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    Functional Morphology of the Genitalia of Epeorus ikanonis  

                     (Ephemeroptera:  Heptageniidae)* 

                           Yasuhiro TAKEMON  

   Department of Zoology, Faculty of Science, Kyoto University, 

                          Kyoto, 606 JAPAN 

                                   Abstract 

   Morphology of the genitalia and other reproductive organs was 

described for both sexes of the heptageniid mayfly Epeorus 

ikanonis Takahashi. Specimens fixed during copulation showed that 

the male genitalia changed in it's shape when inserted in female 

genitalia. Morphological function of the male genitalia was 

examined in terms of sperm transfer into the seminal receptacle. 

And the sperm competition at successive copulation was discussed 

based on the location of the ejaculated sperm in female 

reproductive organs. 

       * Contribution from the Laboratory of Animal Ecology, 

                        Kyoto University, No. XXX. 
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                                  Introduction 

 Ilarlcrr (1YH(i) pointed out a copulatory movement of penis in 

mayflies or the genus FMvonurus, and thereby he called attention 

to the taxonomic use of the morphology of genitalia. He showed 

that, the dorsal side of each half of the penis lobes rotates 

inwards during copulation, though the function of this movement 

has never been explained. The morphlogical relations of genitalia 

between sexes should he examined using copulating pairs in order 

to clarify the function. However, it is generally difficult to 

obtain paired specimens of mayflies in copulation, since they are 

apt to separate at. sampling. 

    The imagines of F;peorus ikanonis copulate on the ground 

spending more than five minutes (Takemon, unpublished), and thus 

it is rather easy to fix copulating pairs with their genitalia 

connecting each other- Tn this paper, the morphological function 

of the genitalia was investigated using these specimens Females 

of this species show multiple copulation before oviposition 

(Takemon, unpublished). The sperm eompet,ition at successive 

copulation was discussed based on the loraI.ion of sperm in the 

reproductive organs of females. 

                            Material and Methods 

    The lieptagen i i d mayflyfpeorus ikanonisinhabits the upper to 

middle reaches of streams its Japanese tow mountains (Ivani , I944), 

and has a 11nivoltIoe life cycle, emerging in early spring 

(Dose , 1 970)Specimenso f the mayfly wero rot l ect eel ;c t Vicyaga- 

dani-deal (altitude 350m) at the middle reaches of the hihune 

Stream (35° O'N, 1,',0° t1'F) , a tributary of the River liamorunning 
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through Kyoto City , in April 1987 and 1988. Copulating pairs on 

the stream shore were picked up with fingers and were immedi ately 

dipped into cases with absolute alcohol so as to avoid sep aration 

at fixation. I collected the pair specimens at various ti ming 

during copulation: i .e , 0'30",  1'00", 2'00", 3'00", and 5'00" 

after starting copulation , and just after copulation. I also 

sampled single males in the field and single females during or 

after oviposition. Virgin adults were obtained by rearing 

subimagines collected by sweeping during emergence flight or using 

emergence traps (Takemon, unpublished). 

                                    Results 

Morphology of Female Genitalia 

   The external form of the female sternum was characterized by 

the subgenital plate covering more than half of the eighth sternum 

(Fig la,b). There was a distinctive space inside the subgenital 

plate called a vestibule by Brinck (1957)(Fig.1e). The oviducts 

opened separately into the vestibule from the sides of a chitinous 

plate (Fig.1d). There was a seminal receptacle and another flat 

pouch at the junction of the front wall of the oviducts (Fig.le). 

The seminal receptacle opened with slit under the flat pouch 

(Fig 1f). The seminal receptacle was egg-shaped and was made of 

soft tissue, while the flat pouch was very thin and was made of 

rather hard tissue. The latter, thus, may well be called "a plate" 

covering the vestibule. Morphology of reproductive organs was not 

different among female specimens examined, except that females 

before oviposition had full of eggs in the oviducts which reached 

the end of the 8th abdominal segment, whereas those after 
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 oviposition had only a few eggs in the posterior part of oviducts . 

Morphology of Male Genitalia 

   Both virgin and single males had flat penis lobes outstretching 

postero-laterally (Fig.2a). The dorsal surface of penis lobes was 

made of thin chitinous membrane through which a posterior part of 

the ejaculatory duct was observed (Fig.3a), while their ventral 

side was rather strongly chitinous A pair of spines was 

withdrawn in the depression at the base of penis lobes. The end of 

ejaculatory duct was closed at the brim of each penis lobe. A 

crevice opened longitudinally on the ventral side of the basal 

half of penis, which was closed with white soft tissue. 

   Virgin males had a pair of deflated testes and swollen seminal 

vesicles (Fig.4) Seminal vesicles connected with each other at 

the anterior part of the ejaculatory duct. This kind of connection 

has been known also in another mayfly Hexagenia limbata occults  

according to Levy (1948). Specimens of swarming males showed 

various size of seminal vesicles irrespective with the body size 

represented by the fore wing length 

Change in Morphology of Male Genitalia during Copulation 

    Posture of abdomens during copulation is shown in Fig.2b. Male 

grasped female with a pair of forceps at the eighth abdominal 

segment and the penis was inserted into the vestibule with up side 

down. Dissection of the specimens revealed that the inserted penis 

reached in front of the seminal receptacle under the flat pouch. 

    The morphology of penis during copulation (copula-form: Fig.2c 

and 3b) was different distinctly from that of single specimens 
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(sole-form: Fig.2a and 3a) in the following respects : i.e. , 1) 

the penis bent up to the dorsal direction at the base of penis 

lobes, 2) each half of the penis lobes rotated inwards and was 

doubled up longitudinally, 3) the end of each ejaculatory duct 

opened with a small slit at the brim of penis lobe on the folding 

line, 4) a pair of spines projected laterally as a result of the 

bending of penis and the rotation of penis lobes, and 5) the 

crevice on the ventral side widened and the ejaculatory duct could 

be seen through the  thin-white soft tissue. 

Timing of Morphological Change during Copulation 

   Table 1 shows the percentage of copula-form and sole-form in 

the male specimens at each timing of copulation. Males with 

inserting penis always showed the copula-form after 0'30" from 

the start of copulation. The presence of two males having a sole-

form penis at 0'30" suggests that the penis of sole-form can get 

into the vestibule, and therefore the morphological change of the 

penis occurred after insertion. 

   When pairs separated during fixation, some males returned their 

penis into the sole-form, and moreover, males after copulation had 

the sole-form with a high percentage. These facts show that the 

morphological change is reversible and the copula-form is apt to 

occur only during insertion. 

    The percentage of inserted specimens was high at 1'00 and 2'00" 

and was low at 0'30" and 5'00" Thus coherency of the pair was 

high in the first half of copulation and was low at the beginning 

and the second half of copulation. 
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Sperm Transfer into Seminal Receptacle 

   Females during and just after copulation carried sperm in the 

seminal receptacle and some of them carried it also in the 

vestibule (Table 2) The flat pouch was vacant in all specimens . 

The sperm in the receptacle and in the vestibule was rather loose 

and was not bunched. Sperm in the vestibule was usually found 

under flat pouch but in exceptional three cases it was found also 

on the flat pouch Although I did not measure the amount of 

carried sperm, it looked like varied among females, some of which 

clearly carried more sperm in the vestibule than in the seminal 

receptacle. 

    When did the ejaculation occur? Since females of this species 

showed multiple copulation (Takemon, unpublished), the sperm in 

the female genitalia was not always derived from the copulating 

male of the specimen. But following two facts suggest that the 

ejaculation occurs early in the copula duration. A female without 

sperm was found only at  0'30 On the other hand, a female 

carrying sperm in the vestibule was found at 1'00", though the 

female was after oviposition and spent all sperm in the seminal 

receptacle. The latter fact indicates that the sperm in the 

vestibule was derived from the pairing male.. 

    Where was the sperm ejaculated? Considering the size of penis 

far bigger than the entrance of seminal receptacle, it seems to be 

impossible for males to ejaculate sperm directly into the seminal 

receptacle by inserting the penis lobes into it. Since there was 

a female carrying sperm only in the vestibule, males may ejaculate 

sperm in the vestibule. Then, why did almost all females carry 

sperm in the seminal receptacle in spite of only 40% - 80% of 
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females carrying it in the vestibule? The 
sperm may be 

transferred into the seminal receptacle by unknown p
rocess and 

surplus sperm may remain in the vestibule . 

   Females during and after oviposition had sperm only in th
e 

seminal receptacle or had no sperm . Considering many females 

carrying sperm in  'the vestibule after copulation
, sperm in the 

vestibule may be used or washed away during oviposition . 

                                   Discussion 

Function of Each Reproductive organ in Epeorus ikanonis  

   Thornhill & Alcock (1983) mentioned that females of mayflies 

lacked a spermatheca or other sperm storage organs and thus the 

sperm traveled directly to the eggs. They explained this was 

because mayflies are extremely short-lived in the adult stage and 

therefore derive no benefit from the ability to store sperm. 

However, Brinck (1957) presented the morphological variation of 

the female reproductive organs in mayflies, ranging from the non-

modified simple gonopores (ex. Ephemeridae and Baetidae) to the 

strongly modified ones with the vestibule, a seminal receptacle, 

and copulatory pouches (ex. Heptageniidae, Siphlonuridae and 

Ephemerellidae). Therefore the process of sperm reception and 

usage by females is expected to differ among species 

   The morphology of male genitalia is also'diverged in mayflies 

such as a simple membranous projection in Baetidae, a pair of 

separated chitinous penis in Ephemeridae, and a united chitinous 

penis in Heptageniidae. Leptophlebiidae, and Ephemerellidae 

(Morgan,1911; 1913; Morrison,1919; Needham et al.,1935; Edmunds et 

al., 1976). The variation in the structure of male genitalia seems 
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to correspond to that of female reproductive organs, but further 

studies have never been done since Brinck (1957). In order to 

discuss in future on the morphological variation in mayfly 

genitalia, the functional morphology of each variation should be 

examined. 

   The female of E. ikanonis has modified oviducts with a seminal 

receptacle and a flat pouch. It is certain that the seminal 

receptacle functions to reserve the sperm until oviposition 

because all females after copulation had the sperm in this 

receptacle. Function of the flat pouch is uncertain. Brinck (1957) 

confirmed the penetration of the penis into the copulatory pouch 

by examining mating pairs of Parameletus chelifer. Palmen (1884) 

also demonstrated the same function of the pouch in Ecdyonurus. 

Although the flat pouch of E.ikanonis seems to be homological to 

the copulatory pouch described in Brinck (1957) and Palmen (1884), 

neither penetration of penis nor ejaculation of sperm in the pouch 

was observed in this species. 

    The male genitalia of this species is characterized by its 

reversible change from sole-form to copula-form. Morphological 

change of male genitalia at copulation has been also known in 

other mayflies such as Baetis of which male projects a membranous 

penis (Edmunds et al.,1976), and Ecdyonurus of which male shows 

the movement of penis-lobes by rotation (Harker,1986) The latter 

case seems to have the similar function to that of  E.ikanonis. 

    Why do males of this species bend their penis and rotate its 

lobes in the copula-form? Males seem to ejaculate sperm by the 

penis of copula-form. Outlets of ejaculatory ducts come together 

on the centre line and open toward dorsal direction as a result of 
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the bending and the rotation . This posture will lead sperm to go 

downward at the centre of the vestibule at ejaculation , since the 

penis is inserted with up side down. Considering that the seminal 

receptacle is located middle at the front wall of oviducts and its 

entrance is under the flat pouch, the copula-form seems to be 

advantageous to transfer sperm into the seminal receptacle. 

   The penis of copula-form is also characterized by spines 

projecting laterally. How do the spines function ? Coherency of 

a copulating pair was high in the first half of copulation, during 

which the ejaculation seems to  occur- The projection of spines in 

the copula-form may be of use for fixing genitalia of each other 

during copulation. 

Sperm Competition in Epeorus ikanonis 

    The eggs of mayflies with non-modified simple gonopores are 

presumably fertilized by the sperm traveling into the oviducts. 

In contrast, the species with a seminal receptacle have various 

possibilities in terms of sperm precedence. Since females of this 

species conduct multiple copulation (Takemon, unpublished), the 

sperm precedence at successive copulation becomes of importance 

for considering the mating system. In this section, the mechanism 

of sperm utilization is inferred from the morphology of genitalia 

and the location of the ejaculated sperm in the female genitalia 

during and after copulation. 

    The penis of some odonates is modified so as to pull out the 

previous sperm (in case of Zygoptera) or to push out it (in case 

of Anisoptera) aiming at the displacement of sperm in the 

spermatheca (e.g.;Waage,1984). The penis structure of this species 
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is unfit for such a kinematical sperm displacement . Absence of the 

sperm depletion in the seminal receptacle during copulation also 

suggests that males does not pull out the previous sperm in this 

species. Males of some dipteran species use a mating plug to 

prevent the sperm of successive mating from entering a spermatheca 

(Nielsen,1959; Parker,1970). The male of this species, however, 

lacks accessory glands for producing enough substance for a mating 

plug. Males of some lepidopteran species deposit a spermatophore 

at the outlet of a copulatory pouch and thus the sperm of the last 

copulation is transferred first into a spermatheca and is used for 

fertilization (Drummond  III,1984) As the sperm of this species is 

held in a loose manner in the seminal receptacle and the 

vestibule, the "last-in first-out" mechanism seems to be 

improbable at least in a strict manner. 

    Though sperm was found in the vestibule in some females during 

and after copulation, females during and after oviposition did not 

carry it in the vestibule. Considering that some females had more 

sperm in the vestibule than in the seminal receptacle, the sperm 

in the vestibule must have been washed away during oviposition 

even if a part of it had been used for fertilization. In contrast, 

75% of females retained sperm in the seminal receptacle. If the 

sperm in the vestibule had been pushed out with eggs early during 

oviposition, its fertilizing success may be lower than that of the 

sperm in the seminal receptacle. And vice versa if the sperm in 

the vestibule had been used through out oviposition. The former 

possibility seems more probable because the copula-form of male 

genitalia is aiming at ejaculation into the seminal receptacle. 

 In case of the latter possibility, males do not have to ejaculate 
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aming at the seminal receptacle. 

   At last the sperm of successive copulation is expected to have 

some chance of fertilization, because the sperm of successive 

copulation seems to remain in the vestibule and it can fertilize 

eggs at least at the beginning of oviposition. The measurement of 

P2 ratio is wanted for the  vertification of this estimation. 
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Table 1. Timing of morphological change in the penis during copulation in Epeorus  
 ikanonis. Numerals represent the number of males and those in parentheses percentage. 

                            after start of copulationjust after 
                 0'301,00" 2'00" 3'00" 5'00" copulation 

inserted* 
  sole-form 2 (50.0) 0 000- 

    copula-form 2 (50.0) 4 ( 100) 3 ( 100) 3 ( 100) 1 ( 100) -

    total*** 4 (44.4) 4 (57.1) 3 (60.0) 3 (50.0) 1 (20.0) - 

separated** 
    sole-form 3 (60.0) 1 (33.3) 02 (66.7) 2 (50.0) 5 (83.3) 

    copula-form 2 (40.0) 2 (66.7) 2 ( 100) 1 (33.3) 2 (50.0) 1 (16.7) 

total*** 5 (55.6) 3 (42.9) 2 (40.0) 3 (50.0) 4 (80.0) 6 ( 100) 

 total examined 9 (,100) 7 ( 100) 5 ( 100) 6 ( 100) 5 ( 100) 6 ( 100)**** 

* Specimens of pairs being connected each other with genitalia. 
** Specimens of pairs being separated each other during fixation. 
*** Numbers in parentheses show the percentage of inserted- or separated-pairs 

   in the specimens. 
**** Copula duration of these pairs were 4'15" 4'48" 6'25" 7'10" 9'21" and 9'29"



Table 2. Location of sperm in the reproductive organs of females during copulation in Epeorus  
ikanonis. Examined pairs are the same ones as in Table 1. Numerals represent the number of 
females and those in parentheses percentage. S.R. = seminal receptacle; V. = vestibule. 

                          after start of copulationjust after during 
 0'30" 1'00" 2'00" 3'00" 5'00" copulation or after 

Pre-oviposition*oviposition 
  stored in 

      S.R.7 (87.5) 6 ( 100) 5 ( 100) 6 ( 100) 5 ( 100) 6 ( 100) -
                                                                       V5 (62.5) 4 (66.7) 4 (80.0) 3 (50.0) 2 (40.0) 3 (50.0)- 

vacant1 (12.5) 00000- 

Post-oviposPost-oviposition** 
  stored in 

  S.R.000000 6 (75.0) 
V.01( 100) 0000 0 

vacant1( 100) 00000 2 (25.0) 

total examined 975656 8 

* Female had full of eggs in the oviducts. 
** Female had only a small number of eggs in the oviducts.



                             LEGENDS 

 Fig.1. Morphology of the female reproductive system in Epeorus 

ikanonis. The illustrated specimen was a female after oviposition 

preserved in alcohol. (a) Ventral view of the female abdomen. (b) 

Lateral view. (c) Dorsal view after the dorsal tergite was 

removed. (d) Dorsal view after tracheae, muscle and and nerve 

system were removed. (e) Dorsal view after the eighth sternum and 

the remaining eggs were removed. (f) Ventral view of the seminal 

receptacle and the flat pouch. Abbreviations: ct= chitin, fl= flat 

pouch, ms= muscle, nv= nerve, out= outlet of oviduct, ovd= oviduct, 

sgp= subgenital plate, sl= slit, sr= seminal receptacle, st8= 

eighth sternum. 

Fig.2. External morphology of the male reproductive organs in 

Epeorus ikanonis. (a) Dorsal view of the terminal abdomen of a 

solitary male. (b) Posture of abdomens of a pair during 

copulation. (c) Dorsal view of the terminal abdomen of a 

copulating male. Each figure was drawn from specimens in alcohol. 

Fig.3. Morphological comparison of penis between the sole-form 

(a) and the copula-form (b). 1: ventral view, 2: lateral view, 3: 

postero-dorsal view, and 4: dorsal view. 

Fig.4. Morphology of the male reproductive system of a virgin 

male in the ventral view (left figure) and the various stages of 

the sperm amount reserved in wild-caught males. The numerical 

value of fwl means the fore wing length in mm of each specimen. 

The fore wing length of the virgin male was 11.87 mm. 

Abbreviations: ej= ejaculatory duct, sv=seminal vesicle, t=testis. 
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                              ABSTRACT 

    Field observations were made on water drinking behaviour of 

adult males of Epeorus ikanonis Takahashi, Epeorus napaeus 

Imanishi, Ecdyonurus tobiironis Takahashi, and Ephemera strigata 

Eaton during their reproduction. The amount of water intake was 

estimated and its effect on the adult longevity of E.ikanonis was 

investigated by rearing under natural conditions. Males without 

water supply died in six days, whereas those supplied with water 

lived for up to sixteen days. Thus, field males of the above four 

species are believed to increase their longevity by drinking 

water. 
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                           INTRODUCTION 

    During observation on the male swarming behaviour of the 

mayfly Epeorus  ikanonis at the bankside of tribune Stream in 1986 , 

one of the swarming males alighted on the water surface and then 

settled on the bankside vegetation carrying a water drop underside 

of the head capsule. This droplet was gradually imbibed by the 

mayfly, and this is the first record of water intake by adult 

mayflies. However, the author previously observed the alighting 

of swarming males on the water surface in several other species of 

mayflies, and the phenomenon of water intake in adult males may be 

rather common among mayflies. 

     Since the mouthparts of adult mayflies are vestigial (Needham 

et al., 1935; Burks, 1953), they have been believed to be non-

functional (Edmunds et al., 1976). However, although feeding by 

adult mayflies is not possible, the possibility of water intake 

using the vestigial mouthparts remains. It has also been believed 

that adult mayflies have a very short lifespan, since they do not 

feed, and consequently, the lifespan of mayflies has been 

estimated by rearing experiments without water supply (Allan & 

Flecker,1989). However, considering the water drinking of mayflies 

in the filed, laboratory data on adult lifespan may be serious 

underestimation. 

     The present study describes the water drinking behaviour and 

head capsule morphology, and estimates the amount of water intake 

for the four species, Epeorus ikanonis, Epeorus napaeus, 

Ecdyonurus tobiironis, and Ephemera strigata. The adult longevity 

is then compared between water supplied and non-supplied 

individuals of Epeorus ikanonis and the relation between longevity 
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and reproduction is discussed . 

                        MATERIAL AND METHODS 

Study Sites and Field Observation 

    Water drinking behaviour of adult males of  E .ikanonis, 

E.napaeus, and E.tobiironis was observed at Okunomiya (elevation 

340m) and Yuyaga-dani-deai (elevation 350m) at the middle reaches 

of Kibune Stream (width 2-5m), a branch of the River Kamo in Kyoto 

City (35°0'N, 130°0'E). The observation was conducted for 

E.ikanonis on 15, 16 April 1987, and 16, 27 April 1988, for 

E.napaeus on 26 April 1988, and E.tobiironis on 20 and 28 April 

1988. That of E.strigata was observed at Ichihara (elevation 150m) 

at the lower reaches of Kurama Stream (width 5-13m) in May 1984 

and 1987. 

     Observations of males swarming above the stream or sitting on 

the ground were were made for each species. Males showing the 

alighting behaviour on the water surface were traced until 

perching on riparian vegetation and the drinking behaviour was 

observed closely, recording the site, method of water drinking, 

and the time required for intake of water. For E.strigata, one of 

several swarming sites above the stream was selected, and the the 

number of individuals alighting on the water surface, the number 

of swarming males and passing females, and the number of 

copulations occurring in the swarm were counted at one minute 

intervals from 15:30 to 19:00 on 19 May 1984. 

     In order to estimate the amount of water intake, field adults 

of E.ikanonis, E.napaeus and E.tobiironis were captured and a small 

droplet of water placed on the mouthparts using a pair of sharply 
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pointed tweezers. Droplet volume was later measured to the nearest 

of  0.1 ul in the laboratory using a micro pipette . Results showed 

an average droplet volume of 2 .2 ul (range=0.8-3.7, SD=0.55, 

N=630). 

    Adults of the four species were collected in the field and 

were preserved in 75% alcohol after measuring the fresh body 

weight. These individuals were also used for morphological 

observations of the head capsule and mouthparts. 

Estimation of Longevity 

    Longevity in the adult stage of E.ikanonis was estimated by 

rearing adults from subimagines to death under the natural 

conditions at Okunomiya from 29 March to 28 April 1988. 

Subimagines were captured by net when they emerged from the water 

surface on 6 days in late March / early April, and were stored in 

field cages of size 30 x 30 x 40 cm in the shade of a house wall 

beside the stream. Since the date of moulting into imagines 

differed among individuals within a cage, all adults were 

individually marked with lacquer dots on the day of emergence. 

Adults which failed to moult successfully were excluded from 

results, since such individuals always died far earlier than 

normal individuals. Each set of adults was separated into two 

groups, one of which received no water, whereas the other was 

supplied with a water droplet (average volume 2.2 ul) every day-

The method of water supply was as described for measuring the 

amount of water intake. Fig. 1 shows the diel and seasonal change 

of air temperature and humidity recorded by a thermo-hygrograph 

set in the same place as the cages at the study site. 
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                       RESULTS AND DISCUSSION 

Water Drinking Behaviour 

 E.ikanonis 

    Seven males of this species were observed to alight on the 

surface of water, five of which had hovered above the stream at a 

height of 1.0-3.5m, descended gradually , and alighted on the 

surface of water, whereas the rest two males had been sitting on 

the shore before alighting on the stream. The alighting sites were 

distributed around the middle of a rapid or the slow current parts 

of the stream. Four of the seven males were successfully traced to 

their perching sites on the bankside vegetation. Each male had a 

small droplet of water on the underside of the head capsule, which 

formed a somewhat swollen hemisphere. The time required for intake 

of all the water was 48, 105, 112 and 119 seconds from the 

alighting on the surface of water. After drinking water males 

remained at the perching site or flew up to tree canopies and did 

not return to the swarming sites or the stream shore. The diel 

timing of water drinking behaviour was in the afternoon between 

12:20 and 17:00, and although adult males were present from around 

10:00 a.m., no water drinking was observed during the morning. 

E.napaeus 

    Two males, which had engaged in the up-and-down flight above 

stream at the height of 0.6-2.Om, were observed to drink water. 

Each male alighted on the water surface at 15:11 and 15:16, and 

took off immediately to perch on bankside vegetation with a water 

hemisphere on the underside of the head capsule. This droplet took 

104 and 115 seconds to drink, respectively. These males later flew 
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back to the swarming site and resumed the up-and-down flight . On 

the day of observation , males of this species began the up-and-

down flight at 14:45 , increased in number towards a peak at 15:57, 

and disappeared at 17:10 . Thus, the water drinking behaviour 

occurred in the midst of their reproduction . 

 E.tobiironis 

    Four males of this species were observed to drink water. Two 

of them had hovered above a slow current part of the stream at 

heights of 0.3m and 1.0m, before alighting on the water surface at 

14:50 on 20 April and, 14:58 on 28 April, respectively- The other 

two males were sitting on the stream shore before alighted near 

the stream center at 14:05 on 20 April and 14:46 on 28 April, 

respectively- The latter male took off to drink water immediately 

after copulating on the ground. After taking off from the water 

surface, all males perched on the leaves of bankside bushes and 

each had droplets of water on the underside of the head capsule. 

These droplets were drunk in 93, 123, 125, and 134 seconds, 

respectively. Shortly after they flew back to the stream but were 

not able to be traced further. The reproduction of this species 

started before 11:10, reached the peak in the number of males 

sitting on the stream shore between 12:33 and 13:49, and ended 

before 16:20 on 28 April 1988. Thus, the timing of water drinking 

was during reproduction. 

E.strigata 

     Five males of this species were observed drinking water in the 

afternoon on 9 and 10 May 1987. They appeared from the tree 
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canopies at a height of 6-20m
, flew down directly to the stream, 

briefly alighted on the water surface and th
en flew up quickly to 

perch on bankside trees and bushes . These males also carried a 

swollen hemisphere of water on the underside of the head ca
psule, 

and took approximately 1 minute to drink it . 

    A diel change in adult activity was observed on 19 May 1984
, 

when the alighting behaviour on the water surface preceded 

reproductive behaviour such as male swarming
, female flight along 

the stream, copulation in the air, etc.(Fig.2) . Since most of the 

alighting adults appeared from the tree canopies high above the 

stream (ca. 20m) and flew back there, it was not confirmed whether 

they carried a droplet of water under the head capsule or not. 

However, their behaviour was almost identical to that described as 

water drinking behaviour in 1987. 

Morphology of Head Capsule and Mouthparts 

    Fig. 3 shows the morphology of head capsule and mouthparts of 

adult males of the four species. The mouthparts were highly 

degenerate, and both mandible and maxilla were immovable in all 

species. Located either side of the small tip of the labrum, were 

concave halls through which the water seemed to be taken in. How 

are males of these four species able to catch water during the 

brief contact with the water surface? The head capsule morphology 

may play an important role in this respect. The frontal margin of 

the head capsule is concave, and the edge was thus of use in 

enabling a water droplet adhere to the mouthparts by surface 

tension. The fringe of the head capsule extended further forward 

in  E.ikanonis and E.tobiironis and than in E napaeus and 
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E.strigata. This difference of this feature may relate with the 

volume of water taken in at a time . 

Amount of Water Intake 

    Since the water was carried in the form of a swollen 

hemisphere, the volume of a water droplet was calculated assuming 

the mean value of width and length of underside of the head 

capsule to be the diameter of the hemisphere (Table  1)  . Males of 

E.strigata have a relatively small head capsule and less extended 

frontal margin, and thus, the weight of water taken per body 

weight was estimated to be the lowest among the four species. 

Conversely, the amount of water taken by the three heptageniid 

mayflies was estimated to exceed 2% of their body weight. It 

should be also noted that these values are likely under-

estimations, since the water droplets carried by field males were 

more swollen than an exact hemisphere. 

     The average volume of water supplied experimentally was 2.2u1, 

which was far larger than the volume of hemispheres estimated in 

Table 1. Thus, the water droplet adhered to the underside of the 

head capsule looked like a sphere rather than a hemisphere. In 

spite of the relatively large volume supplied, it was completely 

imbibed by 2 of 10 males of E.ikanonis, one of 10 males of 

E.napaeus, and 2 of 10 males of E.tobiironis. However a second 

drop of water supplied to the males remained in the shape of a 

sphere, and the supplied water volume of 2.2u1 thus seems near the 

maximum volume capable of being drunk at one time. The fact that 

some individuals completely drank the water droplet shows that the 

males of these three species have the ability to drink water over 
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10% of their body weight . 

Relations of Water Intake to Evaporation 

    Although mayflies lose about 22% of the body weight when they 

cast the skin of subimago, that lost through evaporation consists 

of more than 20% since the weight of the skin itself is only about 

1.5% of the body weight (Lameere, 1917). Adults may thus need to 

recover the water evaporated at and after moulting by drinking 

 water-

    Since evaporation from the body is influenced by atmospheric 

humidity, the water requirements should increase when the adult is 

exposed to the dry air- The present study clearly showed that the 

diel timing of the water drinking of each species to be in the 

afternoon, despite differences in the period of reproduction, and 

this may well reflect the decrease of humidity during daytime 

(Fig.1). 

Effect of Water Intake on the Adult Lifespan of Epeorus ikanonis 

    Fig. 4 shows the difference of survival curves between water 

supplied and non-supplied individuals. Males and females in the 

former group survived for up to 16 and 10 days, but those in the 

latter group for only 6 and 7 days, respectively- The difference 

was more conspicuous among males. The average longevity also 

differed significantly in each sex (Table 2). The body of 

individuals not supplied with water were wrinkled, because of 

evaporation, at death, whereas those supplied with water were 

being soft, even just after death. Thus, the 2.2u1 of water 

supplied daily in this experiment is probably sufficient for their 
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demands. 

Relation between Lifespan and Reproduction in Epeorus ikanonis 

    The short longevity of females compared to males in E.ikanonis 

may be related to the method of oviposition: i .e., since this 

species lays all eggs at one time (Takemon , unpublished), the 

selection for survival after oviposition should not be intensive . 

Most of the females had expelled the eggmass when they died, in 

spite of the dry circumstance inside the cage. When conditions for 

reproduction, such as the weather, the air temperature, and the 

diel timing are suitable, the females may be unable to postpone 

oviposition. Copulation in the cage was also observed several 

times. Since this species copulates on the ground (Takemon, 

unpublished), the mating could be performed within the confines of 

the cage. Females which died after expelling the eggmass might 

have shortened lifespans due to copulation and oviposition. To 

investigate whether the females are able to live waiting for 

reproduction, it is necessary to rear them apart from males and 

restrain their oviposition. 

     Meanwhile, males of this species exhibited multiple copulation 

inside the cages and it is highly probable that they also copulate 

multiply in the field. In such a situation, it is advantageous for 

males to have an increased lifespan since their opportunity of 

mating will also increase. Consequently, the water drinking 

behaviour of male mayflies may be a strategy of increasing 

longevity and lifetime reproductive success. 
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Table 1. Fresh weight of the adult males of four species of mayfly and the estimated 
amount of water taken in based on an assumption that the diameter of the water hemisphere 

 is the mean value of the width and length of the head capsule . The part measured for the 
width and length is shown in Fig . 2. 

 SpeciesFresh weight Size of Head capsule Volume of Mg  % 

                    Mean SD N Width Length hemisphere taken in 

               (mg) (mg) (mm) (mm)  (ill) 
Epeorus ikanonis 14.6 2.5 24 1.61 0.820.48 3.3 
Epeorus napaeus 16.9 3.3 24 1.68 0.600.39 2.3 
Ecdyonurus tobiironis 15.6 2.8 23 1.73 0.990.66 4.2 
Ephemera strigata 27.2 5.4 21 1.43 0.910.42 1.5 

      Table 2. Average adult longevity of Epeorus ikanonis. 

          meanSEN 
                          (days) (days) 

         Water supplied 
       Male7.8*0.52241 

        Female5.7**0.49818 
             unsupplied 

       Male3.3*** 0.20529 
        Female4.0**** 0.5539 

       Means differed significantly (*-**: 0.05<P<0.01, t-test, *-***: P<0.01, 
       Cochran-Cox Method, *-****: P<0.01, t-test, **-***: P<0.01, Cochran-Cox 

       Method, **-****: 0.05<P<0.01, t-test) but not ***-****: P>0.05, t-test.



                              LEGENDS 

Figure 1. Diel and seasonal change of air temperature (upper) and 

humidity (lower) at Okunomiya during the rearing experiment of 

 Epeorus ikanonis from 29 March to 28 April 1988 . Upper symbols 

represent the weather conditions: open circle-clear fine, circle 

with a vertical bar-fine, double circles-cloudy, and a closed 

circle-rainy. 

Figure 2. Diel timing of water drinking behaviour and reproductive 

behaviour in Ephemera strigata at Ichihara on 19 May 1984. An 

arrow represents the alighting of an individual the water surface, 

closed circles-the number of swarming males, the upper bar-the 

number of females passing the observation site along the stream 

each minute, the lower bar-the number of copula occurring in the 

male swarm each minute. 

Figure 3. Head capsule morphology of Epeorus ikanonis (a), Epeorus 

napaeus (b), Ecdyonurus tobiironis (c), and Ephemera strigata (d). 

Top, middle and bottom figures illustrate front, dorsal, and 

ventral views, respectively. Each horizontal and vertical bar 

represents the width and length of the ventral side of head 

capsule, respectively, as used to estimate the volume of water 

hemisphere. All drawn to same scale. 

Figure 4. Adult lifespan of the mayfly Epeorus ikanonis based on 

98 individuals captured in the subimaginal stage and reared in 

field cages. Day 1 is the day of moulting into the imaginal stage 

from the subimago. 
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Male assembly on the ground for mate location in the mayfly 

       Epeorus ikanonis (Ephemeroptera: Heptageniidae) 

     Running headline: Male assembly in Epeorus ikanonis  

                      YASUHIRO TAKEMON 

Department of Zoology, Faculty of Science, Kyoto University, 

                        Kyoto, 606 JAPAN 
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Abstract. In addition to the normal swarming in the air in this 

family, adult males of the heptageniid mayfly Epeorus ikanonis  

Takahashi also congregate in large numbers (an assembly) on the 

stream shore for mate location. Males in the assembly copulate 

with walking females on the ground usually for more than six 

minutes. The reproductive behaviour of this species was described, 

and the evolutionary factors for the male assembly and the long 

copula duration were discussed in relation to following three 

properties of  this  species : 1) the multiple copulation of females 

and a chance of fertilization for the sperm from successive 

copulation, 2) concentrated distribution of oviposition sites at 

the shore within male assemblies, and 3) a mate recognition 

through body touching, which allows males to gather at high 

densities. A general discussion on phylogenetic relationships and 

factors for the determination of mate location sites in mayflies 

was attempted. 
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Since insects exhibit a diversity of mate location sites, such as 

emerging sites, foraging sites, oviposition sites, hibernation 

sites, and land mark sites, the mate location behaviour has been 

regarded to be evolutionally labile (Thornhill & Alcock 1983) . 

Within certain orders a considerable variation in mate location 

behaviour can exists: e.g., Odonata (Waage,1984), Lepidoptera 

(Drummond III 1984), or Diptera (Downes 1969; Pritchard 1983). 

Conversely, in the Ephemeroptera, the mating systems have been 

typified by swarming, and differences have been known only within 

this swarming behaviour (Brodsky 1973; Grandi 1973; Savolainen 

1978). As a result, mayflies have been believed to have only the 

simple method of mate location by swarming, because of the simple 

morphology of the reproductive organs and the short longevity of 

the adult stage (Thornhill & Alcock 1983; Eberhard 1985). 

   The heptageniid mayfly Epeorus ikanonis Takahashi inhabits the 

upper to middle reaches of streams in Japanese low mountains (Kani 

1944), and has a univoltine life cycle, emerging in early spring 

(Gose 1970). The reproductive behaviour of this species, described 

in the current paper, is strikingly different from that known 

generally for mayflies. Firstly, males of this species congregate 

in large numbers on the stony shore of the stream in order to 

locate mates. They are so aggregated in a particular area that a 

mass of them can be detected as an assembly- Secondly, copulation 

occurs on the ground, initiated by the assembly male with a 

walking female and last for more than six minutes on average, 

which is exceptionally long in mayflies. Thirdly, females show a 

high frequency of multiple copulation. Forthly, the oviposition 

sites are restricted to the shore inside the male assembly-

                           3



   The present paper aims to discuss evolutionary reasons of the 

assembling behaviour of males and the long copula duration of this 

species. Scramble competition polygyny forming a mating assembly 

at oviposition sites has been known also in some species of 

 damselflies, and has been attributed to the even distribution of 

the oviposition sites (Thornhill & Alcock 1983) and to high 

density of males (Pajunen 1966; 1980; Higashi et al. 1987). Since 

the oviposition sites of this species are concentrated at the 

restricted shores, other evolutionary reasons are needed, and 

thus, are discussed in relation to the influence of sperm 

competition, distribution of receptive females, and the mate 

recognition method. 

                              METHODS 

Study Site 

   The study was conducted at the middle reaches of the Kibune 

Stream (35°0'N, 130°0'E), a tributary of the River Kamo, which 

runs through Kyoto City- An observation area was established at 

Yuyaga-dani-deai (elevation 350m) where the stream forms a 

mountain torrent with a series of rapids and pools (Fig.la). The/r 
                                                               Cwl~tiva,I• 

bankside vegetation of this area was composed of the artifficial- 

forest of Japanese ceder Cryptomeria japonica and the secondary 

deciduous forest. The general features of the Kibune Stream have 

been described by Tanida (1980) and Takemon (1985). 

Observation of Reproductive Behaviour 

    The mayfly formed assemblies at the open shore of a rapid area 
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where pebble or sand had accumulated on the shore, and the males 

also formed swarms in the air at the open space mainly above the 

stream (Fig.lb). The attendance of males in each assembly and 

swarming site was recorded within the observation area daily from 

7 to 25 April, 1986 and on 15 and 16 April, 1987. One of the 

assembly sites was divided into 10 X 10 cm grid sections (see 

Fig.4) and the numbers of males, mating pairs and ovipositing 

females in each grid were counted at several minutes intervals on 

14 April 1986. Time spent by females in each behaviour of 

reproduction was recorded from their arriving at the assembly site 

to flying away from 12 to 25 April 1986. 

                             RESULTS 

Assembling Behaviour of Males 

    During the study period five assemblies (A-E) were found in the 

study area  (Fig.lb). Distribution of them corresponded to the 

rapid shore with pebble or sand above which was open without bush 

canopies. Males conducted a short hovering flight just above the 

water's edge before landing on the shore. Males remained at the 

position in which they landed, and showed no territorial and 

aggressive behaviours. When the male density increased, males sat 

in two or three layers on the ground. When a male began to move, 

its neighbours responded by moving a short distance, but the 

degree of crowding did not decrease after they became stationary 

    The location of assemblies remained constant within a season 

and even between years (Table I). At site C and E the number of 

 individuals was greater than at the other sites and males attended 
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the sites C and E on all days when the reproduction was observed 

(Fig.2). In each assembly, a large number of males sat stationary 

on the ground and a number of females copulated and oviposited 

there. At site C, 1185 males were found sitting within an area of 

2.0  m in length and 0.7 m in width on 17 April 1986. A correlation 

was found between the daily maximum number of females and males in 

each assembly (total number of females-males:  r=0.94. P<0.001; 

ovipositing females-males: r=0.93, P<0.001; copulating females-

males: r=0.80, P<0.005; N=13 for each combination). 

Swarming Behaviour of Males 

   Swarming males were found at the open space above the stream, 

banks, and the road along side the stream. Although swarms were 

vague in shape and extent, three core sites could be detected 

above the stream (Fig.1). The location of these sites was fixed 

through a season and years (Table I). Each male stayed in the air 

at a height of 2 m to 10 m hovering with a vertical undulation 

irregularly- The mean frequency of undulation was 13.5 times per 

minute (N=8, range=l0-18). When the number of males at a core site 

was less than a dozen, most individuals hovered in a dispersed 

fashion above open riffles. When the number of males increased to 

more than a dozen, they dispersed over the streams and banks and 

the boundaries of a swarm became obscure. 

Mating Behaviour 

    Mating occurred in two ways: it was commenced by the assembly 

males with females walking on the ground, or by the swarming males 

in the air- Females arrived at the assembly site sporadically in 
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the daytime, landing after a short hovering above the shoreline at 

a height of several centimetres. Females walked intermittently 

after landing. Males were rather indifferent towards females 

flying above or walking a part from males. However, once a female 

closed to a male as near as touching each other, the male chased 

the female quickly with his abdomen held upward, crept under the 

female from behind, seized the body with the fore-legs, and then 

copulated. The copula duration averaged 7'03"  (N=32, range=1'06"-

15'53", SD=4'00"). During the early part of copulation (30-50 

seconds after pairing) males exhibited prominent peristalses of 

the abdomen. The peristalsic action itself took only 2-4 seconds. 

In most cases, copulation was terminated by the female walking, 

but male-induced termination was also observed. 

   When an assembly male was stimulated by body contact with a 

female or by already stimulated walking males, he started to chase 

a moving individual, even if it was a male or another mayfly 

species, such as Ecdyonurus tobiironis. When it was a male of 

E.ikanonis or E.tobiironis, he released it immediately after 

seizing with his claspers, but when it was a female of 

E.tobiironis, copulation was continued for more than 10 minutes. 

Intermale body contact seldom released copulation behaviour when 

females were absent. When a female walked dragging a mate during 

copulation, neighbouring males gathered behind the pair and linked 

to each other by seizing the fore male with the clasper. A maximum 

of four males with one female was observed, but the following 

males abandoned their attempt during the copulation of the first 

male. A successful take-over by the second male was observed only 

once in 95 observations. 
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   After the copulation in the assembly site, some females 

copulated twice sequentially with another male The female 

response to the secondary male was to attach the abdomen on the 

substrate by sinking her body, which looked like refusing males. 

This posture was also observed sometimes at the first copulation 

in the assembly but the ratio of females presenting this posture 

was not measured. However,  almost all males succeeded in 

copulation irrespective of the posture once catching up with the 

female (98%, n=53). 

   Swarming males chased an object flying straight horizontally in 

a swarm even if it was a stone thrown by the observer. When it was 

a conspecific male or a female of another species such as Ameletus  

costalis, the male released it after seizing it in the air-

Copulation occurred only with females flying across the swarm 

horizontally at the height of swarming males ranged from 2m to 

10m. Once the flying females descended lower than this height, the 

males did not chase them at all. After a male seized a female, 

the pair descended and landed on the ground or vegetation. The 

copulation always occurred on the substrate. The copula duration 

of swarming males (X=5'02", range=1'35"-10'25", SD=3'10", N=10) 

was slightly shorter than that of assembly males (P<0.005). 

Ovipositing Behaviour 

    Ovipositing females were found only at the shore within 

assemblies. Before oviposition, females walked quickly pausing 

frequently- When they encountered a water-logged area between 

stones, they reversed their body to the water until the abdomen 

was submerged and touched the body on the substrate by folding 
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their legs. After a short time (5"-4'42") they warped the abdomen 

upward out of water, extruded an egg-mass on the tip of the 

abdomen, and then released it in the water. They repeated the 

extrusion and release of an egg-mass an average of 10.2 times 

(N=18, range=2-21) at the same site at 45.4 second intervals 

 (N=129, range=16"-139"). The eggs in an egg-mass scattered into 

the water after the release, facilitated by the smooth egg 

surface. Following such procedure, all females flew away. 

Examination of the oviducts of 14 females leaving the oviposition 

sites revealed them to be always empty, indicating them to have 

oviposited all their eggs at one site. Duration from the start of 

oviposition to flying away was 6'35" on average (N=36, range= 

3'30"-18'04"). 

Flow Diagram of Female Behaviour 

   Fig.3 shows a flow diagram of the reproductive behaviour of 

females. Of 11 females pairing with swarming males in the air, 

18% landed inside the assembly, whereas 82% did so out of the 

assembly, while of 121 females landing at the assembly site, 7% 

were pairs and 93% were single. As pair arrival was more 

conspicuous than single arrival, the percentage of the former 

could be an overestimation. In the case of 89 single arrivals, 48% 

of females copulated with assembly males and 52% oviposited. Of 53 

females pairing in the assembly, 2% rejected copulation and 

oviposited, 9% flew out of the assembly with a mate male. 89% 

completed copulation in the assembly. Of 43 females after 

copulation, 67% started oviposition successively, 21% flew out of 

the assembly, and 12% copulated again with another male. Of five 
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females finishing the second copulation, 80% oviposited and 20% 

flew  away- The average duration from separation to oviposition and 

to flying away was only 20 seconds (n=33. range=0'02"-1'20") and 

46 seconds (N=9, range=0'01"-4'38"), respectively- Of 38 females 

starting oviposition, 5% were seized by assembly males in spite of 

the oviposition posture at the water's edge. In these cases, males 

accomplished copulation spending a normal copula duration 

(range=5'02"-10'53"). Of 36 females after oviposition, 97% flew 

away toward the bank, and 3% paired with a male but the pair 

separated soon (0'09"). Although not all traced females remained 

at the assembly site after oviposition, several spent females were 

found there at the end of daily observations. 

Distribution of Males, Copulation Sites and Oviposition Sites in 

the Assembly 

   Distribution of males, copulating pairs and ovipositing females 

were analysed based on 22 series/sets of observations on 14 April 

1986. Males were concentrated near the water's edge (Fig.4a). The 

mean density (m) of males was 5.0 per grid (100 cm2 ). The 

calculation of Lloyd's (1967) mean crowding (m) resulted in 19.4 

males per male per observation, and thus the value of m/m was 

3.88. The relation of m to m of each observation showed a linear 

correlation (Fig.5a), which indicates a concentrated type of 

distribution (Iwao 1968). However, m/m decreased with the increase 

of m (Fig.5b) showing that males tended to gather around the 

higher density sites and thus the degree of concentration 

decreased in spite of higher values of m. 

    Distribution of the copulation sites in the assembly is shown 
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in Fig.4b. Copulating pairs were observed 262 times in 49 grids . 

The mean copulation density (m) in 93 grids was 0.127 times per 

grid per  observation, the mean crowding o (m) was 0.484 times per 

time per observation, and thus the value of m/m was 3.81 which 

also indicated a highly concentrated distribution. 

   Since the water-logged area between stones suitable for 

oviposition was restricted to the sections beside the shoreline, 

oviposition sites were more concentrated than male aggregations 

and the copulation sites (Fig.4c). Ovipositing females were 

observed 176 times in 33 grids. The mean oviposition density (m) 

in 93 grids was 0-086 times per grid per observation, the mean 

crowding (m) was 0.516 times per time per observation and thus the 

value of m/m was 6.00-

   The density of males, copulation sites and oviposition sites 

were all highly correlated with each other (Fig.6). Due to the 

higher concentration of the oviposition sites, the relation of 

oviposition density to male density had a higher regression 

coefficient than that of copulation density to male density. It 

therefore follows that most oviposition occurred in the grids of 

high male density: e.g., 75% of oviposition occurred in the grids 

where contained more than 2.5% of all males. However, many 

copulations occurred in the grids of low male density: e.g., 41% 

of copulations occurred in the grids with males under 2.5% of the 

total each. As a result, the number of copulation per male was 

rather equal among grids irrespective of the male density 

(Fig.6b), agreeing with an ideal free distribution of copulation 

frequency of males (Fretwell 1972). 
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                            DISCUSSION 

The mating systems of mayflies are characterized by a nuptial 

flight  or .a swarm (Needham et al 1935; Spieth 1940; Brinck 1957; 

Brodsky 1973; Grandi 1973; Savolainen 1978; Brittain 1982) and 

variations in swarming behaviour have been traditionally 

considered as due to the difference of swarming site, swarm 

marker, flying manner, and diel periodicity (Brodsky 1973; Grandi 

1973; Savolainen 1978; Allan & Flecker 1989). As a result, the 

mate location sites of mayflies are recognized to be related with 

the land mark for swarming (Savolainen 1978; Allan & Flecker 

1989). Allan & Flecker (1989) examined the relations of swarming 

sites to emerging sites and to oviposition sites for the mayfly 

Epeorus longimanus, and then proposed that the swarming behaviour 

of the species has evolved to facilitate mate location and mate 

choice by female preference for specific landmarks. Mate location 

behaviour at unrelated landmarks to any resource for a species 

seems likely to be evolved by female preference to a particular 

site in case of dispersed distribution of receptive females which 

prevents them from encounter with mates (Thornhill & Alcock 1983). 

However, the distribution of receptive females has never been 

studied in mayflies. Moreover, female receptivity and the value of 

a female as a mate for males are changeable according to female 

experience and types of sperm competition (Parker 1970). Thus, it 

should be took into account for the evolutionary considerations on 

mate location sites whether the multiple copulation occurs, how 

much the P2 value (sperm precedence value) is, and where and when 

the advantageous females are distributed. After the examination of 
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these factors, the relations of the mate location sites to the 

emerging sites, oviposition sites or other specific sites will be 

able to be properly discussed. 

Multiple Copulation of Females 

   Mayfly females have been generally assumed not to remate 

since their lives are very short, without evidence, though 

(Eberhard 1985) On the other hand, there have been some single 

observations on remating of mayflies for Epeorus assimilis and 

Cloeon simile (Degrange 1960), but any quantitative studies have 

never made before. Females of Epeorus ikanonis exhibit remating 

even during their staying at an assembly just before oviposition. 

Although 12% of mated females showed remating at the assembly 

site, frequency of multiple copulation through lifetime should be 

more since landing females might have mated with swarming males 

before arriving at the  assembly and since 21% of females take off 

after copulation in the assembly and they will again land on one 

of the assemblies in order to lay eggs. As a result of female 

multiple copulation, P2 value becomes of importance for male 

reproductive success gained from a copulation, which may affect 

male preference to virgin females, non-virgin ones or both. 

Influence of Sperm Competition 

    Coincidence of the distribution of the assembly sites and the 

oviposition sites indicates that the assembling behaviour of males 

is a sit-and-wait tactic for mate location at the oviposition 

sites. In the evolution of this mate location behaviour, the 

possibility of fertilization by a successive copulation seems to 
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have been an indispensable factor, considering the high frequency 

of female multiple copulation. When males can gain success by 

a copulation with non-virgin females, it becomes worthwhile to 

locate them coming to lay eggs. 

   Takemon (in press) found that females of this species have 

modified oviducts with a seminal receptacle which retains the 

sperm until oviposition and that the sperm of a successive 

copulation is probably stored in the vestibule. The sperm in the 

vestibule is likely to be used first but seems apt to be washed 

out with eggs. Thus, P2 value of this species seems to be greater 

than zero, but not a high value. The habit of assembly males to 

copulate with non-virgin females is consistent with the gain of 

some benefit from successive copulations of a female. 

    The copula duration of E.ikanonis is exceptionally longer 

than that of most species of mayflies which is usually less than a 

minute (Table II). This long copula duration seems to function as 

mate guarding. When the successive copulation gains some success, 

the male can ensure a higher reproductive success by keeping the 

copulation posture until his mate shows signs of starting 

oviposition. This hypothesis is partially supported by the 

duration from the separation of a pair to the start of oviposition 

as short as 20 seconds on average. The peristalses of male abdomen 

during the earlier part of copulation seem to reflect the sperm 

ejaculation, considering the frequent occurrence of ejaculated 

sperm in the female reproductive organs as early as one minute 

after the start of copulation (Takemon in press). Continuation of 

the copulation posture even after this period is unlikely to be 

advantageous for males if not regarding it as mate  guarding_ The 
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shorter copula duration of swarming males than that of assembly 

males might be derived from the uselessness of mate guarding , 

because the mate should visit the assembly for oviposition in 

future and she might remate there irrespective of the copula 

duration of swarming males. If it is true, why not the swarming 

males accompanied the mates to assembly sites until oviposition, 

as same as the tandem tactic of damselflies found by Ueda (1979)? 

Further examination of the cost and benefit of mate guarding 

(Parker,1974) is required to answer this question. 

Distribution of Oviposition Sites 

    Despite the fact that the sperm storage organs exist in females 

of the families Heptageniidae, Siphlonuridae, Ephemerellidae and 

Leptophlebiidae (Brinck 1957), male assembly has never been found 

among them. This may be related to their oviposition habits. Most 

species of these families oviposit on the water surface (Needham 

et al. 1935; Degrange 1960). Although the habit of oviposition at 

the water's edge has been reported for some species of the genera 

Ecdyonurus, Rhithrogena, and Habroleptoides (Elliott & Humpesch 

1980; Brittain 1982), the concentration of oviposition sites at a 

shore of the stream has never before been reported. 

    Females of E.ikanonis lay eggs  only at the rapid shore with 

pebble and sand above which is open without bush canopies. And, 

thereby, the distribution of oviposition sites was restricted to 

only five sites within 35m stretch of the stream. The concentrated 

distribution of oviposition sites seems to facilitate the 

evolution of the assembling behaviour only if P2' value is more 

than zero. Male reproductive success is influenced not only by the 
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benefit from one copulation but also by the number of copulations 

achieved. Thus even if P2 value is low, mate location at 

oviposition sites can become advantageous particularly when their 

distribution is concentrated. 

   In case of above four families, the sit-and-wait tactic may be 

meaningless for the species which females lay eggs on the water 

surface and the males will take a hover-and-wait tactic above the 

water where females prefer for oviposition. Therefore, the sit-

and-wait tactic may be restricted to those species which females 

oviposit at the shore of streams, such as a part of the members of 

Heptageniidae and Leptophlebiidae. In conclusion, among the mayfly 

species with the sperm storage organs in females, the oviposition 

habits seem to affect the mate location behaviour of males. 

Relations to the Emerging Sites 

   Mate location on the ground is also known among species of 

chironomids (Downes 1969; Kon et al. 1986), tabanids (Matsumura 

1984) and tipulids (Downes 1969; Zalom 1979). In those species it 

is not connected with the oviposition sites but with the emerging 

sites:  e.g., males of some chironomids search for mates on the 

substrate near the shore where emerging females come to rest (Kon 

et al. 1986) and males of some tipulids form assemblies on the 

vegetation beside the emerging sites to catch emerging females 

(Zalom 1979). For most mayflies, however, the location of emerging 

females is not advantageous because they emerge in an immature 

stage of subimagines, which moult into the reproductive stage 

after dispersing from the emergence sites. Allan & Flecker (1989)' 

revealed that there was no relationship between the swarming sites 
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and the emerging sites in the mayfly Epeorus  longimanus . Although 

mate location sites in mayflies have been generally connected with 

emergence sites (Thornhill & Alcock 1983) , they may be important 

only for the species which female is extremely short lived and 

reproduces in the subimaginal stage , such as members of 

Polymitarcidae. 

Mate Recognition Method of Assembly Males 

   The assembly males of E. ikanonis chase females by walking 

rapidly on the ground when they copulate. Thus the ability for 

rapid walking is required for the mating tactic of assembly males. 

The nymphal body form of the heptageniid species is very flat so 

as to walk on the surface of stones (Imanishi 1938). This property 

seems to remain in the adult stage of those species, which may be 

a preadaptation for the establishment of the male mating behaviour 

in the assembly. 

   The behavioural process of copulation indicates the releaser of 

copulation behaviour is an individual walking quickly beside him. 

When a female walked several centimetre apart from assembly males, 

they did not chase her and sat stationary. This frequent failure 

of mate recognition seems to let females oviposit without 

copulation after arriving the assembly site in high ratio as 52%. 

Although this might be a factor enabling the swarming tactic of 

males in the same population, diel and seasonal change of each 

mate locating behaviour should be examined in order to clarify the 

reason of alternative mating behaviour of this species. 

    In general males of explosive mating assemblage belonging to 

scramble competition polygyny make no effort to defend a mating 

                           17



territory but instead outrace their competitors to rec
eptive 

females (Emlen & Oring 1977) , and which is exemplified by some 

 damselflies showing even distribution of oviposition sites 

(Thornhill & Alcock 1983) or high density of males around the 

oviposition sites (Pajunen 1966; 1980; Higashi et al . 1987) 

Assembly males of this mayfly lack territoriality and also any 

aggressive behaviours. These properties may be attributed to not 

only high density of males but also the mate recognition method . 

In this species, when a male moves carelessly, he will be seized 

by another male, and he will lose time and effort as a result. 

This may be the reason why males stand still in the assembly 

until females come across them by chance, and thereby, males 

gather at high densities at oviposition sites. The copulation 

frequency of assembly males agreeing with an ideal free 

distribution (Fretwell 1972) may be attributed to the method of 

mate recognition which enable males to choose landing sites at the 

oviposition sites irrespective of the male density. 

   Flecker et al. (in press) document that large males gain a 

disproportionate share of matings in Epeorus longimanus and this 

result is derived from male-male competition which may facilitate 

mate choice by females. In the assembly of E.ikanonis, however, 

both male-male competition and mate choice by females are not 

prominent considering the males waiting mates passively without 

aggressiveness, very low ratio of successful take-over, and the 

copulation frequency of males following an ideal free distribution 

which guarantees males at each site of the assembly to gain mating 

success evenly. 
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Relation to Phylogeny 

   According to the phylogenetic investigations based on the 

external morphology of male adults and mature nymphs , and on the 

internal anatomy of the nymphs, it is widely believed that the 

family Heptageniidae is derived from the ancestral lineage evolved 

from pre-Isonichia species (Edmunds,1972; 1973; Jensen,1972; 

Edmunds et al., 1976). Although there has been another opinion 

that Heptageniidae is allied to Leptophlebiidae (Demoulin,1958), 

it is generally accepted that the former is rather isolated and 

apomorhic family in Ephemeroptera (Thernova;1970;  Riek,1973; 

Eddmunds,1972). The genus Epeorus has been considered to be also 

an apomorphic one within a phyletic line of this family (Jensen, 

1972). Considering that only swarming behaviour has been reported 

for the mate location mehtod in mayflies including the 

derived genus Cinygmula (Lehmkuhl & Anderson,1970) and Isonychia 

(Clemens,1917; Cooke,1942), and the derived family Siphlonuridae 

(Clemens,1913; Edmunds et al.,1976), the sit-and-wait tactic for 

mate location seems to be evolved after the normal swarming 

behaviour- 

Mate Location Behaviour in Mayflies 

   This study reveals that the mate location behaviour of mayflies 

is more diverge than just swarming and the main factors for the 

evolution of sit-and-wait tactic at oviposition sites may be both 

possibility of fertilization for successive copulation and the 

concentration of oviposition sites. Meanwhile, mayflies show much 

diversity in the morphology of female reproductive organs, ranging 

from a simple form of oviducts opening directly to gonopores to 
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strongly modified forms with the vestibule , a seminal receptacle, 

and copulatory pouches (Brinck 1957). And thus , P2 value of 

mayflies may differ among species according to the morphological 

variations (Takemon in press): i.e., the eggs of mayflies with 

non-modified simple gonopores such as Ephemeridae and Baetidae are 

presumably fertilized by the sperm traveling into the oviducts, 

and therefore P2 value of these species is expected to be as low 

as zero, and the eggs of mayflies with modified gonopores with 

sperm storage organs such as  Heptageniidae, Siphlonuridae, 

Ephemerellidae and Leptophlebiidae may be fertilized by the sperm 

reserved until oviposition, and thus P2 value is possible to be 

more than zero. As a result of difference in P2 values, males of 

the former families is expected to locate virgin females in order 

to raise their reproductive success and those of the latter 

families might locate also non-virgin females in case of their 

concentrated distribution. Therefore the mate location sites of 

the former families may be decided irrespective with the 

distribution of oviposition sites but for the former families it 

may be of importance in the determination of mate location sites. 

    Speculated relations of the morphological variations in female 

reproductive organs to the mate location sites indicate that 

evolutionary reasons of swarming sites in mayflies are also varied 

according to the types of sperm competition nevertheless the 

swarming sites themselves are common among species; e.g., swarming 

behaviour above streams might be conventional encounter sites 

derived from female preference for the place (Parker 1978) in case 

of species which P2 value is zero, while it might be derived from 

oviposition habits on the water surface in case of species which 
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P2 value is more than zero . When the density of individuals in a 

population is very low, however, the former possibility might be 

probable as mentioned by Sullivan (1981) irrespective with P2 

ratio. Swarming behaviour forming a "true swarm" (Sullivan 1981) 

at land marks which are not related to any resources for females 

seems to be facilitated by the female preference. 
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Table I An attendance record of males at each assembly site and swarming site. 

    April 1986April 1987 
         7 8 9 10 11 12 13 14 15 16 17 18 19  20  21 22 23 24 25 15 16 

 Assembly 

   A •• O a a• O• a a•• a•— a•• a• O 

B •• O a a a• O a a• O a•— a•• a•• 

C O O• a a O•• a a•• a O— a 041 O•• 

   0 •• O a a a•• a a O• a O— a• a a aa 

E O • • a a • • • a a • • a • — a • • •• • 

  Swarming 

S1 • • • a a • O • a a • O a • — a O • a• • 

   S2 • O• a a• O O a a 0 0 a O— a••®O O 

   S3 •• O• a• O O a a 0 0 a•— a•••O O 

Symbol • shows presence, a absence, — no data, and O swarms dispersing over 

the stream fusioning into one continuous swarm.



Table I I Variation of the copula duration in  mayflies. 

 SpeciesCopula duration Copulation Reference 

  Dolania americana1-6 sec. in flight Peters & Peters (1977) 

  Ephoron ladogensisseveral sec.* in flight Tiensuu (1935) 

 Ephoron albumseveral sec.* in flight Britt (1962) 

 Paraleptophlebia debilis several sec.* in flight Lehmkuhl & Anderson (1971) 

  Choroterpes mexicanus several sec.* in flight McClure & Stewart (1976) 

  Stenonema canadense several sec.* in flight Thew (1958) 

Parameletus chelifer ca. 20 sec. on the ground Brinck (1957) 

 Baetis sp.< 30 sec. in flight Morgan (1913) 

  Stenonema vicarium20-40 sec. in flight Cooke (1940) 

  Isonychia bicolor25-60 sec. in flight Clemens (1917) 

Ephemera simulans"< 60 sec. in flight Britt (1962) 

  Epeorus assimilis90 sec. in flight Degrange (1960) 

  Ecdyonurus sp.6-7 min. on the ground Eaton (1883) 

  Epeorus ikanonis1-16 min.** on the ground present paper 

* Quantitative data not shown and expressed such as "a few seconds" in original paper. 

** n=42, x=6min.05sec., and s.d.=3min.57sec.



                             LEGENDS 

Figure 1. (a) A map of the study area at Yuyagadani-deai in Kibune 

Stream. Shaded area with fine and coarse dots shows sandy and 

pebbly shore, respectively. Shore area without symbols is composed 

of rock or  bush. Shaded area with C shows the shore hung over by 

bush canopies. Arrows represent rapids and flow directions. (b) 

Male assembly sites A-E and male swarming sites S1-S3 Rocks are 

omitted in the figure. 

Figure 2. The daily maximum number of males, ovpositing females and 

mating females of Epeorus ikanonis found in each assembly (A-E). 

Figure 3. A flow diagram of the. reproductive behaviour of Epeorus  

ikanonis based on focal female observations in April 1986 A 

numeral cited at each event represents a total number of 

observations. Dotted lines show behaviours lacking quantitative 

data. 
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Figure 4. Distribution of the sitting males (a) , mating pairs (b), 

and ovipositing females (c) in the male assembly site C on 14 

April 1986. Each grid section is 10 X 10 cm in size The shade of 

each grid represents the percentage of the daily total counts in 

the assembly- The cross line in each figure represents the water's 

edge at normal water level The upper and lower parts correspond 

to the water and land area, respectively. Small pebbles and 

fallen leaves are not drawn in the figure. 

                                                         * 
Figure 5. Relation of the mean crowding  (m) to the mean male 

                                      * density (m) (a), and of the m/m index to m (b) for the sitting 

males of Epeorus ikanonis in the assembly site C. The plot in both 

figures represents the result of each observation unit (n=22) in 

the same site C on 14 April 1986. 

Figure 6. Relation of copulation density to male density (a), 

copulation rate of males to male density (b), oviposition density 

to male density (c) and oviposition density to, copulation density 

(d). Each density indicates the percentage of the total counts in 

the assembly per 100 cm on 14 April 1986. 
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                             ABSTRACT 

    The males of Epeorus ikanonis show assembling behaviour which 

is regarded as a sit and wait tactic for mating at the oviposition 

sites, and also show swarming behaviour above the stream and 

banks. Both alternatives occur at the same time diurnally and 

seasonally, deriving from the behavioural plasticity within an 

individual. A sperm precedence ratio balancing the reproductive 

success of each mate locating behaviour was estimated to be lower 

than 0.46. The assembling tactic can be explained by sperm 

competition in case of female multiple copulation and the  high. 

predictability of the oviposition sites, whereas the swarming 

tactic by the gain from mates ovipositing without extra copulation 

due to the frequent failure of mate recognition by the assembly 

males and by the gain from a preceding copulation even in the case 

of female multiple copulations. The protandry found in the 

emergence timing may be a strategy of males for obtaining the 

higher reproductive success, which is assured by the physiological 

longevity of adult males as long as 7.8 days. 
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                           INTRODUCTION 

   Males of the heptageniid mayfly Epeorus ikanonis Takahashi 

congregate in large numbers (an assembly) on the stream shore for 

mate location in addition to the normal swarming in the air in 

this family (Takemon,part-III). Alternative mate location in 

mayflies has been reported as the case of two types of swarming 

behaviour within a species:  e.g.,  males of Leptophlebia margarita 

show two types of swarms at different landmarks (Savolainen,1978) 

and males of Dolania americana patrol over the stream by a swift 

horizontal flight and also swarm at landmarks (Peters & 

Peters,1977). Although each alternative of above cases may be a 

different tactic for mate location, neither the proximal 

mechanisms nor mating success of each alternative has been 

studied. In this paper, the assembling and swarming behaviour of 

males of E.ikanonis were compared seasonally and diurnally in 

order to research what kind of proximal mechanisms are probable. 

   Meanwhile, the average mating success of swarming males has 

been investigated first on the mayfly Epeorus longimanus (Allan & 

Flecker,1989). However, the reproductive success as far as mating 

success has to be considered for investigating the adaptive 

consequences of alternative mate location behaviour, because 

females are possible to remate until oviposition and P2 value is 

probably more than zero at least in Epeorus ikanonis (Takemon, 

1990). 

   Although alternative mate location between a swarming tactic 

and a ground searching tactic has been known also in other insects 

such as chironomids (Kon et al.,1986), it is generally difficult 
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to estimate the male reproductive success of a copulation in these 

species because the full observation of a mate female until 

oviposition is impossible. In this mayfly, however, the trace of 

females at the assembly site is rather easy since most of them 

oviposit there after copulation (Takemon,  part-III). Moreover, the 

oviposition habit of this species , laying all eggs at a time, is 

advantageous for the estimation of reproductive success of a 

copulation. Meanwhile, recent studies on the alternative mating 

behaviour in insects adopt the estimation of the lifetime 

reproductive success in order to compare the adaptiveness (Arnold 

& Wade,1984a ;1984b; Fincke,1986; Nishida,1987). Males of mayflies 

are disadvantageous in this respect because of their fragileness 

for marking and of their mass behaviour preventing individual. 

identification. In this paper, therefore, the reproductive success 

of each alternative was tried to estimate in a sense of that for 

an average individual engaging in each tactic. The approach of 

average success may be valid when the adaptiveness of different 

tactics is to be compared (Dawkins,1982) and seems to be useful 

for the animals which exhibit mass-mating behaviour-

   For the purpose mentioned above, field observations were 

conducted on the male mating success, and the multiple copulations 

and the virgin ratio of females at each mate locating site. The 

mean reproductive success of each mating behaviour was estimated 

using a set of assumed values of sperm precedence ratio. The 

factors influencing the mating and reproductive success of each 

alternative are discussed in terms of sperm precedence in case of 

multiple copulations (Takemon,1990), the seasonal timing of 

emergence, and the longevity of males (Takemon,part-II). 
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                             METHODS 

Study site and method for observation 

   The study was conducted at the same area for the previous study 

(Takemon,  part-III). Emergence traps were established at the main 

station Yuyaga-dani-deaf (elevation 360m) and at a supplementary 

station Jadani-bashi 2.3km downstream from the main station 

(elevation 230m) along Kibune Stream in Kyoto City. 

   The sites and number of reproducing individuals were recorded 

from 7 to 11 April 1986. The mayfly formed assemblies at the sunny 

shore of a rapid area where gravel or sand accumulated (Takemon, 

part-III). An assembly site (the site C in Fig.1 in part-III) was 

partitioned into grid sections 10 X 10 cm in size (see Fig.4 in 

part-III). The number of males, mating pairs and ovipositing 

females in each grid were counted from 11 to 25 April 1986. 

   Swarming males were found at the open space mainly above the 

stream (Takemon, part-III). The number of swarming males was 

recorded at a swarming site (the site S in Fig.1 in part-III) at 

several minute intervals from 11 to 18 April 1986. Mating at the 

swarming site was recorded by a whole day observation on 18 April 

1986. The time investment of males in the swarming flight and the 

number of females passing the site were observed on 15 and 16 

April 1987. 

Sampling of emergent subimagines 

    Emergent subimagines were collected by using floating-type 

emergence traps 50 X 60 cm in enclosing area. The sampling at the 

main station was conducted from 1 April to 23 May 1982 using two 
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traps, and from 6 April to 25 April 1986 using eight traps . As the 

subimagines of E.ikanonis emerge mostly between 10:00 and 15:00 , 

they were collected after 16:00 every day The sampling at the 

supplementary station was conducted from 28 March to 20 April 1985 

using three traps. 

Estimates of male mating success 

   The mating success of males was represented by the number of 

copulations per male per minute (per male-minute). The mean mating 

success of the swarming males (MSS) was given by the total number 

of copulations divided by the total number of swarming males 

during the observation on 18 April 1986. The mating success of a 

swarming male was also measured individually by direct 

observations on 15 and 16 April 1987. 

   The number of copulations in the assembly in an unit time td 

(CAT) was estimated as follows: 

                               NC x td 

         CAT  = -------------- 

                                CD 

NC is the mean number of copulations in td, CD is the mean copula 

duration obtained by the direct observation. The mean copula 

duration were assumed not to change  diurnally-

   The mean mating success of the assembly males (MSA) was 

obtained by:CAT 

        MSA = ------------- 

2, NA x td 
NA is the mean number of assembly males in td. 

                            7



Estimates of male reproductive success 

   Here, I consider the multiple copulation of females, females 

laying all eggs at a time, the ratio of virgin females (pv) at the 

study site, and the sperm precedence value (r). If the value r is 

constant regardless of the number of previous copulations of the 

female, the expected male reproductive success for a copulation 

(S) is swayed by the number of copulations of a mate female after 

his copulation but not by that before. Here, thus, I consider a 

male copulating with a female that experiences m times of 

copulation at the study site and will copulate n times until 

oviposition after arriving at the study site. The value S in  case 

of (n,m) should be expressed as: 

              S(n,1) _ [pv + (1-pv)r] (1-r)n-1 

              = r(1-r)n-1 + pv(1-r)n-------(1) 

for the first copulation for a mate female at the study site (m=1), 

and for copulations after the second (m>2): 

      S(n,m) = r(1-0n-m-------(1)' 

Meanwhile, since the values n and m are not able to be determined 

for all copulations observed, the mean value of S is estimated as 

follows. At first, the probability of a copulation to be (n,m) is 

calculated using the data of focal female observation: 

       1 n x Pn Pn 

x ---------- = ------- 

   n M M 

n 

M = E i x Pi 
i=1 

Here, Pn is the ratio of females copulating n times to all 
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females, and M is the mean number of copulations for females at 

the study site. Thus n*Pn/M represents the probability for a male 

that a mate female belongs to the category of copulating n times 

after arriving the study site. Note that the Pn/M is constant 

irrespective of m. 

   Accordingly, an expected reproductive success for a copulation 

(ERC) is shown as: 

       PnPn 

 ERC  .E [ E (sn,m x)]_[Sn,m ] 
    n=1 m=1Mn=1 M m=1 

-------(2) 

   The equation (2) is transformed by substituting (1) and (1)' 

into: 

 rnPn 

 ERC = [ Pn (1-r)n-m ] +pv x (1-r)n x 

     n=1 m=1 n=1 

-------(3) 

   The expected reproductive success per male-minute (ERM) was 

given by multiplying ERC by the mating success. ERC and ERM of 

each mate-locating behaviour were calculated also using each 

assumed value of r, which was set at 5% intervals between 0% and 

100%. 

   The value of pv was estimated from the hatching success of eggs 

obtained from the field females. The flying females at the 

swarming site and the newly landed females at the assembly site 

were collected on 15 April 1987. The egg rearing experiments were 

conducted in the laboratory under constant temperature conditions 

of 10°C and 15° C . 
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Measurement of body size and sperm remainder in males 

   The assembly males (n=36) and the swarming males  (n=25) were 

collected on 16 April 1987. The fore-wing length was measured to 

the nearest 0.01 mm, which has been known for an indicator well 

representing the body size in mayflies (Sweeny and Vannote,1981). 

Sperm amount in fresh males was measured as a projection area of 

the sperm reservoir which consists of seminal vesicles, testis and 

ejaculatory ducts. The regression line between fore-wing length 

and sperm amount was made using virgin males collected by the 

emergence traps. Then the amount of sperm consumption in a field 

male was defined as the balance between an expected sperm amount 

of a virgin male of its body size and the measured amount. 

                              RESULTS 

Seasonal change of the emergence and reproductive activities 

   Subimagines emerged mainly in the first half of April (Fig.la 

and b). The mean emergence date of each sex was 7.2 April 1982 and 

5.7 April 1985 for males, and 12.0 April 1982 and 10.1 April 1985 

for females, and thus males emerged earlier (4.8 days earlier in 

1982 and 4.4 days in 1985) than females. The mean emergence date 

in 1986 was unknown because of lack of data on the first 

emergence. The emergence at the supplementary station in the 

lower stream was shifted earlier by a few days (1-6 days in male 

and 1.9 days in female on average) than that in the main station. 

    The emergence of subimagines was rather dispersed seasonally 
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but was comparatively abundant from 5 to 15 April . The influence 

of weather and temperature conditions on the numbers emerging was 

indistinct (Fig.lb and c): rainy weather and low temperature 

conditions on 10, 11, 15 and 19 April did not reduce the 

emergence. The only exception is that no emergence occurred on 16 

April when the atmospheric temperature was below 8 °C. 

   The duration of the subimaginal stage was longer than 19 hours 

and shorter than 30 hours under constant temperature conditions of 

16°C +-1°C in the laboratory- The duration in the field was 7.2 

days on the average (Range: 4-9, N=55) for males and 6.5 days 

(Range: 4-8, N=34) for females, which was determined by the field 

experiment in 1988 (Takemon, unpublished; see also Takemon, part 

 II). 

   The number of adults engaged in reproduction showed distinct 

peaks on 13, 14 and 17 April and moderate peaks on 7, 8, 9, 18 and 

23 April in spite of the comparatively dispersed emergence of 

subimagines (Fig.lb and c). Neither sex showed any reproductive 

activities on rainy days whatever the temperature conditions. On 

cloudy days, their activities were hindered by low temperatures 

such as on 16 April. Thus the reproduction of this species was 

restricted to either fine or warm, cloudy days. The daily maximum 

number of males in an assembly and a swarm fluctuated seasonally 

in a similar manner. 

    The number of assembly males decreased linearly from 17 to 25 

April, 1986 (Fig.lb). As the male emergence ceased after 18 

April, the number of males in this period reflects their 

longevity- The mean survival rate and longevity of adult males in 

the field after 17 April was estimated to be 0.47 per day and 2.13 
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days, respectively, by the Richards-Waloff method (Ito & 

Murai,1977), assuming that the mortality rate was constant among 

individuals through the period and that the percentage presence of 

males at the assembly was not changed. As the adult longevity of 

mayflies is inversely correlated to atmospheric temperatures 

(Brittain,1982; Ward & Stanford,1982), the mean longevity of adult 

males before 17 April should be longer than 2.13 days. Therefore 

it was roughly estimated that an average male could have attended 

the assembly for at least three days after moulting. 

Diel change of the reproductive activities 

   The assembly males appeared in the late morning, increased in 

number for a few hours, peaked and decreased in number in the 

afternoon and disappeared before dusk (Fig.2a). The start and end 

of the assembly shifted seasonally- A slight decrease occurred in 

the mid-afternoon on 14 and 17 April. These activity patterns of 

the assembly males were explained well by the relation to 

atmospheric temperatures (Fig.3a). The number of males increased 

when the temperature exceeded 10  °C, decreased at temperatures 

lower than 11 °C and disappeared below 10 °C. The slight decrease 

in the mid-afternoon corresponded to the temperature exceeding 14 

°C . Most of the assembly males did not take off unless they were 

disturbed. Thus the mean time investment of a male in assembling 

behaviour was estimated as the total male-minutes divided by the 

daily maximum number of males: i.e., 105', 189', 232', and 228' on 

9, 13, 14, and 17 April, respectively- Note that replacement of 

individuals was assumed not to have occurred in this estimation. 

    Diel changes in the number of copulations and ovipositions were 
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similar except that the oviposition started earlier and ceased 

later (Fig.2a). Ovipositions preceded copulations on 14 and 17 

April, which indicates that some females had copulated out of the 

assembly in the morning or had copulated in the previous day. The 

relation to the atmospheric temperature was rather irregular, 

particularly at the point of initiation. Both activities reached 

their daily maxima over a range of temperatures between 11 °C and 

14  °C, and decreased below 11 °C (Fig.3b and c). 

   Swarming started about 30 minutes earlier and disappeared 

earlier than assembly (Fig.2b). The maximum number of swarming 

males was recorded earlier than that of assembly males. The number 

of swarming males increased slightly when the assembly males 

decreased in the mid-afternoon on 14 and 17 April. Many of the 

assembly males were observed to join the swarm just after take-off 

in this time period. Swarming males increased in number again 

before the end of daily activities. Copulations by swarming males 

tended to occur more frequently in the earlier half of the diel 

activities (Fig.2b). The number of females flying across the 

swarming site was also more in the earlier period (Fig.2c). 

    The mean time investment of a male in swarming flight was 

estimated as only 10'45" (Table 1) . A part of them landed on the 

assembly sites after swarming, which shows that both males 

behaviours could be conducted within a day by a same individual. 

Males landing on the assembly sites or changing the swarm site 

spent a longer time for the swarming flight than those returning 

to the resting sites (P<0.001). Landing males were more frequent 

in the earlier part of diel activities. The daily total number of 

swarming males at the swarming site was estimated as the total 
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male-minutes divided by the mean time investment in swarming 

behaviour: i.e., 168, 415, 617, 356, and 322 males on 9, 13, 14, 

17, and 18 April, respectively. 

   The relative abundance of swarming males (the daily total 

number of swarming males divided by the daily maximum number of 

assembly males) show non of significant seasonal change (Fig.4). 

It shows that there is no trend in the seasonal shift of mate 

locating behaviour in this species. Since the number of males was 

counted at a site for each behaviour in this study, the relative 

abundance not always reflected the total value of the population. 

But the seasonal trend of the population should be reflected since 

the relative abundance among sites was rather stable seasonally 

(Takemon,  part-III). 

Mating success of each mate locating behaviour 

   The mean mating success of the swarming males (MSS) shown in 

Table 2 indicates that a swarming male had a probability of mating 

once per 6.92 hours. Considering the time investment in the 

swarming flight (Table 1), most males seemed to have given up 

without gain. Pairing in a swarm was also rare in the preliminary 

observations in 1982 and 1985. 

    The mean mating success of assembly males in each observation 

unit (CAT) is shown in Fig.5. The value CAT decreased when the 

number of assembly males reached the daily peak, except on 17 

April when the daily peak in the number of females coincided with 

that of the assembly males. Thus the high values of CAT were 

obtained near the start or the end of the daily activity-

    Results of the daily mean mating frequency of the assembly 
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males (MSA) (Table 3) indicate that an assembly male had a chance 

of mating once per 7.31 hours at least, once per 2 .24 hours at 

most and once per 3.24 hours on average. Considering the time 

investment of males in assembling behaviour, an average male in 

the assembly was able to copulate more than once on 13 and 17 

April, about once on 14 April and less than once on 9 April. 

Virgin ratio and multiple copulations of females 

   Though the virgin ratio of the flying females at the swarming 

site was higher than the landing females at the assembly site, the 

difference was not significant (Table 4). The result showed that 

virgin females also land on the assembly site. 

    Sequential copulations of a female with swarming males were not 

observed  (n=10). Thus females was assumed to land on the assembly 

site after copulation with swarming males. 

   In contrast, at the assembly site, females copulating twice 

with another male comprised 11.2% of all females which copulated 

(Table 5). Though triple copulations were found, the frequency 

was very low. In spite of the non-virgin ratio of landing females 

as high as 82.4%, only 51.7% of them laid eggs without copulation 

at the assembly site (See Fig.3 in Takemon, part III). Thus 30.7% 

of the landed females were estimated to have copulated at least 

twice by the first copulation at the assembly site. Therefore 

62.8% of non-virgin females are assumed to oviposit and 37.2% of 

them to copulate at the assembly site. 
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Reproductive success of each mate locating behaviour 

   The probability of n times copulation of a mated female (Pn) 

was calculated according to the following model of mating 

behaviour (See also Fig.3 in Takemon, part III) i.e. females 

after copulation with swarming males land on the assembly site, 

37.2% of non-virgin females copulate with assembly males after 

landing, the probability of the number of copulations at the 

assembly site is given in Table 5, 23.3% of females take off after 

copulation at the assembly site and they land again after passing 

a swarm. Females after the secondary landing are assumed not to 

take off again until completing oviposition. The process of 

calculation of Pn and values obtained are shown in Tables 6 and 7, 

for a mate of assembly males and for that of swarming  males, 

respectively-

    The expected male reproductive success per copulation (ERC) for 

assembly males was calculated by substituting pv in Table 4 and 

Pn in Table 6 into the equation (3) (in the Methods), and by 

deducting the success of swarming males gained by copulation with 

taking off females from the assembly site. The process for getting 

the latter value is shown in Table 8. 

    The calculation of ERC for swarming males was divided into two 

processes. First, when the mate had never landed on the assembly 

site, the copulation was the first one of n times copulation for 

the mate. Thus the ERC for swarming males in this case (ERC1) is: 

                     8 

     ERC1 = Pn' x Sn,1-------(4) 

n=1 

Second, when the mate had come from the assembly site, the value 
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of ERC was calculated in the same way as Table 8, using Pn' and M' 

(Table 7) instead of Pn-1 and M, respectively (ERC2). 

Consequently, the ERC for a swarming male was given by the total 

of ERC1 and ERC2. 

   The relation of ERC to r for each mate locating behaviour is 

illustrated in Fig.6a. The ERC of assembly males changed from 

0.14 to 0.81, according to r, whereas that of of swarming males 

changed only from 0.33 to 0.63. The ERC became equal between them 

when r was  0.54, which means that the gain from a female balanced 

at this r in a mean sense. However, as the copulation frequency 

was higher in the assembly than in the swarm, the ERM of assembly 

males was always higher except when r was less than 0.02 (Fig.6b). 

This result indicates that assembly males have a higher 

reproductive success than swarming males when a succeeding 

copulation can fertilize more than 2% of all the eggs. 

    The above estimations were based on the virgin ratio obtained 

by the limited observation. Thus a possible range of ERM was 

calculated using a set of assumed values of the virgin ratio (pv). 

The virgin ratio at the assembly site was set at 0.05 intervals 

between 0.000 and 0.483. The value 0.483 corresponds to the 

probability of copulation by a landing female. The value for pv 

at the swarming site was assumed to be between that of landing 

females and 1.00. The value of Pn was calculated for each assumed 

value of pv in the same way as in Tables 6 and 7 (Appendix 1 and 

2). The relation of ERM to r is shown in Fig.7a and b for the 

assembly and swarming males, respectively- Then a range of r 

balancing ERM of each mate-locating behaviour was determined by 

the crossing area of the line for assembly males and the area for 
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swarming males as shown in Fig.8a. Consequently, even in a case of 

extreme pv (0.00 for landing females and 1.00 for flying females) , 

each mate-locating behaviour balanced in success only when r was 

lower than 0.46, 0.40 or 0.32 corresponding to the minimum, the 

mean, or the maximum estimate of the copulation frequency of 

assembly males, respectively (Fig.8b). 

Body size and sperm remainder of males 

   There was no significant difference in the fore wing length 

between assembly males and swarming males (P>0.05, t-test) 

(Fig.10 c and d). Thus the alternative mate location was not size-

dependent. If size-dependence operates, the relative abundance of 

each alternative would have changed seasonally, since seasonal 

size reduction of the emergent adult was detected both in the fore 

wing length and in the sperm amount (Fig.9). 

   The sperm amount of virgin males correlated to the fore wing 

length (Fig.10 a and b). The mean sperm remainder of swarming 

males was significantly more than that of assembly males 

(P<0.001), though the range of variation (20-100%) did not differ 

between the alternatives (Fig.10 c and d). 

                            DISCUSSION 

   Takemon (part III) described that adult males of the mayfly 

Epeorus ikanonis locate their mates in two ways: i.e., the 

assembling behaviour on the ground which is regarded as a sit-and-

wait tactic at the oviposition sites and the swarming behaviour 
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above the stream and banks. He mentioned that the former tactic 

evolved through following reasons: the multiple copulation of 

females, the P2 value more than zero, the concentrated 

distribution of oviposition sites, and the mate recognition method 

through body contact. However, reasons for the swarming behaviour 

as an alternative tactic have never been discussed. Herein, the 

ecological correlates of the alternatives and the balance of male 

reproductive success between them are discussed. 

Ecological Correlates of Alternative Mating Behaviour 

   Many of the assembly males were observed to join the swarm just 

after take off in the mid-afternoon on 14 and 17 April, when the 

number of assembly males decreased  slightly. Thus the increase of 

swarming males before the end of daily activities may be derived 

also from the assembly males. The time investment of males in 

swarming flight was as short as 10'45" on average and a part of 

them was observed to land on the assembly sites. All these facts 

indicate that males conduct both swarming and assembly behaviour 

within a day and the alternative is caused by the behavioural 

plasticity within individuals (Cade,1980; Dawkins,1980). As 

conditional factors corresponding to the shift in the behaviour, 

following possibilities have been known: i.e., individual 

conditions such as the body size, physical environmental 

conditions, and densities of individuals (Thornhill & Alcock,1983; 

Fincke,1985). 

    Alternation of mating behaviour can occur with seasonal changes 

(Fincke,1985; Hayashi,1985). But each alternative of this species 

was not segregated seasonally- Thus, the environmental factors 
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associated with a season must be uncritical for the conditional 

factors. 

   Diel timing is one of the important factors for alternation of 

mate locating behaviour in insects (Scott,1974; Fincke,1985; 

Kaiser,1985). In this species, the diel change of the male 

abundance was slightly different between the assembly and the 

swarm, nevertheless the hourly overlap of the two. The swarming 

males appeared and peaked earlier than the assembly males. As the 

swarming males landed on the assembly sites more frequently 

earlier in the day, they seem to have attended to the swarm on the 

way to the assembly sites. While, the number of swarming males 

also increased slightly according to the decrease of the assembly 

males, indicating that the males joined the swarm again on the way 

to the resting sites. The reason for the less increase may be the 

shorter time investment to the swarming behaviour in this case. 

Since the number of assembly males was regulated strictly by the 

atmospheric temperature, the peak timing in the number of swarming 

males coincides with the lower and higher temperature limits for 

the assembling behaviour. Therefore, it is probable that males apt 

to swarm at the lower and the higher temperature limit for the 

assembling behaviour. It may be concluded that the males attend 

swarms on the way to the assembly sites and sometimes on the way 

to the resting sites, and which timing is mainly affected by 

temperature conditions. 

   Are there any adaptive reasons for this diel pattern ? The 

distribution of receptive females has been considered as the 

factor affecting alternative mating behaviours (Parker,1978), and 

it has been empirically supported also in odonates (Ueda,1985, 
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Fincke,1985). In this species, the number of females passing the 

swarming site was more in the earlier half of the diel activities . 

On the other hand, the number of copulations and ovipositions at 

the assembly site increased comparatively in the later period. 

Thus the earlier peak of the swarming males and the later one of 

assembly males may correspond to the abundance of females at each 

site. Then, why did males of each behavioural type keep appearing 

overlapping through diel activities ? The mean mating success of 

the assembly males (CAT) highly fluctuated within a day- Its peak 

not always corresponded to that of the number of assembly males 

because the female arrival was not restricted to a particular 

period. As a result, CAT became high values in an unpredictable 

manner within a day- It means that minor males who stay at the 

assembly site earlier or later than major individuals might be 

given the chance of mating. The same thing may occur for swarming 

males and the diel timing of each behaviour seems to be prolonged 

overlapping each other-

    Size dependence has been considered as an individual condition 

sometimes (Rubenstein,1984; Hayashi,1985). Allan & Flecker (1989) 

reported the higher mating success of larger males in a swarm of 

the congeneric mayfly Epeorus  longimanus. And thus, the size 

dependence as a conditional factor may be possible in mayflies. In 

fact, however, the fore wing length was not different between 

swarming males and assembly males in the current species. 

Meanwhile, the sperm remainder in males may relate to the 

alternative since swarming males had significantly more sperm than 

assembly males. It is probable that virgin males apt to attend the 

swarm more frequently or stay there longer than experienced males. 
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But further investigation is required for certification. Although 

it is also probable that the sperm remainder reflects age since 

mayflies do not produce additional sperm in the adult stage 

(Takemon, 1990), this possibility is negative considering the lack 

of seasonal change of the relative abundance in the alternatives. 

   Many examples of alternative mating behaviour in insects belong 

to a conditional strategy depending on male density: e.g., in 

odonates (Higashi,1969; Ubukata,1975; Ueda,1979; Alcock,1982; 

Tsubaki & Ono,1986), chironomids (Kon et al.,1986), and gerrids 

 (Hayashi,1985). Kon, et al. (1986) showed that the relative 

abundance of each behaviour is controlled by the density of adults 

for the chironomid Tokunagayusurika akamushi :i.e., the searching 

tactic on the ground is advantageous under higher densities 

whereas the swarming tactic is under lower densities. In these 

cases, the alternatives are maintained in a population since the 

reproductive success of one tactic exceeds the other under 

different densities. In case of E.ikanonis, however, density 

dependence could be detected neither in seasonal nor diel changes. 

    The lack of density dependence is attributed to the ideal free 

distribution of the mating frequency at the assembly site 

(Takemon,part-III). As each male is almost even in mating chance 

irrespective of the male density in the assembly, the density 

itself can not function as a cue for changing behaviours. 

Balance of male reproductive success 

    The mean reproductive success (ERM) of each alternative is 

balanced when the sperm precedence ratio (r) or P2 value is below 

0.46 at most and 0.32 at least, corresponding to the minimum and 
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maximum estimate of the mating success of assembly  males, 

respectively. As this estimation covers sampling errors for 

determining the virgin ratio (pv) by assuming the range of values 

including the unlikely extreme case, it should reflect the correct 

value in the field as far as the copulation frequency of the 

swarming males is an adequate value. Although P2 value has never 

been measured, Takemon (1990) estimated it to be rather low values 

based on morphological evidences on the sperm utilization. 

Therefore, the possibility of unbalance of reproductive success 

derived from high P2 values may be negative. 

    The alternatives might be maintained in the population without 

balance of reproductive success. If any ecological factors such as 

predation or food resource are one sided, the reproductive success_ 

will be unbalanced. Since mayflies do not take food in the adult 

stage, the factor of feeding can be neglected. As to predation, 

only a few individuals were occasionally taken by the dungfly 

Scatophaga stercoraria and by the wagtail Motacilla cinerea during 

reproduction in this species (Takemon, unpublished). The dungflies 

ate sitting individuals but they are very few in number, whereas 

the wagtails ate a lot of mayflies but they caught emerging 

subimagines selectively and were rather nonchalant with both 

sitting and swarming adults. The low predation on this mayfly, 

particularly on the assembly males may be related to the emergence 

season in the early spring. Although the hunter spiders such as 

Dolomedes raptor are very abundant in the study area from May to 

September, they are non-active in March and April (Takemon, 

unpublished.) Since swarming mayflies in the air have been 

presumed to be lass vulnerable to predation than resting 
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individuals (Edmunds & Edmunds,1980), less predation pressure in 

this season may facilitate the mate location behaviour by sit-and-

wait tactic. However, this factor is not persuasive for the 

swarming behaviour remaining in the population. 

   Extreme cases of unbalance of reproductive success may be the 

males of some dipteran species forming swarms nevertheless 

copulations are always initiated on substrates (Syryamaki,1964; 

1976; Oliver,1968; Nielsen & Greve,1950; Nielsen & Haeger,1960). 

Syryamaki (1964; 1976) interpreted swarms of this type as or a 

behavioural relic. In this mayfly, however, the swarming behaviour 

is not able to be called relic since the copulation occurs in the 

swarm even low in frequency and the male reproductive success is 

also expected. Supposing the number of swarming males decreased in 

the population, the opportunity of copulation per male will 

increase since the male can occupy a swarming space with less 

competition. The fact that the range of a swarm dispersed not 

only above stream but also above banks under high density 

conditions (Takemon,part-III) indicates the existence of male-male 

competition. Therefore the swarming habit would not disappear even 

if it's proportion decreased. Consequently, the balance of the 

reproductive success between the alternatives seems to be more 

probable. 

    The method of mate recognition of the assembly males may play 

an important role for increasing the success of swarming males 

(Takemon,part-III). The high percentage of females ovipositing 

without copulation at the assembly site (51.7%) resulting from the 

mate recognition method seems to function as a factor increasing 

the reproductive success of the swarming tactic. 
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   In consequence, a reproductive success for the swarming tactic 

as high as that of the assembly tactic seems to be assured by 

mainly two factors: 1) the high percentage of females ovipositing 

without copulation at the assembly, and probably 2) low P2 values 

allowing a chance of fertilization for the preceding copulation 

even if it is reduced by successive copulations. 

Influence of emergence timing and adult longevity 

   How does the seasonal timing of emergence influence the 

reproductive success in E.ikanonis? Many of aquatic insects have 

been known for their seasonally synchronous emergence particularly 

among species emerge in spring seasons (Macan,1958; Sweeny and 

Vannote,1981; Takemon,1985: 1990a). Some workers have remarked 

that the short emergence period of aquatic insects increases the 

probability of encounter with the other sex and hence the chance 

of reproduction (Macan,1958; Downes,1969; Tjonneland,1970; 

Gibbs,1977; Savolainen,1978; Nomakuchi & Higashi,1988). However, 

it has never been proved how the seasonal timing of emergence is 

critical to the mating success. 

    Dates of fruitful reproduction of this species are limited to 

only a few days in a reproductive season and their timing is 

determined by the weather conditions which change with irregular 

cycles in this season. Therefore, it is required for males to 

emerge earlier than the most fruitful days including the 

subimaginal period of 7.2 days on average. Since the fruitful days 

were 14 and 17 April in case of 1986 judging from the daily mean 

mating success of assembly males, the males emerged earlier than 6 

April should have been more advantageous than those emerged later-
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In this respect, the longevity in the adult stage seems to be very 

important for the male reproductive success, since the most 

fruitful days are unpredictable for them and the males emerged 

earlier periods should wait until the opportune time. Takemon 

 (part-II) revealed that the adult males of this species has the 

physiological longevity as long as 7.8 days on average and the 

maximum of 16 days. Although the longevity of the field males may 

be shorter, it was estimated to be longer than 3 days in this 

study. The difference of the mean emergence date between sexes, 4-

5 days earlier in males, may be a male reproductive strategy for 

setting adult stage on the most fruitful days. 
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Table 1. The  time investment of males in the swarming flight observed by focal animal sampling 
at the swarming site S on 15 and 16 April 1987. 

                         (15th) 10:35-12:10 (15th) 14:10-17:55 
            succeeding (16th) 10:05-13:00 (16th) 13:40-17:38total 
        behaviour n duration n duration n duration 

                          mean (range) mean (range) 
 full observation* 

           change site 2 15'51" (10'-21') 5 12'06" ( 7'-19') 7 92'32" 
           land (mate) 4(1) 11'20" ( 3'-24') 2 13'44" ( 8'-19') 6 72'51" 
         rest under leaf 1 9'51"7 7'15" ( 3'-12') 8 60'44" 

              mean7 12'25" ( 3'-24') 14 9'55" ( 3'-19') 21 10'45" 

 partial observation** 4 6'27" ( 2'-13') 6 5'23" ( 1 -15') 10 58'58" 

total11112'43" 20 172'22" 31 285'05" 

* The male was observed fully from start to end of the swarming flight at the site S. 
** The time of start or end was uncertain, thus the duration was underestimation in this case.



Table 2. The daily mean mating success of swarming males (MSS) of Epeorus ikanonis. 

  date total no. of  d' total total mean daily 
               observed observed male-minutes no. of mating 

                time[ENS] [ E NSX td] copulations success 
[ E td][MSS] 
(min)(no./male-minute) x 10-- 

18 April 1986* 395 16*** 342861.75 
15 April 1987** 103 1210300.00 
16 April 1987** 182 1918215.49 

 total680 47471372.41 

  Based on the counting of swarming males and coatings at the site S at 33 intervals. 
   Based on the focal animal sampling of males at the site S. Observed time was shown 

in Table 2. *** Daily maximum number of males observed at the site S, which dose not 
represent the daily real number of males attending the swarm.



Table 3. Estimate of the daily mean mating success for the assembly males (MSA) 

  date total duration no. of  di total total no. of total no. ofdaily mean 

              of observation observed* male-minutes copulations copulationsmating frequency 
       unitsobserved estimated[MSA] 

[E td][ E CAT](no./male-minutes) x 10-' 
          (mintes)mean ( min.- max.)** mean ( min.- max.)** 

9 April 1986 270 240 2508112 57.2 ( 47.5- 72.0) 2.28 (1.89 - 2.87) 
13 April 1986 387 943 178087252 1322.8 (1098.4-1665.3) 7.43 (6.17 - 9.35) 
14 April 1986 450 1019 236089261 869.6 ( 722.1-1094.7) 3.68 (3.06 - 4.64) 
17 April 1986 405 1185 269630358 1946.8 (1616.6-2450.9) 7 22 (6.00 - 9.09) 

  total1512 3387 708887883 4196.4 (3484.6-5282.9) 5.15 (4.28 - 6.49) 

  Daily maximum number of males observed at the site C, which does not represent the daily real number of males 
attending the assembly. ** the minimum and the maximum estimates based on the -95% and +95% confidence limits of 
the copula duration (Takemon, part III) respectively.



Table 4. Percentage of virgin females (pv) captured at the assembly site C 
and the swarm site S on 15 April 1987 determined by the experiment of rearing 
eggs of each female. Females who had completed oviposition were not collected. 

                 females landed females flying total 
                  at the site C* at the site S* 

           no. (%)no. (%)no. (%) 
 fertilized 14 (82.4)6 (66.7)20 (76.9) 

 unfertilized 3 (17 7)3 (33.4)6 (23.1) 
 total17 (100.0)9 (100.0)26 (100.0) 

  The difference was not significant  (P>0.1, Fisher's exact probability test)



Table 5. Multiple copulations of female Epeorus ikanonis at the assembly site C 
observed by focal animal sampling in 1986 and  1987 

       198619861987total total 
             full focus* partial** full focus*copulations 

(%)(%)(%)(%) 
once19(90.5) 19(86.4) 48(87.3) 86(87.8) 86 
twice2( 9.5) 3(13.4) 6(10.9) 11(11.2) 22 
three times 0( 0.0) 0( 0.0) 1( 1.8) 1( 1.0) 3 

total21225598111 

* The females were observed fully from arrival to oviposition or to take-off 
** The females found on the ground were observed as focal individuals until 

oviposition or take off.



Table 6. Estimation of the probability of multiple copulation [Pn] and the mean number of copulations  [M] for females from 
copulation with an assembly male to oviposition. Cl-3: probability of multiple copulations from once to three times at the 
assembly site (shown in Table 5) Oa: probability of oviposition after copulation at the assembly site. F: probability of 
take off after copulation at the assembly site. Ps: probability of passing the swarming site without copulation. Cs: proba-
bility of copulation at the swarming site Ob: probability of direct oviposition by nonvirgin females after landing on the 
assembly site. Ca: probability of copulation by nonvirgin females after landing. (n): n times copulations occur only in the 
first landing and oviposit without take off. (1-3,0-1,n): 1-3 times copulations occur in the first landing and take-off 
0-1 copulation with a swarming male after take off and n times copulations in the second landing. 

       (n) (1,0,n)(1,1,n)(2,0,n)(2 l,n)(3,0,n)(3,1,n) 

 P1 = C1.0a + Cl•F•Ps•0b= 0.799520 
  P2 = C2.0a + Cl•F•Ps•Ca•C1 + Cl F•Cs•0b+ C2•F•Ps•0b= 0.169931 

P3 = C3.0a + Cl•F•Ps•Ca•C'2 + Cl.F•Cs•Ca•C1 + C2•F•Ps•Ca-C1 + C2•F•Cs•0b+ C3•F Ps•0b= 0.027405 
P4 =C1•F•Ps•Ca•C3 + C1 F•Cs•Ca•C2 + C2•F•Ps•Ca C2 + C2•F•Cs•Ca•C1 + C3•F•Ps•Ca•C1 + C3•F•Cs•0b = 0.002894 
P5 =Cl F•Cs•Ca•C3 + C2•F•Ps•Ca-C3 + C2•F Cs•Ca•C2 + C3•F•Ps•Ca•C2 + C3•F•Cs•Ca•C1 = 0.000237 
P6 =C2•F Cs'Ca•C3 + C3•F-Ps Ca•C3 + C3•F•Cs•Ca•C2 = 0.000012 
P7 =C3•F•Cs•Ca•C3 = 0.000000 

M =E n x Pn = 1.2344 

Values of each symbol: C1=0.8776; C2=0.1122; C3=0.0102; 0a=0.7674; F=0.2326; Ps=0 9841; Cs=0.0159; Ob=0.6276; Ca=0.3724.



Table 7 Estimation of the probability 

of multiple copulation [Pn'] and the 

mean number of copulations  [M'] for 
females from copulation with a swarming 

male to oviposition. Symbols are the same 

as those in Table 6. 

     P1 = Ob = 0.627608 

     P2' = Ca•P1 = 0.297734 

     P3' = Ca•P2 = 0.063281 

     P4 = Ca•P3 = 0.006481 

     P5' = Ca•P4 = 0.001078 

     P6' = Ca•P5 = 0.000088 
     P7' = Ca•P6 = 0.000004 

     P8' = Ca•P7 = 0.000000 

      M' =E n X Pn' = 1.4448



Table 8. Expected reproductive success per copulation (ERC) for a 
swarming male when the mate has taken off from the assembly site 
after copulation with the assembly male. Pn type female copulates 
n times after landing on the assembly site until oviposition. 
Pn: probability of n times copulation for a female, r: sperm 
precedence ratio, M: the mean number of copulations of a female. 

  female typeERC 

    P2 P2•r/M x (1-r) 
      P3P3•r/M X [(1-r)3-2+(1-r)ct-3] 
       P4P4•r/M x [(1-r)4-2+(1-r)4-3+(1-r)4-4] 
       P5P5•r/M x [(1-r)5-2+(l-r)`-3+(1-r)` 4] 

      P6P6•r/M x [(1-r)6-3+(1-r)E'-4] 
     P7P7•r/M x [(1-r)'-4]



Appendix 1. List of Pn values used for the simulation of the expected mating success of 

  assembly males. vra: an assumed virgin ratio of landed females at the assembly site. 

  Po: probability for non-virgin females to oviposit without copulation after landing. 

  Pc: probability for non-virgin females to copulate after landing. P1-7: probability for 

  a mated female to copulate 1-7 times after her landing. M: mean number of copulations 

  for a female after landing at the assembly site. 

 vra Po Pc  P1 P2 P3 P4 P5 P6 P7 M 

  0.00 .5169 .4831 7773 .1862 0324 .00374 .00031 .000016 0000002 1.2636 

  0.05 .5441 4559 7827 .1822 .0312 .00354 .00029 .000015 0000002 1.2564 

  0.10 .5743 4257 7888 .1778 0298 .00330 .00027 .000014 0000002 1.2485 

  0.15 .6081 3919 7956 .1728 0283 .00304 .00025 .000013 0000002 1.2396 

  0.20 .6461 .3539 .8032 .1672 0266 .00275 .00023 .000011 0000001 1.2300 

  0.25 .6891 .3109 .8119 1609 0246 .00242 .00020 .000010 0000001 1.2182 

  0.30 7384 .2616 .8218 1536 0224 .00204 .00017 .000008 0000001 1.2053 

  0.35 7952 .2048 .8332 1452 0198 .00161 .00013 .000007 0000001 1.1903 

  0.40 .8614 1386 .8465 1355 0168 .00110 .00009 .000004 0000001 1.1728 

 0 45 9397 .0603 .8622 .1239 0133 .00050 .00004 .000002 0000000 1.1522 

 0.48 1.000 .0000 .8743 1151 0106 .00004 .00000 .000000 0000000 1.1363



Appendix 2. List of Pn values used for a simulation of expected mating success of swarming 

  males. vra: an assumed virgin ratio of landed females at the assembly site. vrs: possible 

  range of virgin ratio at the swarming site. P1-8: probability for a mate of swarming 

  males to copulate 1-8 times until oviposition. M: mean number of copulations by a mate of 

   swarming males until oviposition. 

 vra vrs P1 P2 P3  .P4 P5. P6 P7 P8M 

 0.00 0.00-1.0 .5169 .3755 0900 .0157 .0018 .00015 .000008 .00000009 1.6105 

 0.05 0.05-1.0 .5441 .3569 0831 .0142 0016 .00013 .000007 .00000008 1.5729 

 0.10 0.10-1.0 .5743 .3358 0757 .0127 .0014 .00012 .000006 .00000007 1.5315 

 0.15 0.15-1.0 .6081 .3118 0677 .0111 .0012 .00010 .000005 .00000006 1.4858 

 0.20 0.20-1.0 .6461 .2843 0592 .0094 .0010 .00008 .000004 .00000005 1.4352 

 0.25 0.25-1.0 .6891 .2524 0500 .0077 .0008 .00006 .000003 .00000004 1.3787 

 0.30 0.30-1.0 7384 .2150 0402 .0059 .0005 .00004 .000002 .00000003 1.3153 

 0.35 0.35-1.0 7952 1707 0298 .0041 0003 .00003 .000001 .00000002 1.2438 

 0.40 0.40-1.0 .8614 1173 0188 .0023 .0002 .00001 .000001 .00000001 1.1625 

 0.45 0.45-1.0 .9397 .0520 0075 .0008 .0000 .00000 .000000 .00000000 1.0694 

 0.48 0.48-1.0 .0000 .0000 0000 .0000 .0000 .00000 .000000 .00000000 1.0000
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 Fig.l. Seasonal change of the emergence of subimagines (a) and 

(b), adult activities (b) of Epeorus ikanonis, and weather and 

temperature conditions (c) at the study site. (b) Black and white 

circles represent the daily maximum number of males and females 

found in the assembly site C, respectively. Black squares 

represent the daily maximum number of flying males at the swarm 

site S. (c) Upper symbols show the weather conditions in the day 

time: black circle rain, white very fine, with bar fine and double 

circles cloudy. Upper and lower solid line is the daily maximum 

and minimum air temperature, respectively- Dotted lines express 

the water temperature in the same way. 

Fig.2. Diel change of the reproductive behaviour of Epeorus 

ikanonis. (a) Diel change of the number of sitting males, 

copulation pairs and ovipositing females in the assembly site C. 

(b) Diel change of the number of flying males, and the time 

copulations were found at the swarm site S. The swarm was 

observed continuously only on 18 April. (c) Diel change of the 

number of flying females across the swarming site S. The shaded 

period represents no data. 

Fig.3. Relations of the number of sitting males (a), copulating 

pairs (b) and ovipositing females (c) in the assembly to the 

atmospheric temperatures observed with Epeorus ikanonis. Arrows 

show the pattern of diurnal sequence. Symbols in (b) and (c) are 

the same as in (a). 

Fig.4. Seasonal change of the relative abundance of swarming 

males to assembly males in Epeorus ikanonis- Each value was 

obtained by the daily total number of swarming males divided by 

the daily maximum number of assembly males. See text for the 

estimation method of the daily total number of swarming males. 
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Fig.5.  Diel change of the mean mating success (no./male-minute) 

of assembly males (CAT) at the site C. The ends of a vertical bar 

at each plot represent the maximum and the minimum estimate 

derived from the 95% confidence limits of the mean copula duration 

used for estimating the number of copulations in an observation 

unit. 

Fig.6. (a) Relation of the expected male reproductive success for 

a copulation (ERC) to the sperm precedence value (r) in Epeorus 

ikanonis. (b) Relation of the expected mean reproductive suceess 

per male-minute (ERM) to r- The upper and the lower solid curves 

represent the maximum and the minimum estimates, based on the 

-95% and the +95% confidence limit of the duration required for a 

copulation at the assembly site, respectively. 

Fig.7. (a) Relation of ERM to r using various virgin ratios of 

females (pv) for assembly males. The highest line, the lowest 

line, and the other lines correspond to the case of pv=0.48, 

pv=0.00, and the intermediate values of pv set at 0.05, 

respectively- The maximum and the minimum estimations are derived 

from the -95% and the +95% confidence limits of copula duration at 

the assembly site, respectively- (b) Relation of ERM to r by the 

possible ranges of virgin ratio (pv) for swarming males. The 

shaded triangle was obtained by the range of pv from 0.48 (the 

base line) to 1.00 (the upper line). The other triangles 

correspond to each minimum pv assumed, which was set at 0.05 

intervals between 0.00 to 0.48. The pv at the assembly site was 

assumed to be the minimum pv at the swarming site. 
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Fig.8. (a) An example for the process of determination of the 

value r balancing the ERM of each mate-locating behaviour- The 

deeply shaded area represents the equilibrium area when pv=0.2 at 

the assembly site. (b) The range of r balancing the ERM of each 

mate locating behaviour for each possible value of pv and mating 

success at the assembly. The maximum estimates of the value r 

shown as the vertical dotted lines are 0.32, 0.40 and 0.46 

according to the range of copulation frequency estimated for the 

assembly males. 

Fig.9. Seasonal reduction of the sperm amount reserved in the 

adults collected by the emergence traps. The sperm amount was 

measured as projection area of the sperm  reservoir-

Fig.10. (a) Relation of the relative amount of sperm to the fore 

wing length in sitting males at the assembly site C (open 

circles). Closed circles and a regression curve represent the case 

of virgin males obtained by emergence traps. (b) That in flying 

males at the swarm site S (open circles). Closed circles and a 

regression curve are the same as (a). (c) and (d) Relation of 

the sperm remainder to the fore wing length in sitting males and 

in flying males, respectively. The sperm remainder is shown as the 

percentage when the sperm amount of the virgin male is regarded as 

100%. The horizontal dotted line shows the 95% confidence limit of 

the sperm amount of virgin males. The cross in the figure shows 

the mean value and the range of standard deviation of fore wing 

length and sperm reminder-

                           3



    Takemon,Y. Reproductive Ecology of Epeorus  ikancnis. 

(a)F1982 
C/21 

                                      - ---              

... ...,... "F
_I1i------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------II 

.'April15101520 -7=- 

=                                                               

.Ej1 female 1985 
                                                                           hioe 

62'::: 
 .1= 1 --- 

                                                                                                        - - 

 1IIi-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------I 
 April15101520 

( h) 
10'----. 

                                                              . 

                                   t1 
11i 
                            i1i),r2-:0 .968    C/2iiI ,I      "Fri./11IIT\i 

                                  i 

        ...ift102-'iI.1II\1 
                         II.II\I7                 .—            •1

it-,)itlyI    -=ItII11
17\     c1-tIl

a11I     -A -,111r-11i\ 
                   .--,II/\1

,1II;—1'11i                             I            73-i0-R'f .)-__,;\1IliI'lII'IIIirI 
                                                                                      I\•,..      ^A                                        Ili

71..1                                       IIIIiI\\1II..      coIii— 11III i / 
         .=7 -:: 7: \ \ 1 -7 ilk_ —5„I _1/' I// . 

                                                             

, / \ E .... 
                      :: 7' ::::111::::, :::: p::::111III/1 —\             =i.,.i7.::: ::7:::„-:7II--—II 

                 II.:0o                                t:i, \V.                                                                                                                                                                                                                      ...                   .. 
11 

      April10152025 

1986 

(C) 
              20 - 

     c-DCDO@OZ0101):00(DV3CDC)000CD               15 - 

                                    . 

                                                                                                                                                             - 

                                                                                                                                                                                                 ...." 
                                                                                                                      . ....... .... . ... 

                     --
.... ---- ..- .. ...... .... -........-- 

                           cu10- ..................................... ..-                                                                                                                                                                                     ................                       a._........... 
                                                 ..•....- 

               =
.....--......... ......•-•--.....                          .- ....     c......... 

                 —-.... .,..-- 

                      CU 
                 1- 

                    0- 

  1i[---------------------------------------------------------------------------------------------------------------------------------------------------1 
      April10152025 

             1986 

       Fig. 1,



 Takemon,Y. 

(a) April 9 • ^•o --o Malelh1 20— 
 10^o--o Copulation. April 9•--• Male 

•^ ^• ----•Oviposition 
10 —v Mating 102

• 

 0-'uApril13 10 April1320 —

l\, 
     ^^'•^ 

1010—

• 
10v----------------------------------------------- 

~,•—, 
'Cy 

0 1I.~°Aprill4 
0 20 — 

c10April 14^ ^ ^ ^ ̂  .•^ •^e'^ •^ •^^•   •010— 

a-. 16 ^^ 

w 

            =1'II I 1 I I I------------------------------------------------------------------------------------I E
a 10= 20 —April 11 

  1 01.10_\-----•\
___,.   10 April 17 .. ^ • • • • ^ 

••0 ------------------------------------------------------------------------------------I-1 1 i 1 1 1 1 

1020 April 18 

• 1010 —      •
0.J0 1 1 vV1v v1 IV V1 I'1 I 

 10 12 14 161810121416 18 

   HourHour 

Fig. 2.



 N
um

be
r 

of
 

fe
m

al
es

 
'7

1o
C

_T
1 

C
D

C
.T

1 
C

D
C

.T
1 

- 
. 

C
Q

..-
-,

 
   

   
   

   
 

: •:
•:

1 
Il

l 
I-

.-
.1

 
I 

I 
17

--
 

•:
•:

1 
I 

I 
I 

I 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 

.. 

.•
 

- 
-=

 
••

.=
:-

.•
=

—
 

   
   

   
   

   
   

  
-

--
--

.

.•
.•

  

 
C

73
It

II
 

   
   

   
   

   
...

...
.-

-1
N

..)
 

_-
...

.-
 

..-
.•

.•
 

_.
,. 

   
   

   
   

   
   

   
...

._
.. 

]—
 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 
-*

- 
- 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

-:
-:

-:
 

   ._
.1

:-
:-

: 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

-:
-:

- 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

. 
- 

- 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 

-:
-:

-.
 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

—
 

-.
.-

-.
 

   
  

c_
...

..3
 

.- ...
..:

...
..—

 
—

 
   

   
   

-
-•

-•
•-

...
-.

 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
• 

• 
- 

   
   - .-
-.

-:
-.

-.
•.

...
 

.    
   

   
:::

:::
: ..-
.•

.  
 

=
' -'

-'.
--

--
- 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

- .-
:-

: 
   

   
  

.

...
...

-.
•.

 

   
   

   
 

-
.-

...
-.

.-
..-

. 

  
=

 
4:

,„
„,

  
- 

-.
•.

•.
 

   
   

 
...

.1
 

   
   

   
—

b.
 

   
   

   
 C

T
1 

-    
   

   
   

 
--

a,
 

   
C

T
)-

--
--

--
--

- 

1 

   
   

   
 

7=
s 

--
--

--
tm

 -
--

--
-3

=
1.

 

   
   

   
  

,—
.1 ...

.."
...

1 
   

 
--

a.
...

.,.
..-

.•
...

,-
,  

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

...
...

., 
   

   
   

   
   

   
   

   
  

...
...

.4
 

--
a—

a-
-a

 
   

   
   

   
C

T
)C

-T
1 

:•
:-

:.C
O

 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
  

.. ...
..-

: 

   
   

   
   

   
   

   
C

M
 

C
O

 
   

   
   

   
   

   
   

 
--

--
..1

 -
--

--
--

-C
.M

 
:::

:::
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 
C

C
) 

C
D

O
 c



     Takemon, Y. Reproductive Ecology of Epeorus ikanonis. 

(a)(h) (c)
• 

10'--9 April~_. 100 -50 — 

                                                                                                                                                               • 

   ̂  13 Aprilr•• ~''hi\=f 

                                                                                                                                                              ^ H14 Aprils,':    .14o_•.~^,. • 
                                                                                                                                                     ^ a it April //"_'`^~~'y^. 

 _alor                              11/(.10=_-•iF1I_.I cIo='05/1 
X10-L_cu• II. -—-+1/ 110'ea 

1_- ill•1_-1 i--,'~IIII IIII I 
00ill _ 

     7 8 9 10 11 12 13 14 15 16 'c 7 8 9 10 11 12 13 14 15 16 'c 7 8 9 10 11 12 13 14 15 15 'c 

Atmosphere temperatureAtmosphere temperatureAtmosphere temperature 

     Fig. I



   
   

 
Sw

ar
m

 
m

al
es

  
/  

as
se

m
bl

y 
m

al
es

 
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

 
Im

m
il 

°O
O

 
ra

 
C

J7
 -

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
II

 
I 

I 
1 

ii 
I 

1 
.a

 -I
 

-    
  

-.
 

   
w

w
w

ilV
 

ii 
C

O
 

r 
O

 
O

 
C

O
 

C
33

-p
• 

   
   

   
   

   
   

   
   

 
C

A
) 

y 
O

 

• 

• 

C
s'

 

• 

•    
 

N
 

C
3 

-



 Takemon; Y. Reproductive Ecology of Epeorus ikanonis. 

g.01 -April 9 ••01 -April 14 
gE 

=y 
CD 0 

MI.:. 

li .005 -o .005- ..—IIl+ T 
                             1; L1T 03C]+I IlT           I-• I 

                                  d 

Ec ++ 
= 0 • 1 • 1• •• 1 1 z 0 ...•• I I I •1  

   10 12 - 14 1618 10 12 14 16 18 
    TimeTime 

                          .141lApril 13E.02 - April 17 
.06 - fI 

                                                        - I., 02-.01- 

     l 

 T+1+1 w-1,en 

co Ti 
E}t t+

+=• +} = 0 II•• I = 0 .• II  
  10 12 14 16 18 10 12 1416 18 

    TimeTime 

Fig. 5.



 (a) 

1.0 ---- assembly 
o---o swarm 

   W•.                          •• 

                      it 

       0 

  00.51.0 

               r 

   (b) 

               assembly 

      °  

 x5 o---o swarm 

W 

„. ,'• • • • • • • • • • ...... • • 

0 

   00.51.0 

                r 

     Fig. 6.



 Co) 

6 

......... maximum 
                                                                                                         • •  

            = mean 

   ›< 5 
       11111111111 minimum 

     4 -1-1111 
• cCArsa 3 .................01 ,00.r.rA•" 

  LL1.01 000,1g0:00:-•%::0"                                         •-en• ofoloor, lll                                    ,01..-osepood !!!!!! ! 
                             tolovid 00, 000 .. 01000 • • • • • • • • Ilya 01 fP ..... los 0 

9 • ini1111" 011111 ... too ..... 
         Ilifiligirrophooliiiii10140111110p1s110111101:1110111 ...... ,,,,,                1010 :61111110i1M:1111110011111011111" II                 ogil..0011 I 
            43111 101111040111011 1 "111111i

/110:1011101011111            P111
911:111;1111111111"1 

:0111111" 
n .011.  U 

  00.51.0 

r 

(b) 

   el6— 
          t=t 

    >.< 5 - 

          4- 

Q1E-cor- 3 — 
   ILIpv=1-0t1% 

         9 

                                         _ Ab. .......... 
           .• • 

         1 — 

0                      pV 
  00.51.0 

r 

F;.



 (a  ) 
6 — 

      r) 

    ›..< 5 - 

       4 - 

                           o‘N\i ico C/33 -2,ss 
  LU 

2swarm pv=100% 
......                                                                          • • • • •                                                            

• • • • 

                            

• • •
n2U%                         -•

swarmry                                       - •                              

• • 

  0 -------------------- 

  00.51.0 

r 

(b) 
      6 — .....   el.........maximum 

= mean 
  >< 5 - 111111111 minimum 

4 - 

 E 
C43 — 

   Lul 

........30011hoi:      2 „                    0:0111"
0011.1111!! 0110011110100.              il Oil 101 0:1111N000011001100 

           10111:0111011Rildillitligio"' 
                  ir:1111.401011000           Illiiiiiii4111:11001;401„01 

               11„1: 01 dill 01/011 
                 11111:0611111 

             ..1111441111 
                :oilill.. 

  011112. I  

  00.51.0 

  F;.



 
1`

IP
ro

je
ct

io
n 

ar
ea

 
m

m
2 

N
 

  
cm

cr
cm

 

 
0a

l 
 

zs
• 

• 
• 

—
••

 
• 

• 
•    

   
   

   
   

• 
••

 

   
   

   
 

••
 

O
••

 
   

   
  

••
 

••
 

• 

• 
• 

••
 

...
a•

 
`i

c 
 

C
.7

1I
I 

I 
cm

 

   
• 

° tv
 

w
 

N
'C

3 
-4

 
x 

 
oA

+
 

00
-.

. 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
 

°.
C

-0
 CO

 

N



a tiP
ro

je
ct

io
n 

ar
ea

 
of

 t
he

 
sp

er
m

 
re

se
rv

oi
r 

 
m

m
=

 
o_

.N
 

co
-.

 
N

 

00
.o

 
00

 
0 

1-
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
I 

I 
t 

1 
I.

 
I 

I 
1 

1 -
'<

.-
4 

   
   

 
•

O
••

 
D

• 
   

   
a'

^a
s 

 
no

O
 

•`
N

^0
. 

   
   

   
   

  
O

O
 

•o
^ 

• 
10

• 
-^

 
0 

C
3O

 
O

•0
12

0•
 

co
 

- 
O

 
O

 O
 

•^
 

^ 
^ 

^ 
•    

  
O

 
O

•^
• 

   
   

   
   

   
   

   
   

   
   

   
   

   
 

^^
 

^ 
^ 

0^
^•

 
 S

 
=

 
-.

0•
 

_.
^ 

^ 
^ 

• 
O

 
C

., 
- 

O
0 

0 
•C

O
^•

 
p0

o 
^ 

^ 
cD

o•
^•

 
=

0 
•^

 
• 

to
 

--
<

^ 
^ 

--
t 

00
 

00
 

   
   

   
   

   
   

   
   

   
   

  
v-

, -
^ 

 
00

0>
c>

<
    

   
   

   
   

   
p 

cz
a•

••
-4

a
-`

a 
a 

_ 

>
4>

<
 

   
   

   
   

  
Sp

er
m

 
re

m
ai

nd
er

%
 

C
31

oC
J1

 
O

 
O

oO
 

O
 

   
   

   
   

   
1 

I 
1 

11
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
--

--
-1

 
1 

I 
I 

I.
 

/^
 

0/
 

1:
2 .c

, 
   

   
   

   
   

   
   

   
   

   
   

  e
 °

    
 

/o
^ 

N
0 

/•
N

- 
^  

C
/O

o^
 

   
'II

/

{O
  

ot
uv

//O
^^

n•
 

   
   

  
o/

 
O

:^
 

^^
  

co
0 

 
O

 
- 

^ 
^ 

^^
: 

0i
•^

 
=

 
_.

0 
/—

 
^ 

^ 
^•

 
w

 
0 

0 
ow

- 
^ 

C
o 

o/
 

0p
 

^^
 

O
/^

 
n/

0^
 

=
/ 

^ 
0 

//^
 

   
   

   
   

   
   

/ 

   
i/~

-'^
a 

a-
r 

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  
I' 

 
A

._
rO

    
/C

 
1V

-^
O

 
O

 
O

oo
O

I
V

 -
-.

. 
O

   
  

C
D

30
1O

N
 

3O
C

O


	R301_0
	R301a
	R301b
	R301c
	R301d

