-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Kyoto University Research Information Repository

Kyoto University Research Information Repository > KYOTO UNIVERSITY

Title Computational complexity of multitape Turning machines and
Random Access Machines(Dissertation_{J [J)

Author(s) | Kasai, Takumi

Citation Kyoto University (0 O 0O 0)

Issue Date | 1977-03-23

URL http://dx.doi.org/10.14989/doctor.r3265

Right

Type Thesis or Dissertation

Textversion | author

Kyoto University

https://core.ac.uk/display/39218649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Computational Complexity
of

Multitape Turing Machilnes
and

Random Access Machlnes

by
Taltumi KASAT

ﬂ\\\l

k3

§1 Introductlon

In recent years there has been increasing interest in
anelyzing the computational complexity of programs. The
miltitape Turing machine has become the standard model used
for evaluating time and storage complexity, even though such
machines are not much like any existing comupters. Some
authors, however, implement there algerithms not on Turing
machines but on random accesgs machines. In 1972 S.4. Cook
introduced a formal model of a random access machine. This
model 1s closer to real computer, for real computers have to
calculate the address of desired storage cell before fetching

its gcontent.

Notation., Let N dencte the set of natural numbers and
let [k] = {0,1,...,k=-1} for each k& N. Hence [0] = ¢.
We regard [k] as an alphabet consisting of k symbols.
Thus, a language is a subset of [k]* for some ké&N.

Let I and O be sets. We denote by [I-0] the set of

all parfial functions from I to O.

Definition 1.1. A computing machine is a 3-tuple M =
(L,I,t), where

(1) L 4is a language,
(1) I 1s a funetion from L to [I+0], and
(131) t is a function from L to [I+N] satisfying the

following condition: for each PE€L and x€1I,

(3.1) I(P}{x) 1is defined iff t(P)(x) is defined.

-1 -

The function I 1s called the interpretation of M and

I(P) 1is the partizl function reallzed by P under M. We say
L.
that (P} 1s the time complexlity of P, and sometimes write

t{P,x) instead of +(P)(x). The set I is the input domain

and 0O 1s the output domain.

Definition 1.2. Let M = (L,I,t} and MN' = (L',I',t")

be computing machines with the same input domain I and output
domain 0. Let f:N+ N be a function. Then M 1ia said to be

f(n)-translatable to M' if and only if for each P€L, there

exlst P'& L' and constant ¢ satlisfying the fellowing

conditlions:
(1.2) I{P} = I'(P'),
(1.3) for each x¢€I, if t(P,x) 1is defined, then

tT(P',x) 2 ef(c(P,x)),

that is, 1f a program P in L takes time 7t{x) for its
execution, then there is a program P' in L' whieh computes
the same partilal function as P within time cf(T{(x)). If

f{n) = n, we say that M 1is linearly translatable to M'.

If £ is a polynomial, thenm M 1is polynomially translatable

to M'.

In this paper, we consider the following types of

computing machines:

RAM ... the random access machine with indirect addressing,

RAMR... the random access machine without lndirect addressing

SM ... the step machine with indireect addressing,

SMR ... the step machine without indirect addressing,

™ ... the multitape Turing machine.

We compare these models on the basls of their abllity to
reflect the complexity of an algorithm. The results obtained in
this paper are summarized in Fig 7.1. In [7 1, Cook has shown
that the RAM is n°-translatable to the TM. In Section 5, we show
that this upper bound cannot be improved, that is, we show that
the RAM is not n° C_tpranslatable to the TM for any € > 0. This
¥ields a negative answer to an open problem suggested by Borodin
[£] and Aho, Hopcroft and Ullman [2 .]'

One of the purpose of this paper is to construct a good model to
use in the theory of computational complexity. We maintain that the:
SM is a good model, since both RAM and TM (and hence, any restricted

type of these machices) are linearly translatable to SM.

§2 Random Access Machilne

Definition 2.1. Let D be the set of funections d:N + N.

Each element & of D is called a memory. PFor each 1&N, d(i)
represents the contentz of register 1. PFor each 4&€D and

i,J €N, let d(i <« j) be the memory defined by

a(k) if k £ i

a{i + J)(k) = {
J if k=1

For each n &N, let

r -
logzn if n > 2
Log n =

1 if n < 2.

Definition 2.2.

The RAM instructions, together with their

meanings and execution times, are given in Table 1.1, where

is an element of N and d

represents a current memory.

n

Instruction next menory executlon time for RAM
1. LOAD n d(0+d(n)) Leg n+Log d(n)

2. SETC n da(0+n) Log n

3. STORE n d(nfd(UJ} Log n+Log 4(0)

4., READ n da{o+"input") Log n+Log "input"

5. WRITE n 4a Log n+Log d{n)

6. JZERO n d Log 1.

7. ADD n A(0«d(0)+d(n))| Log n+Log d(0)+Log 4(n)
8. 83UB n 4(0+a{0}-d(n))| Log ntLog d(0)+Log d{n)
9. INCR n d(0«a{0)+1) Log d(0)

10. DECR n a{0+4(0)-1) Log a0}
11. LOAD %n d{0+d(d{n)}) Log ntLog d{n)+Log d(d{n))
12. STORE *n { 4{d(n)+d(c)) Log ntLog d(n)+Log d(0}

TABLE 2.1
RAMA Instructions and Execution Times

Definition 2.3.

(b)
the instruction types LOAD *n and STORE *n.

(2) A RAM program is a finite sequence of
A RAMR program 1s a RAM program without
(e)
{d)

is a RAM program without ADD, 3UB, LOAD #n and STORE #n,

BRAM Instructions.

A SM program

is a RAM program with neither ADD nor SUB. A SMR program

Thus ,
it is a SM program without LOAD *n and STOR *n.

¥ %
Definition 2.4. An element (i,x,y,d) of NxN XN xD is

called a confipguration of random access machines. lLet P =

51545485,
be a program with 25 being instructions. Let }-F be the relation

over the configurations defined as follows. We write
(1,%,y,d) |5 (1',x",y",d")

1f and only if the following conditions are satisfied:

(i)l<iik,

(ii) ir s, is JZEROn and d(0) = 0 then i' = n else

i
1 = 141,
(i) if By is READ n then x = a-x' for some ac€N else

(iv) if 5 1s WRITE n then y' = y-d(n) else y' =y,
(v) d* 1s the next memory determined by Table 2.1.

* *
Let l—i; be the reflexive transitive closure of]?. 1f al;ﬂ

and there is no y such that BI’PT’ then we write afg8-

Let dO be the memory defined by
do{i) = § for all i&N.
¥ * '
Let I{(P):N + N be the partial function defined by
I(P}(x} = y 1ff (L,x,n,d,) = (1,3,y,a7)

for some 1€N and d'€D. I(P) is called the partial function
realized by P.

Definition 2.5. {(a) Time complexity of RAM and RAMR:

The time complexity of a RAM program {or a RAMR program) P

is the function tRAM(P}:N* + N such that tRAM(P)(x) is the sum
of the execution time taken by each instruetion executed on input
X, Where the time required by each instruction is shown in Table
2.1.

{b} MTime complexity of SM and SMR: The time complexity
of a SM program (cr a SMR program} P 1s the function
tSM(P}:N* + N such that 'tSM(P)(x) is the number of instruction
steps executed by P on input x. That is, in these machine,

each instruction requires one unit of time.

Henceforth , the 3ubsdfipt M on tM 1s dropped whenever

M is understood.

]
Definition 2.6, Let x = XqTHpten X be an element of N

with each X4 being in N. The proper length of x, denoted by
In{x), 1s defined by

n
In(x) =] Log Xy .
1=1

Let f:N + N be a monotone increasing function and let P

be a program. Then P executes within time f {(alternatively,

P 1is said to be f(n} time bounded) if and only if

t{P,x} < f(1ln(x)) for all xeN*.

%
A language L C[k] is recognized by a program P if

L = bom I{P}). L is recognizable within time £, abbreviated

JI-~recognizable, if there is a program P recognizing I which

executes within time f.

Definition 2.7. Let f be a partial function from N* ¢to

N%¥., Then f 4is sald to be of rank k 1if
Dom fC[k]¥ and Im £ C[k]¥%.

A program P 1s sald to be of rank k 1f the partial function
realized by P is of rank k. In this paper, unless stated

otherwise, any program is suppcsed to be of finite rank.

Remark. Note that any partial function realized by a Turing
machine 1s of finite rank. Now we show that the condition of
Definiticn 2.7 is not teoc severe, that is, we show that any
RAM program of infinlite rank e¢an be simulated withlin an n log n
factor by a RAM program of finite rank. Let A& = (1(0UV1)¥2wu02)%
Let £:N* » A and v:A - N* be the functions defined by

E(xl-xz-...xn) = x12x22...xn2

v(x12x22...xn2] = Xy tXpte. X

where Ei is the binary representation of the integer x,.
Then, by the proof of Theorem 4.1 in Section 4, it follows

that for any RAM program P, there exist a constant ¢ and a

RAM program P of rank 3 such thast

I(P}

v+I(P)+£, and

t(P,£(x)) < e*t(P,x)-log t(P,x).

§3 Relationship between the RAM and the SM

Theorem 3.1. Let P be a B8M program. Then there exists

a constant ¢ suceh that

tBAM{P’x) <c tSM(P,x) log tsM(P,x).

Proof'. Let g be the largest constant appearing as the
argument of SETC instruction in P. Let P be of rank k.
Then, a number appearing in anyregister during the computation
is less than q+k+tSM(P,x). Hence cne instruction costs at most

0{log tSM(P,x)) time under the logarithmic cost criterion.

Corollary 3.1. The 3M 1s n leg n E€ranslatable to the

RAM. The SMR 1is n log n translatable to the RAMR.

Notation. Let L0 be the language defined by
R *
L, = fw2w'2 | we{0,1}}

where WR denotes the reveral of word w.

Lemma 3.1. L0 is recognizable by a SM program which executes

within time f{n) = en for some constant c¢.

Proof. Evident

From Theorem 3.1 and Lemma 3.1, we have the following:

Corollary 3.2. L0 is reccgnizable by a RAM program which

executes within time f{n) = ecn log n for some constant ec.

The SMR can be views as a Neuman-type model reazlization
for counter machines [0 ,11]. The following lemma is an lmmediate

consequence of the result obtained by Fischer, Meyer and Rosenberg
[11 7. ‘

_ 8 -

Lemma 3.2. If LO is recognizable by a SMR program which
executes within time f(n}, then f(n) > ¢ for some constant

¢ >»1 and for all n.

Combining Lemmas 3.1.and:-3.2, we have the following result.

Corollary 3.3. The SM 1is not polynomizlly translatable

to the SMR.

Lemma 3.3. 1If L0 1s recognizable by a2 RAMR program P
which executes within time f{n), then £(n) > cn2 for some

econstant ¢ and for all . n.

Procf. Let q be the largest constant appearing as the
argument of a SETC instruction in P. ¥PFirst we show that if

m is the largest number appearing in any register after a computa-

tion of duration T, then

(3.1y 1 > (Log2m—Logzq}.

[N

The proof will proceed by Induction on the length of a computa-
tion . It is trivially true for computations of length 0, since
a computation begins with all registers set to zZero, Assuming

that it is true for a computation
¥
(1,u,2,dp) {5 (,v,2,a),

conslider Tthe next move of thls computation. We may assume that

the i-th instruction ef P 1is of the form ADD p. Since

(Log2max{d(0},d(p)}—Log2q),

M|

T >

-9 -

it follows that
t+Llog d(0)+Log d(p)+Log p
1o 2 2
> 5(Log“max{a(0),d(p}}-Log q)+Log d(0)+Log a(p)

> %({Log max{d{OJ,d(p)}+1}2-Log 2q)

| v

%{LOEE(d(0)+d(p}}“LOSEQ}

Therefore (3.1) holds for all ¢omputations.
Let % be the length of P and let k be the number of
reglsters used in P. Let m be the largest number appearing

in any register after reading a word of length %} Then, for two

distinet binary word u and v of length E%l’ ir
*
(1,u2uR2,d0} I? (i,uf2,2,d) anda
¥
(1,v2u2,4,) |5 (1',u2,2,a"),

then either i1 # 1' or 4 # d'. Hence we have
n
(3.2) 2-(m1)¥ > 2°

From {3.1) and (3.2), it focllows that

for some constant ¢ > 0.

Corollary 3.4. If the S8SM is f(n) +translatable to the RAMR,

then

sup_f:ml) 0 N

I, I'l2

- 10 -

If the RAM is f(n) translatable to RAMR, then

2
Supf(n)log no, g

n¥w n

Since the language L, can be recognizable in real time by

a Turing'machine, we have the following result.

Corollary 3.5. If the TM is f{n) translatable to RAMR,

then

supg-%l > 0.

n+« n

- 1) -

§4, Lineer Simulation of the RAM by the 38M

In this section, we show that the RAM is linearly
translatable to the 3M. 8ince the SM programs to do this are
intolerably long, 1% wlll be convenient to describe them in a
higher-level language called SM-ALGOL, iInstead of the "machine

language" glven 1ln Senction 2.

Definiticon 4.1. A SM-ALGOL program can contain one-

dimensicnal infilnite array.

(a) An atomic statement is one of the followings

read v write v gecto label

v tw Vv tw o vt w =g

where ¢ 1I1s a constant and v and w are either simple variables

x or subscripted varlables of the forms

alx] al[x + ¢] gfx = ¢].

{(b) A condiftion 1s one of the followings
vV =2 vEc

where ¢ 1is a constant and v 1s a2 simple variable or a

gubsceripted variable,

(e¢) A SM-ALGOL program is & statement of one of the following

types.
(1) atomic statement

(2) if econdition then statement else statement

- 12 -

(3) if condition then statement

(4) while condition do statement

(5) repeat statement until condition

(6) 1label: statement

(7) begin statement: ...; statement end

{8) procedure name (list of parameters): statement

(8) procedure-name {(arguments)
(d) Recursive procedures are not allowed in SM-ALGOL programs,
and any procedure statement of type (9) should be previously
defined by a procedure declaration of type (8).

The time complexity of a SM-ALGOL program P 1s the

function t(P): N¥ - N: such that t(P}{x) 1is the number of
executions of atomic statements and conditions executed by P

on input x.

Lemma 4.1. Every SM-ALGOL program is linearly translat-

able tec a 3M program.

Qutline of proof. Let P be a SM-ALGOL program.

Without loss of generallty we may assume that P c¢ontains
no procedure call. To prove the lemma, it suffices to show
that there exist a SM-ALGOL program P with exactly one

array and constant ¢ such that
t(P, x) < ct(P, x}

for all inputs x.

Let the arrays used In P be AD, Al,..., Ak—l’ and

let simple wvarlables used in P be Xl,..., Xt. The program

P uses a single array A and simple varlables xl,..., xt,

- 13 -

Xi,..., Xé. The program P computes values v and 2kv
simultaneously whenever P c¢ompubtes the value v, that is,
the program P c¢an be constructed such that the following

relations are satisfied during execution:

X! = 2k+¥%

i i
AL2ki +)1 = A i) 0<j<k~-1
AT2Kki + J + k] = 21:-AJ£1] 0<J <k - 1.

Te do this, for example., the statement Ki « X.4¢ In P is

translated into

begin Xi “ Xﬁ + ¢ Xi + X& + 2kc end,

the statement Aj[xi] + Xt is translated into

begin A[Ki+J]+Kt; A[Xi + J + k] + Xé end,

and the statement Xt + ﬂj[xi] is translated into

begin Xt + AEXi + 3] Xé % A[xi + j + k] end.

It should be evident that the program P can be designed to

simulate P faithfully within a constant factor.

Definition 4.2, Let m be a positive integer, and let

Mgs Mys «-»; M be elements of {0,1} such that

- 14 -

me = 1, m = m.2 .

In this paper, the binary representation for m means the

word muml---mtz. The binary representation for zero 1s the

word conslsting a single letter 2.

Theorem 4.1. The RAM is linearly translatable to

the SWM.

Qutline of proof. Let P be a RAM program. We

now construet a SM-ALGOL program P which linearly simulates
P. The program P wuses arrays ACC, TEMP, INDEX, DATA and
CONSm Tfor each conatant m appearing as argument of Instruc-
tions in P. 1Initially, for each constant m appearing 1n
P, the blnary representation m0m1°"mt2 for m I3 stored
in the array CONSmIO],..., CONSm{t+l].

The array ACC represents the register 0. The blnary
representation ap21° "8 44 for the contents a of register

X 1is stored Iin DATA in a contiguous set of subsecripted

variables

DATA[e) = ag» DATA[e+1] = Bysenrs DATA[e+u+l] = & 41"

The integer e iz called the _eniry corresponding to =x. If

a reglster x has been used thus far in the computation,
then the entry e corresponding to x ecan be found by means

of the array INDEX and the binary representation X%y Xyl

- 15 -

for x, that is, the integers ege;*°"e, ., can be found
such that

INDEX[xD] = €y
INDEX[e0 + xl] = e

-

INDEX[ev + xv+1] = e, = €
0 1 .
xo Eo :
e ag
e0+x1 ey :
: 44172
ev+xv+1 F"'1.1f+1=e’
ITOP -+ rop -+
Fig. 4.1.

The procedure FIND(X,e)} finds the entry e correspond-

ing to X. 'The procedure LOAD{X,e) brings the binary

representation T | to the array X. Precisely,

these programs are not SM-ALGOL programs, since they contain

- 16 -

the statement of the form e « e + X[j]. This type of
statement, however, can be easily translated into a SM~-ALGOL
program, sinece X[j] < 2 holds whenever this statement 1s
executed. Clearly, the time complexity of PFIND(X,e) is
0{v), and hence O{Log x). The time complexity of LOAD(X,e)
is 0(u), and hence O{(Log z).

procedure FIND(X,e):
begin
e« 03 ']+« 0
repeat
begin
e+ e+ X[j1; -
if 1INDEX[e] = 0 then pgoto notused;
e « INDEX[e];
J+J+1
end
until X[J - 1] = 2;
goto return;
netused: e + 03

returnt

Fig. 4.2. Procedure PFIND

procedure LOAD(X,e):

- 17 -

begin
J « 03
if e # 0 then
regeat
begin
X[j] « DATA[e];
Jd+3+1;
e+ et 1l
end
until X[j ~ 1] = 2;

end

Fig. 4.3. Procedure LOAD

To complete the proaf, it sulfflfieez to illustrate the
gimulation of indirect addressing. The statements LOAD #m
gand STORE #m are simulated by the followling SM-ALGOL
statements. Now, 1t should be clear that these statement

simulate faithfully within a constant factor.

begin
FIND(CONSm, e);
if e # 0 then
begin
LOAD(TEMP, e);
FIND(TEMP, e);
if e # 0 then LOAD{ACC, e)

- 18 -

end

Fig. 4.4 Simulation of LOAD #m by 3M

begin
FIND(CONSm, e)
If ¢ # 0 then
begin
LOAD(TEMP, e);
e « TEMP[0]); j + 1;
if e = 2 goto return;
repeat

begin
if INDEX[e] = 0 then goto notused;
e +« INDEX[e)] +TEMPLj];
J+J3+1

end

until TEMP[J ~ 1] = 2;
goto store;
notused: repeat

begin
INDEX[e] + ITOP;
e « ITOP + TEMP[J];
ITOP + ITOP + 3;
J«J+1

end

- 19 -

unti) X[j - 1] = 2;
gtore: INDEX[e] < DTQP; Jj + 03

repeat
begin
PATA[DTOP] *+ ACC[Jj];
DTOP « DTOP + 1; J <« J + 1
end

until ACC[J - 1] = 2

T
=

return:

end

Fig. 4.5. Simulation of STCORE zm by SM

£§h. Relstionship between the TM and the S8SM

In this section we show that the gm is not n2-z

translatable to the TM for any e > 0.

Definition 5.1. Let U be the subset of [41% defined

recursively as follows:

(5.2) If o is in U, then ©Oa and la are both in U,

(5.3) If ¢ and B are in U, then 2af is in U.

For each a & U, let ?Ta) be the language over {0, 1}
defined as follows:

- 20 -

(5.4) @(3) = 1,
(5.5) Yow) = 0% a), Plia) = 1 Pla),
(5.6) P 20p) = 0 o) V .lcf(B)a

where o and g are elements of TU.

Lemma 5.1. Let V be any nonempty subset of (0, 1}1.

Then there exists an element o 1in U such that
V= $Pa) and || <2 -1

Proof. The proof will proceed by inductlion on 1. It
is trivially true for i = 0, since ¥3) =2 = {0, 1}0.
Suppose that the lemma is true for all j < i? i>0.
Let Vg, = {v] 0v € V} and 'V; = {v| lv € V}. Then, vV, C
{0, 131-1 for kx =0, 1. Thus, by the induction hypothesis

there exist ¢ and 8 in U such that

VO = (.F(ﬂ}s vl = ?’(B)

laf < 2% -1, |8] <2' - 1.

Hence

v =0v,Vlv, = 0% () ViPe) = 5’(2&5),

and
l208] = la| + (8] + 1< 2% _).

- 21 -

Therefore the lemma holds for all 1.

Definition 5.2. Let L, be the language over [5]
defined by L, = U(4{o 1))¥8, Let g: [5]% - [2]% be the
partial function such that

(5.7) g(y) 1s defined if and only if y € L.,
(5.8} glalix b---Ux) = bibyeerby,
0 i xy e fla)
bj =

1 if oz ¢ Pa)

where a € U, Xy ¢ [2]%.

Theorem 5.1. The partial function g can be realized

by a S8SM program in linear time.

Procf. Consider the program MAKETREE in Fig.5.2.
The program MAKETREE terminates if and only if the input' o
is in U. If the program terminates, then the following

condition 1s satisfied at the completion of the program

execution:

{5.9) a string bgbyecc by, by € {0, 1}, is in ?Tu) ir

and only if there exlst 1ntegers €gs €1sre2s € such that

TREE[2 + b

od = %o

'I"REE[eID + b1] = ey

[
-

- 22 -

TREE[ek_l + bk] = e,

TREE[ek] =1

The program MAKETREE uses twe stacks TREE and STAK
with pointers TRTOP and TOP, If should bhe clear that the
time complexity of MAKETREE 1is 0O(|a|). In this progranm,

loop means "dead-end", that is, loop is an abbreviation of
while 0 = 0 do.

procedure MAKETREE:
begin
TRTOP + 23 TOP <« 1;
while TOP # 0 do
begin
read x;
if x =0V x =1 then
begin
TREE[TRTOP + x] + TRTOP + 2;
TREE[TRTIOP + {x - 1]] + 03
TRTOP + TRTOP + 2

begin
TREE[TRTOP] + TRTOP + 23
STAK['TOP] + TRTOP + 1;

TRTOP ' « TRTOP + 2;

- 23 -

TOP + TOF + 1

if x =3 ¢then
begin
TREE[THTOP] <« 1;
TOP <« TOP — 1;
if TOP # 0 then
begin
temp +« STAK[TOP];
""TREE[temp] + TRTOP + 1.,
TRTOP « TRTOP + 1
end

end
else loop;
end
read Xx;
ir x # 4 then loop;

end

Fig.5.1. Procedure. MAKETREE

The procedure TEST tests whether a given input xj
is in Y(a) or not, that is? writes 1 on the cutput tape
if % is In HAca), and writes O 1if X5 is not in ?(a}.
The time complexity of TEST ‘is 0(|xj|). Now it should
be clear that the desired function g can be realized by a
SM program within time 0O(n), where n 1is the length of

an input string.

- 24 -

procedure TEST:
begin

e + TREE[e + x]
if e=0Ve =1 then write 1;
end
else
if x =4 then

if TREE[e] = 1 then write O

else write 1

else loop
until x=4Y e = 0Ve =1

end

Flg.5.2. Procedure TEST

Now we show that any Turing machine realizing the partial
function g requires at least n2/log n steps. The Turing
machine which we shall use iz an ordinary on-line deterministic
machine with a one~way read only input tape, a one-way write
only output tape and a finite number of two-way, read and wrlite

working tapes of unbounded length.

A configuration of a mutépe Turing machine P 1is a

h-tuple

- 25 -

{q, x, ¥y, 4),

where q 1Is a state, x 1is a input tape, ¥y 1is a output
tape and 4 € (N x NESE pair (q, d) 1s called tape

configuration, We denote by h: the relation over the

configurations which represents one move of the computation

of P. For each 1 e N and configurations ¢ and e', we
write ¢ }% ¢! 1f there exists a computation frem ¢ to ef
of length 1, that 1s, if there exist configurations ¢

02" *
-2 C4 such that

¢c=cp lpoy g o0 by =et

We write c}% e' iff ¢ }% ¢’ for some i, ¢ fye' iff
¢ F% ¢' and c',F% e" for all ¢", ¢ }lf c' 1ff ¢ }l c!
and ¢ }=c'. The partial function I(P): N* » N*¥ realized

by a Turing machine P 1is defined by

I{(P){(x) = ¥ iff

{qg, x. A, dp) H} (q, A, y, d'} for some q and 4d4',

where q, 1s the initial state of P and dG = (0, M.,
The time complexity of P 1s defined by &{P)(x) = 1

if and only 1f there exista a econfiguration ¢ such that
(in
dgs X, X, dp) P? c.

Therem 5.2. If a Turing machine P realizes the partial

- 26 =

funetion g within time f(n), then

n®

f(n) > ¢
log n

for some ¢ > 0 and for all n,

Proof. Let P be an m-tape Turing machine which
realizes g within +time f(n). Let Ay be the subset of
U defined by

Ay = la] $o) C 10, 11}
By Lemma 5.1,

(5.10) #a, =2° -,

where #A denotes the number of elements in A.

For each « € Ai, let Cu be the set of tape configu-
ratlicns defined by

C = {{(q, @)l (a4, uuxlﬂ--~ xiﬂ, A, d

a 0)

I'% {a, A, bl'... bg: d), xl"”’xﬂ, e {0, 1}1}

where q, 1s the initial state of P and 4, = (0,X R

Now we show that for a, B ¢ Ays

(5.11) if o # ., then cu;w,cs = ¢,

- 27 -

Assume, for contradiction, that Can Cﬂ £¢. Let (q, 4)

€ Cur\CB. Then for each x € {0, J.}i,

X € Cf(a}
1£f (g, x, A, 4} |5 (', &, 0, d') for some q' and 4

ier xe F(p).

Therefore, F(a) = {(B). By definition, it should be clear
that & (a) = (B} 1if and only if o = B. Hence, we have
a = B, contrary to assumptlon.

Let P have s stdtes and at most k symbols per tape
square. We may assume that k > 2. Let

3
(5.12) h(i) = 2 - 1.

2m log k + log s

Let H be the set of all tape configurations (q, d)

which satisfy the following conditions:
{5.13) {g, d) € C, for some a Eﬁi, and

(5.14) for every y € {0, 1}, there exist t < h(i) and

a configuration ¢ such that

(a, v, 2. .

Next we show that

{5.15) there exists a ¢ Ay such that C NF

"
=
.

_ 28 _

Assume, for contradiction, that Ca AF#Z ¢ for zll g e Ai.
The only information In storage available to P in next ¢t
moves 1s the present state and the tape information within
t squares of the head. From this information, at most
sk(2t+1)m configurations can be distinguished in t moves.
Hence, by (5.0} and (5.11) we have

g (2n() +0m 2t

This, however, contradicts (5.12).

Now, consider the following input for P:

{5.15) Z = allxlll s xlll’

where C n F = ¢, 2= [21/1] and x X, are in

1 **tr Ty
{0, 1. Then, by Lemma 5.1,

(5.16) |z] < 2¥** 4 (2117 x 1 < 21?2

Consider the following computation:

(qo, aﬂxl ses hxmk,.l, do)

ﬂ
98

(ql, xlu .ee xgh, A, dl)

t1
h; (qe, xzﬂ“o 114, by, dz)

t
2
’? (Q£+13 As b.+**= D

1 d

e Y941)-

-29-

Since C A F = ¢, (qj, dJ} is net in F for each j.

Hence we have

£(lz]) >t + -0 4ty

h(1){23/1]

|w

R

21
002 /i
for some constant co and for 211 1. Hence
£(lz]) > oyl=i?/1og |2l

far some ¢y and for all z. S8Since f{n} 1is monotone

increasing with n, we get

f(n) 3_clnzflogr1.

Corcllary 5.1. If the g7 is f(n) translatable to the

™ then
sup iﬂﬂll%ElL > Q.

n+«e n

Combining Corollary 3.1 and Corollary 5.1, we have the

following result.

Corollary 5.2. If the RAM is f(n) translatable to the
™ then

3
sup f{n)log®n
n-+m ne

> 0,

Hemark. Since it is proved by Cook and Reckhow that the
RAM is n2 translatable to the 'IM we can assert that this

bound 1s cleose to hest.

- 30 -

§6. Simulation ef the TM by the RAMR

In this section we show that the TM is n2 translatable
to the RAMR.

Definition 6.1. The tape complexity of a turing machine

P 4is the function STM(P):N* + N such that STM{P)(x) is

the number of tape squares used in the computation on input

x‘

Definition 6.2. A multi-pushdown tape machine is a
Turing machine with.a read only Input tape, a write-only
output tape and a finite number of storage tapes with two
storage tape symbols OC(blank) and 1. Whenever a head
moves left on any one of its storage tape, a "blank" is
printed of that tape. Thus, each multi-pushdown tape machine
can be viewed as a finite sequence of the following statements

(we eall this a MPDM program):
(1) PUSHO[1]
(1i) POP[1]
(1131) IF TOP[i]l = b THEN GOTO n
{(iv) IF INPUT = ¢ THEN GOTO n
{v) WRITE ¢

where i,n,¢c € N and b €{0,1}.

- 31 -

The effect of most of the instructions should be evident.
For example, PUSHb[i] causes to print the symbol b on top
of the stack 1. The instruction POP[1] causes to remove
the top symbol of the stack i, that is, a "0" 1is printed

on the tape cell scanned and then the head is moved left one

cell.

Lemmaz 6.1. Let P be a Turing machine. Then there

exists a multi-pushdown tape machine {a MPDM program} P
such that

I(F) = I(F)
by (FoX) 2 e to,(P,x)

BTM(F,X} <o 8o {P,x)

TM

for some constant ¢ and for all x.

Proof. Evildent.

Definition 6.3. Let top:[2]}* + {0,1,1}, pop:[2]* + [2]*,

push0: [2]1* -+ [2])*%, push 1: [2]% + [2]* ©be functions.defined

as follows:

b if w = vb, b € [2], v & [2]%
top(w) =

A if w = A,

v if w = vb, b &€ [2], v € [2]%
pop(w) =

A if wo= 2,

Definition 6.4.

push0{w)

pushl{(w)

wQ

n

wl

For each wé&[2]*, let x and y_

W

be the integers defined recursively as follows:

(1) Xy =0, ¥y, =1

(i1} if w =

(#11) if w

The followling

above definltion.

vO0

then

v

+ Eyv.

results are ilmmediate

Lemma 6.2. For each w € [2]¥%,

0«

*u

<y

Lemma 6.3. If w =

W

irf top [w]
iff W o= A

iff top [w]

consequences of the

]
D 0

11
[
L[]

vb with b € [2] and v & [2]%,

- 33 -

then
x,=31if x> ¥ then 2y - X, else 2xw - ¥

then x -y glse y_ - X

Lemma 6.Y4. For every w & [2]%,

X, < 3IWI’ Yy < BIWI’

Theorem 6.1. TFor any Turing machine P, there exists

a RAMR program P such that

I(P) = I{(P)

toau(Pax) < et (P x)s, (P,x)

for some constant ¢ and for all x.

Proof. By Lemma 6.1, we may assume that P 1is a MPDM.
Let P have m stacks. TIf the contents of i-th stack is

W, then the integers Xy and ¥y, @&re strored in reglsters

2i + 1 and 21 + 2. Let X; denote the contents of register

i. The simulation of P proceeds as follows:
(1) PUsSHO[i] is simulated by

X X

2141 ¥ Xpi4q t Xog o

X +« X X

2142 2141 ¥ Xos40

- 34 -

(ii) PUSH1fi] 1is simulated by

X X + X

25+1 7 *oil D42

Xoien © Xoipn ¥ Xoy4p

(4i1) POP[i] is simulated by

X if X >

syt € AL Xogyy > Xngup Ehen 2%, .0 - Xpgp

else 2 x

o142 ~ %2441

2142 € 1L Xpg4g > X then X x

24+2 2i+]1 T 2i+2

else X - X

2it2 21+1

(iv) the condition TOP[i] is simulated by

X > X

2i+l 2i+2”

By Lemmas 6.2 and 6.3, it should be clear that the
simulations above work correctly. By Lemma 6.3, each
simulation requires at most O(s(P,x)) +time. Hence the

total time spend by P is

o(tTM(P,x)-sTM(P,F)).

Corollary 6.1. The TM 4is n° translatable to the

RAMR.

.Proof; The proof follows from the fact that

Sy {Psx) 2 toy(P,x),

35

In [/7 1, Cook and Reckhow show that for each RAM
program P, there exist a Turing mach P and a constant

¢ > O such that

I{P} = I{P)

t_ (P.x) < ¢ 2 (P,x)
™M™ ? —_ RAM*" ?

STM(P,x) Le tHAM(P’x}'

From this fact. we have the following result.

Corollary 6.2. The RAM is n3 translatable to the

RAMR.

_§7. Conclusion

In this section, we summarize the results cobtained in

this paper.

Notation. Let M and M' be computing machlnes. We
k
write (1) M — M' 4f and only if M is n*'® translatable

to M' for any e > 0, but not 1:'11{_E translatable to M!

(1) :
for any € > 0, (ii) M —— M' if and only if M 1is

linearly translatable to M' (iii) M —223), y

if M 1is n3*€ transistable to M' but not n-~c trans-

If and only

latable to M' for any ¢ » 0, {iv) M —3+ M' if and only

if M is not polynomially translatable to MT.

- 36 -

Fig. 7.1

k+e k-«

Remark. Since the pgap between n and n is
k

emall, the relation — is practically optimal. However

th? gap between n2 and n3 is still wide, and the relation
2,3)

—_— must be improved.

Open problem. Can the upper bound 0(n3} or the lower

bound O(ng} on the time for the RAMR fo simulate the

RAM be improved?

- 37 -

-~ 38 -

Acknowledgements

The author wishes to express his gratitude to Professor
Satoru Takasu for his advice. The author is also indebted
to Professor Shigeru Igarashi and Mr. Takeshi Hayashi for

their suggestions toward this paper.

39

[11]

2]

[3]

(4]

(5]

£61]

L7

(8]

(9]

References

Aho, A.V., Hoperoft, J.E., and Ullman, J.D., Time and
tape complexity of pushdown automaton languages. Infor-
mation and Contrel 13:3, 186-206 (1968).

Aho, A.V., Hopcroft, J.E., and Ullman, J.D., The deslgn
and analysls of computer algorithms. Addison-Wesley
(1974).

Book, R.V., On languages accepted in polynomial time.
8IAK J. Computing 1:34,(1972).

Book, R.V., Greibach, S.A., and Wepgbreit, B., Time- &nd
tape-bounded Turing accepters and AFL's JCS8S 14:6, 606~
621 (1970).

Borodin, A., Computational complexity: theory and practice.
In "Currents in the theory of computing" (Aho, ed.).
Prentice-Hall, Englewood Cliffs, N.J. (1973).

Cook, 5.A., Linear time slmulation of deterministie two-
way pushdown automata. Proc. IPIP Congress 71, TA-2.
Horth-Holland, Amsterdsm, 174-179% (1971).

Cook, S.A., and Reckhow R., Time-bounded random access
machines. JC33 7, 354-375 (1973).

Fischer, P.C., Predecessor Machines JCSS 8, 190-219
(1974).

Miller, R.E., and Thatcher, J.W. (eds.), Complexity of

Computer Computatlions. Plenum Press.

(10} Minsky, M.[19671, Computation: PFinite and Infinite
.Machines, Prentice-Hall, Englewocod Cliffs, N.J. 1967

(11] PFischer, P.C., Meyer, A.R. and Rosenberg, A.L.,
Counter machines and counter languages, Mathematical

Systems Theory 2:3, 265=-283.

-1 -

	R112_0
	R112a

