for each nuclear shape [7]. For the hole nuclei, the
following relations hold: Fðu;CHÞ ¼ Fð1� u;CÞ and
Fðu;SHÞ ¼ Fð1� u; SPÞ.

Results.—In Fig. 2(a), we show Fðu; shapeÞ as functions
of u for the periodic bicontinuous shapes. It is found that
the G phase always has a lower energy than the D phase.
The curves of G (D) and GH (DH) are reflections of each
other in the vertical line u ¼ 1=2 for the following reason.
The hole morphology with a fraction of u has the same
surface area as the normal morphology with a fraction of
1� u. Hence, relations such as gðu;GHÞ ¼ gð1� u;GÞ
hold. In a similar way, it can be easily understood that
the hole morphology has a charge density and Coulomb
potential with opposite signs to those of their normal

counterparts. Since the Coulomb energy is a product of
the charge density and Coulomb potential, relations such as
wCðu;GHÞ ¼ wCð1� u;GÞ are satisfied. As a result, the
most stable bicontinuous phase is G for u � 0:5 and GH
for u � 0:5. Note that the curves for G and D converge to 0
at the point u ¼ 1, which corresponds to uniformmatter. In
Fig. 2(b), we show Fðu; shapeÞ � Fðu; SÞ for all the shapes
in nuclear pasta. We find that the relative energy density of
the G phase becomes very close to those of the C and S
phases at the transition point from the C phase to the S
phase (u ¼ 0:35). The same is true of the transition point
from the S phase to the CH phase (u ¼ 0:65).
To evaluate the energy difference quantitatively, we

must fix the parameters. Bearing in mind the application
to the core of supernovae, we adopt a simple estimate using
the incompressible liquid drop model employed in Ref. [3].
We set nout ¼ 0 and nin ¼ n0, where n0 ¼ 0:165 fm�3 is
the saturation density, and the volume fraction is given as
u ¼ n=n0, where n is the average number density of nu-
cleons. The surface tension is assumed to be � ¼
0:73 MeV fm�2, the value that reproduces the properties
of isolated finite nuclei in the limit of u ! 0. The proton
fraction is set to xin ¼ 0:3.
The difference between the average energy density for

each shape and that of the most stable phase, �W=a3, for
each shape is computed using these parameters and is
shown in Fig. 2(c). It can be seen that �W=a3 for the G
phase becomes only �0:2 keV fm�3 at n ¼ 0:35n0 (u ¼
0:35). This is comparable to the hexagonal lattice correc-
tion to the Wigner-Seitz approximation for cylindrical
nuclei at u ¼ 0:35. For the matter inside the crust of
neutron stars, the minimum of�W=a3 will be even smaller
by a factor of a few than that for the matter in supernovae.
Note that the neutron drip is not negligible for matter in a

FIG. 2 (color online). (a) Relative energy densities, Fðu; shapeÞ, as a function of u for the periodic bicontinuous morphologies.
(b) Differences between the relative energy densities of various phases and that of the slab phase. (c) Differences between the average
energy densities and that of the most stable phase for supernova matter. In all panels, the following notation is used: gyroid (G),
double-diamond (D), gyroid hole (GH), double-diamond hole (DH), sphere (SP), cylinder (C), slab (S), cylindrical hole (CH), and
spherical hole (SH).
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neutron star crust and, as a result, the transition density will
be somewhat larger than n ¼ 0:35n0.

Discussion.—The G phase is not the most stable phase
for any n (or u). Considering the tiny difference in energy
densities, however, it is possible for the G phase to exist as
a metastable state. In fact, recent studies on the dynamics
of pasta phases by quantum molecular dynamics show that
the phase transition from C to S is a dynamical process [10]
and that intermediate phases, which are different from any
of the known pasta phases, may emerge between the C and
S phases as well as between the S and CH phases [11].
These results indicate the appearance of metastable states,
which may include the G phase. Since the dynamical
stability of the G phase cannot be assessed by our model,
our argument is speculative, but this is an interesting issue
to be pursued further in the future.

The coexistence of the G and other phases is even more
likely at finite temperatures. If this occurs, it should have
an impact on the thermodynamical properties of nuclear
matter such as the equation of state. In fact, the minimum
value of �W=a3 for the G phase is �0:2 keV fm�3, or
�3 keV per nucleon, at n ¼ 0:35n0, which is much
smaller than the temperatures of several MeV in supernova
cores. Hence, the G phase will almost certainly exist as a
thermal fluctuation. The surface temperatures of some
neutron stars are several keV. Since �W=a3 for matter in
a neutron star crust is smaller than that for supernova
matter, it is also possible that the G phase will appear in
neutron star crusts. Note that the shell effect, which is also
a constituent of the semiempirical mass formula but has
been estimated to be minor (&2 keV per nucleon) for pasta
nuclei [12] and thus was omitted in our model, might also
be helpful for the G phase appearance.

In Ref. [13], the difference between the energy density
of the D and S phases was calculated and was found to be
much larger than that obtained in this Letter. This discrep-
ancy originates from the fact that in Ref. [13] the total
energy was not minimized with respect to a. Since the
energy differences between phases are small for nuclear
pasta, the minimization is crucial.

We have already pointed out an interesting quantitative
similarity between nuclear and polymer systems. The G
phase in the block copolymer is often observed in a narrow
range of the volume fraction near �0:35 [14]. This is
exactly where Fðu;GÞ becomes very close to Fðu;CÞ and
Fðu;SÞ in the CLDM. Since Coulomb screening cannot be
neglected in the polymer system, a simple analogy hardly
seems applicable. Our results, however, appear to suggest
some common underlying physical principles [15].

In this Letter we have demonstrated, contrary to con-
ventional wisdom, that there is a good chance of the G

phase appearance. There are some issues remaining unre-
solved in our model, however. Although we assumed the
shape of the bicontinuous surface a priori, the energy
density may be further decreased by varying the shape.
The finite thickness of the surface, which is not taken into
account in the CLDM, is also expected to be important.
Therefore, further theoretical investigations with more
advanced treatments of the surface are necessary. The
dynamical stability of the G phase, finite-temperature cor-
rections to the free energy, and the possible implications
for astrophysical phenomena (e.g., supernova explosions,
protoneutron star cooling, and pulsar glitches) will also be
interesting issues. Although there are still some controver-
sies, even regarding the appearance of the conventional
pasta phases, we strongly urge that the new type of nuclear
pasta is included in these detailed investigations.
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