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,}Ij?] ' Cohomologies of Lie algebras of vector fields

with coefficients in adjoint representations

Hamiltonian Case
By

Yukihiro Kanie

Introduction,

Let M be a smooth manifold, and (AYM) the infinite dimensional
Lie algebra of all smooth vector fields on M. Led A be @OD or 2
certain natural subalgebra of it. We are interested in ihe cohomology
H*Q@; V) of (&) with coefficients in some representation V, which is
gan invariant of the Lie algebra Qﬂ

In 1568, I. M. Gel'fand and D. B. Fuks began to study the thecry of
cochomologies of Lie algebras of vector fields, First, they t;ééted ihe
case where (E)=k§(M] and V =R (trivial coefficients), Since then,

many mathematicians studied cohomolegies in many cases, for instance

(EJ, [4], [6] etc. They also treated the case of nentrivial coefficients,



but restricted themselves to the representations induced from some finite
dimensional ones, Their proofs were essentially based upon some finiteness
of representations,

Meanwhile, in 1973, F. Takens {7} proved that any derivations of
@{l-l) is inner. It means that the first cohomology of @) .with
coefficients in its adjoint representation, a natural infinite dimensional
representation, is trivial,

In the present paper, the author treats a symplectic manifold (M, w )
and the subalgebra @,‘_,(M) consisting of hamiltonian vector fields an M

in this direction. Then he obtaim the following results.

Main Thegrem. Let (M,¢d ) be a connected symplectic manifold, then
the first cohomology of @w(hl} with coefficients in its adjoint

representation, is of dimemsion 1 or 0, that is,

dim W 0 ;@ ,00) =1 or o.

Moreover, I-ll@w (M} ; @mm)} = R if and only if the symplectic

form ¢« is exact,



Locally, this theorem has a simple feature (Theorem 5} as follews:
Let U be a connected and simply connected open set in Rzn. with the

natural symplectic structure w = Z dxi dy;, then

G, @ ; B0 =8,

The proof ¢f Main Theorem ¢an be carried out by elementary calculaticns,
But to make short some part of the proof, we nse Weyl's results on
representations of the symplestic algebra. The elementary version of
that part is outlined also in Section 4,

In §1, we explain some generalities of the first cohomology and
symplectic marifolds, In §2, we prove interesting properties (Propositions
1 and 4) of hamiltonian vector fields, which play an important role to
prove Theorem 5, a local theorem. Moreover we prove in §2 that a derivation
of QD“}M)- is a local operator {(Proposition 3). Section 3 is devoted
to the study of derivations of QQbJ(M) in local. In §4, we complete the
proof of Theorem 5. Here we use some knowiedge of formai hamiltonian

vector fields. Finally in §5, we give the proof of Main Theorem.



The author expresses his hearty tharks te Prefessors T. Hirai,

T. Morimoto and N. Tatsuuma fer their kind advices,

§1. Derivations and HI® (B
i Lo nn

All manifolds, vector fields, functiows etc. are assumed to be of
Ch -¢lass,

Let (A) be a subalgebra of the Lie algebra (&M of all vector

fields on a manifold M, and consider the adjoint representation of (&%
(ad X) (O = [X, Y] X, Y6 ®,

where [ , ] is the usual bracket operation of vector fields. The
cochain complex {Cq@ s @, a4 } of the Lie algebra (& with coefficients

in its adjoint representation consists of the followings:

C®:® ={P: @1 XBsB®

skew-symmetric g-linear map } .

' q
and for P € C% and X, -...XqHE@.



S n
q = il
@R, o Xy = 2D [k, pay o B X))

itj
+ R, XJ X
i<j
The homelogies quLQ; ., q;D} of this complex are called the
cohomologies of (@ with coefficients in its adjoint representation.

The one dimensional cohomology Hl(@.@) is interpreted as foliows.

Since
P, v o= [X, P - (Y, Pe0) - pifX, ¥)D X, YE®,
for P& Cl. we see that dP = 0 means that

r((X, ¥ = [P0, ¥) + [X, PODY),

that is, l-dimensional cecycles are derivations of @ Moreover since

W ) =[x, ¢) Xe @, .-

for Q¢ COR; @ =(B) we see that l-dimensional coboundaries are inner
derivations of 3. Thus the first cohomology space H1® ;& is the

equivalence classes of the algebra O® of derivatisns of &) modulo



its  ideal @i@ of inner derivations, or
H@: ® So®m o @,

In the following, we consider a smooth symplectic manifold (F-lzn,w ),
and the subalgebra @)= (M) of hamiltonian vector fields on M. A

2n by a nondegenerate closed 2-

symplectic structure is defined on M
formeo , that is, o " SWA - Aw 1is a volume form of M and dew = 0O,

A vector field X is called hamiltonian, if it preserves the symplectic

formed , and by definition,
®, ™ = {xe@um ; L o= 0],

where Ly« fs the Lie derivastive of «w by X. To determine the first

cchomology, we must study the structures of (ﬁ}mm} =@(@w(!‘ﬂ}] and

@0 =@ B, (0}

o am

V§;’2~; Some properties of @ (M) and @m(M}.

2.1. 1In the following, we denote by @, the vector field 9/31)'.



snd by X|; the restriction of X on DU.

Proposition 1. Let p be a point of a symplectic manifold m2n.

and let X be a hamiltonian vector field om M such that jQ(X}(p) = 0,
that is, the 2-jet of each of the coefficient functions of X is zero
at p.

Then, there exist a finite number of hamiltonian vector fields

Y., -, Y, , 2+ Z, on M, and a neighbourhood U of p in M,

1 'Rt 7
such that
!
Xig = 2 (e 231y
i=]1
and
i = lepe - o 1<igp).

Proof. Let U be a simply connected open neighbourhood of p, and

let (xl. X Yottt yn} be a symplectic coordinate system

around p in U, that is,

n
L v = ifl ﬂxi dyi.



Since the vector field X 1is hamiltonian, LX t? = digy w = 0, where
ix 3 is the interior product of X and w . Hence the differential form
ixp_} is closed, and so the restriction ixwl a is exact by Poincare's
lemma. With respect to the above local coordinates, X and ixco are

written in U as

n
X = ifl{fi(x. y) Bxi + gi(x, }'}ayi]’ '

. n
iyw= iflffi(x. y) dy; - gifx, y) dxi} ,

where fi and g, are functions on U, There exists a function

H=H(x, yJ on U such that

— o
iyw=di = E (H_  dx; + H:,ri dyi).

i=1 %3
Therefore we have for i=1, =---- . n,
fi(x. y) = H},i. gi{x, Y = -t .,
that is,
X = S0, 9, -8, 3,) on V.
j=1 “i "1 i ¥



This function H is uniquely determined up te constant§, so that we may
put H{(p) = 0. A function or vector field is calied without constant term
if it is zero at the origin of the coordinate system,

In global, ;ny function M on M wuniquely determinesthe hamiltonian
vector fiekd X on M by the formula ixcal= dd, because of non-

degeneracy of the symplectic ferm w). So X wmay be written as XH.

Then the fellowing formula holds for two functions H and K on M,

(e, %) = X_fu, &} -

Here { H, K.} is a function on M called the Poisson brackel of H

and K, whichis given in U by local coordinates as
i ¥i ¥i ¥

{u, K} = %, K, -H, K ).
i=1

Thus, the proposition follows from the following result on a connected

open set {called domain) in a Euclidean space.



Proposition 2. Let H be a C*-function on a simply connected

2n

domain U in R with j3(lﬂ {0) = 0, then there exist a finite number

of C">functions Ky, ==e K-E' Gy, ~--, GL on U , such that

and

J2EK;0) = j2(6 0 = 0 (1£i<2),

Proof. Since jB(H){D) =0, H can be given as a finite sum of

functions of the following form:

2 I
xll... xn"}r;_"‘.” ynmi“f(x,‘ y)

I w
with = (_,f',i + mj) 2 1[- ,and f a € -functionen U. Since

i=1

n n n
22 or Zmy>2, wemay assume = f; > 2 without loss of
i=] i=1 i=1 "

generality.

Case 1. The case where _‘i 102 2 for some iD' Let i0= 1, and

put

10



where

then we have

'f-l n |
'{K, G}=3x X, y. g, (x, )
1 ) 1 1 }'1
£ §
— " ' ™
= xl - xn Yl P }'n f(x_.l }')’.

m
Moreover jg(K)(B} = jz(G)(O) = 0, because j l(g)(D] = 0, and

n n
fzt,gi P (L =D mpt )= i§1(£i +m) 12 3.

Case 2. The case where all ¢ i £ 1. Assume that 'el =/ 5 =1,
then by means of the following symplectic transformation, this case is

reduced to Case 1:

-1 -1
i 1 [ ]
) = f2 (xl + x2'l'. 1 =/2 (}'1 + yz] .
-1 -1
< xé =qf§_ (xl - x2}, yé = J2 (yl - yz).
Lx = X, Y. =¥ (i2 3).

11



2.2. Proposition 3. Let D be a derivation of & OO . If
e o
Xe @N(M) is identically zero on some domain U in M, then D{(X)
vanishes identically on U .

Proof. Assume that there exists a point p in U such that

D{x) (p} L 0. Let ¥V bea simply connected coordinate neighbourhoed of
p in U. Since D{X) is hamiltenian, using symplectic Ponrdinates
around p in V, we can find a function H on V such that

Dtxqv = XH. as in the proof of Proposition I, Since DOD{(p ¥ O,

Hxi{p] $0 or Hyi(p) % 0 for some i, We may assume that Hxi(p) 3 0.

Let K be a function whose support is contaired in V, and equals to

y% in a smalter neighbourhood V' of p. Then we have
i, K} = 2y, By, in V',

and then

{n, K]yi = My + 2y Ayyyy -

12



Hence

X . @< —Hxi{p)axi 0.

On the pther hand, since (X, XK] =0 on N,

I

0= plx, XD ipy = PO, XJip) + (X, DXH] ()

X_{H‘ K}(p} .

This contradicts our assumptian.

Proposition 4. Let D be a derivation of (B (M}, and X be a
hamiltonian veetor field on WM. If jz(x}(p} = 0 for some point p
of M, then D{X){(p) = 0.

Proof. We can find, by Proposition 1, a neighbourhoed U of p,
and hamiltonian vector fields ¥,, -+, ¥, and Zy, «--, Z_E,E'@w(ht]

such that

Iy = i'_fl[’fi. Zi) 1y

e = tEp e = o (14i42),

13



Then, using Proposition 3, we get

DX (p) = D( 3 [¥;. ;) (p
= 2ayp. 2] (» + [¥;, bEZP) N = 0.
1
q. e. d,
Remark 1. Any derivation D of (&), () car be considered as a

derivation of @),(0 for any open subset U of M.

In fact, for any point p in U, by the preof of Proposition 1,
we have a hamiltonian veetor [ield X on M for any X €@, such
that X equals t6 X on some neighbourhood of p. Define Dy by
B, (X} (p) = D(X)(p), then Dy(X){(p} is well defined by Proposition 3,

and clearly Dy is a derivatien of (B (U}.

jﬁ__ Inner derivations of @),
3.1. In this section, we fix a simply connected domain U af N,
and a coordinate system (x3, -+, %Xp, ¥1. *--. }-n] in U for which

¢ = Z dxj dyj in  U. The conditiens that a vector field X on U

14



is hamiltonian, is given as follows:

n
X = 'Z (fifx. }") a xi + gifx. }']a Fi) 5: EM{U]

(0 1=1
=y By (1) -3y, (g))., Hyj(fi} =3y, (), 3xj{913' =dy, (g

J
- (léi,_]é nj.
Theorem 3. Let D be a derivation of the Lie algebra My, {U) of

hamiltonian vector fields on U,
(i) There exists a unique vector field Z {(not necessarily

‘hamiltonian) on U such that
pex) = {z, x} x¢ @®,,1).

(i1) Z is uniquely expressed as 2 = Z; + Z,, where Z; € @&; (U)

and for some constant ¢,
z 2xid, +¥i3y)
=c x -
2 =1 1 %%y T 9y

Note. If ¢ ¥ 0O, Zo is not hamiltonian, because Lz2ul=2c w in
U.

Let us call a vector field constant or linear if it has only constant

15



coefficients or linear coefficients respectively.

We construct the vector field Z as a sum of Z{O}, z(1)  and

2(2]:

Z = Z{O} + z(l) + 2(2]_

-

Here 2(0) is the constant term of 2, and ?..(1] is the linear term of

(2)

Z (containing 2,), and finally 2Z is the remaining term with

coefficient functions of degree > 2, a hsmiltonian field.

3.2. Determination of 3{2).
" B T e s e

Rccording to the situation, x; is denoted by vy, and  y; by

o) (2}

Vigy for 1 £ 14 n. To determine 2' =27 + Z2°7°, we will use the

follnwing equalities,
D( a ) = Z, a | = !Z‘ . ] i £ .
V. ( Y. 8 v (1 S 1% _2“1

Define for all i and j, the functions fij etc, on U as

n
D(I, )= S (6,9, +4g;;2¢ ),
R R AR
n
Dd, )= Z(£f.3_ + q!. ).
Y3 j=1 4 Xj glJayj

16



It follows from [8‘\?" .9%]= 0 for..e ,m=1, -+, 2n that
£

0=0[2y,. 3] = (be3y), 3x,) + [axE‘Dfaxm]J

- J'A_‘r{(axl(fmj) “Bay 579, + (D, Lany) -’axm(gmn'ayj},

6 = D([3 1?,a:‘,“]}

-

= 3?{(9 (G5 ~Fpyllyy) B, *+ (B, (o) -aym(gﬂna}j} :

and that

0=D([33'£'3y“;l]

= [ - 1 + l. - I'. .
?{{H}k(fmj) Bym(fij}}axj {aﬁtgﬂu} aym(gﬂnayj]

Thercfore we have for all j,.£, m,

Bym(f'.].

@ 3, o) =d |

9. (6, ) =9, (£2.), 'a},tf'.)
d

iyt Yy G x; ¥ mj

A

- = |: ( . = 3 " " ;
@ By ) =35 (9,0 Iy (g, ) = 3, (g, a"ztg Y= 9y g

Since U is simply connected, there are unique functions ?j and

'}f/jil £ j £ n} up to constants on U such that

17



x; (P = 155 Ay, (¥ = 1.
C AR 3y, ) = oi;-

Here we may assume that all ?Qi and ?bi have no constant terms. FPut

n
) 2" = -Jfl(‘f‘j By * P, CRRE

then we get

[z‘.ﬁvi]=m3vi) 41 2.

Al

Lemma 1. The vector field Z' defined above is hamiltonian modulo

linear terms.

{(2)

Note. The field Z is determined as the component of 2' with

coefficient functions of degree2 2. The structure of the linear term of

(1} (2)

Z', 2" =2' -2°°, will be studied in §3.3.

Proof. Since D¢ ‘avi} is hamiltonian for all i, the equalities (1)

. Hence for all i, j,.f.

hold for fij‘ gij and also for I gij

ij’

we get

18



(2) (1) (2}3 (f.
3, (f j} £ 3},1(1'“} 2 ayj(fh

a&(f;j} ='a,,i-:f“1 ) (fh} =?Y£(fji}.

and similarly,

I, (g5 ‘E’ax )‘”9 y B3 (g0,

% % ‘9 B ARAR

.. = {g'.) = (g'.) = (g..),
¥y, loyy? = Ox (9 ij % 33,! 954
and further,

(g).a (1) _ (3 _ .
‘axf(fij) = xi[ffj) = ayj(gfi) axg(gji]'

3y, ;) = By, () = 3}, D= -3},€(g

1

From the above equalities, we have

fij= fii0 9= 9550 B3+ 454= 0,

modulo constant terms for all i, j. This means that 2" satisfies,

modulo linear terms, the condition (1) to be hamiltonian.

(.

3.3. The strycture of 2

19



We have just proved in the preceding paragraph that

D(2y) = [z, E"i] <[z, 3‘.1] + [z‘ﬂ’,'avi] (1£i< 20,

and that 2{2} is hamiltonian. However 2(1) is not hamiltonian in

(D

general, Let us study the linear field Z more in detail,

Put D'=0D - adz(z}, then we have
D'(F,.) = 2 lap D, +b )
= a; = '
X i) ok 9x, 1k93k
n

where for all i, k,
alk = fik(ﬂ}, bik = gik(O) . cik = flk(ﬁ}, d.';.k = gik((}] -
Then by (4

1) _
(5) z' = - ‘E{%(ﬂikxi toejpyy) Ox t Zjpxg + djpyy) ark}'

Let xij, Yij and Zij be the basis of the linear hamiltonian

vector fields, given as

20



? (1£1i, j£ n),
¥i

Xi5 = X 0x, — ¥4
ij i xJ 3

Yij=xjayj+xj‘3},i 1Ligjgn,

Define the functions Eijk etc. on U for all i, j., k by

-

1

D’ (Xij} E((Iijk'-a Xy + Eijk Eyk) 1

—
—

i TUR AL PP P L 2y,

[:

D'z, ) Effijk 3 * Tigkdy,)

Then we have the following

Lemma 2. The functions 'Iijk' Bijk'a’i_jk‘ gijk' éijk and ’Z ijk
are of degree £ 1, whose linear terms are determined by the constants

a5 bype 65 @nd d. in (5} .

Proof. First, we have for all i,.42, m,

[3’51' Xn) =giza"‘m' [ayi' xﬂ“] i 'gi“_‘a’le '

where Ekj is the Krocker's delta, Applying D' to these equalities, we

have

21



Siz E (3mkaxk + bmkayk)

6 = (012, x,) +fo, . ey )]
=235 %, ~ by 31'{ * E{axi(“gmk) Iy ¥ Ox, B gs’k}'
hgimf (cfk?;lxk + d.‘,’ka}'k)
o

- e . - = 2 ) ]
= cip 9z, - a2y, ﬁ{ah%mk) v * 3y, B 2}

Compare the coefficients of 9 %, and 9 Y then we see that the

derivations of the first order in x; and y; of X ok and Bgmk

are constants determined by aij‘ bij' cij and dij‘ Hence we have the

and Bij K

gssertion for ..
ijk

By the sameé arguments, we have also the asserticn for rijk' S ijk*

gijk and oy

q. e. 4.

Lemma 3. There are the following relations:

. aij+dji= 6 (i j),

22



i i i ' b = || fut 311 i 1 ‘I 1
' - i-l i i
ivb v =g, . fOl &11 1 L] .I L

in (6}, we have

Proof. If i% ¢

=3, a.xm - bima:‘f E{axi(mf-’mk} ’c)xk

and hence

(8) ¥, Gy = “2ip Ox, Bpug = P

Put i = § in (6), we have

2

E{amk Bxk + hmk yk}

=939

which implies that

X4 i’ = %o 214
(9 'axi(aimk) =8, (k£ m,
Bxi(aimk} = b (k & ).
Now if i ¥ m in (7), we have

23

- bimayi + ‘E{gxi(“‘imk) '&xk

+ 331{;‘3“!() E-},k] .

{i24).

t 3y, By ayk}'



0= 052y - d 0y Efafi{“fmk) 3y, * 3y, B 3y
and hence

Y =d, (i ¥ m.

afi{gtmﬁ im

(10) 2, & ) =-¢

Y; "#um ig’

Similarly for i =m, we get

which implies that

Il
=15
]
“n‘
[

33'1(52121 ii
(11

3yi(m ) = ¢

£ik £k kt D.

Let us take inte consideration the econdition (1) that D'(}Iij)'s

are hamiltonian, then we have from (9), for m % k,

|
+
o

0=8, (@ )+ a}'kiﬁimi) =a, *d ;

1

and from (8 and (11), which means i)

24



Also we obtain from (9) and (11},

- & £ = - +d.. -d..,
0= 3, @555 Ty PBrpad = 2y -2 Y 4y 7 s

which means ii); and from (8) and (9, for i %4,

0=2 ) - b ..

xi(pjﬂmf _Bg(ﬁﬂmi} = By mi

which meansiiil; and from (10) and (1), for 1 ¥ m,

0=0_ (0, ) ('I,Emi

Yi 2mm 'aym ) = e

iet e

2i'

which means iv]). q. e. d.

R

Remark 1. There is no relation besides i) .~ tv) among aij'

hij' ci_j and dij' which comes from the condition thatD"fU) is hamiltenian,

where V 1is any one of xij' Yij and zij‘ Further more there holds

25



pwn =2V, vl

modulo constant terms, where V  is as abave.

Now we can describe the structure of Z(l]_

(1)

Lemma 4. The vector field 2 is pniquely expressed as

m_ W,

Z ] 2

(1)

where 21

is hamiltonian, and for some constant c,
. @ + y;d ).
1 1 Xi 1 yi

Proof, Put

 _

then from {(5), we have for i =1, -, n,

f,(x, y) = Z {a,,

|
™~
P
o

]
2

u:
g

a;(x, ¥ =

26



(a,, + d“}, which is independent of 1§ by Lemma 3

Z.=¢ Zx.d. +y.3.).
2 i 1%j 1%y
. (1) (1) . ] .
Then, the remaining term ?..1 = 2 - 22 is hamiltonian by the

equalities i).~- iy} in Lemma 3. One can casily see that the decomposition

2(1) = zil} + 22 is unique as far as 2{1) is hamiltonian and 22
is a scalar multiple of = (x. 9. + y, 2 ). q. e. d.
T 19 iy,
1))

3.4. Determination of 2",
WA e Tk W S Ty L

Let the derivation D" be D" = D - adZ', then by $3.2. we have

p{gd, ) =0 (1£i4 2n.

1

21



Let mijk' ﬂijk‘ E(ijk' 5 ij'gijk and Tijk be the constant terms

— — -

of % ke Bijk' Kijk' Y ik £ ijk and iijk respectively, then, by

Lemma 2, we have for all i, j, k,

D"(X..} = ., + B.. ¥,
1_]} E(aukaxk Eukayk
D'(Y.) =% (Y., +e., Y,
[1.1 ;E; Yl.]kaxk lea'fk

) =2 G iy

Moreover aijk etc. are expressed more simply as follows,

Lemmg 5.

i}, n"(xij) = o, 9 +B.3_,
i, MIY.) =0, 2 +a.9
ij i J

H. 0"z = ;2

where o, = ..., Bi = f

Proof. Applying D" to the both sides of the equality

(Xi50 %) = Sj,e Xin = ® in X5

28



then we get

SJEE (uimkaxk * E'imk"ag,rk]

k

+ 2. - ¥:9,..

[x.i. XJ yj Y5

=, . - ., - X
al_]‘e‘axm ﬁljma}"e

If j%f and i3 m

0= 050 8x, " Pijm 3&

which implies that for j ¥ m,

o. .
ijg

and for

i%d,

Bii =0

ijm

Then if j =4 and i%m

o + 3. .9
imm Xy imi ™ y4

and hence

-é

Pmi

in (12},

in (123,

. + . }
im E (af.]k axk BEJR a}'k

[2 (aukaxk-'rsijkayk)' %y x -~ Y 2 ]

{Emk Xx B,ﬂ,mk Y ]

¥ Effm.ia!ri'

we have

ﬂjmiax +'Ef i 2

.j mJj Yi'
(G2,
(i ¥m.
we have

2

=, +
“ige X B.i?mfgjrl'



DIX.) =@,..8 +P.. .3 =0 i
ij ijj xj iji™ ¥y i xj J ¥y

which is the equality 1).

Applying D" also to ithe poth sides of the equality

(i50 Yom) = Sjﬂ Yin® 3_1m Yige
we get

§3 2 ¢

=(a.a +B.F . x, D +x D
i xs oyt €Ty m
13 j i m F.t]

+ [xi ng R 93’1‘ z (%’;mka

B’imk axk * 5 imk ayk) * Sj‘“ E()/ifkaxk +§i1k8yk}

Xy +g.£mka3'k]]
=£.j£ai3}'m+ Sjm uia}"e -B’jmiaxj +gjm.."33r1'

1f jtL and jEm in (13), we obtain

0 'B:Emi?’xj "8 pny %y



and hence for all ¢ , m, i,

Bfguﬁ =0

gjmi=0 (j #m.,ﬁ],

Then put i 4 j=m=/ in (13), we obtain

.. 3 = . + '3
2§31_]k ' 2“133’3- ‘SJJJ ¥i'

which implies by the symmetry of gljjk in i and j, that

Hence we have

= — ,9
D(Yij) Sijj’a +5ijiayi ai9F.+ﬁJ y.o

¥j j i

for all i, j, which is the equality iil.

Apply D" 1to the both sides of the equality

(50 20) = ‘Sig Zi - O 2 -
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Then we get the equality iii) by the same arguments as for ii).

q. e. d.

(0

Thus we have the hamiltonian vector field Z 7, given as

o _* _
(14) z _i__g](ai axi Biahy

with constants & Bi in Lemma 5, such that for any linear hamiltonian

vector field V

29, v]= 0.

However this condition determines 2(0} by the following lemma.

Lemma 6. Let V be a constant (hamiltonian)} vector field with

(v, xij] =0 for all i, j, then we have that V = O,

n
V= E(ai'a_+b-3 ) (aj. b; € R),

then we have
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and hence a; = bj = 0. for all i. q. e, d,

3.5, Thus we know the vector field 2
L

(2)

() . 2@

(1)

Z2=2 + 2

as (4), (5) and €14) such that D(V) = (2, V] for all V with coefficient
functions of degree £ I. Then we must show that D is adZ for all

hamiltonian vector fields on U. This is established by the following

Lemma 7. Assume that a derivation D wvanishes atany Xsur.h-thnt ils
coefficient functions are of degree £ 1,

Then DI is identically zero on @M(U}.

To prove this, we use the following

Lemma 8. Under the assumption of Lemma 7, D(X) = 0, if all
coefficient functions of X are of degree 2. .

The proof of this lemma will be given in %4,

Proof of Lemma 7. Let X€ @) (0}, then we can show that D(X)(p} = 0

for any point p € U. In fact, there is a decomposition of X at p,
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X=X + X, such that the coefficient functionsafxl are polynomials of

1 2

degree £ 2, and j2(x2] (p) = 0. Then by Lemma B and Proposition 4, we have

DX} (p) = DIX,))(p} + D[Xz)[p] = 0,

Gg. €. d.

§4. Relations to the formal Lie algebras.
L e g ey g T - ~

4.1. It is known that the derivation algebra of the following
g

irreducible transitive Lie algebra (T L A) (@) of infinite type:
G-V +@w @V or@am®P s

(for definition, see (5] for example) has the subspace of outer derivations,
of dimension 1. In other words, Hl (@w(n} : @w(ﬂ}} = LF}“. where @w{n]

is the Lie algebra of formal hamiltenian vector fields on _Rzn_ at the

A

origin {for definition, see [3) for example). By some techniques used

to prove the above fermal theorem, we have another approach to the
. . (0)
determination of 2 , and a proof of Lemma 8.

The constant hamiltonian vector fields form a Euclidean vector

M



space {(abelian Lie algebral Vo, of dimension 2n, and the linear

hamiltonian fields form a vector space V,= @Gh(Vp). with the natural
structure of Lje algebra. Befere Lemma 3, we have already proved that

D"(Vl) C V,. The natural representaion of ©p(2n ; B} on RZ" s

L

irreducible, and is given in terms of vector fields as X('a,..) = (Bv' XJ.
where X € V& @pn i B and 2, € Vo= R2",

Thus the linear map (derivation) D" from V¥, to "'o isal-
cocycle of GpB{2n ; B) with coefficients in the above representation.
fipply to D" the fundamenial vanishing theorem for nontrivial irreducible

representations of (finite dimensional) semi-simple Lie algebras (cf. (13).

Then we get a unique vector vy € ?0 such that

D" () = (dvg) (X) = X(yg) = (z'9, x) (X € Vy).

Here, Z(m is the vector field corresponding to the vector ¥g. and

expressed according to the formula in {1} as follows:

(D

- -1 -2 " " N "
2" = e Hanr2) {i?j (%3507 ¢x;3) +i§j([YiJ Dz )+ [z, ¥, )

e LA C ) RGN RN 1
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(0)

(It is not easy to obtain the explicit formula (14) of 2 from the

above expression of it.}

4.2. Proof nf Lemna B,

The hamiitenian vector fields of homogeneous degree 2, also form 2

() , the first prolongation of Vl =GPV, .

vector space Vo= EhYVp)
The natural representation of V, on ?2 is given in terms of wvector
fields as X(¥) = [¥, X} for X €V, and Y € V,. Then it is known by
H. Weyl ['B_] that this representaion is irreducible,

As in the proof of Lemma 2, we have D(Vy) € V5. From the assumption
of Lemma 8, we see that D{[X, Y]} = [k, D(YB for X €V, and Y€ Vy,
Then the following diagram is commutative:

D

v ——— Yo

adX ‘@) adX (X € V).

D
Vy > Vo

This implies that ker D is stable under ad(Vl}-actions. Since

ker D % {0} clearly, it follows from the irreducibility of the
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representation that ker D=V,, that is D=0 on V5.

g, e, d,

Bemark 1. This proof is simple and short, but is based upon Weyl's
work [B]. We have another proof by elementary calculations. Let us
sketch it here,

Take z basis xi;jk' Yijk'

zijk and wijk of ’-’2. as

il

Xiik "i"jaxk - xjykayi } "i"kayj'
Yk = XY a:-:j T Yy 9y, T iy Oy,

Zijk =¥, ¥ axk + ijk a"i + ¥ axj-

17)
W... = x.x. + x.% + ox x. .
ijk i%j a}'k 1 kayi k 1ayj
Define the functions Ai_jkg etc. on U by

D(xi_jk) =3 (aijkfaxJE + aijktgyi).

B0 = F Ok ax£ * bk gyz}'

I

D(Z...)

ijk 3; (ci_jkf g"t + €5 ik 9%}.

DK, ) = . '
1_11;" Ez (dljk;'ax,_ + d”u g*ﬁe}'

Then all these functions are constants as in the proof of Lemma 2.
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Horeover these constants are zero, In fact, firstly we obtain that

‘. =d.. =4
ke = Yijke T Yijke

both sides of the equality

[xijk' V)= gmk Wik ¥ gnk ijn'

and by the symmetry of d ijkg in i, j. k.

=0 for all i, j, k,#Z, by applying D to the

Secondly we obtain that b'jkz = cijk£.= cijkg = 0, by zpplying

1

D to the equality

(2, Y = Snk Zijm ¥ ‘Smk Zijn’

and by the symmetry of cijkg in i, j, k.
Finally we get that aijkf = bijke = 0, by applying D to the
equality‘
(Zon- xijk] = &, Yoy ¥ Sn_j. Yoki T ‘Smi Yok) +'é’mj Yokit
and by the symmetry of bijkg in i, j.
Thus we have that =0 on ¥

o



1
E&. The cohomology H @m(.\:} i ®,,00),

5.1, In the preceding two sections, we proved Theorem 5, a local

theorem. The following one follows immediately from it.

Theorem 5'. gl (@M(U) (B ) R,
Now we will give a gleobal theorem en M, Before that, we show a

global version correspending to Theorem 5.

Proposition 6. Let {(M,w ) be a symplectic manifold, and D a
derivation of hamiltonian vector fields (&), (M) on J. Then there

exists a vector field Z on M such that

px) = [z, x] for all X€ @, M.

2 Uy —3 H2n} of M such that

-

Proof. Take an atlas {Ui* lP:i

each U; is a simply connected domain. Then, by Theorem 5 i) and

Remark 1 in §2, we have on each Ui a veqgtor field Zui such that

Dy (X} = ':Zu_. X] for any Xé@w(iji). It follows from Dy, =
1 1 I Uinuj

and the dniqueness that zUiIU . Hence there

D = Z
i) U;
JlUint inl; Huay;

is a vector field 2 €@M) such that 2); =2y, for each U; and
i
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that D(X) = [Z. X] for any Xé€ @mﬂ-ﬂ.

q. e, d.

Let U be a simply connected domain, and (xg, ---, X5, ¥1. ***. ¥y
a symplectic coordinate system such that wd lu=2 dxdy;. Then, by
Theorem 5 ii}, the above vector field Z is represented as Z =
ZIU + ZEU on U, where le é@aj(ll) and ZQU = c2(xj axi + yiayi]

for some constant ¢. Then we have the following

Propesition 7. If M is copnected, the constant ¢ 1is independent

of the choice of U and (¢, ---, Xge ¥10 00 yn}.
Proof. Since M is counnected, it is sufficient to show that the

constant ¢ is invariant under any symplectic coordinate transformations

of U,

Case ). (Translations}. Let new coordinates (X, ¥;) be
X = X, - a, Yi =¥ - by (1£ i< n),

where s bi are real constants, Then
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? (xiax‘ + Yia

) =% (F:8x +§:9-)+ 32 (a; < + b9 ).
§ yi i 17 x. ¥ i 1 xi 1 }'i

i 1 ¥
Since any constant vector field is hamiltonian, the constant c¢ is
left invariant,

Case 2. (Linear transformations). We prove that the constant ¢ is
left invariant under any general linear transformation, not necessarily

symplectic.

Take an element g = (gij) in GL(Zn ; R) and put

- 2n i
vy = j;zl gi_] 'Jj (1< 1{. 2n) .
Then
2, = v.13- = =
AR IR R TE
and hence
2v.9. =2 (g H. TIC g B
7 i v i £ 2 ¢ j oIy
- - oA T B
?ﬂgjf v-fa‘rj ?v.l Y3

Case 3 (General case). We may assume by Case 1 that a symplectic
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coordinate -transformation Y% has no constant tcrms. Then the inverse
-1 .
¥ has also no constant terms., The vector fields 2 and Zl are

transformed into hamiltonian ones by means of 4 , and the linear term

of the expression I (x, 9, Tty ay ) in terms of new coordinates
i i i

depends only on the linear parts of the transformatiens ¢ and P -1.

Hence we see by Case 2 that the constant ¢ is invariant under ¢
because the higher terms sum up to hamiltonian wvector ficlds by Theorem 5.

q. e, d,

Corollary. Let Z and ¢ be as above, Lhen sz= 2cw on M,

Proof. We see that for any U,

Lyw=L, w = 2ce on U,
27 Ty
q. e. d.
M. Now we can prove our main results.
Theorem 8. Let (M, <w) be a connected symplectic manifold. Then
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the first cohomology of the Lie algebra @m(l'ﬂ]' with coefficients in

its adjeint representation is of dimension 1 or 0, that is,

@, m @ M) =R or 0.

Proof., We can define the homomorphism

& : (@, M —— R,

which assigns to a derivation D&(D), M) a constant ¢ by Propesition 7.

Let us show that ker,ﬁs =@£(M] . This means that

@, 0 ; @, =@, 0 =k or 0.

Let D and D' be two derivations such that ?5 Dy = y5 (D" = ¢,
and put Tj =B -D", then 75(-[]) = 0. By Remark 1 in §2 and Theorem 5.
D is inner on any sufficient small simply connected domain W, that is,
there exists a wnique hamiltonian vector f{ield ZU such that ‘ﬁiu =
ad(?.u}. From the uniqueness in Theorem 5, and by the same arquments in

the proof of Proposition &, there exists a unique vector field Z whose

restriction Z;, 1is equal to Z; for each such U. Clearly Z is
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hamiltonian, and D(X} = [2, X} for all X¢é @, 0. Hence we have

that ker p C@i}{hﬂ .

On the other hand, the converse inclusiaon:

@Z}M]C kert}‘: , 1s clear. q- e. d.

Theorem 2. Assume that the symplectic form « of M is exact, or

there exists a 1-form 8 en M such that d g = tJ . Then

H @M ; @, = R,
Proef., Let W be a vector field corresponding to 9 with respect

to ¢2 , that is, iw&) = ., Then
W =df = a iy =Ly,

and hence W is not hamiltonian. ©On the other hand,

Lixgw = Lyl @ - Lylyw = -lyw =0
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for a1l X € ®, 1, then [W, XJ&€ @, 0. Therefore ad ¥ is an

outer derivation of @w(m . q. e. d.

Theorem 10, Assume that the symplectic form (p of M is not

exact. Then

B @®,,00 @, = o.

Proof. Let D be s derivation of @m{hﬂ . Then by Proposition 6,
there is a unique vector field 2Z E@XM) such that D = ad Z, and by
Corollary of Proposition 7, Lw=cw for some constant ¢. Assume
that ¢ %+ 0, then w = c-ld(iznjl. or ) is exact., Hence ¢ =0,
that is, Z is hamiltonian. Thus all derivations of @w(!ﬂ} are inner.

q. e, d,
Summarizing these results, we get the following Main Theorem,

Main Theorem. Let (MQ", w) be a connected symplectic manifold,

then

dim B1@,_ ) ; ® M =1 or o,
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Moreover, Hl@w{hﬂ ; @Q{M)} 2= R if and only if the symplectic

form .y is exact.

Remark 1. Let M be a manifold attached with a volume form “ or
contact form (0 Then, in stead of (3], (M), we have a natural subalgebra
B, () or %(M) consisting of vector fields which preserves < or (O
respectively., It is interesling.tn obtain the analegeous results for
thes¢ subalgebras. If n = 1, the abeve Main Theerem gives the result

for @1: (M} where M 1is a 2-dimensional smooth manifold.

Remark 2. The condition of continuity is absent in the definition
of cochains of @w(ﬂ) with coefficients in its sdjeint representation,

but from the above results all cocycles are continuous.
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{”ﬂ Cohomologies of Lie algebras of vector fields
( with coefficients in adjoint representations

Case of Classical Type

By

Yukihiro Kanie

Let M be a smooth manifold, and (&KM) the Lie algebra of all
smooth veetor fields on M., Assume that M admits a volume form T , a
symplectic form v or a contact form § . Then we have natural Lie

subalgebras of @AW as @M, @_&(I‘-ﬂ, @M, G0, @H{H) {see §1.1).

These Lie algebras ineluding (M)} itself are called of classical type.

—
1

Here we are interested in the cohomology H‘“(@;@J of the Lie algebra
(& with coefficients in its adjoint representation,
Caleulations of them are not easy in general. But the first cohomelogy

can be calculated rather easily since H‘l@;@) is interpreted in terms

of derivations of @. From this point of view F, Takens [5:[ calcvlated



Hl(@[i‘-l] ; (BXM})  in 1973. Later A.Avez - A Lichnerowicz - A Diaz-Miranda
[2] and the author [3] calculated Hl(@w(lﬂ) ; @MY of Lie algebra (B,(M)
of hamiltonizn vector fields by different methods. In the present paper,

+we will calculate Hl@ B for all @ of ¢classical type. Our results

can be summarized as follows.

Main Theorem,
e I i S ]
g) Let M be a smooth manifold with a volume element T , a

symplectic structure ¢d or a contact structure ¢ , and let (&) be one

of BM}, @00, @O0 and @M. Then
1
@ 3 = o.

b) Let M be a connccted smooth manifold with a volume element T

or & symplectic structure ;o , and =@M or B M respectively,

Then

H]@:@lﬁ’ﬁﬂ or 0. .

Moreover, Hli@ ;@2 R if and only if T or &) is an exact

form on M respectively.



¥e can reduce the study of derivations of (&) to the case where M

is flat. Here the notion of localizability of derivaticns (see §1.2) is
essential. A Euclidean space is furnished with the naturzl structure:

N n
the volume form = dx; - - dx, the symplectic form w = ii:ldxidxi+n

n -
or the contact form £ = dx. - = x., dx.. Then we have the main
L 0O i=1 i+n i

theorem for flai case:

D Let G=@@M, GaM, @Y or @@ . Then
ik @:® =0
b) Let @):@z(&n} or @Q{ﬂzn]. Then

W@ @k

The contents of the paper are arranged as follous. In §1, we
explain the notien of Lie alqgcbras of vector fields of classical type,
and the localizability of derivatiens of @F— We also explain the general
scheme toe prove the main theorem for flat case,

In §2, the properties of @'ﬁ(hl) and its derivations are studied,

. + .
In §3, the main thcorem for @6(&% 1]. the flat case, is proved.



In §4, the properties of @ (M), @C(M) and their derivations are
studied. In §5, the main theorems for @t('lin) and @,L(,Fj_’_‘). the flat
¢ase, are proved.

In 86, we reproduce briefly the main theorems for Gﬁ;ﬂ?n) and
(@t}ﬁ?n} in this direction,

In §7, we prove Main Theorem for all Lie zlgebras of vector fields
of classical type.

The author expresses his hearty thanks to Professors f.ﬂirai,

T .Morimoto and N.Tatsuuma for their kind advices,



ﬂ. Lie algebras of vector fields &Lclassical tm apd their derivation

algebras.
N e Nt

1,1, Definition of the Lie algebras., All manifolds, vector fields,
¥ e R e R aian C  ]

forms etc. are assumed to be of € -class, Denote by @) the Lie
glgebra of all vector fieclds on a manifold N,
Let T be a volume element on M, A vector field X 1is called

volume preserving or counflormally velume preserving if Lx"cf =90 or

th= ¢T for some constant ¢ respectively, where Lx denoles the

Lie derivation corresponding to X, We get two natural Lie subalgebras

@;r(h‘l} and @;(M) of @) defined as

{x €@ ; L= 0J,

X

B, )
@;:(M)

{X € @ Lx'r= c T for some conslant c}.

]
Then @, G0 C @, () obviously.
Assume that a manifold M of even dimension is furnished with the
symplectic siructure «J . Here the symplectic structure «w 1is by definition

a non-degenerate ¢losed 2-form on M. A vector field X is called

-



hamiltonian or conformally hamiltonian if Lxﬁj= 0 or an3= ¢ w for

some constant ¢ vrespectively, Thus we have the fellowing two nmatural

Lie subalgebras of (R(M):

@m ={x €@ ; L= o},

@:)(M) = {XE@(M) i Lyw= cw for some gonstant c}.

Then ()00 C@ELA)  too.

Rssume that a manifodd M of odd dimension 2ntl is furnished with
ihe contact structure t? , where g is by definition a 1-form on M such
that § A (D™ is a volume form or'a M. A vector field X is called
contact if Lxﬁ'= f8 for some function f on M, We denote by @E(M]
the Lie subalgebra consisting of all centact vector fields on 1,

Let @ bec a Lie algebra of vector fields on a manifold M., We call
@ of classical type if it is isomarphic t; one of the above six Lie
algebras: @M, @ G}, @;iiﬂ) . @m(hl) , @;a{hl) or @B(M) . The formal
glgebras cu?responding to them are isomorphic to the classical infinite

dimensional Lic algebras of E. Cartan (sce Singer-Sternberg [4] ).

Let U be an open submanifold of X, Then, replacing M by U,



we have naturally the Lie algebra @U according to @ For instance,
Q‘ =®t(lJ]' for @-—*@T(M). Let r, be the restriction map on U,

then ru(@]'C@j. but they do not coincide with each other in general.

We say that (&) has the property (A) if ru(@u.)= ry(®) for any two

open subsets UGU' of M.

Propogition 1.1. The Lie algebras @tm.@t(m.(ﬁ) () and ®ﬂ(m}

have the property (A),

Proof. iLet (& be any one of the above Lie algebras. Then for any
Wiyl

open subset U of M, the Lie algebra @J is a module over € (U,

q. e. d,

.‘!..:3' Deriva;iuus of B. Let ® be alLie subalgebra of @mr. A
mapping D : @—>@ is called a derivation of B if b is JB-linear and
pclx, Y = W, ¥J + [X. o) for a1 X, YE@M . A derivation D
is called inner if D = fagW for some W in @ Denote by @@ .t,he

algebra of all derivations of (&, and by @i@u} its ideal of all inner

derivations of (@ Then we know [ 3 , §1] that the first cohomclogy

Hl@:@) of the Lie algebra (&) with coefficients in its adjoint

)



representation is realized as
Hlﬁg ;(EDE%(:E@Dﬂﬁgfﬁﬂ.

A derivation D 0{@ is called local if D(X) wvanishes on U

for any vector field XE@ zero on an open subset U of M, Moreover

—

& Jocal derivation D is called localizable if for any open subset U
of M, there is a derivation DIJ of @u compatible with the restriction

map Ty, that isg, DU ° Ty = Ty® B, Then we have the fellowing.

Proposition 1.2. If the subalgebra (@ of @M] has the property
(A}, then any local derivation of () is localizable,

Proof. Lel. D be a local derivation of @ and U an open subset
of M. For any point p of U and XG@V hy the property (A), there
A o~
is X& @) such that X = X on some neighbourhood U' of p. Define

. * g r -
the derivation D, of @J by D, (X){p) = DX} {p}, then D, X {p) s

well-defined because D is local. q. e, d,

-

1f 2ll derivations of @ are Jlocalizable, the study of @L'?u} is

reduced In z ceortain extenl to the case where M is flat, that is, M is



@ Euclidean space V =,,E:.

L3 The flat case. Let (&} be a Lie algebra of classical type of
vector fields on a Euclidean space V. The main part of our study of the
derivation algebra @@ of WC@V) is to find the vector field
W&@(V) such that D = adW on (B, and to clarify the property of W.
This will be done according to the following three steps:

{I) To find a good Cinite-dimensional subalgebra (B of & for

which the following differential equation
(E) W, x] =000 xe ®
has a unique solution W& @V,

(I} Let ®0 be the subalgcbra of @& consisting of all elements

in & whose coefficients are pol:}nomials with respect to the coordinates

in V. We wish to show that (W, X} = D(X) for all xe@.

{III) To show the fact that B (D) = 0 if a vector field X&EQ)
satisfies jr(}() (0) = 0 for some integer r, independent of X,

Here we apply the following lemma,

Yy



Proposition 1.3. Suppose that (I}, (II) and (III} are established
for a Dé@@i. and that adW@<C@) where W is the vector field
obtained in (I). Then D = adW on @

Freof. Put D' =D - adW, then D' is a derivation of @. ZETD on
@0. A vector field }IE@ is decomposed for any peint pe&V o as
X= X, + X, such that KF®D and jr{){z)ip} = 0, because there exists
a coordinate transformation ¥ with polynomial coefficients such that

“f’{p) =0 and ‘f‘*(@] =@, By (1I} znd (III}, we get

DX (p) = B + DX (P) =0+ 0=0 (HEW,

"Hence D = add on Q. q. e. d.

We also apply the follewing.

Promosition 1.4. It is sufficient for (III) to prove the following:

(III') 1If 2 vector field X<(B) satisfies jT(X){0) = 0 for some
fixed integer r = 0, then there exist a finite number of vector fields

Yl‘ cen Y2qé® such that

3 1 .
X= iflﬁi' Yi+q] and jTOYI(0) =0 (1£ i< 2q.

—_—

Prool. We get



q
D(X) (0) j.:;ln([*ri, YH;])(O)

It

x by, Yi+q]{0) + ffi. Dﬁii-q}] )

0+ 0=0,

LT N,

1.4, In §2, we shall prove that any DﬁEﬂ]G@%{M}] is localizable
(Corollary 2.3), and show (ILIL'), Proposition 2.5, for @B(H). In §3,
we pass throuagh the steps (I} and (II) in §1.3 above for ®3{n) =®9(£2n+1]‘
Proposition 3.2 and Lemma 3.4. Moreover we obtain the main theorem for
@P(n). Theorem 3.3.

In §4, we clarify the relations between @t{fﬂ and @_'c(l‘-!} , and prove
that any D& X®., (1))} is local (Proposition 4.4), and any
b @@ M) is localizable (Proposition 4.5). In %4.4, (I1T°) for @,cm).
Froposition 4.6, is proved. In §5, the steps (I} and (II) for Q@%{n) =
@%(&n}. Proposition 5.6 and Lemma 3.9, are proved. Mareover we obtain
the main theorems for @_;(n) and @aﬁn] . Theorems 5.7 and 5.8 respectively,

L

In §6, we describe the outline of the proof of the main theorems for

@w(&%)‘ @;,(f“) and (AR™ in this direction,



Eg__ Contact vector figlds,

2n+1' )

2.1. Properties of contact vector fields. Let (M be a
e

LY Y
contact manifold of dimension 2ntl. Here we do not need the geometrical

meaning of the contact vector fields except the following well-knokn two

lemmata.

-

Lemma 2.1. Let ¥ pe a mapping from @B(hﬂ to CCM, which
_assigns x#o ixﬂ 10 J(E*@G-,(M). where i, 0 is the interior product
of X and # . Then the lincar mapping is bijective,

By this lemma, the inverse b : Cm(m—%@&,{m can be defined, and
we can introeduce Lhe generalized Poisson bracket (( ) in CTON

as follows:
b
f, @) = [IB. gbj for f, gécw{h]}.

o
In this way, C (M) becomes a Lie algebra isomorphic to @E(M} under 4 .

Legma 2.2, (Darboux}. Around any point p eof a contact manifold

WA
.[.
o2 1. @), there exists a coordinate system (z, Xpo eeem Xow Yoo eney yn)
A . n
such that § is expressed as # = dz - Ziop ¥y 9%;-



The mapping b and the generalized Peisson bracket are written

in this contact coordinate system as

b n h n
(2.1} =4 - zy.£. 00 - =f,9._ + =z (£, +y.f19_,
i=131 ¥YiF o ¥ X5 i=1 %g 2
and -
= - - ; . ) + (f - -f ]

for any f, ¢ E}Cﬁ%M). where { . } X,y is the wsual Poisson bracket in

v wenn Xow ¥yooeenn ¥ variables, that is,

n
{f' g}x,y =z (fx.gy. - [y.gx.}'

i=1 i1 171

Here we have the following.

Proposition 2.3, Let X be a contact vector field on M, and U any

open subset of ‘M. Assume that [X, YI =10 on U for any LEAEVI)

with support contained in U, Then X =0 on U,

o

Proaf. Suppose X(p) = 0 for some point p of U, Let U' be

a coordinate ncighbourheod of p with contact coordinates (z, Xpo we-a X

4

¥io ooen y"} around p. Since X is contact, for the function f =X



one of f{p), fx (p) or fy'(p} (1< i< n} 1is not zero by (2.1).
i i

Case 1. The case where f(p) ¥ 0. Let g be a function whese

W e .
support is centained in U', and equal te 2z in a smaller neighbourhood
" of p. Then we have

n
- zfz + 1 - ‘g
J_

It

((f, g} vify. in U,

1 J

and so ({f, g (p) = f(p) % 0. Hence we have by (2.1}

[x, 1t = w1, g}_)" (p) % 0.

This contracts our assumplion that [X, g%] = 0,

Lage 2, The case where fxi(p) X0 or fyi{p) X 0. The same

argumenls as above are aiso valid here if we take into accopnt the

following equalities:

(r, Fi]) = fxi. ((xy, 1) = fyi +ox.f .

q. e. d,

-

Propositien 2 4. Any derivation of C:hﬂﬂ) is local,.
i T

Preof, Suppose that XGE&DBGﬂ] is identically zero on an open



subset U of M. For ary YéE{E%(H] with support contained in U,

(oo, ¥]=o(fx, ¥ - [x, 0l =0-0=0  on U.

By Proposition 2.3, we get D(X) =0 on U.

Corollary 2.5. Any derivation of (@@(M) is localizable.

Proof. This follows directly from Lemmata 1.1 and 1.2,

q. e, d,

2.2, Proposition 2.6, Let X be a contact vector field on 3

such that jq{x}(p} =0 at g point pe& M. Then there are a finite

number of contact veclor fields Yl' caas Y2q on M, and a neighlouvhoed

U of p in M such that

. q
o= 2 b Yi+q],ll

and

Jiﬁ’il (p} =0 1<£ig 29,

Proof. Dy means of a contact coordinate system (z, Xpo eens X,

Yo vees yn) around p, the vector field X and f = X" are written as



n - -
- 1 itn
x=rd, 50 8:"Ci T gfi)'

n »
X = i f=n- zyn'
i=1

We assume that j4(h1[0] = 0 and j3(h1)(0) =0 for all i. Then the

assertion follows from the next proposition. q. e, d.

-

Proposition 2. 7. Let f be a function on vﬁfnﬂ with j4[f1(0] = 0.
Then there are a finite number of functions Uyr ooy ng s.uch that
q
f= = ({g., q., )7,
i=) + ita
and
.1 N | _ 11 - £ < i
j (gi)(D] = j (gix YO = j (gi}, ) =0 (1l£i<2q, 1< j< n),
J J
Proof. Case 1. The case where fz = Q. Assume that j3(€) (0) = 0.
Then by Proposition 2 in [3]. there are functions ¢, ..., Uoq such that

.2 .
g9;, = 0. j7(g)® =0 Q<L iL2q), and f = ?fgi. gq+i}

= =l{g,, ),
X, ¥ i g1 gq+1

Case 2, The case where { is written as I = zgh. Assume that

-

;300 = 0, that is, 3L(n(0) = 0. Put



then j?(g) (0) =0, and

2 2
(leg, z2)) - ((g, X2 })

2 i _ {_ 22 } }
-z7x,9, + 2:(xlg xl-'iZ}fjgyj] z gyj %1279, 2xlz{g Eng}_j)

2 2 '

It
]
(=]
I}
N
-
I
[y
'

By the above arguments, we may assume that £ is expressed as

P | qn(
f—le XY et ¥ hix, y}

n
with £ (p. + q.) 2 4.
i=1 . 1

Case 3. The case where 2 p. = 2.
PRV LN i 1

al The case where ]Jj 2 2 for some j. We may assume that f is

4|
written as [ = zxfh(x, y). Put g =f hix, y]dyl. then jz(g)(o) = 0,
0

-

and

3

2. _
1 zx h = f,

) = 2xlq =
z)) = legyl = 7%)

L2
((xlg, xlz)] - (g, x

b} Assumc that Py = Py = 1. Then by means of the {ollowing

contact trarsformation ¢ , this case is reduced to a):



[ #i =,f§ _1(x1 + KE)' ¥, = JZ l(yl + ¥y,
T { %_Ed("l"‘z)' ?z“ﬁ—l(yl”?z)'
X, = %, ] ‘3,7.=3.:i (i2>3),
L 7=

Case 4. The case where I pjg 1, that is, Z q,> 3.

&) The case where q =3 for some j. We may assume that f is
X
3 ! . 1
written as [ = z ylh{x. y}. Put g = hix, ¥) dx,, then {g}{0) = 0,

0
and

3((zy g, yD) - 2((zg, ¥ = zyfgxl - 1.

b} The case where q‘j =2 for some j. We may agsumc that f is

written as = Z}%}'Eh(x, y). Dy means of the above transformation ?D .

3

this case is reduced Lo a), because 3y?y2 =,J§ ?? -Nfihﬁg g

¢} Assume that 4 =9 = 1. Then by means of &9 , this case is

reduced to b), q. €. d.

We have a corollary of Propeosition 2.0,

Coroltary 2,8, Let D be a derivation of {E%(M). If X is a
P N e



contact vector field on N such thai j4()£} (p) = 0 for a poirt p of
M, then D{X)}(p) = 0,

Proof. This follows directly from Proposition 1.4,



vg&. Derivalions of @E(n}-

3.1. Structure of A, (n}. We consider the natural contact siructure
L e B W T T e S e ﬂ'

E = dz - E} yidxi in a Euclidean space ﬁn%-l‘ In this section, we will
. . . 2nt+l
study derivations of the Lie algebra @B(n) :®G(E- }  of contact

At first, we note the following.

. o oLentl
vector fields on R .

. _,0 nooi i+n
Lemma 3.1. A vector field X=h g + .Z(h g +18v7"9 )

xj I

2041 , o | N

on R is coentact, if and only if it satisfies the fellowing equalities:
n
) 0 = Zyn A<Li<n.
1 i j=173 ¥y
0 n jy _ . itn 0 n j )
@),  yth - j;zl yghp) = B ny 4 Jflyjhxi agig m.

The cocfficient functions h''" (1 £ i< n) are determined by

e, nt, L, ot
Progf. Since X is coentact, Lxﬂ’:"gﬁ for some function g. The
assertion follows casily from this, q. e. d.

Let ®=®B(n) be the Lie subalgebra of @z@o{n) spanhned Ly

Z=9_, X. =73 , Y.='a_+xiaz (1 £1<n,

-
1l
™
o]
Qo
]
+
S
I ™=
| =3
-
kS
Lo ]
"
et
o
L —

A



There hold the following relations among them:

(z. x,] = 2. v} <. x) - [ty %) = o [, 1)) =5ijz,

z.1)=22, [x,.tl=x. [, 1)=1y, QO<i, jgw,

where Sij is Kronecker®s delta.

-

For an integer p, we define ithe subspace ®p of (@) as follows:

@ -ix€® : [1. x]= px §

where @0 is defined in §1.3.

We have immedistely that (@D.GDqJC@U"'q. and that @0

is an algebraic direct sum of @)p's. We remark Lhe following facts which
wil) be applied later:

H @ = {0} (p< -3,

1) @2 =1z,

- n
i) @tz

j_lt'li'}\i + .E.'Yi)‘

3.2. Now we wil) solve the equation (E) for @E(n] . _@&(n}} .

Proposition 3.2, Let D be a derivation of @H(n]. Then Lhere exists gz



unique vector field W in @B(n} such that
(E) D) = [w, x} for a1l X& @y(n.

The preof of this proposition will be given in $3.3. Here we deduce
from this proposition the following theorem, a local theorem for contact

case.

Theorem 3.3, Let D be a derivation of (B:(n). Then therce exists

a unique vector dield W in (:h(n) such that
pexy = [, x] for all XE@ .

In other words, any derivation of ®ﬁ(n) is innev.

roof. To prove this theorem, it is sufficient to show that if
D is zero on the subalgebra (:h(n), then D vanishes on the whele
(E%(n). Its proof is reduced to the next Jemma by Proposition 1.3 and

Corollary 2.8. q. €. d.

-~

Lemma 3.4. If Lhe derivation D of @=@9(n} is zero on ®= @E(n}.

then D is zero on @0 for @



Proof, Assume that X& ®p p= 0, defined in $3.1. The proof is
WA iy
carried out by induction on p. Let n'(0 £ i £2n) be functions on

BRI Gefined as

n - a
D0 =10 + z w2, +n"Y)
z i=1 X§ Y

Apply D 1o ]:Z, X]é@l_g and Di]., Xjé@_lili i< n),
Then by the assumption of induction, [Z, DU{}] = [Xj. D(Xl] = 0, so that

h. = h; =0 (0< i 2n, 1< j< n). Hence, by the equalities

(#}2 in Lemma 3.1, we gei ihat
h =0 (1< i< n),

fipply D to [Yi' X]G@p_l, then

gz[i,nm] [9 + %5 3 0'3 + 27 l
J=1

= (h? J

= (h -h)a v oTh ’Ea‘
¥ le ) ]

i .0 j o .

so that h"=h. and W =0 for 1 £13, j<£ n.

Yj yi

Hence, by Lhe equalities (# }q in Lemna 3.1, we get that

h =h? = Ey.hj'=(—} <L i< n,



gad so h0 is a constant.
Apply D to the both sides of pX = [I. X], then

02, = [1, o) = [1, 193] = -0g_.

Since p2 0 by assumption, we gei ho = 0. Hence D(X) = 0,

3.3. Proof of Proposition 3.2, We consider the equation (E} for

ﬂghin), I%In)). Let wus construci the vector field W as a sum of

Wl, HQ‘ W3, W‘i E@gin) as follows:
9 b@ = [w, z]; )
B D) = (W + Wy, X, [v.. 2] =0 (1 <1< ny
¢} DY) = ['l'il + W, + ws, Yi]' E"’g- Z] = [ws, XJ =0 £Lig n);
@ DD = [wl+w2+w3+w4, 1], [w. @)= 0 (p£ -1,
where

L
2=0, X =d, Yy=9, +x3,, 1=229 ¢ E(“iaxi+"i331}'

X3 i i=1

Then D= ad W on @H(n},

\ ‘.\2



SteEI. Construction of W . Define the functions I11 ot R2n+1
e . e e P ]

1 e
by
n » a
@ =n"9 + T w'a  + Y 1
Z =) i i
. i . . 2n+]
Put the functions ‘f’ and define the vector field W. on R
1 1 yo
as
2 :
P h'dz (0L i n),
0 nz
- . n .
;+n = gz + yi(hoil}, X, y) - = yjh'] (0, x. ¥y (1 £ i< n);
j=1
0

_ 0 n i itn
Wy =-F19, - AN axi *Proy )

Then Wl satisfies a). Moreover,

Lomma 3.5. W, s a comtact vector {icld, or Wlé@gfn).

Proof. Let us prove for W, the cquda_llities {#}1 and {.‘H;]z in

Lemmg 3.1.

0 I j
. Pu ¥, = Py, -jflyj (FJ”’{ Then .0, x. 3 =0

and

0 L 0 2 v nd
= - Iy, =h, - Tyn =0



by the equalities [#]1 for DP(Z). Hence }bi =0 for 1£i<n.

0 i+n
{#)2_ Put ;{/ F(Ey?lz jﬁ'lz} +jgl + E}'J?’h{

Then Xi(ﬂ. X, y) = 0, Moreover taking into account ‘f"iz = hj (0L j<£2m,

we get

=

n - . n -
/'L/h =y, ( 2y - hg] -p? s ity o3 yi =0
g j=1"4 *i =19 %

from the equalities (#)2 for D(Z}. Hence ﬂ/i =0 for 1L i< n.

q. e, d.
Step T1. Conslrucltlon of W2. Put [l'1 =D ~ ad l'ifl, then Dl(Z) =
Define the funciions f'j. on Rzlﬁl as :
i e
“ * -
D) =173 + 23+ g 1<€idn.
i iz j=1 i xJ. i :"j

fpply D, 1o [Z, xi]: 0 and [)ii, xk]= 0, then we have

0 3 J _]+n
. 43 (f +
fi2h 2 f zaxj ) zayj - o,
(fgx - ft.} Ja + E:{uJ _ g 13+ (f{:n _ [J-I-u) 3 'g_ 0.
i X k i=1 - ].I"Ck ){j xi .

Hence

by
1Y



.= '] = j ¥ i
ﬂz 0, fixk kai 0Ljgn, 1<Li, kL.

Therefore we see easily that there exist functions ?ﬂé (0L § £ 2n)

satisfying
) _ U S | i
5022_0, ‘?Ozxi—fi (1Lidn).
We put
tp%(o. 0, y) =0 g jgn,
. h
Mg o0, =% 09 - 2y 0,0 p QLigw,
2 J k=1 k 7J
and

_o%q . b i j+n
Wy=-Fpd, - Z (P32, +§370,).
J=1 } Jj
Then the vector field W2 salisfics b). Furthermore,

Lemma 3.6. W, is a contact vector field, or 1?2(1'—_'@9(:1]-

am e 2

R L
Proef. Let us check (ffli and [#‘-]2 for ‘I'n'2.

_ .0 no g .
o) Pus = Py, - RA? Pry, U Ligm, then

%iio. 0, 9) =0 ; )Liz = 0,



0 5 J
5&. = - o=t - Ty =0
ixy Fayx, j=1 Jt'azh X ¥ =14 ¥
by the equalities (f), for D (X). Hence pi=0 for 1Lidn

Put xi= i*n ?92}; + Eyjlf)z Then

j=1
ﬂfito. 0, y) =0 ; /'[’izs 0,
itn 0 -
it 0 B —o L, k<L
;Kn:Ii Xy e =1 J 1xk

i S ﬂ/ -
by the equalities (#)2 for Dl(xk} because I} 0. Hence i-0

for 1£i<n, q. ¢. d.

Siep III. WHS' Put D2 = Dl - ad WE. then

D (2 = Dz{xi} =0 for 1<£i<n, Define the functions gji (0 £j<£ 2n)

on R2n+1 as
e

Ly _ D noj i+n
D, (X)) =9y, * jfl(gi 'axi +ng 'ayi) LigLn).

Apply 02 to tZ. YJ: 0 and f}{k. Yi] = é\ik Z, then

g-;zzgjixk=0 {Oé--j_{“.l.{i.}c.én);
gj+n=0 n<j<nl.

N

(s



Apply 02 to [Yi' Yk] = 0, then we have

0 k i o n i
+ q° - -g. Y3 + ={ -aq ) = (.
(g 9 - % " %y 9, & giyi a‘l},k ij

Hence,

0 Kk _ i, 0
gkyi+gi_gk+ Uiy,
g"]cyi= iy, (<Li, j, k<n.

By (#)1 for Dzifi]. we gel from the second equalities abeve that

0 n . | s )
1] = y.g", = = y.g‘]. = q, \
K¥y = RYy o 5= IY Ty
and so
g = o Q<i, k< n.

By the above cqualities, therc are unique functions ‘f‘:‘],r(l £jL 2n)
such Lhat

J el - J . J :
Fa=Fax, = O ‘fayi“—"} QLigw,

o

and

Y

vy



j __0 j4n _ .
‘103(0)-4 gj[{)). 3 {(0) =0 (1<Li<n,

Finally there is a upique function "f'g such that

0 0 0 0, i .
Faz= Fax, =% Fay, =9 " T3 12ig ),

and C,ogw) = 0. Put

0 n_j
w=-ja3 ~zﬁo-‘3 ,
3 3 Y j=13 X

then the vector field W3 satisfios ¢). Morcover,

Lemma 3.7. W, 1is a contact vector field, or 1'136'@9(11) .
- - P [ J -
Proof. W3 satisfies trivially Lhe equalities (1‘“2 in Lenma 3.1,

Lel us prove the equalities (:H—)l. Put

@0 _ % J & i
7&1. = ‘f’syi jz:lyjﬁosyi (1<i<n,

tlhen

- 0 i -
}bi{m = ¢ + Pl = 0,

'}l-jz=?d*ixk=o a<Li, k< n,

and by [#]1 for Bz(Yk), we get also



_ 0 Ll kT
‘_’%:"k_gifk Pay, ™% jfly‘]gjiyk

Hence 7/i=0 for 1 £ i<, q. . d,

S5tep IV, Congtruction of W Put D,=D, - ad W
Tt g g,

cangtruetion of Ny 3= D2 g+ then

DB@DJ =0 for p«£-l1. Apply B'3 to the both sides of the equalities
[z.1]=2z, [x,. 1}=x, [v.. )=y, agigm,
then by the same arguments as in Lthe preeof of Lemma 3.4, we gel
DB(I) = a BZ for some constant a.

Put W4 = 2-13 'a'z. Then Wd iz a3 contact vectoy field and satisfies

d), or

[v,. 1)

D, (1), [w4.@"] =0 (p £ D).

2_13 az is a wnique solution of the equations

benna 3.8, ¥,

above. ’

Proef. As in the proof of Lewra 3.4, we sec from the fact

- f



5’4@?] =0 (px£ -1 that ""4 é@e(n} must be a constant multiple

of az‘ Put 1'14 = caz for some constant ¢, then DS(I} = [Wd, ]J:?D az.

Hence = 2¢. q. e. d.

The vector field W = l'il + h'2 + w3 + Hd is a required one,

and the uniqueness of W is guarantecd by the lemma above, This

conpleties Lhe proof of Proposition 3.2,



$4. Volume preserving vectsr fields.
L e W W Do e e I i ol

4.1, Lie algebras @ (M) and B,0N. Let M be a connected
LAt T ey [
manifold of dimension n, and ¢ a volume element on M. Then we get

immediately from the definitions of @,t(m} and @t(m) .

E@'.:(”) , @_E(m]c:@t(m .

and @t(M} is an ideal of codimension <1 in @,:_:(hI}. Moreover

Lemma 4.1. @éh‘l) is of codimension 1 in @C(I‘-I] . if.and only if
the volume form <& is exact, that is, - = 4 T for some (n-1)-form

O on M.
3{9\9'&. Let ‘T be exacl, that is, == d9 for seme (n-1}-form

F . Then the equality iH’t=T deteymines a vector field W by the

non-degeneracy of = . MNence,

L.H‘t:= diw’i: = dg =%,
so¢ that W lies in @%(M), bt not in @r{ﬁ).
Let @C(M] be of codimension 1 in @_tfhl). Then there is a vector

field X such that Lx"C'=t. Put I = ixt then T = dg .

q. e. d.



4.2. EEEEPELLES\,E&‘LW“? vector fields.‘ Let X bhe
a volune preserving vector field on a manifold (M, T }. Then iy T is
a closed {n-1)-form on M, and so the restriction ru(ix‘t’) is exact by
Poincaré's lemma for a sufficiently small open subsets U of §, that is
rU(ix'?_:] = dx for some (n-2)-form @ on U, In global. any (n-2)-form

g on M uniquely determines the vector fields X = X':CCJ in @T:f}l} by

the focimula
ix = dx.

In a coordinate ncighbourhood U with cocordinates {xl. cen xn]

such that 7T = dxl.'\ e 9X in U, any (n-2)-forn o is written as

A A
where Tj.j = dxlﬁ---f\dxih ,f\dxj A dxn, and fi_j are functions

on U for 1 £i< j< n. Then we have the following.

Lemna 4.2, For any two functions £ and g on U,

-

[XﬁTiJ]. XE;'{{'ij]J = (-1 g [{f 9} ;T on U.

LY



where | . }

i is the Peoisson brackelb in X, and xj, that is,

{f. glilj=fxgx‘-f 9, 1Li1¢i<n.

i%y

Proof. We have
WA

x L)

- (piti-l it
Xffay;] = b ij 8"‘1 + (<D fxia ;

hence,

]jx[fq-ij]' x[uq_i_j]] [ij gxi B fxiaxj' ngaxi - g:{iaxj]
- ({f' 1H}i.j):n:‘j gxi ¥ ({f‘ g}i.j)xiaxj

(-ni*’jx[{r. gjij r:rij].

il

4.3 Derivations of @'_tf.i'-i).

Lropasition 4.3. Let X be a conformally volume preserving vector
field on (M, ), and YU apy open subset of M., Assume that [X. Y] =0

on U for all l'é@T(M} with support contained in U, then X =0 on

Um

Proof. Let p&U and U' a coordinate neighbourhood of p in U



with coordinates (xl, . xn) around p such that T = dxlf\.../\dxn
n
in U'. Denote 9 by Jd.0=%i<n, Put X= zf,d, for
xi 1 i=1 1 1

some functions fi op U', Since the vector fields aié@t(u'}.

fi
" - Z 1
ﬁ':]i,xj_ifl ai(fj)aj =0 £ idn in U,

-

and so 'ai(fj} =0 for all i, j.

Since x; aj‘f@é”" (i 5,
foxod-ndi-o w o

hence all Ii are zero in U'. Therefore X(p) = 0 for any pe& Ul

q. e. d.

PrnMim l. Aay derivation of @T{hl] or @C[M] is logal,
mq_{_ By the sare arguments as in the proof of Proposition 2.4, the

asseriion for @};:{M} follows from Proposition 4.3. As for @tgr-‘.l] , sce

Lemma 5.5 below. q. €, d,

-

i

orollary 4.5. Any derivation of @E(M) is localizable,

Lroef. This follows from Le'rn;'!latu 1.1 aad 1.2, q, ¢, d,



4.4, Proposition 4,6, Let X be a volume preserving vector

e ko e WP Y
field o M such that j2(X](p} = 0 for some point p of M. Then
there are a finite number of volume preserving vecior fields Zl. e ey qu

on M and a neighbourheod U of p such that

X, = [Z.,Z. ]
1R R L i_

and
e e = o N<Lid 29,

Proef. Introduce a coordinate system (xl. e xn} around p
such that T = dxl“ "‘ﬂ'dxn' Then, by the arguments in $4.2, the

assertion follows frem the next proposition, g. e. d.

Eﬁsﬂﬁfilégﬂvﬂéz' Let o be an (n-2)-form con Jﬂl such that

jata]fU] = 0, then there exist a finite number of (n-2)-forms 511 v ﬁzq

on R" such that

-

W= 2 (ke b,

and

-



52(31)(0) =0 for 1£iX 2q.
Proof. Clearly it is enough to show the assertion for the case
= flx. ... x“) Xy oo pdxy = T,

with j3(f) (0} = 0. Such a function f can be written as a finite
sum of functions of the following type:

1'1 I'z r

n
szl Xo vee X h[xl. ...,xn)

n
with Zr.2 4.

. i

i=1

Case 1. The case where r. > 2 or r,22. We may assume that

. . _ 2 .
f is written as £ = xlh(xl. e xn}. Put

X
-1 2
g=3 f h(xl, Caa xn} dxg.
0

then jg(g](U] = 0, and {x::. g}l 5 = Sx?gx = f, that is, by Lemma 4.2,
! 2

x[f crm} = - [xfx?ﬁ‘u], x[gﬂ‘lz]:[.

,

Case 2, The case where r

n
1 ang rgél. Then Zri22. We may

1=3

assumc that f{ is writicn as = }:ixjh(xl. e xn) for some §,j= 3.



*2

- 2 _ }
Put g = h(xl, - xn]dxz. then j“(g)(0} = 0, and xlxixj, 910
o
= xixj912 = f. Then by Lemma 4.2,
x[fq"lg] = - [XEclxixj 0'12], X[g':rm]]. q. e. d.

We have a corollary of Proposition 4.6.

-

Corollary 4.8, Let D be a derivation of @E(M}. If X is a

volume preserving vector field on M such that jQ(X){p} =0 for a
point p of M, then D{X)(p) = 0.

Froof. This follows directly from Proposition 1.4. q. e. d.
WAAAN



. Derivati g -
é&\ erivations of @T(“ } and @'?:(']i)'

5.1. Structure of Q@%Uﬂ. We consider the natural volume element
%WW\

T = 1:1:!*:14.#.i ceepadx, inoa Euclidean space Ehn_ In this section, we will
C n X n

study derivations of the Lie algebras (&, (n) =®.ﬂ(&) and @t(n) =@£{§ﬂ)

of volume preserving and conformally velune preserving vector fields an

—

.Bnn respectively. At first, we note the following.

N :
Lemma 5.1, Let x:izzl f,9; be a vector field on R'. Then
n
X is volume preserving if and only if X Eﬁ(fi) = 0, and is
i=1

n
conformally volume preserving if and only if 2 9.{f.) =c¢ for some

i=1
constant  e©.
Proof. This {ollows from direct calculations, q. e. d.

Let @z@r(n] be ithe Lie subalgebra of @z@%(n) spanned by

n
I= = x.83. X, =9, 1< i< n),

1 i1’ I 1

There hold the following relations among them:

[xi,xj]=o, fxi, 1;l=xi A<, j< .



Here we note that the vector field I is not volume preserving

because LIT = n¥, and that

' = + R.T1
Bim =@ () + BT

For an integer p, we define the subspace (& of as follows:

=

@’ ={x€-®0 ; L1, x1= px_}

where @0 is defined in $1.3. We have immediately that [@p.@q}C@ﬁq.

and Lhat ®U is an algebraic dircet sum of @p's. Moreaver,

0 @ ={ol (p £-2),

i @ -

i

jkxi.
1

1 M2

5.2. Relations bewween OVE (m) ang @@(n)). First we refer

the following results of V.I. Arnold EIJ _

Lemma 5.2, [@Tgn),@tjﬁn)] =@Q:(n).

Mote. This lemma can be also obizined by the anazlogous argumenis as

in the proof of Propositian 4.4,

Now, we have the following Lhree lemmata,



Lemma 5.3, [@'t(n),@jt{nﬂ =@t(n'.l.
Proof. This follows from the inclusion [@él’n).@é(nﬂ(@r(n}

and the lemma akbove. q. . d.

Lemma 5.4. Let D be a derivation of @;:(n‘.l. then D@_c(n)}C@%(n).

Proof By Lemma 5.3, a vector field X& @ (n) is written as

q
Xx= 3 Jv.. v
i=:t[Jl *

by means of a finite number of ¥,, ... YEqé @;__[n]. Then we have that

q
B = IEI([D(Yi}. Yirgdt [Yi. n{ri+qj]]

is volume preserving, by Lemma 5.3. q. e. d.
|

5.3. Now we will solve the equation {(E} for @;r.{n) . @;(n)].

Proposition 5.5. Let D be a derivation of @é(n). Then there

exists a unique vector field W, %n @%(n) such that

(E) DO = () x] for all X€ @ (m.

Proposition 5.6, Let D bhe a derivation of @v(n]. Then there

&
exists a unigue vector W in @'f[n} such that

4 *
(E) DX} = [W, X] for all X€ @ ),

a3



where ®'t("} =@"1 + (@On@'t{n)) for @"1 and @P defined in §5.1.
The proof of these two propositions will be given in §5.4. Here
we deduce from these propesitions the following theerems, local theorems

for the volume preserving case,

Theorem 5.7. Let D be a derivation of @'T(n). Then there

exjsts a unique vector field W in @:;n) such that D(X) = {W, XJ
for all X& @;:,{n]'_ In other words, any derivation of ®;(n} is inner.
Theorem 5.8. Let D be a derivation of @T(nl . Then there

exists a unique vector field W in @?Jn) such that
%
px) = [u, x] for all X& (B(n).

In other words, the subalgebra of inner derivations of @T(n) is of
codimension 1 in the derivation elgebra of @r(n}.

Proof of Theorem 5.7. It is sufficient to show that if D is zero
B Tl o
L

on the subalgebra @;_(n]. then D vanishes on the whole @";(n). Its proof

is reduced to the next lemma by Proposition 1.3 and Corollary 4.8,
¥ |

q. e. d.

L]

Lenma 5.9, If a derivation D of @ﬁ@é(n} is zero on



=®,;:(n), then D is zero on @0 tor (B.
Proof. Assume that X& ®p‘ p2 0. where @p is defined in $5.1,

The proof is carried out by induction en p. Define the functions £

n
on R as
[

T
DX) = 2 i ai.
i=1

Apply D to [}(i, x]é@p_l (1< i< n}, then we get

[xi, n(x)J =

J

It =

lai(rj) BJ = 0.

Hence all f, are constants, se that D(X)€ ®_l.

Apply D 1o the both sides of pX = [I, X], then we get
o~y

p o = [1, sw] = - peo,

Since pX>» 0 by assumption, D(X) musi be zero, q. e, d.

&
-,

Proof{ of Theorem 5.8. By Proposition 1.4 and Corellary 4.8, it

is sufficient to show that if D 1is zero on the subalgebra @én}.

then D vanishes also od @1 (defined in $5,1), Here note that ®1
¥
consists of all volume preserving vector fields whose coefficients are

L}
+

homogencous polynomials of degree 2,

/A



As in the proef of Lemma 5.9, we get that D(X]E@ﬂl for XE@I.

Moreover we see that [D(X) , Y] = D([x, Y]) for all Y¢ @0{\ @t(n}.

By simple calculations, we get that B{X) = 0 for all XG@I.

q. . d.

5.4. Proof of Proposition 5.5. Let us consider the equation (E) fn-
B T R s et
{@;(nl ) @;t‘m}_ We construct the vector fields W, and W, &€ @’:(n} as follows:
a) by = [, x.] agLism,

b 0@ = [w o+ W, 1], fwz, X, = (1<idmw,

n
where X, =73, (1} £i<n and I= ZTx,9.. Put W=W + W, then
i i j=3 171 1 2

D=2adW on @t{n}. Ly

. . . n
Steg I. Construction of Hl, Defire the functiens fij on .[t“ as
n
MX) = Z fija {(1£1i<n).

sl

a

Apply D to the both sides of [Xi, xk] = 0, then we have

F
rl -
j‘fl(’ai(fkj} -2 MEIE ’8j =0 (1£i, k< n),
and so .
%
_ ﬁi(fkj) = ?k(fij) {(1£i, k< n.

+
» Therefore there exist unique functions (j’jtl <3 <£n) such that



- £i<
o i( j] = fij {1=i=< n)
and
‘fj(o)=o NZLj<m.
T
Put W, =- = ‘f 3 then the vector field W, satisfies a).
1 jop (11 1
Moreover,

Eenma 5,10, W, is a conformally velume preserving vecter field, or
A Ty 1

L= @,'E(n} .

-Proof. Since Kk is volume preserving, then by Lemmz 5.4, D(xk)

is volume preserving, that is,

n
zZg;=0 QLkALn.
=1

1

n
Put }1/ = 151 ai{ ?Di}' then we have

n
AT
ak:f) = Qk(if

n
—_ == '-"'.f
!rii} = ifl Qi(rkiJ = 0 (1< x<L w,

-

hence }L is a constani. Then by Lemmz 5.1, W. is a conformally

1

velume prescrving vector field. q. e. d,



Skep T1. Construction of WQ' Put D' =D - adwl, then D'(ETIJ = 0.

Define the functions g, on R" as

W

n
Pl = 2 9131-
i=1

Apply D' to the both sides of [Xj. IJ = Xj. then we sec as in the
proof of Lemma 5.9 ihat all 9; &re constants,

Put ¥, = is a volume preserving

2

I M=

n
q. ai = E gi[D)?ai. Then W

! 1

1 i 2

i

vector field and satisfies b), or
(u,. 1}= ', fr,, x,J=0 a<ign.

Lemma 5.11. W2 = % gjéﬂi is 2 unique solution of the equalions above.
i

Proof. As in the proof of Lemma 5.9, we sce from [15'2,®'1] = 0

that W2 musl be a vector field with constant ceoefficients, Tut

n
W.= % a.a., then
2 jeq b i

p 0 = [n, 1] - ';1 a;d,.
-

Hence a, = g, for 1€£i 0, q. e, d.

The vector field W= wl + W2 is a required one, and Lhe uniquencss



of W is guaranteed by the lemma above. This completes the proof of

Proposition 5.6,

Proof of Propesition 5.6, It is sufficient to construct uniquely

the vector fields l'll, wzé@%n) as follows:

2 b = [u, x] Xe @D

b) DY)

v, + w,, ], [, x}=0 {Ié@on@r{n]).

The construction of W, is exactly the same as in the proof of

1

Proposition 5.5, And one can construct easily a unique W2 by the

similar way as in the hdmiltonian case fSJ. q. e. d.



EE-J Remarks on derivations of @(’M‘{.‘JJ and @‘w(n}.
6.1, ngjltunian vector fields. Let {M,i0} be a connegted
A vaww.w\-’\

symplectic manifold, By the analogous arguments as in $4, we get the

following prepesitions,
Lemma 6.1. @l{m} is an ideal of codimension £ 1 in (EE&M).

Moreover the codimension equals to one, if and only if the symplectic

form & is an exact 2-form.

Propasitien 6.2, Any derivation of (:i;M} is local,
Propesition 6.3. Any derivation of Ggéhﬂ is localizable,
Since Proposition 1 in [[3] is nothing but the assertion {III") for

@ 4™, we get by Propesition 1.4 the following

Elﬂﬁﬂﬁiligﬂugéﬂ; Let D be a derivation of C}jm}. If X is a

hamiltenian veclor field on N such that jE(X)(p) =0 al a point

p&E M, then D{X)(p) = O,

6.2, Derivations of @ {1) and (Ei}n). By the similar method as

for the volume preserving case, onec can reproeduce Theorem 5 in [31.



a local theorem for the hamiltonian case. Let us sketch it here for

conpleteness,

We consider the natural symplectic structure (3= X% dxidan on
i

a Euclidean space “if". then we get the following Lhree lemmata similarly

as in $5.2.

Lemma 6.5 (cf. [1]).
AN e

&, eyl = [Bm,Gm) =@ =BE".

Lemma 6.6. Let D be a derivation of @:J(n) =@:}(an] . Then

ﬂ@d(n])C@K}n) .

Let @:@w(n) be the Lie subalgebra of @):@;J(n) spanned by
I= 2x;9;, X. =9, (1£i<2n).
Note that LIU.J = 202, Lhon we get

@& (n) =®m(n} + -1



For an integer p, the subspace (A of (B) is defined as

Q= {xe@o ;[ x] = pxl

We can solve ithe equalion (E) for @,(n) @, (n)) .

MMBM Let D be a derivation of @(:J(n). Then there

2n

exists a unique conformally hamilionian vector field W on R"™ such that

(E) px) = [w, x] for all X& @ (n).

Qutline of Proof, The proof is almost the same as the proof of
Proposition 5.5. -The vector field W is determined by the values of
D at X, (1£ i 20) wup to constanl vector fields (Step I). fhe
value D(I) dotermines the consiant terms of W (Step 1I). We see

similarly as Lemma 5.10 that W' =W - W is hamiltonian, where W, is

1 H

the linear term of W, @J—componcnt ef W. Applying the derivalion
r 0 -1 - []
D - adi” to [}(i.@) C®' (Li< 2, we sce that D - adil’ =

adwl on @° {(p=<0) and that W is confoermally hamiltonian,

i

We qget +Irorn Propositions 6.4 and 6X the following theorem analogously

a5 Theorems 5.7 and 5.8.



Theorem 6.8 (Theorem 5 in {3]). Let D be a derivation of
@m(n]' or @"_,(n). Then there exists a unigue conformally hamiltenian
2

vector field WE@'w(n] on jﬂn such that D = adW.

6.3. The results on the derivatien of @(n) =®'._fj_n] in the paper
{5] of F, Takens can be cbtained more simply in this direction. Let

B=@®n) be the Lie subalgebra of B=@E(n) spanned by
n
I= ?x.a. X, =9, (1£Lin).

For an integer p, define the subspace @F of (AXn) s

@& -{xeq@, ; [ 1) = pxl.
Then we get

Theorem 6, ¢ (Lemma 4 in (51). Let D be a derivation of (B(m),

Then there exists a unique vector field W on ‘_[Ln such that D = adW

on B,

Key of Proof. The vector field W is determined by lhe values

D(Xi) (1< i< n and D(I),



1
_E:'i'_. The cohomelogy &) ; @),
.zc}; The main theerem for flat cases. The following main theorem
for flat cases is obtained immediately from Theorems 3.3, 5.7. 5.8, 6.%

and 6.7 for respective Lie algebras of classical type.

Tngorem 7.1, ® Let @=@RD, @D, GE™ or @M.

Then
1
Hi®; @ =o.
b) Let ®=@T{£") ar @wfﬁfn}, Then
1oay .
@@=k,
Here
= dxct dx 10 = ifldxidxi+n. 6‘- dxy - Z Xend¥y

T.2. Hain Theoyem. Let M bhe a smooth manifeld with a volume

element T , a symplectic structure v) or a contact siructurce 9 , and

-

let (& be one of @(M],@%{M},@;O(m and ®ﬂ(.\1). Then



W@ ® - o.

b) Let ¥ be a conneclied smooth manifeld with a volume elcment

‘T or a symplectic structure w , and @:@T{hl} or @”(M) respectively.

Then

Y&y L my
H@.@},‘g‘ or O.

Moreover, Hlf@ ;@)5“& if and only if ¥ or w) is am exact form on

M respectively,

7.3, Proofs for (RYA} ﬂm@e(.\\). Let us prove that any derivation
D of & is inner. Take an allas {Uj, c?i}iéI such that each U,
are connected and simply connected, Since D is localizable, the

derivation Du

of (B, can be defined for all i &T in such a way
i i

that vy ° D=Dy - rUi. Then by Theorems 3.3 and 6.9 in respective
. i i
cases, there exists for any i€ 1 a unique vector field ‘lﬁiE@Ui such

that DUi = adwi on @ui. Since UUi e rUif’i Uj = Duj Q rUif‘I Uj' we get

Tuiny, W) =7y 0, (W) by the uniqueness of M. lence there exists



a vector field W&®A) such that rui(‘lﬂ = Wi for all i€ 1 and that

D=ad¥% on @ ' q. e. d.

7.4. Proof for @T(M} and @H(M], Here we denote @T{H] oT @Q(H}

by @, and @'_: (M) or @;(H) by (B respectively.

Lemma 7.2. For any X & &, ad X is a derivation of (&
Portebyies SN

Proof., Let O be ‘T or ut, then
[

LT = by T - Lyly T = 0 B,

Let D 'be a derivation of @, Since D is localizable, for any

open subset U of M, The derivation D, of (& can be defined in such
a way that r,e D= Dl] o 1. Then by Theorems 5.8 and 6.8 in respective

cases, we get a unique vector field NU of ' such that DLI = ad \Fu

s
on (ﬂ] for any sufficiently small U, By the argumenis in §7.3, there

is a vector field W& @ such that ru(w) =W. and that D= ad W

U

on (B Hence by Lemma 7.2, we get the isomorphism D= ®'. Therefore

r

the assertiocp follows from Lcmmata 4.1 and 6.1 in respective cases.

' q. €. d,

4

7.5. P:-uuf.s for @t(hl) ang. @w(hi) . Here we use the notations @)

A

A



and @' as in §7.4. Let D' be a derivation of (A, then D= DWQD is

a derivation of @) with values in @', Since D is localizable, for any
open subset U of M, the derivation DU of (Eh with values in (EE can
be defined in such a way that g @ D= DU o Iy, 85 in the proof of
Proposition 1,2, If U is sufficiently small, DUQEh)c:qu by the same
arguments as in the proof of Lemma 5.4, Then by Theorems 5.8 and 6.8 in
respective cases, we -get a unique vector field Nué@j such that D), =
ad W, oa @U By the arguments in §7.3, there is a vector field W& (@Y
such that rU('l'h']I = NU and that D= ad W on (.

For any YE@®' and all X€@®, we get
|

oy, I - Jr, o)
W &, ) - &, v, o]
(. 4, x.

M

w, x]

1

By Propositien 4.3 and the similar proposition for the hamiltonian

case, we see

o' = [W, Y) (Y ER).
-a

Thus any derivation D' is inner. q. e, d.
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