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Summary 

In vitro structure analysis of articular cartilage has recently been performed using diffusion tensor 

imaging (DTI) based on NMR imaging. We performed intravital imaging of human articular 

cartilage in vivo. Ultra-high-speed echo planar imaging (EPI) was optimized to provide images both 

in vivo and in vitro. While these images were obtained rapidly, and the resolution was lower than 

NMR, DTI of the structure of the articular cartilage was achieved. The structure was found to be 

different between images obtained in vivo vs. those obtained in vitro. The in vivo structural 

condition of the articular cartilage was elucidated.



                                                       

Abstract 

Purpose:  The articular cartilage is a small tissue with matrix structure of three layers between 

which the orientation of collagen fiber differs.  A diffusion weighted twice-refocused spin echo 

EPI sequence was optimized for the articular cartilage and the structure of the three layers of human 

articular cartilage was imaged in vivo from diffusion tensor images.   

 

Materials and Methods:  The subjects imaged were 5 specimens of swine femur head after 

removal of the flesh around the knee joint, 5 specimens of swine articular cartilage with flesh 

present and the knee cartilage of five adult male volunteers.  Based on diffusion-weighted images 

in 6 directions, the mean diffusivity (MD) and the fractional anisotropy (FA) values were 

calculated.  

 

Results:  Diffusion tensor images of the articular cartilage were obtained by sequence 

optimization.  The MD and FA value of the specimens (each of five examples) under different 

conditions were estimated. Although the articular cartilage is a small tissue, the matrix structure of 

each layer in the articular cartilage was obtained by SE-EPI sequence with GRAPPA. Swine 

articular cartilage samples exhibited different MD and FA values of the articular cartilage in the 

synovial fluid and saline. In human articular cartilage the load of the body weight on the knee had 

an effect on the FA value of the surface layer of the articular cartilage.  

 



                                                       

Conclusion:  This method can be used to create images of the articular cartilage structure, not 

only in vitro but also in vivo. Therefore, it is suggested that this method supports the elucidation of 

the in vivo structure and function of the knee joint and might be applied to clinical practice. 

 



                                                       

Introduction 

Diffusion-weighted imaging (DWI) allows for noninvasive measurement of Brownian motion of 

water molecules in vivo, and is different from magnetic resonance imaging (MRI) (T1- and 

T2-weighted images).  Using information of Brownian motion of water molecules, microscopic 

cellular structure can be imaged[1, 2].  Water molecules in vivo are prevented from free diffusion 

by the cellular membrane and fibers, i.e., the directions that are easy and difficult to diffuse are 

found and diffusion anisotropy has been studied in vivo [3-8]. Diffusion tensor imaging (DTI) is a 

method of examining and expressing diffusion anisotropy [9-11].  Many researchers have studied 

DTI in imaging of the central nervous system [12-15]. 

In this study, the structure of the fibrous structure of the articular cartilage was analyzed using 

DTI.  The articular cartilage contains no blood or lymph vessels or nerves and comprises rough 

chondrocytes and a rich cartilage matrix. To be specific, it is composed of 60-80% water and 

20-40% matrix with a small volume of chondrocytes.  Regarding the biological structure, the 

articular cartilage is a hyaline cartilage composed of three layers, the surface, middle and deep parts, 

and maintains lubrication by water contained in the matrix and by the different degrees and 

directions of collagen fiber orientation of each layer.  The matrix is composed of collagen and 

proteoglycan, which is a high-molecular-weight polymer of proteoglycan and amino sugar 

connected with hyaluronic acid.  Proteoglycan retains a large volume of water, consequently [16].  

In contrast, collagen is a structural protein that plays a role in maintaining and building up the form 

of cartilage, functioning as the matrix structure of the articular cartilage.  The structure of cartilage 



                                                       

is comprised of three layers, the surface, middle and deep regions [16-20].  The orientation and 

density of collagen differ between layers.  The synovial fluid containing the matrix structure, 

which is assembled from collagens with different orientation and density, and proteoglycan gel 

(polymer), which retains a large volume of water, thick hyaluronan and chondroitin sulfate, 

functions as a shock absorber and lubricant, which are characteristics of the articular cartilage.  

The synovial fluid containing the matrix structure that is assembled from collagens with different 

orientation and density, and proteoglycan gel (polymer) that retains a large volume of water, 

functions as a shock absorber and lubricant, which are the main characteristics of the articular 

cartilage.  Therefore, in imaging of the articular cartilage, it is important to image the condition of 

the matrix structure.  This structural anisotropy of each layer is an important factor that defines the 

function of the cartilage.  Approaches towards regenerative treatment of the articular cartilage 

have recently been made for patients with osteoarthritis of the knee[21]. As such, tissues without a 

cartilage layer structure may be treated, however, it is necessary to diagnose the morphology of the 

articular cartilage by imaging and assess the structure of each layer. Therefore, estimation of the 

structural anisotropy, which is deeply involved in the function of the cartilage, is essential for 

functional evaluation of regenerative treatment for defect(s) of the articular cartilage.  

Recent studies have examined diffusion of the articular cartilage using MRI [22-25].  In 

addition, basic in vitro studies on DTI in articular cartilage by nuclear magnetic resonance (NMR) 

analysis have also been performed [26-29].  We analyzed the structure of the articular cartilage of 

swine knee joint in vitro and that of normal human articular cartilage of the knee joint using 



                                                       

optimized SE-EPI diffusion sequence, ultrafast imaging [6, 30].   



                                                       

Materials and Methods 

MR imaging 

In an in vitro study using the cartilage of an animal knee joint, which was provided from an 

abbatoir, a resected part of the swine knee joint from approximately 150 mm below to 150 mm 

above the knee was imaged up to 24 hours after resection.  (a) The flesh around the knee joint was 

removed and five specimens of femur heads alone soaked in saline were imaged.  (b) Five 

specimens of the knee joint surrounded by the intact flesh post-resection were imaged.  In a study 

of the cartilage of human knee joints, (c) five healthy adult male volunteers laid on the MRI bed 

after standing for about ten minutes and the cartilage of the knee joint was imaged 3 minutes later.  

The cartilage of knee joint was imaged again after the subjects continued to lie in bed for 60 

minutes.   

MRI with a homemade four-channel flexarray receiving-coil was conducted using Sonata 1.5T 

(Siemens, Erlangen, Germany).  To avoid artifact due to movement, the DWI sequence was 

optimized using SE-EPI (spin echo EPI) ultrafast imaging sequence.  To reduce distortion of the 

image due to eddy currents generated by a motion probing gradient (MPG) of the DWI, a diffusion 

weighted twice-refocused spin echo EPI sequence was used [31].  

The width of the articular cartilage was approximately 3-5 mm. Consequently, the acquisition 

matrix of the data in the direction encoding frequency and phase was increased to obtain a 

high-resolution image.  However, an increase in the acquisition matrix prolongs the echo reading 

time and enhances image distortion. Therefore, using an integrated parallel imaging (iPAT) method 



                                                       

the echo reading time was shortened and image distortion was reduced [32].  

Images were taken using a DWI b factor of 300-1000 sec/mm2.  In the above range, a sufficient 

diffusion contrast was obtained in human articular cartilage at 600 sec/mm2, therefore, 600 sec/mm2 

was used as the DWI b factor.  The sagittal section was imaged under the following conditions: 

TR: 2200ms, TE: 73ms, Field of view (FOV): 192*192, Matrix: 192*19, Averages: 23, Scan time: 

6min 48s, MPG: 6 axes, b factor: 600s/mm2, Thickness: 5 mm, iPAT: GeneRalized Autocalibrating 

Partially Parallel Acquisitions (GRAPPA) Acceleration  Factor PE (phase encoding) 2 and 

Reference Lines PE (phase encoding) 25. Herein, the six directions of MPG are (x,y,z) = (1,0,1), 

(-1,0,1), (0,1,1), (0,-1,1), (1,1,0) and (-1,1,0).  

 

 

Analysis of diffusion tensor imaging (DTI)  

Using DW images (b0 image) at b factor of 0 sec/mm2 and those of six directions in MPG, 

diffusivity at six directions (apparent diffusion constant: ADC) was estimated.  DTI (1) was 

estimated with the above diffusivity [15].  

 

 

 

Next, DTI (1) was triply diagonalized using Householder transformation.  Furthermore, using 



                                                       

the QL(Q: orthogonal Matrix, L：Lower Triangular Matrix） method, eigenvalues (λ1, λ2, λ3) (2) 

and eigenvectors (e1, e2, e3) (3) were calculated from the Q and L matrices.  Eigenvalues (λ1, λ2, 

λ3) correspond to the diffusion intensity.   

 

            

 

The eigenvector e1 corresponding to the eigenvector λ1 represents a vector of the direction in 

which diffusion is maximum.  To be specific, this e1 vector indicates the direction most easily 

diffusible in the calculated pixels.  Using these eigenvalues, the mean diffusivity (MD) (4) was 

calculated [15]. 

 

 

 

Using these eigenvalues, fractional anisotropy (FA), a value indicating the degree of water 

diffusion, was estimated.  The equation to calculate the FA is shown below (5) [15]. 

 

 

 



                                                       

 

Data analysis 

The image of the MR data of two kinds｛(a)、(b)｝ of swine articular cartilages and two kinds

｛(c-3)、(c-60)｝ of human articular cartilage was analyzed. (a) 5 swine articular cartilages after 

removal of flesh, (b) 5 swine articular cartilage with flesh intact, (c) five adult male volunteers, i.e., 

(c-3) human articular cartilage after 3-minute bed rest, and (c-60) human articular cartilage after 

60-minute bed rest. And based on the calculation of (1) - (5), MD and FA values were analyzed by a 

specific calculation program that was created.  For each DWI image, the anterior sagittal section 

was measured and the MD and FA values between the surface of the articular cartilage and the 

subchondral bone interface were calculated. The measurement between the surface of the articular 

cartilage and the subchondral bone interface was conducted at 9 equidistant points and the MD and 

FA values were calculated using bilinear transformation of 4 vicinal pixels.  The measurements 

were performed manually and the measurement points are shown in Figure.1.  



                                                       

Results 

Figure.1 presents each of seven DWI images (b factor =0 and b = 600 s/ mm2) of (a), (b) and 

(c-3). Each typical MD map and FA maps were shown in Figure2. The mean MD and FA values of 

5 samples at 9 points between the surface and deep layer of the articular cartilage of the front 

portion of the knee (Measurement point in Figure. 1) of (a), (b) and (c-3) and their standard 

deviations are shown in Figure 3 and Table 1 and Table 2, respectively.  Similarly, the mean MD 

and FA values of (c-3) and (c-60) and their standard deviations of 5 samples are shown in Figure 4 

and Table 1 and Table 2, respectively.  In Figures 3 and 4, the vertical axes indicate MD=0.0 as 

brightness=0 and MD maximum as brightness=255, whereas, the horizontal axes indicate the depth 

from the surface in proportion to the cartilage surface of 0 and the subchondral bone of 100.  

Similarly, the vertical axes indicate FA=0.0 as brightness=0 and FA=1.0 as brightness=255, while 

the horizontal axes indicate the depth from the surface in proportion to the cartilage surface of 0 and 

the subchondral bone of 100. The data representing 10% of the articular cartilage surface are on the 

critical pixels and the partial volume effect can occur; therefore, examination within this region was 

excluded from this study.   

In Figure 3 the absolute MD values at (a), (b) and (c-60) differed; however, graphs at these points 

showed a similar tendency. In the three samples, FA values from the deep to the middle layers were 

decreased; in contrast, the values were high at (b) and (c-60) from the middle to the surface layers. 

At the points of (a), (b) and (c-60) of the surface of the articular cartilage, MD values were slightly 

decreased and FA values were increased in saline, but not at the point of (a). The MD and FA values 



                                                       

of the articular cartilage at the points of (a) and (b) were different between the synovial fluid and 

saline., In sample (a) of this study, which Q6 was studied using articular cartilage soaked in saline, 

which is similar to in vitro studies using spin echo [26-28], the results were similar to the results of 

a NMR study by Meder et al. [27].  The MD value was the highest at the surface of the articular 

cartilage and decreased gradually in the middle and deep layers.  On the other hand, the FA value 

was the highest in the deep layer of the articular cartilage and decreased gradually in the middle 

layer and surface.  Using DWI sequence ultrafast imaging by parallel imaging, the structure of 

articular cartilage could be imaged.  Although the articular cartilage is a small tissue, it could be 

imaged by DWI sequence ultrafast imaging technique. 

At the points of (c-3) and (c-60) of human articular cartilage, MD values at (c-60) of the surface 

were lower than those at (c-3) (p<0.05) while FA values were virtually similar (Figure 3). These 

results show that the load of the body weight on the knee had an effect on the MD value of the 

articular cartilage, i.e., the extent of diffusion.  

In Figure 4 at points (c-3) and (c-60) of human articular cartilage, the MD values at (c-3) were 

similar to those at (c-60) while the FA values were almost similar in the deep layer but slightly 

higher in the middle and surface layers. A possible cause of the difference in the FA values between 

the images on the same section, 3 and 60 minutes after the volunteers laid on the bed from the 

standing position and their knees were fixed, is that the weighted cartilage of the knee joint was 

gradually released as time passed. 

 



                                                       

Discussion 

The articular cartilage is composed of hyaline cartilage and the width range is approximately 3-5 

mm.  T2 relaxation time ranged 20-60 ms [33, 34].  The articular cartilage is composed of 

60-80% synovial fluid and 20-40% matrix with a small volume of chondrocytes. The synovial fluid 

consists of mainly thick hyaluronan and chondroitin sulfate.  

The articular cartilage of sample (a) was placed in saline while that of sample (b) was placed in 

the synovial fluid. The reason the MD values at (a) were higher than those at (b) in Figure. 3 is 

likely because saline is more diffusible than the gelatinous synovial fluid. The FA values at (a) from 

the deep to the surface layers were monotonically decreased, whereas the FA values at (b) decreased 

from the deep to middle layers and conversely increased from the middle to surface layers. This 

result was also caused by differences in the status around the articular cartilage between the 

synovial fluid and saline. In the synovial fluid, the water component contained both the synovial 

fluid (gel) and proteoglycan in equilibrium within the articular cartilage, whereas, in saline, the 

water component flowed in the articular cartilage more than that in the synovial fluid. Consequently, 

the surface of the articular cartilage was swollen, resulting in decreased FA values. Based on the 

fact that the difference between MD values at (a) and (b) of the surface was larger than that of the 

deep region, it is likely that the surface of the articular cartilage was swollen.   

Figure. 4 indicates that the weight loaded on the knees was released over time. The differences in 

FA values from the middle to surface layers depend on the structure of the articular cartilage. 

Specifically, collagen fibers from the middle to deep layers are oriented parallel to the weight 



                                                       

direction and are virtually unaffected by the weight, on the other hand, in the middle layer, collagen 

fibers are oriented in an oblique direction to the weight direction and are slightly affected by the 

weight. Furthermore, in the surface layer, collagen fibers are oriented orthogonally to the weight 

direction, and are consequently, significantly affected by the weight. Therefore, the structure of 

collagen fibers in the middle and surface layers, which are easily affected by the weight, became 

more dense due to the weight, which led to the increased FA values.   

Similar results were obtained from a study by de Visser et al., i.e., NMR imaging with weighted 

articular cartilage samples [29].  

As shown in Figure 2, the difference between (a) and (b) is due to the difference between the 

synovial fluid and saline.  

The synovial fluid and the general structure of the articular cartilage functions well to absorb 

shock. Therefore, further studies should be performed to elucidate the relationship between the 

structure of the articular cartilage and the synovial fluid. 

 In the synovial fluid, protons are captured by proteoglycan and motion is limited. On the other 

hand, in saline, proton motion is not suppressed and protons can easily infiltrate into collagen fibers 

in the articular cartilage. Consequently, in (a), the MD value was the highest at the surface of 

articular cartilage and decreased gradually in the middle and deep layers, and the FA value was the 

highest in the deep layer of articular cartilage and decreased gradually in the middle layer and 

surface.  These results suggest that in absorbing shock, the surface of articular cartilage functions 

most effectively as a shock absorber because water influx and efflux is easiest at the surface, and 



                                                       

thus, the density of the articular structure is easily altered.  

In this study, the matrix structure image of each layer in the articular cartilage was obtained in 

vivo by ultrafast imaging using weighted twice-refocused spin echo EPI diffusion, and it was shown 

that the synovial fluid and the surface of the articular cartilage layer structure played an important 

role in the knee articulation, which required both motor function and shock-absorbing function. In 

human imaging, it is necessary to consider the effect of blood flow.  The diffusion image exhibited 

the effects of blood vessel movement and the influence of synovial fluid, and they generated 

artifacts.  At a b factor of approximately 500 sec/mm2 and less, clear diffusion images were 

difficult to obtain due to blood vessel movement and the effect of the synovial fluid.  By contrast, 

at a b factor of approximately 900 sec/mm2 and more, the S/N signal-to-noise ratio 

 in the image was not suitable.  Consequently, the optimal b factor ranged from 600-700 

sec/mm2. Further establishment of this method in future could be applied to the clinical diagnosis of 

knee osteoarthritis and cartilage regeneration therapy [35]. 
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Figure 

 
Figure 1. Diffusion weighted images by optimized twice refocused spin echo EPI diffusion 

sequence: (a) swine articular cartilage after removal of the flesh, (b) swine articular cartilage with 
the flesh intact, and (c-3) human articular cartilage after 3-minute bed rest. Diffusion-weighted 
images using MPG at six directions at b=0 s/mm2 (A) and b=600 s/mm2 (B-G). Six directions of 
MPG are (x,y,z) = B (1,0,1), C (-1,0,1), D (0,1,1), E (0,-1,1), F (1,1,0) and G(-1,1,0).  

 



                                                       

 
Figure 2. Typical MD maps (a), (b) and (c-3) and FA maps are shown in Figure2. 

 
 

 
Figure 3. (A)  (c-60): Human articular cartilage after 60 minutes of bed rest.  The mean MD 
values and their standard deviations in the region between the surface and deep layer of the articular 
cartilage of (a), (b) and (c-60) are shown.  The vertical axis indicates MD=0.0 as brightness=0 and 
MD maximum as brightness=255, on the other hand, the horizontal axis indicates the depth from 
the surface in proportion to the cartilage surface (0) and the subchondral bone interface (100).  The 



                                                       
absolute MD values at (a), (b) and (c-60) differed; however, graphs at these points showed a similar 
tendency.  
(B) The mean FA values and their standard deviations in the region between the surface and deep 
layer of the articular cartilage of (a), (b) and (c-60) are shown.  The vertical axis indicates FA=0.0 
as brightness=0 and FA=1.0 as brightness=255, on the other hand, the horizontal axis indicates the 
depth from the surface in proportion to the cartilage surface (0) and the subchondral bone interface 
(100).  The FA value of (a) was the highest in the deep layer of articular cartilage and decreased 
gradually in the middle layer and surface.  Similar to Figure 3-(A), (b) and (c-60), in contrast to (a), 
the FA value was higher from the middle to the surface layers of articular cartilage.  
 
 

 

Figure 4. (A) The mean MD values and their standard deviations of (c-3) and (c-60) are shown.  
The vertical axis indicates MD=0.0 as brightness=0 and MD maximum as brightness=255, on the 
other hand, the horizontal axis indicates the depth from the surface in proportion to the cartilage 
surface (0) and the subchondral bone interface (100).  At the points of (c-3) and (c-60) of human 
articular cartilage, the MD values at (c-3) were similar to those at (c-60). 
(B) The mean FA values and their standard deviations of (c-3) and (c-60) are shown.  The vertical 
axis indicates FA=0.0 as brightness=0 and FA=1.0 as brightness=255, on the other hand, the 
horizontal axis indicates the depth from the surface in proportion to the cartilage surface (0) and the 
subchondral bone interface (100).  At the points of (c-3) and (c-60) of human articular cartilage, 
the FA values were almost similar in the deep layer but slightly higher in the middle and surface  
 
 
 
 
 



                                                       
Table 1. The mean MD values of 5 samples at 9 point between the surface and deep layer of the 
articular cartilage of (a), (b), (c-3) and (c-60) and their standard deviations were shown. 

 
 
 
Table 2. The mean FA values of 5 samples at 9 point between the surface and deep layer of the 
articular cartilage of (a), (b), (c-3) and (c-60) and their standard deviations were shown. 

 


