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 _]Cohomologies of Lie algebras of vector fields 
wJ / 

                 with coefficients in adjoint representations 

                               Hamiltonian Case 

                      Fy 

                               Yukihiro Kanie 

     Introduction. 

         Let M be a smooth manifold, and (- M) the infinite dimensional 

    Lie algebra of all smooth vector fields on M. LetCA)beC.:1`(M) or a 

     certain natural subalgebra of it. We are interested in the cohomology 

1-1* ®; V) of ((70 with coefficients in some representation V, which is 

     an invariant of the Lie algebra A1. 

         In 1968, I. M. Gel'fand and D. B. Fuks began to study the theory of 

     cohomologies of Lie algebras of vector fields. First, they treated the 

     case where 0= and V = R (trivial coefficients) . Since then, 

     many mathematicians studied cohomologies in many cases, for instance 

(2), 0J, 63 etc. They also treated the case of nontrivial coefficients, 
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but restricted themselves to the representations induced from some finite 

dimensional ones. Their proofs were essentially based upon some finiteness 

 of representations. 

     Meanwhile, in 1973, F. Takens  C73 proved that any derivations of 

(6(M) is inner. It means that the first cohomology of ®(M) with 

coefficients in its adjoint representation, a natural infinite dimensional 

representation, is trivial. 

     In the present paper, the author treats a symplectic manifold (M,60 ) 

and the subalgebra a(M) consisting of hamiltonian vector fields on M 

in this direction. Then Ile obtains the following results. 

     Main Theorem. Let (M,cJ ) be a connected symplectic manifold, then 

the first cohomology of C w(M) with coefficients in its adjoint 

representation, is of dimension 1 or 0, that is, 

              dim H1(~w (M) ;65t-L(M))  = 1 or 0. 

     Moreover, HA0(M) ; ®W(11)) '= R if and only if the symplectic 

form W is exact. 
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    Locally, this theorem has a simple feature (Theorem 5) as follows: 

Let U be a connected and simply connected open set in  R2n, with the 

natural symplectic structure e.J = E dxi dyi, then 

Hl W(U) ; AVU)) R.                                                      R. 

    The proof of Main Theorem can be carried out by elementary calculations. 

But to make short some part of the proof, we use Weyl's results on 

representations of the symplectic algebra. The elementary version of 

that part is outlined also in Section 4. 

     In §1, we explain some generalities of the first cohomology and 

symplectic manifolds. In §2, we prove interesting properties (Propositions 

1 and 4) of hamiltonian vector fields, which play an important role to 

prove Theorem 5, a local theorem. Moreover we prove in §2 that a derivation 

of ®(M) is a local operator (Proposition 3). Section 3 is devoted 

to the study of derivations of kW(M) in local. In §4, we complete the 

proof of Theorem 5. Here we use some knowledge of formal hamiltonian 

vector fields. Finally in §5, we give the proof of Main Theorem . 
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     The author expresses his hearty thanks to Professors T. Hirai, 

T. Morimoto and N. Tatsuuma for their kind advices. 

 §l. Derivations and H1(4), ; 

     All manifolds, vector fields, functions etc. are assumed to be of 

   00 C -class . 

     Let ® be a subalgebra of the Lie algebra ®(ii) of all vector 

fields on a manifold M, and consider the adjoint representation of ®: 

                (ad X) (Y) = (X, Y)(X, YE ® , 

where ( , ) is the usual bracket operation of vector fields. The 

cochain complex { Cq(A) ;G), dq J of the Lie algebra ® with coefficients 

in its adjoint representation consists of the followings: 

       Cq ~ ; = f . ------›®, 

                                skew-symmetric q-linear map / , 

and for P E Cq and X1, ..., Xq+1E 
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  1l 
 (dqP)  (X- .. , Xq}1) = (-1) 1+1 [XiP (X1,.••,Xi,• - •,Xq+i)3 

                           i=1 

A 
                    + E (-1)1+4P(1Xi,X.J,X1,--, Xi,••, X.,•.. X 

i<j 

    The homologies P Hq( ); (~) , q>, 0} of this complex are called the 

cohomologies of ® with coefficients in its adjoint representation. 

The one dimensional cohomology H1((@, 0 is interpreted as follows. 

Since 

    dP(X, Y) = IX, P(Y)3 - (Y, P(X)) - P([X, YJ) (X, Y E ® , 

for PEC1, we see that dP = 0 means that 

          P((X, Y)) _ CP(X) , YJ + [X, P(Y)), 

that is, 1-dimensional cocycles are derivations of ®.Moreover since 

(M (X) = [X, QJ(X E ®) , 

for Q E C°(a'' ; it'd) =O, we see that 1-dimensional coboundaries are inner 

derivations of . Thus the first cohomology space H1(A) ; is the 

equivalence classes of the algebra (jof derivations of 0 modulo

q+l) '
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 its  ideal  go of inner derivations, or 

H1(4 ; CO'-"((.31)/JJC). 

      In the following, we consider a smooth symplectic manifold (M2n, w ), 

 and the subalgebra )=®, ,M) of hamiltonian vector fields on M. A 

 symplectic structure is defined on M2n by a nondegenerate closed 2- 

 form W , that is, W n = W^ • • •AW is a volume form of M and d0 = 0. 

A vector field X is called hamiltonian, if it preserves the symplectic 

form W , and by definition, 

0A  (hl) = tX E ( (bi) ; LX w = 01, 

where LX co is the Lie derivative of w by X. To determine the first 

cohomology, we must study the structures of (%)(M) = D(%) (h1)) and 

C(M) = ( (11)) . 

§2. Some properties of (M) and (D (m). 

     2.1. In the following, we denote by a v the vector field //,,-(r, 
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and by  XiU the restriction of X on U. 

    Proposition 1. Let p be a point of a symplectic manifold 512n, 

and let X be a hamiltonian vector field on M such that j2(X)(p) = 0 

that is, the 2-jet of each of the coefficient functions of X is zero 

at p. 

     Then, there exist a finite number of hamiltonian vector fields 

Y y,Z1,•••,Zon M, and a neighbourhood U of p in M, 

such that 

XIU = E Zi) I U 
i=1 

and 

           j 1(yi ) (p) = j 1(Zi) (p) = 0 (1 S i < e) . 

    Proof. Let U be a simply connected open neighbourhood of p , and 

let (x1, • ,x
n, y1, yn) be a symplectic coordinate system 

around p in U, that is, 

n 
W IU = E dxi dyi. 

i=1 
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     Since the vector field X is hamiltonian,  LX  W  = dixr) = 0, where 

ix co is the interior product of X and to . Hence the differential form 

ix co is closed, and so the restriction ix jU is exact by Poincare's 

lemma. With respect to the above local coordinates, X and ix W are 

written in U as 

n X=E{fi(x, y) a xi g. (x, y)y• i=11 

n iXW= Efi (x, y) dyi - gi (x, y) dxi } , 
i=1 

where f. and g. are functions on U . There exists a function 

H = H(x, y) on U such that 

n 
iX w = dH = Z (H

xdx•+ Hydyi).           i =1 1 1 

Therefore we have for i = 1 , ....., n, 

                     fi(x, y) = Hy ., gi(x, y) = -Hx 

                                       1 that is, 

 n, 
X = E (H a- Ha) on U. 

             i=1yixixi yi 
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This function H is uniquely determined up to  constants, so that we may 

put H(p) = 0. A function or vector field is called without constant term 

if it is zero at the origin of the coordinate system. 

In global, any function H on M uniquely determines the hamiltonian 

vector field X on M by the formula ix ti = dH, because of non-

degeneracy of the symplectic form W. So X may be written as XH. 

Then the following formula holds for two functions H and K on M, 

CXH, XKJ = X_{II. K) 

Here { H, KJ is a function on M called the Poisson bracket of H 

and K, vAlch is given in U by local coordinates as 

{ H, K} = E (HXiK- HKX1) . 
i=1 

    Thus, the proposition follows from the following result on a connected 

open set (called domain) in a Euclidean space. 

                                                                      q. e. d. 
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     Proposition 2. Let  fl be a C ('a-function on a simply connected 

domain U in R2n with j301) (0)= 0, then there exist a finite number 

of Coo functions K1, K G1, Gt on IT , such that 

                   H =  { Ki , Gi , 
i=1 

and 

j2(Ki) (0) = j2(Gi) (0) = 0 (1 _< i < Q, ) . 

Proof. Sincej3(H)(0) = 0, H can be given as a finite sum of 

functions of the following form: 

                         Qnrnt~mL 
                        xl...xnyl... yn f(x, y) 

n with E (.  + mi) . 4 , and f a C -function on U. Since 
i=1 

nnn 
E ,Qi 2 2, or E mi > 2, we may assume 2  2 without loss of 

i=1i=1i=1. _. 

generality. 

    Case 1. The case where / i Z 2 for some i0 . Let i0 = 1, and 

0 put 
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         K = x1,G = xi^2 11xyig(x, y) , 
 i=2 

where 

                          "yl 

                  g = - - y1If(x, y) dy1, 
                     J0 

then we have 

{ K, Gl = 3 x1~x1•                               y.gy(x,y) 
         i=21 

                = xl...xn"ylr~,...ynf(x,y) . 

                                                     m 

    Moreoverj2(K) (0) =j2(G) (0) = 0, because jl(g) (0) = 0, and 

i=2(,ei+ mi) +(~1- 2) + (m1 +1)=i=l(,ei+ m•) - 

    Case 2. The case where all i < 1. Assume that -el=2= 

then by means of the following symplectic transformation, this case 

reduced to Case 1: 

-1-1             ( xl=(x1 + x2) ,yi=. ,~(y1+312), 
    -1-1 

             x2=(x1- x2) , y2 =,12 (y1 - y2) 

xi = xi,yi=yi(1� 3) . 

                                                                      q. e. d. 
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     2.2. Proposition 3. Let D be a derivation of  0  (M). If 

XE}W(hi) is identically zero on some domain U in M, then D(X) 

vanishes identically on U . 

     Proof. Assume that there exists a point p in U such that 

D(x)(p) 0. Let V be a simply connected coordinate neighbourhood of 

p in U. Since D(X) is hamiltonian, using symplectic coordinates 

 around p in V, we can find a function H on V such that 

D(X)iv = XH, as in the proof of Proposition 1. Since D(X)(p) 0, 

Hxi(p) k 0 or Hy
i(p)k0 for some i. We may assume that Hxi(p) 0. 

Let K be a function whose support is contained in V, and equals to 

yiin a smaller neighbourhood V' of p. Then we have 

H, K} = 2yiHx
iin V', 

and then 

                   (H, K1yl= 2Hxi + 2yi Hxiyi
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Hence 

          X-{HK~(p) _ -HX(p) a  Xi 0 . 

    On the other hand, since (X, XK) = 0 on M, 

0 = D([X, X0) (p) _ ID(X) , X0(p) + [X, D(XK)' (p) 

= X-{H,  K}') . 

     This contradicts our assumption. 

q. e. d. 

    Proposition 4. Let D be a derivation of A, W(M), and X be a 

hamiltonian vector field on M. Ifj2(X)(p) = 0 for some point p 

of M, then D(X) (p) = 0. 

     Proof. We can find, by Proposition 1, a neighbourhood U of p, 

and hamiltonian vector fields Y1, Yt and Z1, •••, Z ( 0,201) 

such that 

X1U E [Yi, Zi) 1U , 
i=1 

j 1(Yi) (p) = j1(Z) (p) = 0 (1 S i S J). 
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Then, using Proposition 3, we get 

 D(X)  (p) = D( [Yi, Zi)) (p) 

                 = E((D(Yi) , Zi) (p) + 1Y1, D(Zi), (p)) = 0. 

                                                                       q. e. d. 

     Remark 1. Any derivation D of ®,,j(M) can be considered as a 

derivation of Q0(U)  for any open subset U of M. 

     In fact, for any point p in U, by the proof of Proposition 1, 

we have a hamiltonian vector field X on Al for any X 6 a(U) such 

thatX equals to X on some neighbourhood of p. Define DU by 

DU(X)(p) = D(X)(p), then DU(X)(p) is well defined by Proposition 3, 

and clearly DU is a derivation of ®)(U). 

§3. Inner derivations of ®W(U). 

     3.1. In this section, we fix a simply connected domain U of M, 
    w+~ 

and a coordinate system (xl, xn, yl, , y
n) in U for which 

   = E dxi dyi in U . The conditions that a vector field X on U 
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is hamiltonian, is given as follows: 

 n. 
            X =E (fi(x, y)axi+gi(x, y) a yi) EDW(U) 

(1)i=1 

   /____aax
.(fi) = -ayi(gj),2(fi)=ayi(fj),3(gi) =axi(gj) 

                                                       (1_< i, j C n). 

           — 

    Theorem 5. Let D be a derivation of the Lie algebra W (U) of 

hamiltonian vector fields on U. 

(i) There exists a unique vector field Z (not necessarily 

hamiltonian) on U such that 

                D(X) _ (Z, X)(XE ®,(U)) . 

(ii) Z is uniquely expressed as Z = Z1 + Z2, where Zl E '~~'~ (U) 

and for some constant c, 

Z2 = c 
iEl (xi a xi + yi a yi) . 

     Note. If c 0, Z2 is not hamiltonian, because LZ (A)=-2c  W in 
2 

U. 

    Let us call a vector field constant or linear if it has only constant 
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coefficients or linear coefficients respectively. 

 We construct the vector field Z as a sum of  Z(0), Z(1) and 

Z(2). 

Z = Z(0) + Z(1) + Z(2) 

Here Z(0) is the constant term of Z, and 2(1) is the linear term 

Z (containing Z2), and finally Z(2) is the remaining term with 

coefficient functions of degree 2, a hamiltonian field. 

     3.2. Determination of Z(2). 

    According to the situation, xi is denoted by vi, and yi by 

v•+nfor 1(i < n. To determine Z' = Z(1) + Z(2), we will use the 

following equalities, 

D(a v) = (z, a v.] _ (Z' , a v.)(1 < i G 2n) . 
    111 

    Define for all i and j, the functions fij etc . on 1J as 

            D(ax
i) =JEl(fijaxJ+gijay). 

            D(ay
i) =E(fijax+g!.). j=1JJ• 

                                    16
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    It follows from  l  2  . , a,- = 0 for , m = 1, 2n that 

        0=D(jaXQ, axm~)=tD(aX2), aXmmJ+(aX~1j 
= 

J{(ax(fmj)-aX(fpj))aXJ+ (aX1(gmj) -axm(g.ij))a 

m 

         0=D(raX ,ay)       `m 

Ef((f') -a(f))+(a(g'.)-a(g))a 
JaxemjYmjXjx~mJYm.~ JY 

and that 

0=D(y ,ayJ) 

           = E{(9 cr.) -aym(fij))aX+(ay(gmj) -aym(ge.))a 

                                   J Therefore we have for all j, -e, m, 

(2) 2x (fm.)=axm~j),ay(fpj) = ax(fmj) ,ay(fm, =aym(fJj) 

     m (3) ax 
,(gm;) =9(g) , a (g.) =aX(g'),a(g')=2 (g')            Xrn~JYm /ZJp mjYi mJYm.~J 

    Since U is simply connected, there are unique functions and J 

)ti (1j L n) up to constants on U such that

Y

J

J

Yj .i•
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 C7 Xi(?j)=fij,2yi(r'j) = fij 

              xi(j)=gij,ayi(j)=9ij. 

Here we may assume that alliand have no constant terms. Put 

(4)'              Z'_-=(4aX+ay) 
             j=1jjjj 

then we get 

 (z', a v ) = way.)(1 < iK 2n). 

     Lemma 1. The vector field Z' defined above is hamiltonian modulo 

linear terms. 

    Note. The field Z(2) is determined as the component of Z' with 

coefficient functions of degree Z 2. The structure of the linear term of 

Z', Z(1) = Z' - Z(2), will be studied in §3.3. 

    Proof. Since D(<4 .) is hamiltonian for all i, the equalities (1) 

i hold for fij,gand also for fij ,gij. Hence for all i, j, 

we get 

                            18



 aX (f:.) (2) a (f,.) (1) ay(fei) 
 !~1JyiLJ 

      2y
t(r..) =ayi(1'.) =ayj(f)) 

and similarly, 

      0,t
Q(g1J)(3)aXl(gd) (1) ax.(gi) 

                             J 

       ly
e(gij) = 2X1(g'.) =aXJ(g'.) 

and further, 

     aX
LJ(f1J) (2)ax(fLJ) (1) -~(gji) 

      2y~ (fij) =2Xi(fl.) = -?y.(g' .) 

                            J 

    From the above equalities, we have 

        fij=fji'gij=gji'fi+                          jgji 

modulo constant terms for all i, j. This 

modulo linear terms, the condition (1) to 

3.3. The structure of Z(1) 

                             19

(2)(f! (fJ 
i) , 

    Q 

 = ~ (r..), 

, (3) a
X (g- .) ,          J1 

   a(g), 

(3) ,        (
g'.) , 

   0, 

means that Z' 

be hamiltonian.

Q.

satisfies, 

 e. d.



     We have just proved in the preceding paragraph that 

 D(a  v.) = [Z' , 2 v1] =(z, a v11+(Z(2), a v. 1 (1 < i 

and that Z(2) is hamiltonian. However Z(1) is not hamiltonian in 

general. Let us study the linear field Z(1) more in detail. 

     Put D' = D - adZ(2), then we have 

D'( ax .) = E (aik ax + bika ) , 
i k=1 kYk 

n D' (a y
i) =kZ (cikaxk+ dikayk) , 

where for all i, k, 

aik = fik(0) , bik = gik(0) , cik = fik(0) , d' = gik(0) . 

    Then by (4) 

(5) Z(1) = - kfi(aikxi + cikyi)axk + i (bikxi + dikyi) ayk} . 

    Let X-and Zij be the basis of the linear hamiltonian 

vector fields, given as

< 2n) ,

20



               Xij= xiax
j-  yjy. 

              Y.= xiay+ xjayij 
                      J 

              Zij= yiax
j+yjaxi 

     Define the functionsai.ketc. on U for all 
                       J 

               D'(X..) = E(ai.ka+Rjay) 
                 kJxkikk, 

D'(Y..) k(?'ijkax.+Eijkayk), 

      k D' (Z..) = Eq.a +a ) .                ljkijk xk ijk yk 

    Then we have the following 

     Lemma 2. The functions cx.. 
                            ijk'Rijk'ijk' ijk' 

are of degree S 1, whose linear terms are determined 

aik, bik, cik and dik in (5). 

     Proof. First, we have for all i, / , m, 

`axi Vim) —0 i~axm Pyi, X~m, 

where pij is the Krocker's delta. Applying D' to 

have 
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                                                                            •

(1 S i, j s n), 

(1 i ^jS n), 

(1S i •jS n). 

i, j, k by 

      and l ijk 

by the constants 

 these equalities, we



           i~ E (aaxk+ bmkayk)               k 

 (6)_ (D'(axi), X/mi+axi' D' (Xi al)] 

            = aieaxm - b.a,Q+klaxi(£mk)axk + ?xi (T3pmk)aykj' 

          —Simk(cQkaxk(10/,.?If 
(7) 

             = cie ?x - dimayQ+klayi(pmk) axk+aYi(~p mk) a~'k 

     Compare the coefficients of 2 x and a , then we see that the 
             k yk 

derivations of the first order in xiand y. of a~ 
mkandf3 mk 

are constants determined by aij, b. , c.. and d.. Hence we have the 

assertion for aijk and j3. 

     By the same arguments, we have also the assertion for K.g ijk'                                                   ijk' 

t ijk and 

                                                                       q. e. d. 

     Lemma 3. There are the following relations: 

i) . aij+d,i =0(it j) , 

         ii).a..+d..=a.+d.                  j., 
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   iii).  b. = b.  . 1j Ji 

 iv)  . c..=c..             1
,)Ji 

    Proof. If 

8= a.ax 

                       m and hence 

(8)'a x• (a2mm) = 

    Put i = Q in (6) 

          E(amkax+               k 

                = aii 

which implies that

(9)

Now if

a (a. ) x
i 1mm 

a x (ai mk) 

a x
i (Rimk) 

i $ m in

in (6) 

- b .

-a . 

, we 

b
mk 

xm

Yi

    for 

    for 

we have 

+ E{ax. 
k 1

all 

all

(ap
mk 

j, 

i, j.

)ax
k+ 'xi

(~~mk) 2

   ax("3) = b.(i.Q). 

       1 have 

Yk) 

bimd+ Eb(aimk)ax+ ax•(~imk  Yi k1k1

amm-aii, 

a
mk 

b
mk 

(7) , we have

(k 

(k N

m) 

i)

Yk1 '

)a
Y k
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           0 = cit2Xm- Jimay~+kjd 

and hence 

(10) ay
i(ajmm) = -c.i(               itayi 

    Similarly for i = m, we get 

           - k(c.k 'dXk+ de kay) 

                            k 

              cifax
i- diiay+k12yi 

which implies that 

          r
yi(R) = dii- d~~, 

(11) 

-aY
l(cc ) = -cek 

    Let us take into consideration the cc 

are hamiltonian, then we have from (9), fc 

0 a X
i (aimk) +ayk(Rimi) = 

and from (8) and (11) , which Tr-Led-114 1),

 {a  yi  (ai  mk

yi

)a
x

(R
.fmt) = dim

(aJ i k) a

    (k 

condition 

for m 

= a
mk + d

xk

i) . 

(1) 

k, 

km'

k

+a

+a
yi

that

yi
(R

,Qmk
)aykl,

(ikm).

(Rik ) 2yk1,

D' (X
1j

)'s
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which

which

which

bid 

where

 Also we obtain from (9) and (11) , 

0 ax
i(alll)+ ay(RiJi)=aJl- a.. + d)1- dii'                    J 

 means ii) ; and from (8) and (9) , for i 4.Q , 

0 = aX
i(~3~me-axp(Remi) = bim- bmi, 

 means iii) ; and from (10) and (11) , for i m, 

0 =ay
i(ac)-aym(a~mi)-ciQ+cei' 

means iv) .q. e. d. 

Remark 1. There is no relation besides i) tv) among aid, 

cif and did , which comes from the condition thatD!V) is hamiltonian, 

  V is any one of X Yid and Zip. Further more there holds
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              D' (V) =  [Z(1), VJ, 

modulo constant terms, where V is as above. 

     Now we can describe the structure of Z(1) 

     Lemma 4. The vector field Z(1) is uniquely expressed as 

Z(1) = Z(1) + Z              1 2' 

where Z(1l) is hamiltonian, and for some constant c, 

Z2= c E (xi 8x + yiay). 
          1=1 11 

     Proof. Put 

Z(1) = - E {f . (x, y) ax+gi(x, y) a }, 
i=1 

then from (5), we have fori = 1,n, 

n 
                      f.(x, y) = E (a.. x. + c.. y.),            1

j=1 J1 J J1 J 

Ox, y) = E (b..x.+ d..y.) . 
             j=111

26



     Put c =  2-1(a.. + d..),which is independent of i by 
               11 11 

ii), and put 

                 Z2 =cZ(x. +yi3 ). 
         i1yi 

Then, the remaining term Zit) = Z(1) - Z2 is hamiltonian by 

equalities i)...iv) in Lemma 3. One can easily see that the 

Z(1) = Zil)+ Z2 is uniqueas far as Z11)is hamiltonian 

is a scalar multiple of i(x.3x+y. 1 . q. e. 

3.4. Determination of Z(0). 

     Let the derivation D" be D" = D - adZ', then by §3.2. 

                 D"(a vi) = 0 (1.i, 2n).

Lemma 3 

 the 

decomposition 

and Z2 

 d. 

we have
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    Let aijk' Rijk'Cijk' Eijkijkand 7 ijk be the constant 

of aijk'R ijk' ijk'ijk'Sijkandtijk respectively, then, 

Lemma 2, we have for all i,  j, k, 

D"(Xij) = 
k(aijkaxkk                                     + 3..y) , 

          D"(Y..) = E (k' a + ),             iJ kijk Xk ijk yk 

          D"(Z..) =E(a+ 2 ) . iJ 
k1Jk xk ijk yk 

     Moreoveraijketc. are expressed more simply as follows . 

     Lemma 5. 

i) . D"(X..) = a. 2 + Ra iJ1 xiJyi, 

      ii). D"(Y..) =a.3+a.,                         a          ~Jyj jyi 

iii). D"(Z..) _ -f3.-(3 . iJi x
j J xi' 

where a. = a...,        1 Ili'i-Riii' 

Proof. Applying D" to the both sides of the equality 

[x.., emJ-ojXimoimXj,

 terms 

by
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then we get 

 E (aim,ax+Rimk2 ) - bimF.(cc,.,„axk+ (3Qjk  Jt  kkykk 

      [k(cx1Jkaxk+Rijkayk~xlaxm-ymay 

                          1 

         + Ix.a- y.a,E (aa+ R a )3 
            ix-Jyi k ,Pmk xk :2mk yk 

       (xi j
$axm- Rijmay- af~miaxjR.~mj yi. 

If j V,e and i $ m in (12) , we have 

0 = aij2.             x
m-Rijmaye-ccaxi+ RQmjayl, 

which implies that for j $ m, 

          aij2 = 0(j U) , 

and for i $ Q , 

        p3.=0(i$m).                       ijm 

Then if j =,e and i V m in (12), we have 

          am maxm+ pimiayi-ai.Eeaxm+ p.eayi 

and hence

ay
k)
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    Put ai = «iii 

 D(X..) 
 iJ 

which is the equality 

    Applying D"alsotothebothsidesoftheequality 

CX i j 

we get 

        k(1.axk+imkayk) +mk(~i~kaxk+dipkayk) 

a1       (a1axi+Rjayi`+ x                      x£ay
m mY~ 

(13)11 
+ (xi axJ - yj ayi'(~mk a xk + SJmkaYk)J 

    =~J2i
ym+SjmaiayE_gJmiaxi fmjayi. 

     If j,Qand j4m in (13), we obtain 

              0emiaxi ,QmJ      a2yi,

                                                         ., 

    mm-CC.= a.i            .Q;2ii 

 Rimi=132m2—Rte. 

n/Jthen 

also to the both sides of the equality
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and hence for all  X , m, i, 

Y mi 0' 

                   ,Qmi         = 0(j mQ) . 

Then put i $ j = m = ,e in (13) , we obtain 

            2 E45 •. 2 = 2 a.a + 
          k 1Jk Yk 1 Yj JJJ Yi, 

which implies by the symmetry of 0 ijk in i and j, that 

         ai=SiJJ~J 1J' 

J]J = 2biji = 2 aJ. 

Hence we have 

          D(Y
i.) _ia+dii-a=a. +a-        JJJYjJyiJy 1 

for all i, j, which is the equality ii). 

    Apply D" to the both sides of the equality 

              Z.lmJ =_s. z. ZJmim2J~
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Then we get the equality iii) by the same arguments as for  ii). 

                                                                      q. e. d. 

    Thus we have the hamiltonian vector field Z(0), given as 

                         n (14)Z(0) = (a. a -(3.2 ) 
i=11 xi1 yi 

with constants ai,(3iin Lemma 5, such that for any linear hamiltonian 

vector field V 

(Z(°), v3= 0"(V). 

    However this condition determines Z(0) by the following lemma. 

    Lemma 6. Let V be a constant (hamiltonian) vector field with 

(V, X..] = 0 for all i, j, then we have that V = 0. 

     Proof. Put 

           V = E (a. -a + b.a )(a•,b• E R) ,         i=1 1 xi1yi11 

then we have 

              O =(V,Xij~ = a. 9x-bja
y•J1 
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and hence ai = bi= 0, for all i.q. e. d. 

     3.5. Thus we know the vector field Z 

            Z = Z(0)+ Z(1) +  Z(2) 

as (4), (5) and (14) such that D(V) =  (Z, V) for all V with coefficient 

functions of degree 1. Then we must show that D is adZ for all 

hamiltonian vector fields on U. This is established by the following 

    Lemma 7. Assume that a derivation D vanishes at any X such.that its 

coefficient functions are of degree < 1. 

    Then D is identically zero on ®W(U) . 

    To prove this, we use the following 

    Lemma 8. Under the assumption of Lemma 7, D(X) = 0, if all 

coefficient functions of X are of degree 2. 

    The proof of this lemma will be given in §4. 

    Proof of Lemma 7. Let X( .4..0(U) , then we can show that D(X) (p) = 0 

for any point p E U. In fact, there is a decomposition of X at p , 
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X  =  X1 + X2 such that the coefficient functionsofX1 are polynomials of 

degree S 2, and j2(X2)(p) = 0. Then by Lemma 8 and Proposition 4, we have 

D(X) (p) = D(X1) (p) + D(X2) (p) = 0. 

                                                                        q. e. d. 

§4. Relations to the formal Lie algebras. 

4.1. It is known that the derivation algebra of the following 

irreducible transitive Lie algebra (T L A) Qg of infinite type: 

             ®= V2n + sp,(V) + s(V)(1)+...+~(V)(p)                                                                                        + .... , 

(for definition, see (S) for example) has the subspace of outer derivations, 

of dimension 1. In other words, 1(11(n) ; jjfl)) - R, where alw(n) 

is the Lie algebra of formal hamiltonian vector fields on R2n at the 

origin (for definition, see (3) for example). By some techniques used 

to prove the above formal theorem, we have another approach to the 

determination of Z(0), and a proof of Lemma 8. 

     The constant hamiltonian vector fields form a Euclidean vector 
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space (abelian Lie algebra)  VD of dimension 2n, and the linear 

hamiltonian fields form a vector space V1 = CD(V0), with the natural 

structure of Lie algebra. Before Lemma 5, we have already proved that 

D"(V1) C V0. The natural representaion of @(2n ; R) on R2n is 

irreducible, and is given in terms of vector fields as X(a v) = (by, X], 

where X E V1= s~p`f,2n ; R) and a v E VD R2n. 

    Thus the linear map (derivation) D" from V1 to VD is a 1-

cocycle of Q(2n ; R) with coefficients in the above representation. 

Apply to D" the fundamental vanishing theorem for nontrivial irreducible 

representations of (finite dimensional) semi-simple Lie algebras (cf. (1j). 

Then we get a unique vector v0 E VD such that 

D" (X) = (dv0) (X) = X(v0) =CZ(0), X)(XEV1) . 

Here, Z(©) is the vector field corresponding to the vector v0, and 

expressed according to the formula in (1) as follows: 

      Z(0) _ (2n+1)-1(2n+2)-2 Z (X..,D"(X)J+(EY.,D"(Z..)J+[Z..,D"(Y..)) 
i~1JJ1ICJ1J1.1 1J1J 

                       + 4-lE(1Y..,D"(Z..))+(Z..,D" (Y..)3)} 
                 i 11 11 1111 
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(It is not easy to obtain the explicit formula (14) of  Z(0) 

above expression of it.) 

     4.2. Proof of Lemma 8. 

    The hamiltonian vector fields of homogeneous degree 2, 

vector spaceV2^—V0)(1), the first prolongation of V1 

The natural representation of VI on V2 is given in terms 

fields as X(Y) = (Y, X) for X E V1 and Y E V2. Then it 

H. Weyl (8) that this representaion is irreducible. 

    As in the proof of Lemma 2, we have D(V2) C V0. From 

of Lemma 8, we see that D(1X, Y)) = X, D(Y)) for X E V1 

Then the following diagram is commutative: 

D 
V2> VO

This 

ker D

implies 

{ o}

   adX 

that ker D 

clearly, it

       D 
V2 ----------------- J 

 is stable under 

follows from the 
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 adX 

 V0 

• ad(V1)-actions. 

irreducibility of

  from the 

also form a 

= V0) . 

 of vector 

 is known by 

the assumption 

and Y E V2. 

 (X E V1). 

Since 

the



representation that ker D =  V2, that is D = 0 on V2. 

                                                                  q. e. d. 

     Remark 1. This proof is simple and short, but is based upon Weyl 

work (8). We have another proof by elementary calculations. Let us 

sketch it here. 

    Take a basis Xijk, Yijk' Zijk and Wijk of V2, as 

                                          iY 
          X.= xx.a - x.y a - x.           i,.~kij xk j k yikayj. 

          Yijk= xkyia ~+ xkyjax-yiyjay, 
         ik 

          Zijk=yiyja
xk+Y•Ykax1+ykyix. 

w.. =xx.a+x.x +xx.a           i~kiJ5'k j k yi kiyj 

Define the functions Aijkz etc. on U by 

          D(X. ) = Z(aijk p~x+ ai.k~') ,         ijkjy ,Q 

          D(Yijk) =(bijk
eax.+ bijk.e~y) , 

D(Zijk) =  + cljk
l'~y~) 

         D(Wi) = (dik
~ax+ di9y) .      jkjjk~z2 

Then all these functions are constants as in the proof of Lemma 2 .

s
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Moreover these constants are zero. In fact, firstly we obtain that 

aijk ,Qdijkz,= djj= 0 for all i,  j, k,J , by applying D to the 

both sides of the equality 

            CXijk' YmnJ 'Calk  Wijk + nk Wijn' 

and by the symmetry of d'i.k
,Q in i, j, k. 

    Secondly we obtain that bijkQcijk
Ec!. = 0, by applying 

D to the equality 

         lZmn'YijSZ                  k)nkij+mmkZijn' 

and by the symmetry of cijk~ini,j, k. 

    Finally we get that a!= b1.= 0, by applying D to the 
                         ijk_e

equality 

           CZmn' Xi j kJ ni Ymkj + 0 nj Ymki + mi Ynkj  mj Ynki' 

and by the symmetry of in i j. 

    Thus we have that D = 0 on V2.
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 55. The cohomologvH1/..7N(M) ;®(M)). 
v...Ww 

     5.1. In the preceding two sections, we proved Theorem 5, a local 

theorem. The following one follows immediately from it. 

    Theorem 5'. H1(A w(U) ;&4(U))  = R. 

     Now we will give a global theorem on M. Before that, we show a 

global version corresponding to Theorem 5. 

     Proposition 6. Let (M, w ) be a symplectic manifold, and D a 

derivation of hamiltonian vector fields aw(M) on M. Then there 

exists a vector field Z on M such that 

         D(X) = (Z, X)for all X E 3JM) . 

    Proof. Take an atlas {Ui,U--3R2n}of M such that 

each Ui is a simply connected domain. Then, by Theorem 5 i) and 

Remark 1 in §2, we have on each Ui a vector field ZUsuch that 

                                                              1 DU (X) = (ZU , X) for any X (0 4)(U1).   It follows from DU =  111 I UipUJ 

DU
JlUinUJand the uniqueness that ZUilU1nUJ= ZU~IU1nUJ. Hence there 

isavectorfieldZF~`h1)suchthatZU=ZUifor each Ui and 

  I 
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that D(X) =  tZ, X] for any X E QW(M) . 

                                                                     q. e. d. 

     Let U be a simply connected domain, and (xl, , Xn, yi, yn) 

a symplectic coordinate system such that O IU = dxidyi. Then, by 

Theorem 5 ii), the above vector field Z is represented as Z = 

Z1U + Z2U on U, where Z1UE ® W(U) and Z2U = cE(xiaxi+yiayi) 

for some constant c. Then we have the following 

     Proposition 7. If M is connected, the constant c is independent 

of the choice of U and (xl, xn, yl, yn)• 

     Proof. Since M is connected, it is sufficient to show that the 

constant c is invariant under any symplectic coordinate transformations 

of U. 

     Case 1. (Translations). Let new coordinates (xi, yi) be 

xi = xi - aiyi= yi- bi(1 isn) , 

where ai,bi are real constants. Then 
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          E(xi2 x
i+yi2yl)=E('xaX1+yiayl)+i(aiazi+ bia Y ) . 

     Since any constant vector field is hamiltonian, the constant c is 

left invariant. 

     Case 2. (Linear transformations). We prove that the constant c is 

left invariant under any general linear transformation, not necessarily 

symplectic. 

    Take an element g = (gij) in GL(2n ; R) and put 

                  2n 
vi = E gijvj(1 Ki2n) . 

j=1 

Then 

             av • = EDv(v.) a-.= Eg..2, 

                            i 

         1 ,]JJJ1 J 

and hence 

     Ev.av
i=i(Z(g-1) .v~) (Eg.i av) 

• 

          .1 Q~Je vp avjJvj2vj. 

    Case 3 (General case). We may assume by Case 1 that a symplectic 
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coordinate  transformation Lt- has no constant terms. Then the inverse 

      has also no constant terms. The vector fields Z and Z1 are 

transformed into hamiltonian ones by means of (f , and the linear term 

of the expression(x.3 xl+y.a 1) in terms of new coordinates Y. 

depends only on the linear parts of the transformations `P andY'-1. 

Hence we see by Case 2 that the constant c is invariant under `f , 

because the higher terms sum up to hamiltonian vector fields by Theorem 5. 

                                                                      q. e. d. 

     Corollary. Let Z and c be as above, then LZ w = 2c c,) on M. 

Proof. We see that for any U, 

LZ co = LZco= 2cwon U. 
                    2U 

                                                                       q. e. d. 

     5.2. Now we can prove our main results. 

    Theorem 8. Let (M, co) be a connected symplectic manifold. Then 
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the first cohomology of the Lie algebra  D  (M) with coefficients in 

its adjoint representation is of dimension 1 or 0, that is, 

H1(0,000 ; ©(tii)) = R or 0. 

Proof. We can define the homomorphism 

:0Q)01)------) R, 

which assigns to a derivation D “ D)to(M) a constant c by Proposition 

Let us show that ker 7 =Tip). This means that 

             H1QA (;11) ; AQW (111)) ^ Ow ;' w~ R or 0. 

    Let D and D' be two derivations such that (D) _ Ø(D') = c, 

and put D = D - D', then yS(D) = 0. By Remark 1 in §2 and Theorem 5, 

D is inner on any sufficient small simply connected domain U, that is, 

there exists a unique hamiltonian vector field ZU such that DIU 

ad(7). From the uniqueness in Theorem 5, and by the same arguments in 

the proof of Proposition 6, there exists a unique vector field Z whose 

restriction ZIU is equal to for each such U. Clearly Z is 
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hamiltonian, and D(X) =  (z, X] for all X E ®u,(5I) . 

that ker y C(M) . 

     On the other hand, the converse inclusion: 

(51.1M) C: ker , is clear. 

     Theorem 9. Assume that the symplectic form cJ 

there exists a 1-form 9 on M such that d a = cJ . 

1I10,0(M) ; (Dw(hl)) R. 

     Proof. Let W be a vector field corresponding 

to W , that is, iWc.) = 9 . Then 

W = d 0 = d ilyt = 40,0, 

and hence 1V is not hamiltonian. On the other hand, 

L 01 X) W LWLX W LXLW W= -LX W= 0 
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of 

to

Hence we have 

  q. e. d. 

  M is exact, or 

Then 

9 with respect



for all  X  F  0,4(M), then CW, X36 w(M). Therefore ad W is an 

outer derivation of Q~(gl) ,q. e. d. 

     Theorem 10. Assume that the symplectic form co of M is not 

exact. Then 

H1 A W(M) ; ® (M) ) = 0. 

    Proof. Let D be a derivation of 00(M). Then by Proposition 6, 

there is a unique vector field Z E A®M) such that D = ad Z, and by 

Corollary of Proposition 7, Lz ) = c W for some constant c. Assume 

that c40, thenW= c-ld(izW), or W is exact. Hence c = 0, 

that is, Z is hamiltonian. Thus all derivations of Ow(M) are inner. 

                                                                      q. e. d. 

    Summarizing these results, we get the following Main Theorem. 

    Main Theorem. Let (M2n, W ) be a connected symplectic manifold , 

then 

               dim Hl ®w(M) ; 0 )(M)) = 1 or 0. 
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     Moreover,  H1(0W(M) • ©w(M))'=R if and only if the symplectic 

form W is exact. 

     Remark 1. Let M be a manifold attached with a volume form 't or 

contact form C) Then, in stead of ©o (M), we have a natural subalgebra 

(D.z. (i1) or GUM) consisting of vector fields which preserves -r or 

respectively. It is interesting to obtain the analogous results for 

these subalgebras. If n = 1, the above Main Theorem gives the result 

for 0(n1) where M is a 2-dimensional smooth manifold. 

     Remark 2. The condition of continuity is absent in the definition 

of cochains of C(.0(M) with coefficients in its adjoint representation, 

but from the above results all cocycles are continuous.
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Cohomologies of Lie algebras of vector fields 

with coefficients in  adjoint representations 

           Case of Classical Type 

                   By 

              Yukihiro Kanie

I roduct. i on 

     Let M be a smooth manifold, and ®(M) the Lie algebra of all 

 smooth vector fields on M. Assume that M admits a volume form `C , a 

symplectic form W or a contact form 0 . Then we have natural Lie 

subalgebras of;(M) as (kW, 0(111) , D cm) , ,(M),®b(M) (see §l.1) . 

These Lie algebras including ®(M) itself are called of classical type. 

Here we are interested in the cohomology H0( ;(D) of the Lie algebra 

   with coefficients in its adjoint representation. 

     Calculations of them are not easy in general. But the first cohomology 

can be calculated rather easily since H1 ) is interpreted in terms 

of derivations of 4D. From this point of view F. Takens 153 calculated



 11IG(2,1) ; ®(M)) in 1973. Later A.Avez - A.Lichnerowicz - A.Diaz-Miranda 

123 and the author [3j calculated H1(0 (M) ; (4):001)) of Lie algebra gK,(M) 

 of hamiltonian vector fields by different methods. In the present paper, 

we will calculateElI® ; (&) for all ® of classical type. Our results 

 can be summarized as follows. 

Main Theorem. 

     a) Let b1 be a smooth manifold with a volume element , a 

 symplectic structure CA) or a contact structure © , and let ® be one 

of ®(M) , oi(M) , (M) and ®o(M) . Then 

H 1 Q ; ®) = 0 . 

     b) Let M be a connected smooth manifold with a volume element 

or a symplectic structure W , and ®=,^.,z(M) or ®JM) respectively. 

Then 

                      1               He;R or 0. 

     Moreover, H10 ; V. R if and only if 'r or c,) is an exact 

form on M respectively.



    We can reduce the study of derivations of  ® to the case where M 

is flat. Here the notion of  localizahility of derivations (see §1.2) is 

essential. A Euclidean space is furnished with the natural structure: 

the volume form z = dx1 ••••• dxn, the symplectic form w = E dxidxi+n 
i=1 

n 
or the contact, form 8 = dx0-Exi+ndx.. Then we have the main 

i=1 

theorem for flat case: 

    a) Let ®-®(Rn) , ®A'(Rn) , ®(R2n) or ®(R2n+1) . Then 

1 ((fit ; (31) = 0 

    b) Let ==~(Rn) or ®w(R2n) . Then 

H1(6) ; ®)= R. 
                                                      Ltl~ 

     The contents of the paper are arranged as follows. In §l, we 

explain the notion of Lie algebras of vector fields of classical type, 

and the localizability of derivations of ®. We also explain the general 

scheme to prove the main theorem for flat case. 

In §2, the properties of 00(M) and its derivations are studied. 

                              2n+1 In §3, the main theorem for ®
0(R), the flat case, is proved.



     In §4, the properties of  ®ti(M), D:(11) and their derivations are 

studied. In §5, the main theorems for cc (Rn) and Q,t(Rn), the flat 
1. 

case, are proved. 

     In §6, we reproduce briefly the main theorems for k(R2n) and 

et in this direction. 

     In §7, we prove Main Theorem for all Lie algebras of vector fields 

of classical type. 

     The author expresses his hearty thanks to Professors T.Hirai, 

T.Morimoto and N.Tatsuuma for their kind advices .



 §1. L algebrasof ve, ctor fie d of classical  type, and theme derivation 

algebras. 

1 1 Definition of the Lie algebras. All manifolds, vector fields, 

forms etc. are assumed to be of C°`-class. Denote by 43(M) the Lie 

algebra of all vector fields on a manifold M. 

     Let 1 be a volume element on M. A vector field X is called 

volume preserving or conforma]ly volume preserving if LXZ = 0 or 

L7:= c z for some constant c respectively, where LX denotes the 

Lie derivation corresponding to X. We get two natural Lie subalgebras 

(M) and 0(1i) of ®(p1) defined as 

(k(M) = {X EOM ; LXT= 0j, 

®z(N) = {X E (D(M) ; LX-c= c 2 for some constant cJ. 

Then (5)(JI) C(3(M) obviously. 

     Assume that a manifold M of even dimension is furnished with the 

symplectic structure c) . Here the symplectic structure to is by definition 

a non-degenerate closed 2-form on M. A vector field X is called



hamiltonian or conformally hamiltonian if  LX(o  = 0 or L)= c cJ for 

 some constant c respectively. Thus we have the following two natural 

Lie subalgebras of ®(M): 

(M) = {X E (&M) ; Lx&= 0}, 

001 (M) = fX E ®(M) ; LXw= c I-) for some constantc3. 

Then 0,0(M) CO' (M) too . 

Assume that a manifold M of odd dimension 2n+1 is furnished with 

the contact structure 8 , where 0 is by definition a 1-form on b1 such 

that 91A (dO)n is a volume form on M. A vector field X is called 

contact if LX© = f© for some function f on M. We denote by 0 (M) 

the Lie subalgebra consisting of all contact vector fields on M. 

     Let n be a Lie algebra of vector fields on a manifold M. We call 

   of classical type if it is isomorphic to one of the above six Lie 

algebras.. ®(h1) , ~1(~l) ®z(M) , 1-0®( M) orQA(M) . The formal 

algebras corresponding to them are isomorphic to the classical infinite 

dimensional Lie algebras of E. Cartan (see Singer-Sternberg ([fj ). 

     Let U be an open submanifold of M. Then, replacing M by U,



we have naturally the Lie algebra  QU according to O. For instance, 

=i(U) for ®=0,r(M) . Let rU be the restriction map on U, 

 then rU(f) C1~, but they do not coincide with each other in general. 

We say that ® has the property (A) if rU(au,)= rU(® ) for any two 

open subsets U CCU' of M. 

Pro osition 1.1. The Lie algebras ®(M) , ®,c(M) , ( M) and ®e(M) 

 have the property (A). 

     Proof. Let ® be any one of the above Lie algebras. Then for any 

 open subset U of M, the Lie algebra ®U is a module over C(U) . 

                                                                 q. e. d. 

1.2. Derivations of ®. Let ® be a Lie subalgebra of ®(M). A 

 mapping D is called a derivation of (D if D is R-linear and 

D([X, Y)) = 0(X) , Y3 + [X, D(Y)3 for all X, Y EOM) . A derivation D 

 is called inner if D = acW for some W in ®. Denote by CA) the 

 algebra of all derivations of ®, and by 010) its ideal,of all inner 

 derivations of Then we know (3 , Si] that the first cohomology 

E11(Ai;® of the Li,e algebra ® with coefficients in its adjoint

3



representation is realized as 

 H1Q ; 00.)0a)). 

A derivation D of® is called local if D(X) vanishes on U 

for any vector field X E Q zero on an open subset U of M. Moreover 

a local derivation D is called localizable if for any open subset U 

of M, there is a derivation DU of OU compatible with the restriction 

map rU,that is, DUo rU= rUo D. Then we have the following. 

Proposition 1.2. If the subalgebra 0 of (DM) has the property 

(A), then any local derivation of ® is localizable.• 

     Proof. Let D be a local derivation of ® and U an open subset 

of M. For any point p of U' and X eAq, by the property (A), there 

is XE-(D such that X = X on some neighbourhood U' of p. Define 

                                  r the derivation Dp~~                  of(by DU(X)(p) = D(X)(p), then D(X)(p) is 

well-defined because D is local.q . e. d. 

    If all derivations of 0 are localizable , the study of C' ) is 

reduced in a certain extent to the case where M is flat , that is, M is 

                                                                                                     •



a Euclidean space V = ~. 

 1.3.The flat case. Let 0 be a Lie algebra of classical type of 

vector fields on a Euclidean space V. The main part of our study of the 

derivation algebra X©) of ® C&V) is to find the vector field 

W E ®(V) such that D = adW on ®, and to clarify the property of W. 

This will be done according to the following three steps: 

     (I) To find a good finite-dimensional subalgebra ® of ® for 

   which the following differential equation 

      (E)tW, XJ = D(X)(X. ®i 

   has a unique solution WE( 1(V) . 

     (II) LetFlybe the subalgebra ofDconsisting of all elements 

   in ® whose coefficients are polynomials with respect to the coordinates 

  in V. We wish to show that (W, X) = D(X) for all X eA4. 

    (III) To show the fact that D(X)(0) = 0 if a vector field XCD 

   satisfiesjr(X)(0) = 0 for some integer r, independent of X. 

     Here we apply the following lemma.



 Pro  osition  1.3. Suppose that (I), (II) and (III) are established 

 for a D O.0, and that adW( ) C Q where W is the vector field 

 obtained in (I). Then D = adW on G. 

.,RS. . Put D' = D - adW, then D' is a derivation of ©, zero on 

@0A vector field X Ecis decomposed for any point pr.lfas 

X = X1 + X2 such that X(0and jr(X2)(p) = 0, because there exists 

 a coordinate transformation Cf with polynomial coefficients such that 

•5(p) = 0 and f ®) _ 0 . By (II) and (III), we get 

D' (X) (p) = D' (X1) (p) + D' (X2) (p) = 0 + 0 == 0 (p EE V) . 

Hence D = adW on ®,q. e. d. 

• 

     We also apply the following. 

P•ousition 1.1. It is sufficient for (III) to prove the following: 

     (III') If a vector field X E Q satisfies jr(X)(0) = 0 for some 

    fixed integer r Z 0, then there exist a finite number of vector fields 

Y Y2
q~ ®such that 

         X= E CYi , Yi+,and j1(Y.)(0) = 0(1<i2q) . 
       i=1q 

      PNr,~o,~of.3Ve get  



          D(X) (0) =ED([, Y.)(0) 
                       i=1 

                = E  (D(Yi),  Yi+qJ(0) + Yi, D(Yi+q) (0) 

                   i 

                    = 0 + 0 = O. 

                                                                       q. e. d. 

     1` 4. In §2, we shall prove that any D E Q(@B(M)) is localizable 

 (Corollary 2.5) , and show (III') , Proposition 2.6, for %el) . In §3, 

we pass through the steps (I) and (II) in §1.3 above for ®6(n) =®O(Z2n+1) 

 Proposition 3.2 and Lemma 3.4. boreover we obtain the main theorem for 

Ct~~(n),Theorem 3.3. 

     In §4, we clarify the relations between ®z(M) and ®V1), and prove 

 that any D E(:al.t (i,l)) is local (Proposition 4.4) , and any 

DC 1)(0...(11)) is localizable (Proposition 4.5) . In §4.4, (III') for (DO) 

Proposition 4.6, is proved. In §5, the steps (I) and (II) for ®z(n) = 

(n)'Proposition 5.6 and Lemma 5.9, are proved. Moreover we obtain 

 the main theorems for ®(n) and ®z(n), Theorems 5.7 and 5.8 respectively 

      In §6, we describe the outline of the proof of the main theorems for 

QW( 2n), (3'.(R2°) and 0(0) in this direction.



§2. Contact  vector fiel Yd 

     2.1. Properties of contact vector fields. Let (M2n+1, g) be a 

contact manifold of dimension 2n+1. Here we do not need the geometrical 

meaning of the contact vector fields except the following well-known two 

lemmata. 

Lemma 2.1. Let41"be a mapping from ®(M) to C°D(M) , which 

assigns X#= ix 6 to XE(VM) , where ix el is the interior product 

of X and . Then the linear mapping fitc                                               ' is bijective. 

    By this lemma, the inverse b : C(M)—®0(M) can be defined, and 

we can introduce the generalized Poisson bracket (( ~ )) in C°(hi) 

as follows: 

((f, g)) = [f!', gbJ for f, g E-Ce6(M) . 

In this way, CD(h9) becomes a Lie algebra isomorphic to (1%0 under g 

Lemma
a22.22. (Darboux) . Around any point p of a contact manifold 

 2n+1 (M, 8), there exists a coordinate system (z, x
1, .. • n yn 

such that e is expressed as B = dz - ~i=1 yi dx..



    The mapping  b and the generalized Poisson bracket are written 

in this contact coordinate system as 

(2.1) f6 = (f -  E yi fy)a- E fyax+E(fx+yiz                                                     f)a , 
i=1izi=11i i=11y 

and 

(2.2) ((i, g)) _ {f, g}xy- fz(g - Ey~gy) + gz(f - Ey~fy) 
             J J J J 

for any f, g E cp M), where { , / xyis the usual Poisson bracket in 

x1,...,x
n,y1,ynvariables, that is, 

{f, g/ = E (f g - f g ) . x'y i
=1 xi yi yi xi 

here we have the following. 

     Positio2.3. Let X be a contact vector field on M, and U any 

open subset of 'M. Assume that CX, Y3 = 0 on U for any YE(M) 

with support contained in U. Then X = 0 on U. 

Proof. Suppose X(p) = 0 for some point p of U. Let U' be 

a coordinate neighbourhood of p with contact coordinates (z, xl, ..., x
n, 

yl, ..., yn) around p. Since X is contact, for the function f = X ,



one of  f(p)  , f(p) or f (p) (1SiSn) is not zero by (2.1) . 
      xiyi 

     Case 1.The case where f(p) 0. Let g be a function whose 

support is contained in U', and equal to z in a smaller neighbourhood 

U" of p. Then we have 

n 
         ((f, g)) = - zf

z + f - E y.fin U". 
                       J=1J Y 

and so ((f, g)) (p) = f(p) 0. Hence we have by (2.1) 

g9(p) _ ((f, g))6 (p) 4- 0. 

This contracts our assumption that [X, g1 = 0. 

    Caws\p 2, The case where fX(p)0 or fy(p)'~0. The same 
1i 

arguments as above are also valid here if we take into account the 

following equalities: 

((f, yi)) = I
x.,((xi,f)) = f + xifz. 

    1y1 

                                                                     q. e. d. 

    Proposition 2.4 any derivation of Qa e(„1) is local .. 

Proof. Suppose that X E- V0(M) is identically zero on an open

, „



subset U  of M. For any YEG(bl) with support contained in U,

1D(X) , y), D( [X YJ) -Ix , D(Y)1 = 0 - 0 = 0 on U.

By Proposition 2.3, we get D(X) = 0 on U. q. e. d.

Corollary 2.5. Any derivation of (N70(M) is localizable.

Proof. This follows directly from Lemmata 1.1 and 1 .2.

q. e. d.

2.2. Proposition 2.6. Let X be a contact vector field on .i

such that j9(X) (p) = 0 at a point pert• Then there are a finite

number of contact vector fields Yl, ..., Y2
qon M,

and a neighbourhood

U of p in b9 such that

q 
XIU = 

 II i=1 IYi 

  i

Y i+qll U

and

ji(Yi )(p) = 0 (1 < i S 2q).

Proof. By means of a contact coordinate system (z,X1, X
n,

yl yn) around p, the vector field X and f = X are written as

/~



 n 

 X= h+ E(hl 0+hi+n) 
       zx.           i=1i 

                                      n 
                 X= ix= h -E yihl. 

i=1 

We assume that j4(h) (0) = 0 and j3(hi) (0) = 0 for all i. Then the 

assertion follows from the next proposition.q. e. d. 

         oosiition2 7. Let f be a function onR2n+1 withj4  P~(f) (0) = 0. 

Then there are a finite number of functions g1, ..., g2
q such that 

               f = E ((gi, gi+q)), 
                      i=1 

and 

      1(
gi)(0) = j1(gix) (0) =j1    j(g.) = 0(1Li 2q, 1 < j n) .                                13

j 

    Proof. Casee1. The case where fz=0. Assume thatj30.(0) = 0. 

Then by Proposition 2 in (3), there are functions gg2 q such that 

g1z= 0,j2(g.) (0) = 0 (1-<i2q),and f = E{gi , g~+i=E((gi ,gq+i)) . 
  ix 

              The case where f is written as f = z2h . Assume that 

j3(f)(0) = 0, that is, jl(h)(0) = 0. Put 

yl 

               g =h dy1 , 

                        0



thenj2(g) (0) 0, and 

 (_(x1g, z2)) - ((g, xlz2)) 

    I;;lg + 2z(xg - x1y.g) --z2g- xiz2g+ 2x1z(g - gy= z2h = f. 

         1 

     By the above arguments, we may assume that f is expressed as 

                                   n f = z x1.x ny1...y~n h(x, y) 

n with E (p. + q.) . 4. 
i=1 

Case 3. The case where E pi ;� 2. 
i 

a) The case wherep. > 2 for some j. We may assume that f 

                                  Y1 
written as f = zx2h(x, y). Put g = h(x, y)dyl, then j2(g)(0) 

0 

and 

           ((x1g,x2z)) - ((g,x3z)) = zx2g
y= zx2h = f.                                     1 

    b) Assume that pl = p2 = 1. Then by means of the following 

contact transformation (f , this case is reduced to a):

yj

is

0,

/ '



  l = -1(x1 + x2), 31 = r -1(yl y2)' 

            x2=,[2-1(x1 - x2),Y2 = -1 (y1 + y2) , 

xi = xiYi = Y•(i2 3), 

z = z. 

     Casee4.ThecasewhereEpiS1,thatis,Eqi3. 

a) The case where q. Z 3 for some j. We may assume that f is 

                                         xl
• 

written as f = z y3h(x, y). Put g = h(x, y) dxl, then j1(g)(0) 

0 

and 

3((zy1g, yi)) - 2((zg, yl)) = zylgx = f. 

1 b) The case where q. = 2 for some j. Ve may assume that f is 

written as f = zyly2h(x, y). By means of the above transformation 1 , 

this case is reduced to a) , because 3y1y2=~yi-,1-1723 + y2 

     c) Assume that ql = q2 = 1. Then by means of , this case is 

reduced to b).q. e. d. 

     We have a corollary of Proposition 2.6.

 0

r



contact vector field on  M 

 bt, then D(X) (p) = 0. 

     PPr
\000f. This follows

such that

directly from

j4(X) (p) = 0 for a

Proposition 1.4.

point p of

q. e. d.

/



w3. ..,-ons. of~~(n) . 

3.1. Structure of 
®(n).19e consider the natural contact structure 

9 = dz - Riy.dx. in a Euclidean spacen+l. In this section, we will 

study derivations of the Lie algebra ®0(n) _(Dn(R2n+1) of contact 

vector fields on R2n+l At first, we note the following. 

    Lemma 3.1. A vector field X = h0az + i~l(h' a x+ 11i+na )                                                                        .Y1 

on R2n+1 is contact, if and only if it satisfies the following equalities: 

                           n 
( .)1h0 =~y.h3(lsisn). 

      YiJ=1J Yi

nn ()2yi(h~-uy~hZ 
               Jl) = hl+n - h~l+ Iy~h(1SiSn) .                                 Jli 

The coefficient functions hi+n (1 S i S n) are determined by 

 0
, hh, ..., hn. 

Pro U. Since X is contact, LX Q = g A for some function g . The 

assertion follows easily from this.q. e. d. 

    Let ®= GB(n) be the Lie subalgebra ofr1=0(n) spanned by 

       Z = a z, Xi= 2x, Y. =-a+ x.@z (1si < n) , 
1Y. 

n 
       I = 2z 3+ ~(x.a +y.a). 

       z1 x.i i=1 1Yi

/



There

where

where

hold

For

 lj 

an

the following relations 

Cz, Xi] = Cz, Yi] 

{Z, IJ = 2Z, (Xi, I3 _ 

  is hronecker's delta. 

 integer p, we define 

=iXEO ; [i. X3 

is defined in §1.3.

among them: 

X.~ = {Y. , Y.) = 0, EX., Y.3 
              j 1 j 1 j 1j 

Xi,CYi,I)= Y. (1<i,j < n)

the subspace (J of c) as follows: 

= pX S

(1----We have immediately that l®p, actiCie q, and that C0 

is an algebraic direct sum of f's. We remark the following facts which 

will be applied later: 

i) OP {OS (p S -3) , 

in 012=1?•Z, 

                        n 

         iii)A-1 = Z(R•Xi + R•Y.). 

    3.2. Now we will solve the equation (E) for (a) (n), ;d(n)).

/  "/



  unique vector field W in  (%(n) such that 

    (E)D(X) = (9, X3for all XEg(n) . 

       The proof of this proposition will be given in §3.3. Here we deduce 

  from this proposition the following theorem, a local theorem for contact 

   case. 

• 

       Theorem 3.3 Let D be a derivation of0-(n) . Then there exists 

  a unique vector dield W in ®0(n) such that 

            D(X) _ W, XJfor all X(n) . 

  In other words, any derivation of Oyn) is inner. 

Prof. To prove this theorem, it is sufficient to show that if 

  D is zero on the subalgebra 00(n), then D vanishes on the whole 

6) (n). Its proof is reduced to the next lemma by Proposition 1.3 and 

Corollary 2.8.q. e. d. 

Lemm If the derivation D of 0=00(n)  is zero onP, _(n), 

  then D is zero on gDfor QD.

//



     Proof.  Assume that X E cf, p> 0, defined in §3.1. The proof is 

carried out by induction on p. Let h1(0 S i S 2n) he functions on 

P2n+1 defined as 

              D(X) = 110 + (hi a + hi+n a ) . 
              i=1xlyi 

    Apply D to CZ, X]~— n 2 and TXi, X)rcQ?-1(1 _ n), 

Then by the assumption of induction, (Z, D(X)J _ (Xi, D(X0 = 0, so that 

hi = hi = 0(0S i < 2n, 1�. j < n) . Hence, by the equalities 
z x. J 

(V$)2 in Lemma 3.1, we get that 

hi+n = 0(1 i <_ n) . 

    Apply D to Cyi , XJ E V-1 then 

                                                          n 0=Yi,D(X)7 =[-g+xiaz'h02z+ZhJax.3 Yij=1J 

n 

           = (h0 - hi) a + E hJ2 , 
Yiz1y.x•                              J= 

so that hi = h0 and hi = 0 for 1 < i , j .S n. y
iy• 

Hence, by the equalities (g), in Lemma 3.1, we get that 

n hi = h0 = y.i~ = 0(1 i n), 
yij=1Jyi



and so  h0 is a constant. 

    Apply D to the both sides of 

          ph 
        On = I  D(X)3 = ̀ I 

Since p 2 0 by assumption, we get 

     3.3. Proof of Proposition 3.2 

(6) (n) , (n)). Let us construct 

W1' W2' W3' 114 E0
,9(n) as follows: 

    a) D(Z) =1' Z,; 

    b) D(X.)  =+             CWl2' X i, , (W2 

    c) D(Y.) =CW1+1V2+1V3,Y.) 

    d) D(I) = [W1 + 112 + W3 + W4, 

where 

Z =a,X.=9 ..,Yi=9,7.        zixiiyi 

Then D = ad IV on d(n) .

 pX = CI, Xj, then 

h°az1 = -2h° az. 

h0 = 0. Hence D(X) = 0. 

                          q. e. d. 

1Ve consider the equation (E) for 

the vector field W as a sum of 

ZJ=0 (l_i<n); 

 CV3Z)C1V3,Xi, = 0 (1<i n) ; 

I~ , [1V4, /GO = 0 (p S -1) , 

+ xi
z, I = 2z az + E (xi ax ± yia 

i=1 yi



SSt~,~. Construction of  W1. Def ine the functions hi on R2n+l 
vr,n

by

D(Z)
            n 

= h°a+(hi a + h 
      zxi                            1=1

i+na 
   yi)

Put the functions I1  1and define the vector field W1 on R2n+1 
             iws 

as

z

~i = hidz (0 is n) ,

Cp i+n 
1  1

0 AZ

0

h
i+n

n 
dz + yi(h°(0, x, y) - y. 

j-1 j

hi (0, x y)) (1< i<n);

wl = -~ 0 

1
    - 

 z i=1

((I°i 

1 'ix

i+na 

1

yi
).

Then W1 satisfies a) . Moreover,

Lemma3 W1 is a contact vector field , or tiV(n)      1E)0 .

Proof. Let us prove for }V1 the equalities (#)1 and (4#=) 2 in

Lemma 3. 1 .

and

Put ~i = coo 
1 lyi

n 
- Z y . 

j=1

J 
lyi.

Then       x, y) = 0

Vliz= ]y
n 
  - y . 

i?j=1J 1
j= h0 
lyiz y

n 
- E y . 

j=l

h3 = 0 
yi



      0  njaj+na 

     Step TI. Construction of 112. 

Define the functions fi. on R2n+1 

    Apply Di to CZ, Xij = 0 and 

         fi
z+(fiz x. +fiz j=1j 

   00n 
       X.}

cz 

- f
i) a+               x 1{(fkx 

                                j= 

Hence

by the equalities I), for D(Z). Hence i = 0 for 1 < i Z. n. 

    (4)2.Put/iyi( E yj 1lzIlOz)/Olx.+~l+n + 2 y.70 
      j=11 j=1 I 

Then 7 .(0,x, y) = 0.Moreover takinginto accountIlz= hj (0<j < 

we get 

                                                       n 
                (Ey.hj - h0) -h0+hi+n+~;y.hj =0     /iz=yi j_1j z z xij=1 x1xi 

from the equalities (11t)2 for D(Z) . Hence xi = 0 for 1 < i < n. 

                                                                       q. e. d. 

    Step TI. Construction of 112. Put D1 = D - ad Wi, then D1(Z) = 0. 

Define the functions fi. on R2n+1 as 

                       j+ayj) (1<in). 

    Apply Di to CZ, Xij = 0 and (Xi,Xi= 0, then we have

yj 

i

                                 fi 

= 0, 

fJ 
1Xk

)2        j+n- 
x.+ (fkx.

 +n f

ix
l,

2n) ,

)00. 

   j



 fJ = 0, 
z

J f
ixk

  J   f
kx.

(0 j   2n , 1 ~i, kS n).

Therefore we see easily that there exist functions 1 (0S . 2n)

satisfying

= 0 , 2z
J 
2x

 = fJ 

i

(1 i n).

We put

1 2(0, 0, y) = 0 (0 n)

. j+n 
2

(0,0,y)=f?(0, 0, y) - E yfk(0, 0, y) 
                  k=1J

(1. j n),

and

W2 = - cp0 

2
2z- 7-(~2 ax. 

  J=1J

+cPJ+n t) . 2 y
J

Then the vector field W2 satisfies b) Furthermore,

Lemma 3.6. ti92 is a contact vector field , or 192c-0(n)

Proof. Let us check (1)and ()2 for 112.

(4) 1 . Put
0

2y

n 
-2

j=1
}'J72y (1 i n) , then

 OX-.(, 0, y)= 0 ;
  iz0,



                 nn• 

       /lxk=2y xk  j=12~'ixk Yi j=1  Yi 

by the equalities ()3 . for Dl(Xk) . Hence 2ki = 0 for 1Z i n. 

   (k)Put_ !2i+n0+J2xi. Then   2,/2xiY                                    j=1~I 

7,i(0, 0, y) = 0 ; ~}/iz = 0, 
fl+nf9E Y.=0(1i,k<n) 

ixkxkixk j=1k 

by the equalities ( )2 for Dl(Xk) because fkz = 0. Hence 7i = 0 

for 1 Lien.q. c. d. 

     Ste~I. Construction of 'A3. Put D2 = D1 - ad 142, then 

D2(Z) = D2(X.) = 0 for 1 <i<n. Define the functionsg'(0 jS2n) 

on R2n+1              as 

          D2(Yi) =g~9Z+
J~1(g.laxi+]i+n~y) (1 G iSn) . 

                                                              i Apply D2 to CZ, Y. = 0 and (Xk, Yi7 =  Z, then 

            gJi z            _i x=0(04.jn, 1kin); 

gj+n=0(1 j <n).

i r,



Apply D2 to  [Y.,Yk) = 0, then we have

(0 gk
yi

k i +
gi -gk-g

0 

iYk

n 

) 2 Z+ ( j=1
gJky

i

-gJ
i) x. 

J

= 0.

Hence,

0 
gky .

k i +
gi=gk+g

gky. . = gJiy
k

0 

iy'  k

(1 Si., j, ksn).

By (#)1 for D2(Y.) , we get from the second equalities above that

0 
gky

n 

_ 

i j=1
Yj g'yi

n 
= E y.g 

j=l

J= 
iy k

0 

yk

and so

k   g
i= gk (1 i, k < n).

By the above equalities, there are unique functions
13(1

lj L 2n)

such that

f

J 
3z

(10J = 0 
3x.

C/3331 

i

l

i
(1 Sisn),

and

S



 3(0) = -g.7(0), r31-n(0) = 0 

Finally there is a unique function T3 

     00 00cp0_0 
       13z13xi1 3yi _ gi 

and3 
     i(0) = 0. Put 

                             n       W3=-13az-(2j3. 

                                 then the vector field W3 satisfies c). 

    Lemma. . W3 is a contact vector 

    Proof. W3 satisfies trivially the 

Let us prove the equalities (:.--=-)1. Put 

             cp 0 -j 
3Yi j=i JT 3yi 

then 

)6i (0) = g?(0) + 3(0) = 0, 

     741z Iiak=0 

and by (#), for D2(Yk) , we get also

such 

cp i 
13

  (1 

that

<i<n).

(1 S i n),

Moreover, • 

field, or W3 E G(n) . 

equalities (4)2 in Lemma 3.1. 

                                                         • (14 i

(1 <i, k ,



 /i
  __0 
ykgi}k 

_ i   g
k-

+cpi 
 l 34 

k gi = 0.

 kn 

- 

  gi-E y. 
j=1

y14

Hence 7/= 0  1 ///

    Step 

D3(J) _

IV

0 for

for  1 inn.

Construction of W4. 

p -l. Apply D3

Put D3 = D2 - ad

to the both sides

q. e. d.

1v3, 

of

then

the equalities

, 13 = 2Z, Cx . 13= xi CY. , 1) _ Y. (1 <i n),

then by the same arguments as in the proof of Lemma 3.4, we get

D3(1) = a a
z for some constant a.

Put W4 = 2-1 a a
z

Then W4 is a contact vector field and satisfies

d) , or

1W4,I3 = D3(1)' (W4 (p <-1).

    Lem ,;0: 

above.

W = 2-1a a is a unique solution of the equations

Prof. As in the proof of LeTr, a 3.4, we see from the fact



~W4, q, = 0  (p  < -1) that W4 E®8(n) 
of a Z. Put W4 = c 2Z for some constant 

          Hence a = 2c. 

    The vector field W = W1 + W2 + W 

and the uniqueness of W is guaranteed by 

completes the proof of Proposition 3.2.

must be a 

c, then

3 

the

W4 is 

lemma

constant multiple 

D3(I) = [W4, l] 

q. e. d. 

 a required one, 

above. This

2c ~Z,



 §4. Volume preserving vector fields. 

     4.1. Liealebras(M) and C)'(.M) . Let M be a connected 

manifold of dimension n, and z a volume element on M. Then we get 

immediately from the definitions of OzM) and (M), 

           (®'(M),~1(n1)C@.t(M), 

and ®(M) is an ideal of codimension <1 in (31(11). Moreover 

     Lemma 4.1. ®(M) is of codimension 1 in ®' (M) , if, and only if 

the volume form 2 is exact, that is, z = d Q` for some (n-1)-form 

Q` on M. • 

Proo . Let t be exact, that is, t = dg— for some (n-1) -form 

CT . Then the equality iW,'i; =cr determines a vector field W by the 

non-degeneracy of L . Hence, 

L2= d i }y'~ = d - = '7 , 

so that W lies in (M), but not in_,(M) • 

     Let O c(M) be of codimension 1 in (M). Then there is a vector 

field X such that LX =Z. Put 'Cin= ixt, then 'C= dam. 

                                                                          q. e. d.



 4.2. Properties of volume preserving vector fields. Let X be ... __ v.\/__' .,,,.,..1,v..-..—ww..`. 

a volume preserving vector field on a manifold (M, 't ). Then ix is 

a closed (n-1) -form on M, and so the restriction rU(iX'C) is exact by 

Poincare's lemma for a sufficiently small open subsets U of t11, that is 

rU(iX'r) = dx for some (n-2)-form a on U. In global, any (n-2)-form 

a on M uniquely determines the vector fields X = XIcO in ® (M) by 

z 

 2 the formula 

iX T= dx. 

     In a coordinate neighbourhood U with coordinates (x1, ..,x
n) 

such that Z = dx1A...ndr
nin U, any (n-2)-formais written as 

a = E f. Q--. 
               i j 

n whereT..=dxln...dxin.../~dx.n..dx
n,andf..are functions 

on U for 1 S i < j n. Then we have the following. 

Lemma .2. For any two functions f and g on U, 

    [xfJ,Xg,~ijlJJ                         =(-1) itiX [if, giQ"i.                         •jj'on U.



where  Ii ,j is the Poisson bracket in x. and 
1

x., that is,

{f, gli ,J    fx
. x. 

   1 J

- f
xjX.

(1S <jC n).

Proof. We have

X rf i .] = (-1'-lf
x. ax.

+ (-1)1+Jf x.2x.' 
1 ,

hence,

rxIf J7Xi~JQ.]]Cf x. 9x. 

1

= - ({f giij)x.

= (-1)+JX1f,
axi

9x

+ (-ff,

g~1J 1J)

 -gxi x1 

J

gJi,j)
x

I

ax
J

q. e. d.

Derivations of (M). 
z

PT.¢Ro i n 4.3 . Let X be a conformally volume preserving vector

field on (M, ), and U any open subset of M . Assume that [x, Y] = 0

on U for all YEQA,c(M) with support contained in U, then X = 0 on

U.

Prop . Let p EU and U' a coordinate neighbourhood of p in U



with coordinates (x1,...,x
n) around p such that 1:"=  dx1  A  ...A  dxn 

in U'. Denote a by U(1 �i<n).Put X =Ef.for 
    x.ii=1i 

some functions f. on U'. Since the vector fields 2 i E ®z(U'), 

                    1 

       rai' X,= z a (f.)2 = 0n) in U',  i=1  J j 

and so ai(f.) = 0 for all i, j. 

    Since x. a Ec(U') (i k j) , 

j CX,x. .•3=fi2.= 0 in U', 

hence all fi are zero in U'. ThereforeX(p) = 0 for any p E U. 

                                                                          q. e. d. 

Propoliti `J Any derivation of OM or O'((M) is local. 

Proof. By the same arguments as in the proof of Proposition 2.4, the 

assertion for. OM follows from Proposition 4.3. As for Op),  see 

Lemma $.5 below.q. e, d, 

    Corollary '1.:i. Any derivation of 0)(M) is localizable. 

Proof. This follows from Lemmata 1.1 and 1.2. q, e, d.



 4.4. Proposition 4.6. Let X be a volume preserving vector 

field on M such that j2(X) (p) = 0 for some point p of M. Then 

there are a finite number of volume preserving vector fields Z1, 

on M and a neighbourhood U of p such that 

            X IU`Zi'Zi+
qJI U 1=1 

and 

jl(Z.)(p) = 0(1 2q). 

     Proof. Introduce a coordinate system (x1,x
n) around p 

such that = dx1A ...f\ dxn. Then, by the arguments in §4.2, the 

assertion follows from the next proposition.q. e. d. 

     Proposition 4.7. Let a be an (n-2)-form on Rn such that 

j3(a)(0) = 0, then there exist a finite number of (n-2)-forms R1, 

on R11 such that 

         X [=ZCX((3i] , X U3i+q1 J 
i=1 

and

 

'  Z2  q

,R
2q



d2(Ri ) (0) = 0 for  1S i 2q.

Proof. Clearly it is enough to show the assertion for the case

a = f(xl,...,x
n)

dx3n ...n dx 

        n

= f c
12

with
.3

(f) (0) = 0 . Such a function f can be written as a finite

SUM

with

of functions of the 

               r1 

          f = x1x

n 
Er.?4. 

i=1

     Case 1. 

f is written

then

following

r2 

2

type:

      rn 
    xnh(x 1, ..., xn)

The case where r1>2or 

as f = x21h(xl, ..., x
n). 

x2 

g = 3-1 h(xl, xn 

0

j2(g) (0) = 0,

     Case 2. 

assume that

and

X[f -12J

The

f is

`xl g-11

 r2 

Put

) dx

Z 2. We

2'

,2 = 3x1gx2= f,

 3 x X12]xl2

case where r and r

written as

1 

f = xix. h(xl

~l

that

may assume

is, by

n 
1. Then E r 

i=3 

     x
n) for

that

Lemma 4.2,

iZ 2. We

some

may

i,jZ 3.

1



 1x2 Put g= h(x...,x
n)dx2,thenj2(g) (0) = 0, and 

 0 
= x.x.g= f. Then by Lemma 4.2, 

       x2 

X [f Q_12~ [XLXx . x .~l2~'X [g~]] 
                                       l2 

    We have a corollary of Proposition 4.6. 

    Corollary 4.8. Let D be a derivation of ?.(M) 

volume preserving vector field on M such thatj2(X)(p) 

point p of M, then D(X)(p) = 0. 

    Proof. This follows directly from Proposition 1.4. 
wwv.

 xlx
ixj'q12

q. e. d.

If X is 

= 0 for

a 

a

q. e. d.



§5. Derivations of 6D (Rn) and  ('(Rn). 

5.1. Structure of (' (n). We consider the natural volume element 

   = dx1A ...A dx
n in a. Euclidean space R. In this section, we will 

study derivations of the Lie algebras ®(n) = A z(5n) and ®;(n) = c (Rn 

of volume preserving and conformally volume preserving vector fields on 

Rn respectively. At first, we note the following. 

     Lemma 5.1. Let X = E fiaibe a vector field on R . Then 
                           i=1 

n 
X is volume preserving if and only if E a.(f.) = 0, and is 

i=1 

n 
conformally volume preserving if and only if > '1(f

i) = c for some i=1 

constant c. 

Proof This follows from direct calculations . q. e. d. 

    Let 0= ®(n) be the Lie subalgebra of 0=@'(n)  spanned by 

n 

         I = E x.
1Xi = ai (1<n). 

i=1 

There hold the following relations among them: 

cXi, X.] = 0, (Xi, I, = Xi (1 < i, j < n) . 

j



     Here we note that the vector field I is not volume preserving 

because  LI  17 = n'l , and that 

®'(n) =®~(n) + R.I. 
LL 

     For an integer p, we define the subspace A of ® as follows: 

(NP = be®;[I, X3= pX}, 

where 00is defined in §1.3. We have immediately that(011 (=gf 

and that 00is an algebraic direct sum of GP's. Moreover, 

i) -2) , 

n 
       ii) ®1 = E R•X. . 

i=1 

    5.2. Relations between &0(n)) and X ' (n)) . First we refer 

the following results of V.I. Arnold CiJ. 

Lemma[ (n) , ~n)~=~(n). 

Note. This lenuna can be also obtained by the analogous arguments as 

in the proof of Proposition 4.4. 

    Now, we have the following three lemmata .



 Lemma 5.3.[((n)®9(n)J, =®2n). 

    Proof. This follows from the inclusion C®z(n) , ®z(n), Qr(n) 

and the lemma above.q. e. d. 

    Lehr maa 5.4. Let D be a derivation of QY(n) , then DOz(n))( Q(n) 

                                                                        z Proof By Lemma 5.3, a vector field X E Cf$),r(n) is written as 

                q r 
                 X = E IYi'Yi+ 

i=1 

by means of a finite number of Y1, ... Y2q~ ®'(n). Then we have that 

                  q 

           D(X) =E(~D(Yi),Yi+q~+EY.1'D(Yi+q)] i=1 

is volume preserving, by Lemma 5.3.q. e. d. 

    5.3. Now we will solve the equation (E) for (Q,''(n), QY(n)). 

Pro osition 5.5. Let D be a derivation of ®'(n). Then there 

exists a unique vector field W,'in®4(n) such that 

(E) D(X) = 044, X3for all XE Q(n) . 

    Proposition 5.6. Let D be a derivation of ® (n). Then there 

exists a unique vector W in ®'(n) such that 

   (E) D(X) = fW, XJ for all X E Q2(n) ,



whereC)( n)  =W1 + (e ®(n)) for®-1 and 1g defined in §5.1. 

    The proof of these two propositions will be given in §5.4. Here 

we deduce from these propositions the following theorems, local theorems 

for the volume preserving case. 

    Theorem 5.7. Let D be a derivation of ®'(n). Then there 

Z exists a unique vector field W in ®z(n) such that D(X) = CW, X) 

for all X E ®(n). In other words, any derivation of ®(n) is inner. 

    Teorem5.8. Let D be a derivation of ©,~(n). Then there 

exists a unique vector field W in ( (n) such that 

D(X) = [W, X3for all XE ( (n). 

In other words, the subalgebra of inner derivations of ®(n) is of 

r codimension 1 in the derivation algebra of ®(n). 

    Proof of Theorem 5.7. It is sufficient to show that if D is zero 

4 on the subalgebra a(n), then D vanishes on the whole ®'(n). Its proof 

is reduced to the next lemma by Proposition 1.3 and Corollary 4.8. 

                                                                      q. e. d. 

f 

    Lemma 5.9; If a derivation D of ® = ®°(n) is zero on

T,



 CD=  ®'  (n)  , then D is zero on % for ®. 

Proof. Assume that X E- ~ p Z 0, where 69P is defined in §5.1. 

  The proof is carried out by induction on p. Define the functions fi 

  on Rn as 

n 
                     D(X) = E fi ai. 

i=1 

      Apply D to CXi, XJE®13-1 (1.! i S n) , then we get 

[Xi, D(X)3 = Elai(f~)a= 0. 

Hence all f. are constants, so that D(X)E. al. 

      Apply D to the both sides of pX = [I, X], then we get 

               p D(X) = [I, D(X), _ - D(X) . 

  Since p 0 by assumption, D(X) must be zero. q. e. d. 

i 

       Proof of Theorem 5.8. By Proposition 1.4 and Corollary 4.8, it 

  is sufficient to show that if D is zero on the subalgebra . n), 

  then D vanishes also on 01 (defined in §5.1). Here note that U 

  consists of all volume preserving vector fields whose coefficients are 

  homogeneous polynomials of degree 2.

f\ 
 `-



      As in the proof of Lemma 5.9, we get that  D(X)  E  ®-1 for X E Q1. 

  Moreover we see that ED(X), Yj = D(LX, Y3) for all YE en Qz(n). 

  By simple calculations, we get that D(X) = 0 for all X6411. 

                                                                          q. e. d. 

       5.4. Proof of Proposition 5.5. Let us consider the equation (E) f~ 
vwL 

(®~(n.) cs (n)), We construct the vector fields WI and W2E 4(n) as follows: 

    a) D(X.) = CW1,X.](1iSn) , 

      b) D(I) =1+ W2,Ij,CW2,Xi) = 0 (1sisn) , 

  where X. = ai (1 S i S n) and I = E xi a  . Put W = W1 + W2 then 
i=1 

D = ad W on ©'(n). -

              z StI. Construction of W1, Define the functions fij on fel as 

                                n 

             D(X.)=E f.. a(1 S i n) . 
j=1 1-1j 

      Apply D to the both sides of (Xi, Xk] = 0, then we have 

E (ai(fkj) - a k(fij))2j= 0(1Si,ksn) , 
j=1 

and so 

ai(fkj) _k(fij)(1ik n) . 

a 

  Therefore there exist unique functions ~j(1j n) such that



 a i(pj) = fij (1  i n)

and

(r
j(0) = 0 (1 1 j n) .

Put
n 

W1 = - 

       1=1

cr
i

then the vector field W1 satisfies a) .

Moreover,

Lemma 5.10. till is a conformally volume preserving vector field', or

Wl—A'n) 
        L(.

.Proof. Since Xk is volume preserving, then by Lemma 5.4, D(X1
`)

is volume preserving, that is,

Put

n 

E ai(fki)= 0 
i=1

n 
=>a 

i=1

(n), then we have

(1<k-<n).

hence is a

ak(ri)

constant.

i=1 i=1 

Then by Lemma 5.1,

  I1 n 

_ 9k( z f..) = Eaicfki)= 0 (l<

111 is a conformal]~

k~ ,

volume preserving vector field. q. e. d.

y



     S ep II, Construction (f W2. Put D' = D -  adW1, then D'~1) = 0. 

Define the functions g
ionRnas 

n 
D'(I) = E giai

. i=1 

Apply D' to the both sides of CX., I) = X., then we see as in the 
J J 

proof of Lemma 5.9 that all gi are constants. 

    nn     Put W2 = Z gA E gi(0) Di. Then W2 is a volume preserving 
        i=1i=1 

vector field and satisfies b), or 

[W2, I]= D'(I),L2'Xi]= 0 (1 i <n). 

     Lemma 5.11. W2 = F gi aiis a unique solution of the equations above 
    -.~.r.~ 

i Prof. As in the proof of Lemma 5.9, we see from [w2, Q-1l = 0 

that W2 must be a vector field with constant coefficients. Put 

W2 = E aii, then 

     i=1 

D' (I) _ [W2, IJ = a. . . 
i=1 

Hence ai = gi for 1 C i n. •q. e. d. 

    The vector field b'J = W1 + W2 is a required one, and the uniqueness



of  W is guaranteed by the  lemma above. This completes the proof of 

Proposition 5.6. 

    ProofofProosition 5.It is sufficient to construct uniquely 

the vector fields W1, W2 E ®.(n) as follows: 

   a) D(X) = LW1, X](XE 1) 

    b) D(Y) = `W1 + W2, Y1, {W2, X3-= 0 (YE ®0(l ®(n)) . 

The construction of W1 is exactly the same as in the proof of 

Proposition 5.5. And one can construct easily a unique W2 by the 

similar way as in the hamiltonian case [3).q. e. d.



§6.  Remarks on derivations of0'(M)and~1'(n). 
                                                    (.42w 

     6.1. Hamiltonian vector fields. Let (M,w) be a connected 
kw-

symplectic manifold. By the analogous arguments as in §4, we get the 

following propositions. 

     Lemma 6.1. 0 ,0(M) is an ideal of codimension < 1 in ®(M). 

Moreover the codimension equals to one, if and only if the symplectic 

form (,J is an exact 2-form. 

Pro osition 6.2. Any derivation of 0(M) is local. 

Propos .io w.Any derivation of 0 (M) is localizable. 

     Since Proposition 1 in C33 is nothing but the assertion (III') for 

QUM) , we get by Proposition 1.4 the following 

     Proposition 6.4. Let D be a derivation of k(n) . If X is a 

hamiltonian vector field on M such that j2(X)(p) = 0 at a point 

pE M, then D(X) (p) = 0. 

( 2. Derivations of(n) and 'fi n). By the similar method as 

for the volume preserving case, one can reproduce Theorem 5 in (33,

 /I



a local theorem for the hamiltonian case. Let us sketch it here for 

 completeness. 

     We consider the natural symplectic structure w = dx.dxi+non 

a Euclidean space R2n, then we get the following three lemmata similarly 

as in §5.2. 

  Lemma (cf. [ii) . 

©0t(n) , w(n)] = [Ow(n) , (n)J =%(n) = %.)( R2n) .. 

Lemma Let D be a derivation of ®i (n)_w(n).Then 

DQ(n)) C No(n) . 

    Let E3 =Cw(n) be the Lie subalgebra of ®=®~(n)spanned by 

                2n 

         I = E x. a., Xi = Di(1 < i 2n) . 
                 i=1 

Note that L1 w = 2w, then we get 

          ®'(n) = (n) + •I.



For an integer  p, the subspace (ofof Q is defined as 

      V={xE®=                   0••CI,XJ PX }. 

We can solve the equation (E) for (S1(n),0 (n)) . 

    Proposition 6.7-. Let D be a derivation of ®w(n). Then there 

exists a unique conformally hamiltonian vector field tic/ on P2n such that 
                                                                                                           r.N 

(E)D(X) = [W, X3for all XE ;(n) . 

     Outline of Proof. The proof is almost the same as the proof of 

Proposition 5.5. The vector field W is determined by the values of 

D at Xi (1 < i S 2n) up to constant vector fields (Step I). The 

value D(I) determines the constant terms of W (Step II). We see 

similarly as Lemma 5.10 that W' = W - 191 is hamiltonian, where 'WI is 

the linear term of W, (0-component of W. Applying the derivation 

D - adW' to k., ®A0] C ®1 (1 S i S 2n), we see that D - adW' _ 

adW1 on ©p (p 0) and that W1 is conformally hamiltonian. 

    We get from Propositions 6.4 and 6.7 the following theorem analogousl) 

as Theorems 5.7 and 5.8.



 Theorem  6.g (Theorem 5 in (33). Let D be a derivation of 

®W(n) or A'(n). Then there exists a unique conformally hamiltonian 

vector field iVE0W(n) on R2n such that D=adW. 

     6.3. The results on the derivation of 0(n) =OR") in the paper 

 [5) of F. Takens can be obtained more simply in this direction. Let 

()=-0(n) be the Lie subalgebra of ®= ®(n) spanned by 

I= x.X. Xi = i (1 n). 
i=1 

For an integer p, define the subspace of On) as 

          ~p = I X Ep~I, XJ = pd. 

Then we get 

     T 1eom(m(Lemma 4 in (53) . Let D be a derivation of (n) . 

Then there exists a unique vector field W on Rn such that D = adW 

on G(n) . 

     Key of Proof. The vector field 'V is determined by the values 

D(X.) (1 { n) and D(I) . 

i



 §7. Thecohomology flll©; ©) 

     7.1. The main theorem for flat cases . The following main theorem 

for flat cases is obtained immediately from Theorems 3.3, 5.7, 5 .8, 6.$ 

and 6.9 for respective Lie algebras of classical type. 

    Theorem 7.1 . a) Let ®= ®an) , ®' (R\n) , ®,'(R2n) or a) (R12n+1) . 

Then 

n1(0 ; ®) = o. 

    b) Leta= ®,~(~Rn) or~~(f~2n).Then 

H10 ; Q) = R, 

Here 

nn = dx1..• dxn, W = 7 dxidxi+n,Q= dx0-Exi+~~dxi. 
      1=1i=1 

     7.2. Main Theorem. Let H be a smooth manifold with a volume 

element 't , a symplectic structure W or a contact structure 0 , and 

let ® be one of ®(b1) , ®z(M),®' (H) andH(M) . Then



 H1(~J;  = 0. 

     b) Let M be a connected smooth manifold with a volume element 

T or a symplectic structure , and O _ ® (M) or ®M) respectively. 

Then 

• H1 ® ; (N) R or 0. 

Moreover, H1(0 ; (j)_. R if and only if '2 or (,) is an exact form on 

M respectively. 

     7.3. Proofs for ®,o and (WM). Let us prove that any derivation 

D of is inner. Take an atlas {U., Cfsuch that each U. 
                                         ieI 

are connected and simply connected. Since D is localizable, the 

derivation DUof (% can be defined for all iEI in such a way 
    11 

that rU
l° D = Du 4 rUl. Then by Theorems 3.3 and 6.9 in respective 

cases, there exists for any i E I a unique vector field Wi E ®i such 

that DUi= adW1 onCPU. Since UU
iorUln Ud=DUJor13 ( Ll~we get 

(W.)rU
i(1U~(W.) bythe uniqueness of19U.Hence there exists rUi(^ Uj



a vector field  `lit such that rU
i(W) = Wi for all iEI and that 

D = ad 114 on 0,q. e. d. 

7.A. Proof for t.(M) and (k(M). Here we denote 4217(M) or k(M) 

by ®, and ®' (M) or 0(M) by d' respectively. 

Lemma 7.2. For any X E ®', ad X is a derivation of ®. 

Proof. Let cr be 'C or uJ , then 

                   LXL/ cr - LyLX T = 0(Y E ®) . 

                                                                    q. e. d. 

    Let D be a derivation of ®. Since D is localizable, for any 

open subset U of M,"The derivation DU ofJ can be defined in such 

a way that rU o D = DU o rU. Then by Theorems S.8 and 6.8 in respective 

cases, we get a unique vector field 'WU of COO such that DU = ad Wu 

on "U for any sufficiently small U. By the arguments in §7.3, there 

is a vector field WE Q°' such that r(W) = WU and that D = ad W 

on ®. Hence by Lemma 7.2, we get the isomorphism D(®)='®y. Therefore 

the assertiop follows from Lemmata 4.1 and 6.1 in respective cases. 

                                                                   q. e. d. 

} 

    7.5. Proofs for ®'(M) and®'(M). Here we use the notations         ---Z



and®' as in §7.4. Let D' be a derivation of  ®', then D = D'I® is 

a derivation of Q with values in ®'. Since D is localizable, for any 

open subset U of M, the derivation DU of at with values in "U can 

be defined in such a way that rU 0 D = DU o rU, as in the proof of 

Proposition 1.2. If U is sufficiently small, Du(j) C ®U by the same 

arguments as in the proof of Lemma 5.4. Then by Theorems 5.8 and 6.8 in 

respective cases, we get a unique vector fieldsuch that DU = 

ad WU on By By the arguments in §7.3, there is a vector field WE ®' 

such that r(W) = WU and that D = ad %i on ®. 

For any Y“11)'  and all X El, we get 

[D'(Y), XJ = D(EY, XJ) - (Y, D(X)] 

= [W, [y, X)J - (Y, {,x]] 

                = [[W, Y), "J). 

By Proposition 4.3 and the similar proposition for the hamiltonian 

case, we see 

D'(Y) = [W, YJ(Y ). 

4 Thus any derivation D' is inner.q. e. d.
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