

Title	Self-duality and Integrable Systems(Dissertation_全文)
Author(s)	Ohyama, Yousuke
Citation	Kyoto University (京都大学)
Issue Date	1990-03-23
URL	http://dx.doi.org/10.14989/doctor.k4476
Right	
Туре	Thesis or Dissertation
Textversion	author

学位申請論文

大山陽介

Self-duality and Integrable Systems

Yousuke Ohyama

Research Institute for Mathematical Sciences

Kyoto University

Kyoto 606, Japan

§0. Introduction

In his lectures (1984-85) at Kyoto University, Professor M.Sato presented a program for generalizing the soliton theory ([9]; c.f. [10]). The Kadomtsev-Petviashvili (KP) equation is a typical example of the soliton theory. The KP equation is written in the form of deformation equations of a linear ordinary differential equation. The time evolutions of a solution are interpreted as dynamical motions on an infinite dimensional Grassmann manifold ([7],[9]). The Lie algebra of microdifferential operators of one variable acts on this manifold transitively. He conjectured that any integrable systems can be written in the form of deformation equations of a linear systems, and proposed to investigate a deformation of differential equations in higher dimensions. He showed a simple example of a deformation of holonomic systems in higher dimensions ([9]), and its generalization is treated in [4]. In this paper we study a deformation of \mathcal{D} -modules in higher dimensions.

First we review the KP equation. We denote by \mathcal{E} the ring of microdifferential operators of one variable x. We fix a microdifferential operator P, and denote by t_P a time variable with respect to P. We study the following evolution equation associated to P:

$$\frac{\partial W}{\partial t_P} + WP = (WPW^{-1})_+ W, \tag{0.1}$$

where $W = W(x, D_x) = 1 + \sum_{j < 0} w_j(x) D_x^j \in \mathcal{E}$. We denote by \mathcal{W} the set of such operators W. This space \mathcal{W} is a group by the composition of \mathcal{E} . We get the KP-hierarchy taking $P = D_x^n$ (n = 1, 2, 3, ...) in (0.1). The equation (0.1) defines a dynamical motion on \mathcal{W} . This infinitesimal action of the Lie algebra \mathcal{E} on \mathcal{W} is transitive.

The purpose of this article is to give a foundation for higher dimensional generalization of the KP hierarchy. Let now \mathcal{E} be the ring of microdifferential operators in several variables. Similarly to the one dimensional case, fixing an operator $P \in \mathcal{E}$, we shall study the following equation

$$\frac{\partial W}{\partial t_P} + WP = (WPW^{-1})_+ W, \tag{0.2}$$

where the operator W is a 0-th order microdifferential operator. Here we choose a decomposition $\mathcal{E} = \mathcal{D} \oplus \mathcal{E}_{\phi}$ and $(WPW^{-1})_+ \in \mathcal{D}$ is the component

of WPW^{-1} according to this decomposition. In general the equation (0.2) imposes some constraints on the initial value $W(t_P = 0)$, since the vector field defined by (0.2) is not tangent to the space $\mathcal{E}(0)$. There is no operator W_0 such that the equation (0.2) has a solution $W(t) \in \mathcal{E}$ with the initial value W_0 for any $P \in \mathcal{E}$. We take generators P in (0.2) only in the Lie subalgebra V of \mathcal{E}

$$V = \{F_0(x', D_0)x_0 + \sum_{0 \le j < r} F_j(x', D_0)D_j + E(x', D_0); F_k(x', D_0), E(x', D_0) \in \mathcal{E} \text{ for } 0 \le k < r \}.$$

where $x' = (x_1, x_2, ..., x_{r-1})$. This Lie algebra contains the transformation groups both of the self-dual Yang-Mills equations and of the self-dual Einstein equations (see [7],[8]). In §2 we will determine the subspace \mathcal{W} of $\mathcal{E}(0)$ so that the vector field defined by (0.2) for any $P \in V$ is tangent to \mathcal{W} . The space \mathcal{W} is a subgroup in \mathcal{E} . The Lie algebra V acts on \mathcal{W} transitively.

In the case of r = 3, our integrable system is nothing but a composed system of the self-dual Yang-Mills equations and the equations of self-dual metrics on Riemannian manifolds of dimension four. The Lie algebra V acts transitively on the space of self-dual connections on self-dual spaces. Thus we obtain a group-theoretical description of the twistor theory ([1],[5]).

Notations. We use the following notations: \mathbb{Z} denotes the set of integers. \mathbb{N} denotes the set of non-negative integers. We denote by \mathbb{C} the complex number field. We denote by $\mathbf{1}_n$ the unit matrix of size $n \times n$.

§1. Deformations of \mathcal{D} -modules

Throughout this paper we shall work in the category of formal power series, $\mathcal{O} = \mathbb{C}[[x]] = \mathbb{C}[[x_0, x_1, \dots, x_{r-1}]] \ (r \ge 2)$. Let \mathcal{D} be the ring of differential operators with coefficients in \mathcal{O} . Then every differential operator P of order m can be written as:

$$P = \sum_{\alpha \in \mathbb{N}^r, |\alpha| \le m} a_{\alpha}(x) D_x^{\alpha},$$

where $a_{\alpha}(x)$ are elements of \mathcal{O} , $\alpha = (\alpha_0, \alpha_1, \cdots, \alpha_{r-1}) \in \mathbb{N}^r$, $|\alpha| = \alpha_0 + \alpha_1 + \cdots + \alpha_{r-1}$, $D_x^{\alpha} = D_0^{\alpha_0} D_1^{\alpha_1} \cdots D_{r-1}^{\alpha_{r-1}}$ and $D_j = \frac{\partial}{\partial x_j} (j = 0, 1, \cdots, r-1)$.

The ring \mathcal{E} of formal microdifferential operators is a set of formal Laurent series in D_0, D_1, \dots, D_{r-1} with only non-negative powers of D_1, \dots, D_{r-1} . The precise definition is as follows. We denote by $\mathcal{E}(m)$ the space of formal series :

$$P = \sum_{\alpha \in \mathbb{Z} \times \mathbb{N}^{r-1}, |\alpha| \le m} a_{\alpha}(x) D_x^{\alpha}$$

where a_{α} 's are elements of \mathcal{O} , and the summation is taken through $\alpha = (\alpha_0, \alpha_1, \cdots, \alpha_{r-1})$, where $\alpha_0 \in \mathbb{Z}, \alpha_1 \in \mathbb{N}, \cdots, \alpha_{r-1} \in \mathbb{N}$. We set

$$\mathcal{E} = \bigcup_{m \in \mathbb{Z}} \mathcal{E}(m).$$

We endow the \mathcal{O} -module \mathcal{E} with a structure of ring by extending the Leibniz formula. For two elements $P = \sum_{\alpha} a_{\alpha} D_x^{\alpha}$ and $Q = \sum_{\beta} b_{\beta} D_x^{\beta}$ of \mathcal{E} , we define the composition $P \circ Q$ by

$$P \circ Q = \sum_{\alpha, \beta \in \mathbb{Z} \times \mathbb{N}^{r-1}, \gamma \in \mathbb{N}^r} \binom{\alpha}{\gamma} a_{\alpha} b_{\beta}^{(\gamma)} D_x^{\alpha+\beta-\gamma},$$

where $b_{\beta}^{(\gamma)} = D_x^{\gamma}(b_{\beta})$. The ring \mathcal{E} has an increasing filtration by subspaces $\{\mathcal{E}(m)\}_{m \in \mathbb{Z}}$. We have

$$\mathcal{E}(m)\mathcal{E}(n) = \mathcal{E}(n+m).$$

For any \mathcal{O} -submodule \mathcal{L} of \mathcal{E} we define the induced filtration $\{\mathcal{L}(m)\}_{m\in\mathbb{Z}}$ of \mathcal{L} by $\mathcal{L}(m) = \mathcal{L} \cap \mathcal{E}(m)$.

Let \mathcal{E}_{ϕ} be the \mathcal{O} -module consisting of the formal microdifferential operators of the form

$$\sum_{\alpha_0<0}a_\alpha(x)D_x^\alpha,$$

The ring \mathcal{E} is the direct sum of \mathcal{D} and \mathcal{E}_{ϕ} . For any $P \in \mathcal{E}$, we define $P_+ \in \mathcal{D}$ and $P_- \in \mathcal{E}_{\phi}$ by the decomposition of \mathcal{E} :

$$\mathcal{E} = \mathcal{D} \oplus \mathcal{E}_{\phi}$$

 $P = P_{+} + P_{-}$

For any \mathcal{O} -submodule \mathcal{L} of \mathcal{E} we define the \mathcal{O} -module \mathcal{L}_{-} by $\mathcal{L}_{-} = \mathcal{L} \cap \mathcal{E}_{\phi}$. Remark that $\mathcal{E}(0) = \mathcal{O} \oplus \mathcal{E}_{\phi}(0)$.

In the following we shall study a left \mathcal{D} -submodule I of \mathcal{E} which satisfies the following condition:

$$\mathcal{E}(m) = I(m) \oplus \mathcal{E}_{\phi}(m) \text{ for any } m \in \mathbb{Z}.$$
 (1.1)

For example $I = \mathcal{D}$ satisfies (1.1). We make clear the structure of such a \mathcal{D} -submodule I.

Lemma 1.1 Suppose that a \mathcal{D} -submodule I of \mathcal{E} satisfies the condition (1.1). Then I is generated as \mathcal{D} -module by a unique operator W such that

$$W \in \mathcal{E}(0) \quad \text{and} \quad W_+ = 1.$$
 (1.2)

Proof. The operator W is obtained by decomposing the identity operator $1 \in \mathcal{E}(0)$ into the sum of an operator in I(0) and an operator in $\mathcal{E}_{\phi}(0)$ according to the condition (1.1):

$$egin{array}{rcl} \mathcal{E}(0) &=& I(0) &\oplus& \mathcal{E}_{\phi}(0) \ 1 &=& W &+& U \end{array}$$

It is evident that W is contained in $\mathcal{E}(0)$ and that $W_{+} = 1$. Since we have

$$\mathcal{E}(m)W = \mathcal{E}(m), \quad \mathcal{E}_{\phi}(m)W = \mathcal{E}_{\phi}(m)$$

for any $m \in \mathbb{Z}$, we obtain that

$$\mathcal{E}(m) = \mathcal{D}(m)W \oplus \mathcal{E}_{\phi}(m) \text{ for any } m \in \mathbb{Z}.$$

Thus the \mathcal{D} -module $I' = \mathcal{D}W$ also satisfies (1.1). Because I contains I' and both satisfy (1.1), I coincides with I'. The uniqueness is clear.

Remark that W in Lemma 1.1 is invertible by (1.2).

We investigate nonlinear evolution equations according to the program of M. Sato ([9],[10]). For any $P \in \mathcal{E}$ and any \mathcal{D} -submodule I_0 of \mathcal{E} we define the time evolution I_t of I_0 by the following differential equations:

$$\frac{\partial V(t)}{\partial t} + V(t)P \in I_t \quad \text{for any} \quad V(t) \in I_t.$$
(1.3)

We call $P \in \mathcal{E}$ the generator of the evolution equation (1.3).

In general we cannot find any \mathcal{D} -submodule I_t which solves (1.3). In this paper we shall study the case that we can find a solution I_t of (1.3) which is a \mathcal{D} -module satisfying (1.1) for any t. Then I_t is generated by an operator $W(t) \in \mathcal{E}(0)$ by Lemma 1.1 and we can rewrite the equation (1.3) in terms of the generator W(t).

Lemma 1.2 We fix an operator $P \in \mathcal{E}$. We assume that the solution I_t of the evolution equation (1.3) is a \mathcal{D} -submodule which satisfies (1.1) for any t. Then the equation (1.3) reduces to the following equation

$$\frac{\partial W(t)}{\partial t} + W(t)P = (W(t)PW(t)^{-1})_+ W(t), \qquad (1.4)$$

where the operator W(t) is the generator of I_t in Lemma 1.1.

Proof. From the equation (1.3) there exists an operator $B(t) \in \mathcal{D}$ such that $\partial W(t)$

$$\frac{\partial W(t)}{\partial t} + W(t)P = B(t)W(t).$$

Thus we have

$$B(t) = W(t)PW(t)^{-1} + \frac{\partial W(t)}{\partial t}W(t)^{-1}.$$

Since the operator W(t) is contained in $1 + \mathcal{E}_{\phi}$, the operator $\frac{\partial W(t)}{\partial t}W(t)^{-1}$ is contained in \mathcal{E}_{ϕ} . Thus we obtain that $B(t) = (W(t)PW(t)^{-1})_+$. \Box

Remark. The equation (1.4) is rewritten as

$$\frac{\partial W}{\partial t} = (WPW^{-1})_+ W - WP$$
$$= -(WPW^{-1})_- W. \tag{1.5}$$

The evolution equation (1.4) is associated with an infinitesimal action ρ of \mathcal{E} on the space \mathcal{E} . For $P \in \mathcal{E}$ the vector field $\rho(P)$ is given as follows.

$$W \longrightarrow -(WPW^{-1})_{-}W \in T_W \mathcal{E},$$

where the tangent space $T_W \mathcal{E}$ is identified with \mathcal{E} by the structure of vector space of \mathcal{E} .

Theorem 1.3 For any $P, Q \in \mathcal{E}$ we have

$$\rho([P,Q]) = -[\rho(P), \rho(Q)].$$

Proof. We denote by ϵ_1 and ϵ_2 the time parameters with respect to P and Q, respectively. We set $\tilde{P} = WPW^{-1}$ and $\tilde{Q} = WQW^{-1}$. We have

$$\exp(\epsilon_1 \rho(P))W \equiv (1 - \epsilon_1(\widetilde{P})_-)W \mod \epsilon_1^2,$$
$$\exp(\epsilon_2 \rho(Q))W \equiv (1 - \epsilon_2(\widetilde{Q})_-)W \mod \epsilon_2^2.$$

Hence we have, modulo $\epsilon_1^2, \, \epsilon_2^2$

$$\exp(\epsilon_1 \rho(P))(1 - \epsilon_2 (WQW^{-1})_-)$$

$$\equiv 1 - \epsilon_2 ((1 - \epsilon_1 \widetilde{P}_-) \widetilde{Q}(1 + \epsilon_1 \widetilde{P}_-))_-$$

$$\equiv 1 - \epsilon_2 \widetilde{Q}_- + \epsilon_1 \epsilon_2 [\widetilde{P}_-, \widetilde{Q}]_-.$$

Thus we obtain, modulo ϵ_1^2 , ϵ_2^2

$$\exp(\epsilon_1 \rho(P)) \exp(\epsilon_2 \rho(Q)) W$$

$$\equiv \exp(\epsilon_1 \rho(P))(1 - \epsilon_2 (WQW^{-1})_-) W$$

$$\equiv (1 - \epsilon_2 \widetilde{Q}_- + \epsilon_1 \epsilon_2 [\widetilde{P}_-, \widetilde{Q}]_-)(1 - \epsilon_1 \widetilde{P}_-) W$$

$$\equiv (1 - \epsilon_1 \widetilde{P}_- - \epsilon_2 \widetilde{Q}_- + \epsilon_1 \epsilon_2 ([\widetilde{P}_-, \widetilde{Q}]_- + \widetilde{Q}_- \widetilde{P}_-)) W.$$

Similarly we have, modulo ϵ_1^2 , ϵ_2^2

$$\exp(\epsilon_2 \rho(Q)) \exp(\epsilon_1 \rho(P)) W$$

$$\equiv (1 - \epsilon_2 \widetilde{Q}_- - \epsilon_1 \widetilde{P}_- + \epsilon_1 \epsilon_2 ([\widetilde{Q}_-, \widetilde{P}]_- + \widetilde{P}_- \widetilde{Q}_-)) W.$$

By the formula

$$\exp(\epsilon_1 \rho(P)) \exp(\epsilon_2 \rho(Q)) W - \exp(\epsilon_2 \rho(Q)) \exp(\epsilon_1 \rho(P)) W$$

$$\equiv \epsilon_1 \epsilon_2 [\rho(P), \rho(Q)] W \mod \epsilon_1^2, \ \epsilon_2^2,$$

we obtain

$$\begin{split} [\rho(P), \rho(Q)]W &= \{ [\tilde{P}_{-}, \tilde{Q}]_{-} + \tilde{Q}_{-}\tilde{P}_{-} - [\tilde{Q}_{-}, \tilde{P}]_{-} - \tilde{P}_{-}\tilde{Q}_{-} \}W \\ &= \{ [\tilde{P}_{-}, \tilde{Q}_{+} + \tilde{Q}_{-}]_{-} - [\tilde{Q}_{-}, \tilde{P}_{+} + \tilde{P}_{-}]_{-} + [\tilde{Q}_{-}, \tilde{P}_{-}] \}W. \end{split}$$
(1.6)

Since $[\tilde{P}_+, \tilde{Q}_+]_- = 0$, the right hand side of (1.6) is equal to $\sim \sim$

$$[\widetilde{P}, \widetilde{Q}]_{-}W = -\rho([P, Q])W \qquad \Box$$

When $P, Q \in \mathcal{E}$ commute with each other, the following equations are compatible by Theorem 1.3:

$$\frac{\partial W}{\partial s} = (WPW^{-1})_+W - WP,$$
$$\frac{\partial W}{\partial t} = (WQW^{-1})_+W - WQ,$$

where W = W(s, t).

In the case r = 1, for any $P \in \mathcal{E}$ and for any $I_0 = \mathcal{D}W(0)$ the solution I_t of the equation (1.3) satisfies the condition (1.1) for any t. With the choice $P = D_0^n$ $(n = 1, 2, \cdots)$, we obtain the KP-hierarchy ([7],[8]):

$$\frac{\partial W(t)}{\partial t} + W(t)D_0^n = (W(t)D_0^n W(t)^{-1})_+ W(t).$$

In higher dimensional case, we must choose a nice pair of the generator P and $I_0 = \mathcal{D}W(0)$ in order that I_t satisfies the condition (1.1) for any t. We shall see the evolution equation (1.4) constrains the initial value W(0) in the following example.

Example 1.1 We consider (1.4) in the case r = 2. We take D_0^2 as the generator of the equation (1.4). We write

$$W(t) = \sum_{i+j \le 0, j \ge 0} w_{i,j} D_0^i D_1^j, \ w_{0,0} \equiv 1.$$

The operator $W(t)D_0^2$ is decomposed into the sum

$$\begin{aligned} \mathcal{E} &= \mathcal{D}W & \oplus \mathcal{E}_{\phi} \\ W(t)D_0^2 &= (W(t)D_0^2W(t)^{-1})_+W &+ U \end{aligned}$$

Then we have

$$(W(t)D_{0}^{2}W(t)^{-1})_{+} = (D_{0}^{2} - 2\frac{\partial w_{-1,1}}{\partial x_{0}}D_{1} - 2\frac{\partial w_{-1,0}}{\partial x_{0}}),$$
$$U = \sum_{i+j \le 1, i < 0} (-2\frac{\partial w_{i-1,j}}{\partial x_{0}} + 2\frac{\partial w_{-1,1}}{\partial x_{0}}w_{i,j-1} - \frac{\partial^{2}w_{i,j}}{\partial x_{0}^{2}}$$
$$+ 2\frac{\partial w_{-1,0}}{\partial x_{0}}w_{i,j} + 2\frac{\partial w_{-1,1}}{\partial x_{0}}\frac{\partial w_{i,j}}{\partial x_{1}})D_{0}^{i}D_{1}^{j}.$$

The equation (1.4) is equivalent to the following:

$$\frac{\partial w_{i,j}}{\partial t} + u_{i,j} = 0 \qquad \text{for } i+j \le 0,$$
$$\frac{\partial w_{i-1,j}}{\partial x_0} - \frac{\partial w_{-1,1}}{\partial x_0} w_{i,j-1} = 0, \quad \text{for } i+j = 1.$$

The second equation constrains the initial data W(0).

\S 2. Integrable systems in higher dimensions

In the example 1.1 we have considered the equation (1.3) for one generator $P = D_0^2$. In this section we will introduce a space V of generators, and determine the space of \mathcal{D} -submodules I of \mathcal{E} such that the condition (1.1) is preserved under the time evolution (1.3) for any $P \in V$.

First we review two known examples, the self-dual Yang-Mills equations and the self-dual Einstein equations. We can interpret both the equations as integrable systems of three variables (see [14]).

Example 2.1 Self-dual Yang-Mills equations (see [15],[11]).

The self-dual Yang-Mills equations are written in the following form

$$\frac{\partial A_1}{\partial x_2}(x_1, x_2, s, t) = \frac{\partial A_2}{\partial x_1}(x_1, x_2, s, t),$$
$$\left[\frac{\partial}{\partial s} + A_1(x_1, x_2, s, t), \frac{\partial}{\partial t} + A_2(x_1, x_2, s, t)\right] = 0$$
(2.1)

for gauge fields $A_1, A_2 \in Mat(n \times n)$ on four-dimensional manifolds.

The evolution equation (1.4) is generalized to the case that W and P have matrix coefficients. We introduce the space $\mathcal{W}_{YM}(n)$ and the Lie algebra $V_{YM}(n)$:

$$\mathcal{W}_{YM}(n) = \{ W(x_1, x_2, D_0) = \sum_{i \in \mathbb{N}} w_i(x_1, x_2) D_0^{-i}; \\ w_i \in \operatorname{Mat}(n \times n, \mathbb{C}[[x_1, x_2]]), w_0 \equiv 1_n \}.$$

$$V_{YM}(n) = \{F_1(x_1, x_2, D_0)D_1 + F_2(x_1, x_2, D_0)D_2 + E(x_1, x_2, D_0); F_1, F_2 \in \operatorname{Mat}(n \times n, \mathcal{D}), E \in \operatorname{Mat}(n \times n, \mathcal{E})\}.$$

The evolution equation (1.4) for $P \in V_{YM}(n)$ with any initial value $W \in \mathcal{W}_{YM}(n)$ has a solution in $\mathcal{W}_{YM}(n)$. We consider the equation (1.4) for $P = D_0 D_1, D_0 D_2 \in V_{YM}(n)$:

$$\frac{\partial W}{\partial s} + W D_0 D_1 = (W D_0 D_1 W^{-1})_+ W,
\frac{\partial W}{\partial t} + W D_0 D_2 = (W D_0 D_2 W^{-1})_+ W.$$
(2.2)

In terms of the coefficients w_j of W the equation (2.2) is written in the form

$$\frac{\partial w_i}{\partial s} = \frac{\partial w_{i+1}}{\partial x_1} - \frac{\partial w_1}{\partial x_1} w_i,$$

$$\frac{\partial w_i}{\partial t} = \frac{\partial w_{i+1}}{\partial x_2} - \frac{\partial w_1}{\partial x_2} w_i,$$
(2.3)

for i > 0. We set $A_j = \frac{\partial w_1}{\partial x_j}$ (j = 1, 2). By eliminating w_2 from the equation (2.3) for i = 1, we obtain the equation (2.1).

Example 2.2 Self-dual Einstein equations (see [2],[12]).

The self-dual Einstein equations are written in the form (see [6])

$$\frac{\partial A_1}{\partial x_2}(x_1, x_2, s, t) = \frac{\partial A_2}{\partial x_1}(x_1, x_2, s, t),$$

$$\frac{\partial B_1}{\partial x_2}(x_1, x_2, s, t) = \frac{\partial B_2}{\partial x_1}(x_1, x_2, s, t),$$

$$[\frac{\partial}{\partial s} + A_1(x_1, x_2, s, t)\frac{\partial}{\partial x_1} + B_1(x_1, x_2, s, t)\frac{\partial}{\partial x_2},$$

$$\frac{\partial}{\partial t} + A_2(x_1, x_2, s, t)\frac{\partial}{\partial x_1} + B_2(x_1, x_2, s, t)\frac{\partial}{\partial x_2}] = 0,$$

$$\frac{\partial B_j}{\partial x_2}(x_1, x_2, s, t) + \frac{\partial A_j}{\partial x_1}(x_1, x_2, s, t) = 0 \quad (j = 1, 2).$$
(2.4)

In the following we forget the last equation in (2.4) for simplicity.

We introduce the space \mathcal{W}_E and the Lie algebra V_E :

$$\mathcal{W}_{E} = \{ W = \sum_{j,k \in \mathbb{N}} \frac{1}{j!k!} G_{1}^{j} G_{2}^{k} D_{1}^{j} D_{2}^{k}; \quad G_{i} = \sum_{j < 0} g_{i,j}(x_{1}, x_{2}) D_{0}^{j}(i = 1, 2) \}.$$
$$V_{E} = \{ F_{1}(x_{1}, x_{2}, D_{0}) D_{1} + F_{2}(x_{1}, x_{2}, D_{0}) D_{2}; F_{1}, F_{2} \in \mathcal{E} \}.$$

The evolution equation (1.4) for $P \in V_E$ with any initial value $W \in \mathcal{W}_E$ has a solution in \mathcal{W}_E . We consider (1.4) for $P = D_0 D_1, D_0 D_2 \in V_E$:

$$\frac{\partial W}{\partial s} + W D_0 D_1 = (W D_0 D_1 W^{-1})_+ W,
\frac{\partial W}{\partial t} + W D_0 D_2 = (W D_0 D_2 W^{-1})_+ W.$$
(2.5)

In terms of the coefficients $g_{i,j}$ the equation (2.5) is written in the form:

$$\frac{\partial g_{i,j}}{\partial s} = \frac{\partial g_{i,j-1}}{\partial x_1} - \frac{\partial g_{1,-1}}{\partial x_1} \frac{\partial g_{i,j}}{\partial x_1} - \frac{\partial g_{2,-1}}{\partial x_1} \frac{\partial g_{i,j}}{\partial x_2},$$

$$\frac{\partial g_{i,j}}{\partial t} = \frac{\partial g_{i,j-1}}{\partial x_2} - \frac{\partial g_{1,-1}}{\partial x_2} \frac{\partial g_{i,j}}{\partial x_1} - \frac{\partial g_{2,-1}}{\partial x_2} \frac{\partial g_{i,j}}{\partial x_2} \quad \text{for } i = 1, 2, j < 0.$$
(2.6)

We set $A_j = -\frac{\partial g_{1,-1}}{\partial x_j}$, $B_j = -\frac{\partial g_{2,-1}}{\partial x_j}$ (j = 1,2). By eliminating $g_{i,-2}$ (i = 1,2) from the equation (2.6) for i = 1, 2, j = -1, we obtain the equation (2.4).

We shall unify these two examples and obtain more general systems. We introduce the Lie subalgebra V of \mathcal{E} which contains both the Lie algebras V_{YM} and V_E :

$$V = \{F_0(x', D_0)x_0 + \sum_{0 < j < r} F_j(x', D_0)D_j + E(x', D_0); F_k(x', D_0), E(x', D_0) \in \mathcal{E}, \ (0 \le k < r)\},\$$

where $x' = (x_1, x_2, \cdots, x_{r-1}).$

Lemma 2.1 V is isomorphic to $\mathcal{D}(1) \otimes_{\mathcal{O}} \mathbb{C}[[x]][x_0^{-1}]$ as a Lie algebra.

Proof. Set $X = \mathbb{C}^r = \{(z_0, z_1, \cdots, z_{r-1}) \in \mathbb{C}^r\}$, and $Y = \{z \in X; z_0 = 0\}$. We take the transformation

$$x_0 = z_0^2 D_{z_0}, \ D_{x_0} = z_0^{-1}, \ x' = z', \ D_{x'} = D_{z'}.$$

Then the transform of V is $\mathcal{D}(1) \otimes \mathbb{C}[[z]][z_0^{-1}]$.

The Lie algebra $\mathcal{D}(1) \otimes \mathbb{C}[[x]][x_0^{-1}]$ is the direct sum of the Lie algebra $\Theta \otimes_{\mathcal{O}} \mathbb{C}[[x]][x_0^{-1}]$ of vector fields and the commutative Lie algebra $\mathbb{C}[[x]][x_0^{-1}]$, where the Lie algebra Θ is defined by

$$\Theta = \sum_{0 \le j < r} \mathcal{O}D_j.$$

The Lie algebra $\Theta \otimes_{\mathcal{O}} \mathbb{C}[[x]][x_0^{-1}]$ corresponds to the infinitesimal coordinate transformations, and the Lie algebra $\mathbb{C}[[x]][x_0^{-1}]$ corresponds to the infinitesimal gauge transformations of a line bundle.

Now we shall determine the set of \mathcal{D} -submodules in \mathcal{E} such that the condition (1.1) is preserved under (1.3) with respect to any $P \in V$. We introduce the subspaces \mathcal{W}_m and \mathcal{W}_{YM} of \mathcal{E} :

$$\mathcal{W}_m = \{ W(x, D_x) = \sum_{\alpha \in \mathbb{N}^r} \frac{1}{\alpha!} G^{\alpha} x_0^{\alpha_0} D_x^{\alpha} \in \mathcal{E};$$

$$G^{\alpha} = G_0^{\alpha_0} G_1^{\alpha_1} \cdots G_{r-1}^{\alpha_{r-1}} \quad \text{where } G_j = G_j(x', D_0) \in \mathcal{E}(-1) \},$$

$$\mathcal{W}_{YM} = \{ W(x', D_0) = \sum_{i \in \mathbb{N}} w_i(x') D_0^{-i}; w_i \in \mathbb{C}[[x_1, \cdots, x_{r-1}]], w_0 \equiv 1. \}.$$

Proposition 2.2 Let $I_0 = \mathcal{D}W_0$ be a \mathcal{D} -submodule of \mathcal{E} . Assume that the time evolution of I_0 for any $P \in V$ also satisfies the condition (1.1). Then W_0 factorizes into the product of $W_m \in \mathcal{W}_m$ and $W_{YM} \in \mathcal{W}_{YM}$;

$$W_0 = W_m W_{YM}.$$

Remark. The operator W_m corresponds to the equation of self-dual metrics (see §3).

Proof of Proposition 2.2.

Step 1.

Lemma 2.3 Let W(t) be the solution of (1.4) for $P \in V$ with $W(0) = W_0$. Then $(W(t)PW(t)^{-1})_{-}$ is contained in $\mathcal{E}_{\phi}(0)$.

Proof.

It follows from the equation (1.5) that

$$\frac{\partial W(t)}{\partial t}W(t)^{-1} = -(W(t)PW(t)^{-1})_{-}.$$

Since the operator $\frac{\partial W(t)}{\partial t}W(t)^{-1}$ is contained in $\mathcal{E}(0)$, we obtain Lemma 2.3.

Step 2. For any $P \in \mathcal{E}$, let \tilde{P} be $W_0 P W_0^{-1}$.

Lemma 2.4 Suppose that $P, Q \in V$ commute with each other. The operator $[\tilde{P}_+, \tilde{Q}_-]_-$ is contained in $\mathcal{E}_{\phi}(0)$.

Proof. We consider the solution W = W(s,t) of the equation (1.5) for the operators P, Q:

$$\frac{\partial W}{\partial s} = -(WPW^{-1})_{-}W,$$

$$\frac{\partial W}{\partial t} = -(WQW^{-1})_{-}W,$$
(2.7)

where W = W(s,t). Since [P,Q] = 0, the system (2.7) is compatible by Theorem 1.3. It follows from Lemma 2.3 that WPW^{-1} is contained in $\mathcal{D} + \mathcal{E}_{\phi}(0)$. We have

$$\begin{aligned} \frac{\partial}{\partial t}(WPW^{-1}) &= \frac{\partial W}{\partial t}PW^{-1} - WPW^{-1}\frac{\partial W}{\partial t}W^{-1} \\ &= -(WQW^{-1}) - WPW^{-1} + WPW^{-1}(WQW^{-1}) - \\ &= [WPW^{-1}, (WQW^{-1}) -]. \end{aligned}$$

Hence $[\tilde{P}, \tilde{Q}_{-}]$ is contained in $\mathcal{D} + \mathcal{E}_{\phi}(0)$. Since $[\tilde{P}_{-}, \tilde{Q}_{-}]$ is contained in $\mathcal{E}_{\phi}(0)$ by Lemma 2.3, $[\tilde{P}_{+}, \tilde{Q}_{-}]$ is contained in $\mathcal{D} + \mathcal{E}_{\phi}(0)$.

Step 3 Recall that \tilde{P} denotes $W_0 P W_0^{-1}$ for any $P \in \mathcal{E}$. We define the operators $G_i, H_i \in \mathcal{E}$ $(0 \le i < r)$ as follows:

$$\widetilde{D}_{0} = D_{0} - G_{0}(x, D_{x}),
\widetilde{x}_{i} = x_{i} + G_{i}(x, D_{x}) \text{ for } i = 1, 2, \cdots, r - 1,
\widetilde{x}_{0} = x_{0} + H_{0}(x, D_{x}),
\widetilde{D}_{i} = D_{i} + H_{i}(x, D_{x}) \text{ for } i = 1, 2, \cdots, r - 1.$$
(2.8)

Lemma 2.5 Assume that W_0 satisfies the condition in Proposition 2.2. The operators G_i, H_i are written in the following form:

$$\begin{aligned} G_i &= G_i(x', D_0) \in \mathcal{E}(-1), \\ H_i &= \sum_{0 < j < r} K_{ij}(x', D_0) D_j + L_i(x, D_0) \quad \text{for } 0 \le i < r, \\ &\text{where} \quad K_{ij}(x', D_0) \in \mathcal{E}, \quad L_i(x, D_0) \in \mathcal{E}(-1), \\ &\text{and} \quad x' = (x_1, \ \cdots, x_{r-1}). \end{aligned}$$

Proof. We shall show the following statement $(2.9)_n$ by the induction on n:

$$G_{i} \stackrel{\leftarrow}{=} G_{i}' + G_{i}'', \quad H_{i} = H_{i}' + H_{i}''$$

for some G_{i}', H_{i}', G_{i}'' and $H_{i}'' (0 \le i < r)$ such that
 $G_{0}'', H_{i}'' \in \mathcal{E}(-n), \quad G_{i}'', H_{0}'' \in \mathcal{E}(-n-1)$ for $0 < i < r$,
 $G_{i}' = G_{i}'(x', D_{0}) \in \mathcal{E}(-1),$
 $H_{i}' = \sum_{0 < j < r} K_{ij}(x', D_{0})D_{j} + L_{i}(x, D_{0})$ for $0 \le i < r$
with $K_{ij}(x', D_{0}), L_{i}(x, D_{0}) \in \mathcal{E}(-1).$ (2.9)_n

It is evident that the statement $(2.9)_0$ is true. By assuming $(2.9)_n$ we shall prove $(2.9)_{n+1}$.

We expand the operators:

$$G_{j}^{\prime\prime} = \sum_{k \le 0, \alpha' \in \mathbb{N}^{r-1}} g_{k,\alpha'}^{(j)} D_{0}^{k} D_{x'}^{\alpha'},$$

$$H_{j}^{\prime\prime} = \sum_{k \le 0, \alpha' \in \mathbb{N}^{r-1}} h_{k,\alpha'}^{(j)} D_{0}^{k} D_{x'}^{\alpha'}.$$
 (2.10)

Since G_0'' belongs to $\mathcal{E}(-n)$, we have

$$\widetilde{D}_0^{n+2} = (D_0 - G'_0 - G''_0)^{n+2}$$

$$\equiv (D_0 - G'_0)^{n+2} - (n+2)G''_0(D_0 - G'_0)^{n+1}$$

$$\equiv (D_0 - G'_0)^{n+2} - (n+2)G''_0D_0^{n+1} \mod \mathcal{E}(0).$$

The operator $(D_0 - G'_0)^{n+2}$ belongs to $\mathcal{D} + \mathcal{E}(0)$, because G'_0 does not contain $D_j(0 < j < r)$. Hence we obtain

$$\widetilde{D}_0^{n+2} \equiv -(n+2)G_0''D_0^{n+1} \mod \mathcal{D} + \mathcal{E}(0).$$

Since \widetilde{D}_0^{n+2} is contained in $\mathcal{D} + \mathcal{E}(0)$ for any $n \in \mathbb{Z}$ by Lemma 2.3, $G_0'' D_0^{n+1}$ is also contained in $\mathcal{D} + \mathcal{E}(0)$. Therefore we obtain

$$g_{-n-|\alpha'|,\alpha'}^{(0)} = 0 \quad \text{for} \quad |\alpha'| \ge 2.$$
 (2.11)

Similarly we have, modulo $\mathcal{D}+\mathcal{E}(0)$

$$\begin{split} \widetilde{D}_{0}^{n+1}\widetilde{D}_{j} &\equiv -(n+1)G_{0}^{\prime\prime}D_{0}^{n}D_{j} + H_{j}^{\prime\prime}D_{0}^{n+1}, \\ \widetilde{x}_{0}\widetilde{D}_{0}^{n+2} &\equiv -(n+2)x_{0}G_{0}^{\prime\prime}D_{0}^{n+1} + H_{0}^{\prime\prime}D_{0}^{n+2}, \\ \widetilde{x}_{j}\widetilde{D}_{0}^{n+1}\widetilde{D}_{k} &\equiv G_{j}^{\prime\prime}D_{0}^{n+1}D_{k} + x_{j}(H_{k}^{\prime\prime}D_{0}^{n+1} - (n+1)G_{0}^{\prime\prime}D_{0}^{n}D_{k}). \end{split}$$

By Lemma 2.3, $\widetilde{D}_0^{n+1}\widetilde{D}_j$, $\widetilde{x}_0\widetilde{D}_0^{n+2}$ and $\widetilde{x}_j\widetilde{D}_0^{n+1}\widetilde{D}_k$ are contained in $\mathcal{D}+\mathcal{E}(0)$. Thus we obtain

$$h_{-|\alpha'|-n,\alpha'}^{(j)} = 0 \quad \text{for } |\alpha'| \ge 3,$$

$$h_{-2-n,\alpha'+e_j}^{(j)} = (n+1)g_{-1-n,\alpha'}^{(0)} \quad \text{for } |\alpha'| = 1,$$

$$h_{-|\alpha'|-n-1,\alpha'}^{(0)} = 0 \quad \text{for } |\alpha'| \ge 2,$$

$$g_{-|\alpha'|-n-1,\alpha'}^{(j)} = 0 \quad \text{for } |\alpha'| \ge 2,$$
(2.12)

where $j = 1, 2, \dots, r-1$ and $e_j = (0, \dots, 1, \dots, 0) \in \mathbb{N}^{r-1}$. We denote by \mathcal{V} and \mathcal{V}' the subspaces of $\mathcal{D} + \mathcal{E}(0)$:

$$\mathcal{V} = \{ \sum_{0 < k < r} F_k(x, D_0) D_k + E(x, D_0); \quad F_k(x, D_0), E(x, D_0) \in \mathcal{E} \},$$

$$\mathcal{V}' = \{ \sum_{0 < k < r} F_k(x', D_0) D_k + E(x, D_0); \quad F_k(x', D_0), E(x, D_0) \in \mathcal{E} \}.$$

For $P, Q \in \mathcal{V}'$ the commutator [P, Q] is contained in \mathcal{V} . Since H'_j $(0 \le j < r)$ are contained in \mathcal{V}' , $[H'_i, H'_j]$ $[x_0, H'_j]$ $(0 \le i, j < r)$ are contained in \mathcal{V} .

For j > 0 we have

$$\begin{split} [\widetilde{x}_0, \widetilde{D}_j] =& [x_0, H_j] - \frac{\partial H_0}{\partial x_j} + [H_0, H_j] \\ =& [x_0, H_j''] - \frac{\partial H_0''}{\partial x_j} + ([H_0'', H_j''] + [H_0', H_j''] + [H_0'', H_j']) \\ &+ ([x_0, H_j'] - \frac{\partial H_0'}{\partial x_j} + [H_0', H_j']) \\ \equiv& [x_0, H_j''] - \frac{\partial H_0''}{\partial x_j} \quad \text{modulo } \mathcal{E}(-n-2) + \mathcal{V}. \end{split}$$

Since $[\widetilde{x}_0, \widetilde{D}_j] = 0$, $[x_0, H''_j] - \frac{\partial H''_0}{\partial x_j}$ belongs to $\mathcal{E}(-n-2) + \mathcal{V}$. By (2.10) we

have, modulo $\mathcal{E}(-n-2) + \mathcal{V}$

$$[x_{0}, H_{j}''] - \frac{\partial H_{0}''}{\partial x_{j}}$$

$$\equiv \sum_{|\alpha'| \ge 2} ((n + |\alpha'|)h_{-n-|\alpha'|,\alpha'}^{(j)} - \frac{\partial h_{-n-1-|\alpha'|,\alpha'}^{(0)}}{\partial x_{j}})D_{0}^{-1-n-|\alpha'|}D_{x'}^{\alpha'}$$
(2.13)

We obtain from (2.12) and (2.13) that

$$h_{-2-n,\alpha'}^{(j)} = 0 \quad \text{for } |\alpha'| = 2, \quad 0 < j < r,$$

$$g_{-1-n,\alpha'}^{(0)} = 0 \quad \text{for } |\alpha'| = 1.$$
(2.14)

Similarly by the equations

$$\begin{split} [\widetilde{D}_{0}, \widetilde{D}_{j}] &= \frac{\partial H_{j}}{\partial x_{0}} + \frac{\partial G_{0}}{\partial x_{j}} - [G_{0}, H_{j}] = 0 \quad \text{for} \quad 0 < j < r, \\ [\widetilde{D}_{0}, \widetilde{x}_{j}] &= \frac{\partial G_{j}}{\partial x_{0}} + [G_{j}, G_{0}] - [G_{0}, x_{j}] = 0 \quad \text{for} \quad 0 < j < r, \\ [\widetilde{D}_{0}, \widetilde{x}_{0}] &= 1 + [D_{0}, H_{0}] - [G_{0}, x_{0}] + [G_{0}, H_{0}] = 1, \end{split}$$

we obtain

$$\frac{\partial h_{-1-n,e_k}^{(j)}}{\partial x_0} = 0, \ \frac{\partial h_{-2-n,e_k}^{(0)}}{\partial x_0} = 0, \ \frac{\partial g_{-1-n,0}^{(j)}}{\partial x_0} = 0.$$
(2.15)

For 0 < i < r we have modulo $\mathcal{E}(-1)$

$$\widetilde{D}_{0}^{n}\widetilde{D}_{i} = (D_{0} - G_{0}' - G_{0}'')^{n}(D_{i} + H_{i}' + H_{i}'')$$

$$\equiv ((D_{0} - G_{0}')^{n} - nG_{0}''(D_{0} - G_{0}')^{n-1})(D_{i} + H_{i}' + H_{i}'')$$

$$\equiv -nG_{0}''D_{0}^{n-1}D_{i} + (D_{0} - G_{0}')^{n}(D_{i} + H_{i}') + H_{i}''D_{0}^{n}.$$
(2.16)

By (2.12) and (2.14) we have

$$H_i'' D_0^n \equiv \sum_{0 < j < r} h_{-1-n,e_j}^{(i)} D_0^{-1} D_j \mod \mathcal{E}(-1),$$
$$-nG_0'' D_0^{n-1} D_i \equiv -ng_{-n,0}^{(0)} D_0^{-1} D_i \mod \mathcal{E}(-1).$$

We set K_{ij} and L_i in $(2.9)_n$ as follows:

$$K_{ij}(x', D_0) = \sum_{m < 0} k_{i,j,m}(x') D_0^m,$$
$$L_i(x, D_0) = \sum_{m < 0} l_{i,m}(x') D_0^m$$

By $(2.9)_n$ we have

$$(\widetilde{D}_{0}\widetilde{D}_{i})_{+} = (D_{0} - G_{0})(D_{i} + H_{i}' + H_{i}'')$$

= $D_{0}D_{i} + \{D_{0}(H_{i}' + \sum_{1 \leq j < r} K_{ij} + L_{i})\}_{+}$
= $D_{0}D_{i} + \sum_{1 \leq j < r} (h_{-1,e_{j}}^{(i)} + k_{i,j,-1})D_{j} + l_{i,-1}$ (2.17)

Sublemma. We have

$$\frac{\partial g_{-n,0}^{(0)}}{\partial x_0} = 0. (2.18)$$

Proof. The commutator $[(\widetilde{D}_0 \widetilde{D}_i)_+, \widetilde{D}_0^n \widetilde{D}_i]$ is contained in $\mathcal{D} + \mathcal{E}(0)$ by Lemma 2.4. By (2.16) and (2.17) we have, modulo $\mathcal{E}(0)$

$$\begin{split} &[(\widetilde{D}_{0}\widetilde{D}_{i})_{+},\widetilde{D}_{0}^{n}\widetilde{D}_{i}] \\ \equiv &[(\widetilde{D}_{0}\widetilde{D}_{i})_{+},-ng_{-n,0}^{(0)}D_{0}^{-1}D_{i} \\ &+ \sum_{0 < j < r} h_{-1-n,e_{j}}^{(0)}D_{0}^{-1}D_{j} + (D_{0} - G_{0}')^{n}(D_{i} + H_{i}')] \\ \equiv &[D_{0}D_{i},-ng_{-n,0}^{(0)}D_{0}^{-1}D_{i}] \\ &+ [(\widetilde{D}_{0}\widetilde{D}_{i})_{+},\sum_{0 < j < r} h_{-1-n,e_{j}}^{(i)}D_{0}^{-1}D_{j} + (D_{0} - G_{0}')^{n}(D_{i} + H_{i}')]. \end{split}$$

Since $(\widetilde{D}_0 \widetilde{D}_i)_+$ and $\sum_{0 < j < r} h_{-1-n,e_j}^{(i)} D_0^{-1} D_j + (D_0 - G'_0)^n (D_i + H'_i)$ are contained in \mathcal{V} , the operator

$$[D_0 D_i, -ng_{-n,0}^{(0)} D_0^{-1} D_i] = -n \frac{\partial g_{-n,0}^{(0)}}{\partial x_0} D_0^{-1} D_i^2 - n \frac{\partial g_{-n,0}^{(0)}}{\partial x_i} D_i - n \frac{\partial^2 g_{-n,0}^{(0)}}{\partial x_0 \partial x_i}$$

is contained in $\mathcal{D}+\mathcal{E}(0)$. This implies (2.18).

It follows from (2.11), (2.12) and (2.14) that we have

$$\begin{aligned} G_0' - g_{-n,0}^{(0)} D_0^{-n} &\in \mathcal{E}(-n-1), \\ G_i' - g_{-n-1,0}^{(i)} D_0^{-n-1} &\in \mathcal{E}(-n-2), \\ H_0' - \big(\sum_{0 < k < r} h_{-n-2,e_k}^{(0)} D_0^{-n-2} D_k + h_{-n-1,0}^{(0)} D_0^{-n-1}\big) &\in \mathcal{E}(-n-2), \\ H_i' - \big(\sum_{0 < k < r} h_{-n-1,e_k}^{(i)} D_0^{-n-1} D_k + h_{-n,0}^{(i)} D_0^{-n}\big) &\in \mathcal{E}(-n-1). \end{aligned}$$

for 0 < i < r. Thus we obtain $(2.9)_{n+1}$ from (2.15) and (2.18).

Step 4 Now we shall prove Proposition 2.2. We introduce a microdifferential operator

$$W_m = \sum_{\alpha \in \mathbb{N}^r} \frac{1}{\alpha!} G^{\alpha} x_0^{\alpha_0} D_{x'}^{\alpha'},$$

where $G^{\alpha} = G_0^{\alpha_0} G_1^{\alpha_1} \cdots G_{r-1}^{\alpha_{r-1}}$ is given in Lemma 2.5. Then we have

$$[D_0, W_m] = \sum_{\alpha \in \mathbb{N}^r} \frac{\alpha_0}{\alpha!} G^{\alpha} x_0^{\alpha_0 - 1} D_{x'}^{\alpha'}$$
$$= G_0 \sum_{\alpha \in \mathbb{N}^r} \frac{1}{\alpha!} G^{\alpha} x_0^{\alpha_0} D_{x'}^{\alpha'} = G_0 W_m$$

 \Box

Hence we get

$$W_m D_0 W_m^{-1} = D_0 - G_0. (2.20)$$

Similarly we obtain that

$$W_m x_j W_m^{-1} = x_j + G_j \quad (1 \le j < r).$$
(2.21)

Set $W_{YM} = W_m^{-1}W$. Then it follows from (2.8), (2.20) and (2.21) that W_{YM} commutes with D_0, x_1, \dots, x_{r-1} . Therefore W_{YM} is contained in W_{YM} .

Thus we have completed the proof of Proposition 2.2.

We set

$$\mathcal{W} = \{ W_m W_{YM}; \quad W_m \in \mathcal{W}_m, W_{YM} \in \mathcal{W}_{YM} \}.$$

We shall investigate the structure of $\mathcal{W}, \mathcal{W}_m$ and \mathcal{W}_{YM} .

Proposition 2.6 The spaces \mathcal{W} , \mathcal{W}_m and \mathcal{W}_{YM} are groups by the composition of microdifferential operators, and \mathcal{W}_{YM} is a normal subgroup in \mathcal{W} .

Proof. It is evident that \mathcal{W}_{YM} is an abelian group.

Let $W_m = \sum_{\alpha} \frac{1}{\alpha!} G^{\alpha} x_0^{\alpha_0} D_{x'}^{\alpha'}$ and $W'_m = \sum_{\beta} \frac{1}{\beta!} F^{\beta} x_0^{\beta_0} D_{x'}^{\beta'}$ be operators in \mathcal{W}_m . For any microdifferential operator $P(x', D_0)$, we set

$$P := W_m P W_m^{-1} = P(x_1 + G_1, \cdots, x_{r-1} + G_{r-1}, D_0 - G_0).$$

The last equality follows from (2.20) and (2.21). Noting that \tilde{P} commutes with G_j , the composition

$$W_{m}W'_{m} = \sum_{\gamma} \frac{1}{\beta!} \widetilde{F}^{\beta} W_{m} x_{0}^{\beta_{0}} D_{x'}^{\beta'}$$
$$= \sum_{\alpha,\beta} \frac{1}{\beta!} \widetilde{F}^{\beta} \frac{1}{\alpha!} G^{\alpha} x_{0}^{\alpha_{0}+\beta_{0}} D_{x'}^{\alpha'+\beta'}$$
$$= \sum_{\gamma} \frac{1}{\gamma!} (\widetilde{F}+G)^{\gamma} x_{0}^{\gamma_{0}} D_{x'}^{\gamma'}$$
(2.22)

is contained in \mathcal{W}_m . For $W_{YM} = \sum_i w_i(x') D_0^{-i} \in \mathcal{W}_{YM}$ the operator

$$W_m W_{YM} W_m^{-1} = \sum_{i \ge 0} w_i (x_1 + G_1, x_2 + G_2, \cdot , x_{r-1} + G_{r-1}) (D_0 - G_0)^{-i}$$
(2.23)

is contained in \mathcal{W}_{YM} . Since $\mathcal{W} = \mathcal{W}_m \mathcal{W}_{YM}$, it follows from (2.22) and (2.23) that \mathcal{W} is a group and that \mathcal{W}_{YM} is a normal subgroup of \mathcal{W} . \Box

We define the Lie subalgebras V_m and V_{YM} of V

$$V_m = \{F_0(x', D_0)x_0 + \sum_{0 < j < r} F_j(x', D_0)D_j;$$

$$F_k(x', D_0) \in \mathcal{E}, \ (0 \le k < r)\},$$

$$V_{YM} = \{E(x', D_0); \ E(x', D_0) \in \mathcal{E}\}.$$

We have

$$V = V_m \oplus V_{YM}.$$

Proposition 2.7 For any $P \in V$ (resp. V_m, V_{YM}) and $W \in \mathcal{W}$ (resp. $\mathcal{W}_m, \mathcal{W}_{YM}$), we have $WPW^{-1} \in V$ (resp. V_m, V_{YM}).

Proof. For $W = \sum_{\alpha} \frac{1}{\alpha!} G^{\alpha} x_0^{\alpha_0} D_{x'}^{\alpha'} \in \mathcal{W}_m$ we have

$$[D_i, W] = \sum_{0 \le j < r} \sum_{\alpha} \frac{\alpha_j}{\alpha!} G^{\alpha} \frac{\partial G_j}{\partial x_i} x_0^{\alpha_0} D_{x'}^{\alpha'}$$
$$= \sum_{0 < j < r} \frac{\partial G_j}{\partial x_i} W D_j + \frac{\partial G_0}{\partial x_i} W x_0$$

for any $i = 1, 2, \dots, r-1$. Similarly we have

$$[x_0, W] = \sum_{0 < j < r} [x_0, G_j] W D_j + [x_0, G_0] W x_0.$$

Hence we obtain

$$WD_{i}W^{-1} = D_{i} - \sum_{0 < j < r} \frac{\partial G_{j}}{\partial x_{i}} WD_{j}W^{-1} - \frac{\partial G_{0}}{\partial x_{i}} Wx_{0}W^{-1} \quad \text{for } 0 < i < r,$$

$$Wx_{0}W^{-1} = x_{0} - \sum_{0 < j < r} [x_{0}, G_{j}]WD_{j}W^{-1} - [x_{0}, G_{0}]Wx_{0}W^{-1}.$$

(2.24)

We set

$$G_{ij} = \begin{cases} \frac{\partial G_j}{\partial x_i} & \text{for } 0 < i < r, \\ [x_0, G_j] & i = 0, \end{cases}$$

for $0 \leq j < r$. Then we have

$$x_{0} = (1 + G_{00})Wx_{0}W^{-1} + \sum_{0 < j < r} G_{0j}WD_{j}W^{-1},$$

$$D_{i} = G_{i0}Wx_{0}W^{-1} + \sum_{0 < j < r} (\delta_{ij} + G_{ij})WD_{j}W^{-1} \quad \text{for} \quad 0 < i < r.$$

(2.25)

Since $G_{ij} \in \mathcal{E}(-1)$, The matrix $(\delta_{ij} + G_{ij})_{0 \leq i,j < r}$ is invertible. Hence WD_iW^{-1} (0 < i < r) and Wx_0W^{-1} are contained in V_m , because G_{ij} is independent of x_0, D_1, \dots, D_{r-1} . For any operator $P = P(x', D_0) \in \mathcal{E}$, WPW^{-1} is independent of x_0, D_1, \dots, D_{r-1} by (2.20) and (2.21). Hence we get Proposition 2.7 for V_m and \mathcal{W}_m .

The proposition is evident for V_{YM} and \mathcal{W}_{YM} . For $W_m \in \mathcal{W}_m$ and $E \in V_{YM}$ the operator $W_m E W_m^{-1}$ is contained in V_{YM} by (2.20) and (2.21). For $W_{YM} \in \mathcal{W}_{YM}$ we have

$$W_{YM} D_i W_{YM}^{-1} = D_i - \frac{\partial W_{YM}}{\partial x_i} W_{YM}^{-1} \quad \text{for } 0 < i < r,$$

$$W_{YM} x_0 W_{YM}^{-1} = x_0 - [x_0, W_{YM}] W_{YM}^{-1}.$$

Since W_{YM} commutes with D_0, x_1, \dots, x_{r-1} , the operator $W_{YM}PW_{YM}^{-1}$ is contained in V for any $P \in V$. Since $V = V_m \oplus V_{YM}$ and $\mathcal{W} = \mathcal{W}_m \mathcal{W}_{YM}$, we get Proposition 2.7.

Example 2.3 We shall write down the evolution equations (1.4) for $W \in \mathcal{W}$ in the case r = 3. We take $D_0 D_1, D_0 D_2$ as generators of (1.4).

We set

$$W = \left(\sum_{\alpha \in \mathbb{N}^3} \frac{1}{\alpha!} G^{\alpha} x_0^{\alpha_0} D_{x'}^{\alpha'}\right) \left(\sum_i w_i(x') D_0^{-i}\right),$$

where $G_i(x_1, x_2, D_0) = \sum_{j < 0} g_{i,j}(x_1, x_2) D_0^j$ $(i = 1, 2).$

Then we have

$$(\widetilde{D}_{0}\widetilde{D}_{1})_{+} = D_{0}D_{1} - \frac{\partial g_{0,-1}}{\partial x_{1}}x_{0} - \sum_{i=1,2} \frac{\partial g_{i,-1}}{\partial x_{1}}D_{i} - \frac{\partial w_{1}}{\partial x_{1}},$$
$$(\widetilde{D}_{0}\widetilde{D}_{2})_{+} = D_{0}D_{2} - \frac{\partial g_{0,-1}}{\partial x_{2}}x_{0} - \sum_{i=1,2} \frac{\partial g_{i,-1}}{\partial x_{2}}D_{i} - \frac{\partial w_{1}}{\partial x_{2}},$$

Taking time parameters s and t with respect to D_0D_1 and D_0D_2 , respectively, we obtain the evolution equations

$$\frac{\partial W}{\partial s} + W D_0 D_1 = (D_0 D_1 - \frac{\partial g_{0,-1}}{\partial x_1} x_0 - \sum_{i=1,2} \frac{\partial g_{i,-1}}{\partial x_1} D_i - \frac{\partial w_1}{\partial x_1}) W,$$

$$\frac{\partial W}{\partial t} + W D_0 D_2 = (D_0 D_2 - \frac{\partial g_{0,-1}}{\partial x_2} x_0 - \sum_{i=1,2} \frac{\partial g_{i,-1}}{\partial x_2} D_i - \frac{\partial w_1}{\partial x_2}) W.$$

(2.26)

It follows from (2.26) that we obtain the Zakharov-Shabat type equation

$$\begin{bmatrix} \frac{\partial}{\partial s} - D_0 D_1 + \frac{\partial g_{0,-1}}{\partial x_1} x_0 + \sum_{i=1,2} \frac{\partial g_{i,-1}}{\partial x_1} D_i + \frac{\partial w_1}{\partial x_1}, \\ \frac{\partial}{\partial t} - D_0 D_2 + \frac{\partial g_{0,-1}}{\partial x_2} x_0 + \sum_{i=1,2} \frac{\partial g_{i,-1}}{\partial x_2} D_i + \frac{\partial w_1}{\partial x_2} \end{bmatrix} = 0.$$
(2.27)

We shall investigate the infinitesimal action ρ of the Lie subalgebra V of \mathcal{E} . Remark that the Lie algebra of the group \mathcal{W} (resp. $\mathcal{W}_m, \mathcal{W}_{YM}$) is

canonically isomorphic to the Lie subalgebra $V_{-} = V \cap \mathcal{E}_{\phi}$ (resp. $(V_m)_{-}$, $(V_{YM})_{-}$).

Theorem 2.8 The action ρ of V (resp. V_m , V_{YM}) preserves the space \mathcal{W} (resp. \mathcal{W}_m , \mathcal{W}_{YM}). The action of V_- (resp. $(V_m)_-$, $(V_{YM})_-$) coincides with the infinitesimal right action of on the group \mathcal{W} (resp. \mathcal{W}_m , \mathcal{W}_{YM}).

Proof. For any element $P \in V$ (resp. V_m , V_{YM}) and any operator $W \in \mathcal{W}$ (resp. $\mathcal{W}_m, \mathcal{W}_{YM}$), we have

$$\rho(P) = -(WPW^{-1})_{-}W \in T_W \mathcal{E}.$$

By Proposition 2.7, $-(WPW^{-1})_-W$ is contained in the tangent space of \mathcal{W} (resp. $\mathcal{W}_m, \mathcal{W}_{YM}$) at W. Taking $P \in V_-$ (resp. $(V_m)_-, (V_{YM})_-$), we have $\rho(P) = -WP$. Hence the action ρ is the right action of vector fields.

By Theorem 2.8 the Lie algebra V (resp. V_m , V_{YM}) acts on \mathcal{W} (resp. \mathcal{W}_m , \mathcal{W}_{YM}) transitively.

$\S 3.$ Twistor theory and integrable systems

On oriented Riemannian manifolds of dimension four, the Weyl curvature tensor C decomposes into two components, the self-dual part C_+ and the anti-self-dual part C_- . A manifold is called self-dual (resp. anti-self-dual) when C_- (resp. C_+) vanishes. Penrose [5] showed that the vanishing of the anti-self-dual part of the Weyl tensor is precisely the integrability condition of the existence of a curved twistor space.

In this section we prove that the equation $C_+=0$ is the compatibility condition of the deformation equations of filtered \mathcal{D} -submodules in \mathcal{E} (See [13] in which the Frobenius integrability condition of the equations of self dual metrics is discussed). We get the equations of self dual metrics from the equation (2.26) for $W \in \mathcal{W}_m$.

Let M be a complex four-manifold and g a holomorphic metric, i.e. a non-degenerate symmetric holomorphic covariant two-tensor on M. We shall choose a holomorphic orientation on M which is necessary to define the complex Hodge *-operator. Our discussion being only local, we can assume the existence of two complex vector bundles S_+ and S_- : the bundles of self-dual and anti-self-dual spinors.

Let $\{e_j\}_{j=1,2,3,4}$ denote a local coframe on M such that $g = e_1e_2 + e_3e_4$. We can write them in spinor language as

$$\begin{bmatrix} e_4 & e_2 \\ -e_1 & e_3 \end{bmatrix} = \begin{bmatrix} \psi_1 \phi_1 & \psi_1 \phi_2 \\ \psi_2 \phi_1 & \psi_2 \phi_2 \end{bmatrix}$$
(3.1)

where ψ_1 , ψ_2 (resp. ϕ_1 , ϕ_2) are the bases of self-dual (resp. anti-self-dual) spinor coframes.

We take $P = P(S_{-})$, the projective bundle of the rank two vector bundle S_{-} . We parametrize S_{-} locally by

$$(x, \mu_1, \mu_2) \longrightarrow \mu_1 \phi_1(x) + \mu_2 \phi_2(x),$$

and $\mu = \mu_1/\mu_2$ is an affine coordinate for $\mu_2 \neq 0$.

Theorem 3.1 ([5]) The Riemannian manifold (M,g) is self-dual iff the

following Pfaffian system Ω on P is integrable:

$$\theta := d\mu + \omega_{21}\mu^2 - (\omega_{22} - \omega_{11})\mu - \omega_{12} = 0,$$

$$\Omega : \quad \sigma_1 := \mu e_4 + e_2 = 0,$$

$$\sigma_2 := -\mu e_1 + e_4 = 0,$$

(3.2)

where ω_{ij} is the connection form of S_{-} with respect to the frame ϕ_1 and ϕ_2 .

Let $A(\Omega)$ be the sheaf of vector fields orthogonal to the Pfaffian system Ω . The sheaf $A(\Omega)$ is a Lie algebra iff Ω is integrable. In this case there exists a local basis (v_1, v_2) of $A(\Omega)$ such that $[v_1, v_2] = 0$.

Proposition 3.2 Assume (M, g) self-dual. With appropriate coordinates $(\lambda, x_1, x_2, s, t)$ of P, there exists a commuting basis (v_1, v_2) of $A(\Omega)$, in the following form

$$v_{1} = \frac{\partial}{\partial s} - \lambda \frac{\partial}{\partial x_{1}} - \left(\frac{\partial R}{\partial x_{1}} \frac{\partial}{\partial x_{1}} + \frac{\partial S}{\partial x_{1}} \frac{\partial}{\partial x_{2}} + \frac{\partial T}{\partial x_{1}} \frac{\partial}{\partial \lambda}\right),$$

$$v_{2} = \frac{\partial}{\partial t} - \lambda \frac{\partial}{\partial x_{2}} - \left(\frac{\partial R}{\partial x_{2}} \frac{\partial}{\partial x_{1}} + \frac{\partial S}{\partial x_{2}} \frac{\partial}{\partial x_{2}} + \frac{\partial T}{\partial x_{2}} \frac{\partial}{\partial \lambda}\right),$$
(3.3)

where the functions R, S and T do not depend on λ .

Proof. First we notice the following lemma.

Lemma 3.3 ([3]) Let (M,g) be a self-dual Riemannian four-manifold. Then there exist local coordinates (p_1, p_2, q_1, q_2) of M such that

$$g = \sum_{i,j=1,2} P_{ij}(p,q) dp_i dq_j.$$

It follows from Lemma 3.3 that we can take local frames $\{e_j\}_{j=1,2,3,4}$ as follows:

$$e_1 = -dp_1, \ e_2 = -(P_{11}dq_1 + P_{12}dq_2),$$

 $e_4 = dp_2, \ e_3 = P_{21}dq_1 + P_{22}dq_2.$

By Theorem 3.1 the ideal \mathcal{I} generated by $(\theta, \sigma_1, \sigma_2)$ is closed under the exterior derivative d. Thus we have

$$d\sigma_1 \wedge \theta \wedge \sigma_1 \wedge \sigma_2 = 0, d\sigma_2 \wedge \theta \wedge \sigma_1 \wedge \sigma_2 = 0.$$
(3.4)

By direct calculations we have

$$d\sigma_{1} \wedge \theta \wedge \sigma_{1} \wedge \sigma_{2}$$

$$= \left(\left(\frac{\partial P_{12}}{\partial q_{1}} - \frac{\partial P_{11}}{\partial q_{2}} \right) \mu^{2} + K\mu + L \right) d\mu \wedge dp_{1} \wedge dp_{2} \wedge dq_{1} \wedge dq_{2},$$

$$d\sigma_{2} \wedge \theta \wedge \sigma_{1} \wedge \sigma_{2}$$

$$= \left(\left(\frac{\partial P_{22}}{\partial q_{1}} - \frac{\partial P_{21}}{\partial q_{2}} \right) \mu^{2} + M\mu + N \right) d\mu \wedge dp_{1} \wedge dp_{2} \wedge dq_{1} \wedge dq_{2},$$

for functions K, L, M and N independent of μ . Thus we have

$$\frac{\partial P_{12}}{\partial q_1} - \frac{\partial P_{11}}{\partial q_2} = 0, \quad \frac{\partial P_{22}}{\partial p_1} - \frac{\partial P_{21}}{\partial p_2} = 0.$$

Hence we can define new coordinates (x_1, x_2, s, t, μ) by the following equations:

$$\frac{\partial x_1}{\partial q_i} = -P_{1i}, \quad \frac{\partial x_2}{\partial q_i} = P_{2i}, \quad (i = 1, 2)$$
$$s = p_2, \quad t = -p_1,$$

The differential forms θ, σ_1 and σ_2 are written in these coordinates as follows:

$$\begin{split} \theta &= d\mu + \mu^2 (E_1 e_2 + E_2 e_3) + \mu (F_1 e_2 + F_2 e_3) + \sum_j J_j e_j, \\ \sigma_1 &= \mu ds + (dx_1 + A_1 ds + A_2 dt), \\ \sigma_2 &= \mu dt + (dx_2 + B_1 ds + B_2 dt), \end{split}$$

For functions A_j, B_j, E_j, F_j (j = 1, 2), and J_j (j = 1, 2, 3, 4) independent of μ . It is easily verified that the following vectors v_1, v_2 belong to $A(\Omega)$:

$$v_{1} = -\mu \frac{\partial}{\partial x_{1}} + \frac{\partial}{\partial s} - A_{1} \frac{\partial}{\partial x_{1}} - B_{1} \frac{\partial}{\partial x_{2}} + (E_{1}\mu^{3} + F_{1}\mu^{2} + J_{2}\mu - J_{4}) \frac{\partial}{\partial \mu},$$

$$v_{2} = -\mu \frac{\partial}{\partial x_{2}} + \frac{\partial}{\partial t} - A_{2} \frac{\partial}{\partial x_{1}} - B_{2} \frac{\partial}{\partial x_{2}} + (E_{2}\mu^{3} + F_{2}\mu^{2} + J_{3}\mu - J_{1}) \frac{\partial}{\partial \mu},$$

We set the vector field

$$l_{1} = \frac{\partial}{\partial s} - A_{1} \frac{\partial}{\partial x_{1}} - B_{1} \frac{\partial}{\partial x_{2}},$$
$$l_{2} = \frac{\partial}{\partial t} - A_{2} \frac{\partial}{\partial x_{1}} - B_{2} \frac{\partial}{\partial x_{2}}.$$

The commutator $[v_1, v_2]$ is written in the following form

$$[v_{1}, v_{2}] = (E_{2}\mu^{3} + F_{2}\mu^{2})\frac{\partial}{\partial x_{1}} - (E_{1}\mu^{3} + F_{1}\mu^{2})\frac{\partial}{\partial x_{2}} + \{(E_{2}F_{1} - E_{1}F_{2})\mu^{4} + (2E_{2}J_{1} - 2E_{1}J_{2} + l_{1}(E_{2}) - l_{2}(E_{1}))\mu^{3} + (F_{2}J_{1} - F_{1}J_{2} + \frac{\partial J_{2}}{\partial x_{2}} - \frac{\partial J_{3}}{\partial x_{1}} + l_{1}(F_{2}) - l_{2}(F_{1}))\mu^{2}\}\frac{\partial}{\partial \mu} + \mu u_{1} + u_{0},$$
(3.5)

where the coefficients of vectors u_1 and u_0 are independent of μ .

By the integrability condition, $[v_1, v_2]$ is a linear combination of v_1 and v_2 and since $[v_1, v_2]$ does not contain $\frac{\partial}{\partial s}$ nor $\frac{\partial}{\partial t}$, v_1 and v_2 commute with each other. It follows from (3.5) that

$$E_j = 0, \quad F_j = 0 \quad (j = 1, 2), \quad \frac{\partial J_2}{\partial x_2} = \frac{\partial J_3}{\partial x_1}.$$

Thus there exists a function $f = f(x_1, x_2, s, t)$ such that

$$\frac{\partial f}{\partial x_1} = J_2, \quad \frac{\partial f}{\partial x_2} = J_3.$$

We can take new coordinates $(\lambda = \mu + f, x_1, x_2, s, t)$. With these coordinates we have

$$v_{1} = \frac{\partial}{\partial s} - \lambda \frac{\partial}{\partial x_{1}} - (A_{1} \frac{\partial}{\partial x_{1}} + B_{1} \frac{\partial}{\partial x_{2}} + C_{1} \frac{\partial}{\partial \lambda}),$$

$$v_{2} = \frac{\partial}{\partial t} - \lambda \frac{\partial}{\partial x_{2}} - (A_{2} \frac{\partial}{\partial x_{1}} + B_{2} \frac{\partial}{\partial x_{2}} + C_{2} \frac{\partial}{\partial \lambda}),$$

where $C_1 = \frac{\partial f}{\partial s} - (J_4 + J_2A_1 + J_3B_1)$ and $C_2 = \frac{\partial f}{\partial t} - (J_1 + J_2A_2 + J_3B_2)$. Again taking the coefficients of μ in $[v_1, v_2]$, we obtain that

$$\frac{\partial A_1}{\partial x_2} = \frac{\partial A_2}{\partial x_1}, \ \frac{\partial B_1}{\partial x_2} = \frac{\partial B_1}{\partial x_1}, \ \frac{\partial C_1}{\partial x_2} = \frac{\partial C_1}{\partial x_1}$$

Thus there exist functions R, S and T which are independent of λ such that

$$\frac{\partial R}{\partial x_j} = A_j, \ \frac{\partial S}{\partial x_j} = B_j, \ \frac{\partial T}{\partial x_j} = C_j \quad \text{for } j = 1, 2.$$

This completes the proof of Proposition 3.2.

Remark. By Theorem 3.1 and Proposition 3.2 the equations of self-dual metrics are equivalent to the compatibility condition $[v_1, v_2] = 0$:

$$\frac{\partial^2 T}{\partial t \partial x_1} - \frac{\partial^2 T}{\partial s \partial x_2} - \frac{\partial R}{\partial x_2} \frac{\partial^2 T}{\partial x_1^2} + \frac{\partial S}{\partial x_1 \partial x_2} + \frac{\partial S}{\partial x_1} \frac{\partial^2 T}{\partial x_2^2} = 0,$$

$$\frac{\partial^2 R}{\partial t \partial x_1} - \frac{\partial^2 R}{\partial s \partial x_2} - \frac{\partial T}{\partial x_2} - \frac{\partial R}{\partial x_2} \frac{\partial^2 R}{\partial x_1^2} + \frac{\partial S}{\partial x_1 \partial x_2} + \frac{\partial S}{\partial x_1} \frac{\partial^2 R}{\partial x_2^2} = 0,$$

$$\frac{\partial^2 S}{\partial t \partial x_1} - \frac{\partial^2 S}{\partial s \partial x_2} + \frac{\partial T}{\partial x_1} - \frac{\partial R}{\partial x_2} \frac{\partial^2 S}{\partial x_1^2} + \frac{\partial S}{\partial x_1 \partial x_2} + \frac{\partial S}{\partial x_1} \frac{\partial^2 S}{\partial x_2^2} = 0,$$

$$\frac{\partial^2 S}{\partial t \partial x_1} - \frac{\partial^2 S}{\partial s \partial x_2} + \frac{\partial T}{\partial x_1} - \frac{\partial R}{\partial x_2} \frac{\partial^2 S}{\partial x_1^2} + \frac{\partial S}{\partial x_1 \partial x_2} + \frac{\partial S}{\partial x_1} \frac{\partial^2 S}{\partial x_2^2} = 0.$$

$$(3.6)$$

In the equation (2.26) we take $W \in \mathcal{W}_m$. In this case w_1 vanishes. Replacing $g_{0,1}, g_{1,1}$ and $g_{2,1}$ with R, S and T, respectively. The equations (2.27) reduces to (3.6). Therefore we have

Theorem 3.4 The Lie algebra V_m acts on the space of self-dual metrics. This action is transitive.

Let \mathcal{W}_0 be the space of $W \in \mathcal{W}$ which commute with D_0 . In the equation (2.26) we take $W \in \mathcal{W}_0$. In this case G_0 vanishes. The equation (2.27) reduces to the composed system of the self-dual Yang-Mills equations and the self-dual Einstein equations (see Example 2.1 and 2.2). Let V_0 be the Lie subalgebra of V:

$$V_{0} = \{ \sum_{0 \leq j < r} F_{j}(x', D_{0}) D_{j} + E(x', D_{0}); \\ F_{k}(x', D_{0}) \in \mathcal{E} (0 \leq k < r), E(x', D_{0}) \in \mathcal{E} \}.$$

Then V_0 acts on \mathcal{W}_0 . Thus the self-dual Einstein equations are a specialization of our integrable system.

Acknowledgment

I express my deep appreciation to Prof.M.Sato for enlightening discussions and useful suggestions, and also to Prof.T.Kawai for constant encouragement. I would like to show my most sincere gratitude for the help of Prof.M.Kashiwara. I wish to thank Prof.K.Takasaki and Mr.A.Nakayashiki for useful discussions. Finally thanks are due to Prof.E.Date, Prof.M.Jimbo and Prof.T.Miwa for reading the manuscript very carefully.

References

- M.F.Atiyah-N.J.Hitchin-I.M.Singer, Self-duality in four-dimensional Riemannian geometry, Proc.R.Soc.London. A.362, 425-461(1978)
- [2] C.P.Boyer-J.F.Plebanski, An infinite hierarchy of conservation laws and nonlinear superposition principles for self-dual Einstein spaces, J. Math. Phys. 26, 29-234(1985)

- C.P.Boyer-J.F.Plebanski, Conformally sel-dual spaces and Maxwell's equations, Phys. Lett. 106A, 125-129(1984)
- [4] M.Noumi, Wronskian determinants and Gröbner representation of a linear differential equation, In "Algebraic Analysis" 549-569, Academic Press(1988)
- [5] R.Penrose, Nonlinear gravitons and curved twistor theory, Gen. Rel. Grav. 7, 31-52(1976)
- [6] J.F.Plebanski, Some solutions of complex Einstein equations, J.Math. Phys. 16, 2395-2402(1975)
- [7] M.Sato, Soliton equations as dynamical systems on infinite dimensional Grassmann manifolds, RIMS Kokyuroku 439(Kyoto Univ.), 30-46(1986)
- [8] M.Sato-Y.Sato, Soliton equations as dynamical systems on infinite Grassmann manifolds, Lecture Notes in Num. Appl. Anal. 5, 259-271(1982)
- [9] M.Sato, Lecture notes in Kyoto Univ. (1984-1985, written by T. Umeda, in Japanese), Surikaiseki lecture note No. 5(1989)
- [10] M.Sato, \mathcal{D} -modules and non-linear integrable systems, to appear
- [11] K.Takasaki, A new approach to the self-dual Yang-Mills Equations, Commun. Math. Phys. 94, 35-59(1984)
- [12] K.Takasaki, Aspects of integrability in self-dual Einstein metrics and related equations, Publ. RIMS, 22, 949-990(1986)
- [13] K.Takasaki, Conformal self-dual metrics and integrability, RIMS Kokyuroku(Kyoto Univ.) 592, 30-57(1986)
- [14] K.Takasaki, Integrable systems as deformations of \mathcal{D} -modules, Proc. Symp. Pure Math. 49, Part1, 143-168(1989)
- [15] K.Ueno-Y.Nakamura, Transformation theory for anti-self-dual equations, Publ.RIMS 19, 519-547(1983)