RMAFEHER) KT LY %
il

KURENAI

Kyoto University Research Information Repository

Title Self-duality and Integrable Systems( Dissertation_[1 [ )
Author(s) | Ohyama, Yousuke
Citation Kyoto University (0 O 0O 0)
Issue Date | 1990-03-23
URL http://dx.doi.org/10.14989/doctor.k4476
Right
Type Thesis or Dissertation

Textversion

author

Kyoto University




i

i

595

N




Self-duality and Integrable Systems
Yousuke Ohyama
Research Institute for Mathematical Sciences
Kyoto University

Kyoto 606, Japan



§0. Introduction

In his lectures (1984-85) at Kyoto University, Professor M.Sato presented a
program for generalizing the soliton theory ([9]; c.f. [10]). The Kadomtsev-
Petviashvili (KP) equation is a typical example of the soliton theory. The
KP equation is written in the form of deformation equations of a linear
ordinary differential equation. The time evolutions of a solution are inter-
preted as dynamical motions on an infinite dimensional Grassmann mani-
fold ([7],[9]). The Lie algebra of microdifferential operators of one variable
acts on this manifold transitively. He conjectured that any integrable sys-
tems can be written in the form of deformation equations of a linear systems,
and proposed to investigate a deformation of differential equations in higher
dimensions. He showed a simple example of a deformation of holonomic sys-
tems in higher dimensions ([9]), and its generalization is treated in [4]. In
this paper we study a deformation of D-modules in higher dimensions.

First we review the KP equation. We denote by &£ the ring of microdif-
ferential operators of one variable z. We fix a microdifferential operator P,
and denote by tp a time variable with respect to P. We study the following
evolution equation associated to P:

ow +WP=(WPW™ 1), W, (0.1)
Otp
where W = W(z,D,) = 1+ ;o wj(2)D} € €. We denote by W the set
of such operators W. This space W is a group by the composition of £.
We get the KP-hierarchy taking P = D7 (n = 1,2,3,...) in (0.1). The
equation (0.1) defines a dynamical motion on W. This infinitesimal action
of the Lie algebra € on W is transitive.

The purpose of this article is to give a foundation for higher dimensional
generalization of the KP hierarchy. Let now € be the ring of microdiffer-
ential operators in several variables. Similarly to the one dimensional case,
fixing an operator P € €, we shall study the following equation

W WP = (WPW )W, (0.2)
Otp
where the operator W is a 0-th order microdifferential operator. Here we
choose a decomposition €= DB E, and (WPW 1), € D is the component
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of WPW ™! according to this decomposition. In general the equation (0.2)
imposes some constraints on the initial value W(tp = 0), since the vector
field defined by (0.2) is not tangent to the space £(0). There is no operator
Wy such that the equation (0.2) has a solution W(t) € € with the initial
value Wy for any P € £. We take generators P in (0.2) only in the Lie
subalgebra V of €

V ={F(',Do)zo + Y Fj(z',D0)D;j+ E(z',Do);
o<j<r
Fy(z',Dy), E(2',Dy) € E for 0<k<r},

where ¢’ = (21,22, ...,7,—1). This Lie algebra contains the transformation
groups both of the self-dual Yang-Mills equations and of the self-dual Ein-
stein equations (see [7],[8]). In §2 we will determine the subspace W of £(0)
so that the vector field defined by (0.2) for any P € V is tangent to W.
The space W is a subgroup in €. The Lie algebra V acts on W transitively.

In the case of » = 3, our integrable system is nothing but a composed
system of the self-dual Yang-Mills equations and the equations of self-dual
metrics on Riemannian manifolds of dimension four. The Lie algebra V acts
transitively on the space of self-dual connections on self-dual spaces. Thus
we obtain a group-theoretical description of the twistor theory ([1],[5]).

Notations. We use the following notations: Z denotes the set of integers.
N denotes the set of non-negative integers. We denote by C the complex
number field. We denote by 1, the unit matrix of size n x n.



§1. Deformations of D-modules

Throughout this paper we shall work in the category of formal power series,
O = Cl[z]] = C[[zo, 21, ,2r-1]] (r > 2). Let D be the ring of differential
operators with coeflicients in O. Then every differential operator P of order
m can be written as:

P= Y au(@)DS

a€N" |a|<m

where aq(z) are elements of O, a = (ag, a1, ,ar—1) € N, |a] = ag +
a1+ +ap_y, DY = D§°Df* - D77t and Dj = 32 ( =0,1,+ - ,r—1).

The ring € of formal microdifferential operators is a set of formal Lau-
rent series in Dy, Dy, -+ ,D,_; with only non-negative powers of Dy, -,
D,_;. The precise definition is as follows. We denote by £(m) the space of

formal series :
P= E aq(z)DS
a€ZXNT1 |a|<m

where ay’s are elements of O, and the summation is taken through a =

(g, 1, , @p—1), where ag € Z,a; € N, ;0,1 € N. We set
= |J &m).
meZ

We endow the O-module € with a structure of ring by extending the Leibniz
formula. For two elements P = 3 aqDg and @ =3 5 bs D8 of €, we define
the composition P o @ by

P o Q _ z (Ot) aab(ﬂ'Y)Dg'i'ﬁ—’Y,

o,BELXNT-1 yeNT v

where b(ﬂv) = DJ}(bg). The ring € has an increasing filtration by subspaces
{&€(m)}mez. We have

E(m)E(n) = E(n + m).
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For any O-submodule £ of € we define the induced filtration {£(m)}mez
of L by L(m) = LN E(m).
Let £4 be the O-module consisting of the formal microdifferential op-
erators of the form
z aa(x)Dga
ag <0

The ring € is the direct sum of D and £4. For any P € £, we define
P, € D andP_ € €; by the decomposition of &:

£ D @ &
P = P, + P_

For any O-submodule £ of € we define the O-module £L_ by £L_ = LN E,.
Remark that £(0) = O @ £4(0).

In the following we shall study a left D-submodule I of € which satisfies
the following condition:

E(m)=I(m)® Ey(m) for any m € Z. (1.1)

For example I = D satisfies (1.1). We make clear the structure of such a
D-submodule 1.

Lemma 1.1 Suppose that a D-submodule I of £ satisfies the condition
(1.1). Then I is generated as D-module by a unique operator W such that

W e E0) and W, =1. (1.2)

Proof. The operator W is obtained by decomposing the identity operator
1 € £(0) into the sum of an operator in I(0) and an operator in £4(0)
according to the condition (1.1):

£0) = I(0) & ¢&4(0)
1 w + U

It is evident that W is contained in £(0) and that W, = 1. Since we have
E(m)W = E(m),  Eo(m)W = Eg(m)
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for any m € Z, we obtain that
E(m) = D(m)W @ E4(m) for any m € Z.

Thus the D-module I' = DW also satisfies (1.1). Because I contains I’
and both satisfy (1.1), I coincides with I’. The uniqueness is clear. O

Remark that W in Lemma 1.1 is invertible by (1.2).

We investigate nonlinear evolution equations according to the program
of M. Sato ([9],{10]). For any P € € and any D-submodule I, of £ we define
the time evolution I; of I by the following differential equations:

av(t)

T +V(@)Pel, forany V(t)€ L. (1.3)

We call P € £ the generator of the evolution equation (1.3).

In general we cannot find any D-submodule I; which solves (1.3). In
this paper we shall study the case that we can find a solution I; of (1.3)
which is a D-module satisfying (1.1) for any ¢. Then I, is generated by an
operator W(t) € £(0) by Lemma 1.1 and we can rewrite the equation (1.3)
in terms of the generator W(t).

Lemma 1.2 We fix an operator P € £ We assume that the solution I;
of the evolution equation (1.3) is a D-submodule which satisfies (1.1) for
any t . Then the equation (1.3) reduces to the following equation

aw (t)

ELH WP = WOPWE) ™) W (0), (1.4)

where the operator W (¢) is the generator of I; in Lemma 1.1.

Proof. From the equation (1.3) there exists an operator B(t) € D such

that
8W(t)

=5+ WP = BOW ().



Thus we have

aw ()

B(t) =W(@#)PW(t)™! + P

Z )L,

Since the operator W(t) is contained in 1 4+ £ , the operator -a—vgt(ﬂVV(t)‘1
is contained in £4. Thus we obtain that B(t) = (W(t)PW(t)™1)4+. O

Remark. The equation (1.4) is rewritten as

aavlf—(WPW W, W —WP

= (WPW™1)_W. (1.5)
The evolution equation (1.4) is associated with an infinitesimal action
p of € on the space €. For P € € the vector field p(P) is given as follows.
W — —(WPW™Y)_W € TwE,

where the tangent space TwE is identified with £ by the structure of vector
space of €.

Theorem 1.3 For any P,Q € £ we have

p([P, Q1) = —[p(P), p(Q)].

Proof. We denote by €; and €» the time parameters with respect to P
and Q, respectively. We set P=WPW-! and Q WQW 1. We have

exp(e1p(P))W = (1 — el(;)_)W mod €7,
exp(e2p(@))W = (1 — 62(@)_)W mod 3.
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Hence we have, modulo €2, €3
exp(e1p(P))(1—eo( WQW 1))
=1~ 62((1 — GIP- )Q(l + €1P_))—-
=1- ézé— + e1e2[P—, Q]-.
Thus we obtain, modulo €2, €2

exp(e1p(P)) exp(e2p(Q))W
= exp(e1p(P))(1 — ee(WQW 1) YW

=(1- eQ_ +ere[P-, Q)1 — s P_YW
=(1-aP_ —aQ- +aa(P-,Ql- +Q-P_)W.

Similarly we have, modulo €2, €2

exp(e2p(Q)) exp(e1 p(P))W
= (1 - «Q@- —aP_ +ae(Q-, Pl- + P_Q_)W.

By the formula

exp(e1p(P)) exp(e2p(Q))W — exp(e2p(Q)) exp(er1p(P))W
= e1e2[p(P), p(@)|W mod €7, €3,

we obtain

[o(P), f(@QIW = {[P_,Q]- +Q_P_ —[Q_,P|- ~ P_Q_}W

= {[P=,Q+ +Q-]- — [Q-, P+ + P_]_ +[Q—, P_]}W.
(1.6)

Since [;:’_l_, 62+]_ = 0, the right hand side of (1.6) is equal to
[P, Q]—W: —p([P,Q])W O
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When P,Q € € commute with each other, the following equations are
compatible by Theorem 1.3:

aavf (WPW=1), W — WP,
ow
at (WQW 1)+W WQv

where W = W (s, t).

In the case r = 1, for any P € € and for any Iy = DW(0) the solution
I of the equation (1.3) satisfies the condition (1.1) for any ¢. With the
choice P =D} (n=1,2,---), we obtain the KP-hierarchy ([7],[8]):

aw ()
ot
In higher dimensional case, we must choose a nice pair of the generator P
and Iy = DW(0) in order that I; satisfies the condition (1.1) for any t. We
shall see the evolution equation (1.4) constrains the initial value W(0) in
the following example.

+ WD} = (WEDFW (™) W(2).

Ezample 1.1  We consider (1.4) in the case r = 2. We take D2 as the
generator of the equation (1.4). We write

W(t) = Z w,-,jDéD{, Wo,0 = 1.
1+5<0,520

The operator W(t)Dj is decomposed into the sum

WHDE = WODIWE )W + U
Then we have
0 ow_
(WEDIW (t)™V)4 = (D — 2522 D, — 2222280,
8 3:v0
aw, 1)} aw_l,l 0w, ;
U= Z ( —2 awo Wi, j—1 axg
1+ 3<1,:<0
aw_l,o 3w_1,1 3’11)2,3 i
+2 B2 w;j+ 2 920 Oz )DgD1.



The equation (1.4) is equivalent to the following:

Ow; S
at’J-i—u,,]—O forz 4+ <0,

awi_l j 8w_1 1 . .
b . 3 2 . — , — 1.

B, Bag w;j—1 =0, fore+

The second equation constrains the initial data W(0).

§2. Integrable systems in higher dimensions

In the example 1.1 we have considered the equation (1.3) for one generator
P = D}. In this section we will introduce a space V of generators, and
determine the space of D-submodules I of € such that the condition (1.1)
is preserved under the time evolution (1.3) for any P € V.

First we review two known examples, the self-dual Yang-Mills equations
and the self-dual Einstein equations . We can interpret both the equations
as integrable systems of three variables (see [14]).

Ezample 2.1  Self-dual Yang-Mills equations (see [15],[11]).

The self-dual Yang-Mills equations are written in the following form

0A 0A
3 1(3)1,:132,3 t) a 2(311,:132,3 t),
0
[8 +A1($1,$2,8,t), 5 + Agz(z1,22,8,8)] =0 (2.1)

for gauge fields A3, A € Mat(n x n) on four-dimensional manifolds.
The evolution equation (1.4) is generalized to the case that W and
P have matrix coefficients. We introduce the space Wy pr(n) and the Lie

algebra Vy p(n):
Wy nm(n) = (W(z1,22,D0) = > wi(z1,22) D5
€N
w; € Mat(n X n’c[[x17w2]])7 Wo = 1n}‘
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Vym(n) = {Fi(21,22, Do) D1 + F3(21,%2,D0)D2 + E(1,22, Do);
Fi, F; € Mat(n x n, D), E € Mat(n x n,&)}.
The evolution equation (1.4) for P € Vyp(n) with any initial value W €

Wy m(n) has a solution in Wy ps(n) . We consider the equation (1.4) for
P = DoDl,DOD2 € VYM(TL)l

%V—V +WDyD;, = (WDyD;W™1), W,
8;;/ +WDyDy = (WDyD, W™ 1), W. (2.2)

In terms of the coefficients w; of W the equation (2.2) is written in the
form

aw,- . 8w,-+1 3w1

8s  0zp Oz
8wi _ 3w,~+1 awl _
ot N 3(232 - 3.’)32 Wi

(2.3)

for: > 0. We set-A; = Qﬂ-’- (7 = 1,2). By eliminating ws from the equation
(2.3) for i =1, we obtam the equation (2.1).

Ezample 2.2 Self-dual Einstein equations (see [2],[12]).

The self-dual Einstein equations are written in the form (see [6])

0A 0A
B 21(501,502,3 t) = B2t 2(561,502,3 t),
0B ‘ 0B
3 21(331,(32,3 t) a 2(5617172)3 t)’
0 0
[—a-;+A1($1,332,3,t)_+B1(331,$C2,3,t)_
0
o + As(z1,29,s, t) +Bz($1,$2,3 t) ] 0,
B; O0A;
g (21,22, s, t)+——(w1,:c2,s,t) =0 (j=1,2). (2.4)
Zo
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In the following we forget the last equation in (2.4) for simplicity.
We introduce the space Wg and the Lie algebra Vg:

Wg = (W = Z—GJGzD’DZ, Gi=) gij(z1,22)D}(i =1,2)}.
J,kEN j<0

Ve = {Fi(%1,22, Do)D1 + F5(zy,22,D0)Ds; F1,F> € E}.

The evolution equation (1.4) for P € Vg with any initial value W € Wg
has a solution in Wg. We consider (1.4) for P = DyD;,DoD; € Vg:

2+ WDyDy = (WDeDyW ™),
861/:’ +WDyDy = (W.D()Dz _1)+W (25)

In terms of the coeflicients g; ; the equation (2.5) is written in the form:

09i; _ 99ij-1  091,-10gi; 0Og2-109:;
0s 6331 6331 6(131 55171 6332 ’
Ogij  Ogij—1 0Og1,-10g:i; Og2,-10g:;

— — — for: =1,2, 7 .
8t 6:132 6332 05131 6x2 8:1:2 ore ’ ,]<0

(2.6)

We set A; = —%%,Bj agz ~2=+ (57 = 1,2). By eliminating ¢; —2 (¢ =
1,2) from the equation (2.6) for i=1 ,2, 7 = —1, we obtain the equation
(2.4).

We shall unify these two examples and obtain more general systems.
We introduce the Lie subalgebra V' of £ which contains both the Lie algebras
Vya and VEg:

V = {F(z',Do)zo + Y Fj(z',Do)D; + E(z', Do);
0<j<r

Fk(x’,DO)a E($,7D0) € 8) (O S k < T)}a

11



where z' = (21,29, -+ ,z,—1).
Lemma 2.1 V is isomorphic to D(1) Q0 C[[z]][z; "] as a Lie algebra.

Proof. Set X =C" = {(z0,21, " ,2r—1) EC"},and Y = {2 € X; 20 = 0}.
We take the transformation

2 ) | ' _
xO—ZODZO, .Dz-o*—-ZO ,.’C —Z,DI’—Dz'.

Then the transform of V is D(1) ® C[[z]][z5 '] d

The Lie algebra D(1) ® C[[z]][z5!] is the direct sum of the Lie al-
gebra © @ C[[z]][zg] of vector fields and the commutative Lie algebra

Cl[z]][z; "], where the Lie algebra © is defined by

©= ) 0D,

0<j<r

The Lie algebra © @ C[[z]][z5"] corresponds to the infinitesimal coordi-

nate transformations, and the Lie algebra C[[z]][z; ] corresponds to the
infinitesimal gauge transformations of a line bundle.

Now we shall determine the set of D-submodules in € such that the
condition (1.1) is preserved under (1.3) with respect to any P € V. We
introduce the subspaces W,, and Wy of &:

1
Wi = {W(z,D;) = ) —G*af° Dy € &

a€eNT
G* = GG -+ Gort where G; = G(z',Dy) € £(-1)},
Wyym = {W(m!’DO) - Zwi(ml)Do—i; w; € Cl[z1,++ - ,2r-1]], wo = L}.
ieN

Proposition 2.2 Let I, = DW;, be a D-submodule of €. Assume that
the time evolution of I for any P € V also satisfies the condition (1.1).
Then W, factorizes into the product of W, € W,, and Wy s € Wy s

Wo = W Wyum.
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Remark. The operator W,, corresponds to the equation of self-dual met-
rics (see §3).

Proof of Proposition 2.2.
Step 1.

Lemma 2.3 Let W(¢) be the solution of (1.4) for P € V with W(0) =
Then (W(t)PW(t)~1)- is contained in £4(0).

Proof.
It follows from the equation (1.5) that
oW (¢ _ —
POy = ~weypwn)-.
Since the operator %—lW'(t)‘1 is contained in £(0), we obtain Lemma
2.3. O

Step 2.  For any P € &, let P be WoPW; L.

Lemma 2 4 Suppose that P,Q € V commute with each other. The
operator [P+, Q ]- is contained in £4(0).

Proof. We consider the solution W = W(s,t) of the equation (1.5) for the
operators P, Q:

ow

= —(WPWTW,
a;V — _(WOQWY_W, 2.7)

where W = W(s,t). Since [P, Q] = 0, the system (2. 7) 1s compatible by
Theorem 1.3. It follows from Lemma 2.3 that WPW ! is contained in

D + £4(0). We have
ow L OW

EZ(WPW ) = Y Pw _wpw™! Y w1

= —(WQW H_WPW 1+ WPW L (WQW™1)_
=[WPW,(WQW™1)_].
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Hence [P Q ] is contained in D + £4(0). Since [P_,Q ] is contained in
€4(0) by Lemma 2.3, [P+,Q ] is contained in D + £4(0). O

Step 3 Recall that P denotes WoPW; ! for any P € E. We define the
operators G;, H; € £€ (0 <i < r) as follows:

Do = Do — Go(z, D),

z;=2; +Gi(z,D;) fori=1,2,- -,r—1,

To = To + Hy(z,D,),

D; =D; + Hi(z,D,;) fori=1,2+,r—1. (2.8)

Lemma 2.5 Assume that W, satisfies the condition in Proposition 2.2.
The operators G;, H; are written in the following form:

G; = G,-(:c',Do) € 8(—1),
= "> Kij(z',Do)D; + Li(z, Do) for0<i<r,

0<ji<lr
where K;j(z',Do) € €, Li(z,Dq) € E(-1),
and z'=(z1, -+ ,zr—1).

Proof. We shall show the following statement (2.9), by the induction on

Gi=G,+G}, Hi=H;+ H/
for some G%, H!, G! and H (0 <i < r) such that
%0, H € &(—n), G},Hy € &(-n—1) for0<i<r,
= Gi(z',Dy) € E(-1),
= Y Kij(z',Do)D; + Li(z,Dp) for0<i<r
0<j<r
with K;j(z', Do), Li(z, Do) € E(-1). (2.9),

14



It is evident that the statement (2.9), is true. By assuming (2.9), we shall
prove (2.9)p41.
We expand the operators:

Gi= > ¢2.DEDY,
k<0,0’ ENT-1

= Y AQ),DEDS. (2.10)
k<0,0’' ENT-1

Since Gy belongs to £(—n), we have

Di*? = (Do — Gp — Gy)™**
= (Do — Go)"*? = (n +2)Gy(Do — Go)™**
= (Do — Gp)"? — (n +2)Gy{ DF*!  modulo £(0).

The operator (Do—Gj)" 2 belongs to D+E(0), because G} does not contain
D;(0 < j < r). Hence we obtain

DM = —(n +2)GYD*!  modulo D + £(0).

Since ]33"'2 is contained in D+ £(0) for any n € Z by Lemma 2.3, G{ D3
is also contained in D + £(0). Therefore we obtain

(©) =0 for |a'|>2. (2.11)

g—n—la’],a’
Similarly we have, modulo D+£(0)
DD, = —(n +1)GyDyD; + HY Dy+Y,

FoDI+? = —(n + 2)2GY DI + HI DI,
'aZ,-lB{f“Ek = GI]!DEH-ID]C + :IJJ'(H;C'D(T;-i_l - (n + l)GngDk)

15



By Lemma 2.3, Dg“f)j, 5056“"2 and ?c‘jf)g“ﬁk are contained in D+ £(0)
Thus we obtain

h(—J|)a'|—n w =0 forla| >3,
h(—J% —n,a'te; _(n + 1)991)_n,a: for Iall =1,
h(—ol)a’|—n 1o =0 for |&'| > 2,
(7)

9 | —n—1,00 =0 for|a'| > 2, (2.12)

where j = 1,2,--- ;r—1and e; = (0, - .,0) eN"L,
We denote by V and V' the subspaces of D+&(0):

V={ > Fi(z,D0)Di + E(z,Do); Fx(z,Do), E(z,D,) € £},
0<k<r

={ > Fi(z',Do)Di + E(z,Do); Fi(z',Dy), E(z, D) € E}
0<k<r

For P,Q € V' the commutator [P, Q] is contained in V. Since H; (0 < j <)
are contained in V', |

H:] [zo, H}] (0 <4,5 <r) are contained in V.
For 3 > 0 we have

[x071)ﬂ ={$0)££A Oz 0’+[£ﬂhly]
" a-HO " [} " " 1
=[x07Hj] a +([H HJ]+[HO7HJ]+[HO>H3])
1 OH;
+([e0, Hjl — °+[H0,H])
; al{ﬂ
[xO’H ==

modulo &(—n — 2) + V.
Oz

Since [go, i1 =0, [zo, Hj] — % belongs to £(—n — 2)+V. By (2.10) we
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have, modulo &(—n —2) + V

6HII
,HI'I _ 0
[.'130 J ] a.’Ej
. ah(_ozl_ —la'l.a’ —1—n—|o’ '
=) ((n+ la’l)h(-’l-m,a' _ a; letlet ) pet=n=le'l po
o' >2 ! (2.13)
We obtain from (2.12) and (2.13) that
hf_j%_n,a, =0 forla'|=2, O<yj<r,
g =0 forla'|=1 (2.14)
Similarly by the equations
~ =~ 6Hj 8G0 .
1= _ 1=0 f
[Do,DJ] 574 + axj [Go,HJ] 0 for O<y<r,
[Do,xj] = 5:;(;' + [Gj,Go] — [Go,mj] =0 for 0<jy<nm,
[D0750] =1+ [D07H0] - [G07w0] + [G07H0] = l’
we obtain
() (0) ()
Ohoiones _ o, Pzomes _ o izno _ 0. (2.15)
Oz, ’ Ozo L ’
For 0 < ¢ < r we have modulo £(—1)
DyD; = (Do — Gy — G)™(Di + H{ + HY)
= (Do — Go)" —nGy(Do — Go)" ™ )(Ds + Hi + HY)
= —nGy Dy ™' D; + (Do — Go)*(D; + H}) + H{ Dy
(2.16)
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By (2.12) and (2.14) we have
H!'D} = Z hff)l —nye; Do 'D; modulo &(—1),
0<j<r
—nGyD}'D; = —ng(_,i oDy 'D; modulo £(-1).
We set K;; and L; in (2.9), as follows:
Kij(z',Do) = ) ki jm(z')DF,

m<0

Li(z,Do) = Y lim(z")DF

m<0
By (2.9), we have

(DoD;)4 = (Do — Go)(D: + H{ + H}")
= DoD; + {Do(H] + Z K+ Li)}+

1<i<r
=DoD;+ Y (A, +kij—1)Dj + 1l
1<j<r (2.17)
Sublemma. We have
39(0)0
T = (. 2.18
“Bzy (2.18)

Proof.  The commutator [(5055)4_,535;] is contained in D+&(0) by
Lemma 2.4. By (2.16) and (2.17) we have, modulo £(0)

(Do D)y, DpD;]
=[(DoD:)+,—ng®) s D5’ D;
+ > Y, Dy'D;j+ (Do — Gy)™(D; + HY)|

o<y<r

=[DoD;, —ng"*) o D5 * D]
+[(DoDi)s, Y. A _,. .. D3 D; + (Do — Gy)(D; + HY)).

o<y<r

18



Since (DoD )+ and Do, 32

—1—n,e;
contained in V), the operator

Dy'D; + (Do — Gy)™(D; + H}) are

[DODi) - ngg),l,QDo_l-Di]

0 0 0
s —nag(—’)z’o D;iD? — n@g(_,), °D; — n-—-——02g(—7)l’0
Oz ~ 0 T Oz; " Oz0x;
is contained in D+&(0). This implies (2.18). O

It follows from (2.11), (2.12) and (2.14) that we have

Gl — ‘_",),OD ES(—n—l),

(> o D‘HD + RO 10 D7) € E(-n - 2),

—n—2,ex —n—
0<k<r
Hz' - ( Z hf—i)n—l,ekD—n—lD + h—n 0 O—n) € 8(—”‘ - 1)
0<k<r
for 0 < ¢ < r. Thus we obtain (2.9),41 from (2.15) and (2.18). a

Step 4 Now we shall prove Proposition 2.2. We introduce a micro-
differential operator

1 '
Wn= ) —G23°D,
aENT T

where G* = GS°G{* - - G,77" is given in Lemma 2.5. Then we have

(o)) _ ’
[Do, W] = Y — G5~ D,
o!
a€ENT

— GO Z ;‘Gaa}gODxl —_ G()Wm
a€eNT T
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Hence we get

Wi DoW,t = Dy — Gh. (2.20)
Similarly we obtain that
Wine;Wit=2z;+G; (1<j<r). (2.21)
Set Wyy = W,,'W. Then it follows from (2.8), (2.20) and (2.21) that
Wy n commutes with Dg,z1, - ,z.—1. Therefore Wy, is contained in
Wy m-
Thus we have completed the proof of Proposition 2.2. ]
We set

W= {WnWypm; Wmn € Wn, Wyy € Wyn}.
We shall investigate the structure of W, W,, and Wy .

Proposition 2.6 The spaces W , W,, and Wy, are groups by the
composition of microdifferential operators, and Wy as is a normal subgroup

in W.

Proof. 1t is evident that Wy s is an abelian group.
Let W, = 3, £G%23° DS and W, = 28 —ﬂl—!Fﬂxome, be operators

o af
in Wy,. For any microdifferential operator P(z’, D), we set

P :=WnPWy = P(z1 +G1,-++ ,2r—1 + Gry, Do — Gy).

The last equality follows from (2.20) and (2.21). Noting that P commutes
with G, the composition

1~ :
W Wi = > EFﬂmeoﬂmf,
Y
> 1 261 ~a_aotBo po'+8°
s gl al
1,7~ /
=> ?(F + G)'z* DY, (2.22)
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is contained in W,,. For Wypr = >, wi(2')Dy* € Wy the operator

WmWYMW,;l

ZZ'LDi(CCl + GlaxZ + G2, 3y Tr—1 + Gr——l)(DO - GO)—i
i>0 (2.23)

is contained in Wy ;. Since W = W, Wy, it follows from (2.22) and
(2.23) that W is a group and that Wy s is a normal subgroup of W. 0O

We define the Lie subalgebras V;,, and Vypr of V

Vi = {Fo(z', Do)zo + > Fj(a',Do)Dj;
0<j<r
Fk(x,,DO) € 8) (O S k < T‘)},
VYM = {E(:U',.Do); E(:E’,Do) € 8}.

We have
V=V, ® V.

Proposition 2.7 For any P € V (resp. Vp,Vyam) and W € W (resp.
W, Wy p ), we have WPW ™1 € V (resp. Vi, Vy mr).

Proof. For W =73, LG%{°D% € W, we have

[Lh,pV] EE: :E: a](;a ] aolja

0<i<r «
0
=) 3 Gj WD; —%G" Wzq
0<]<r T
for any ¢ = 1,2,--- ,r — 1. Similarly we have

[z0, W] = Y [20,G5]WDj + [z0, Go]Wo.
0<y<r
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Hence we obtain

9G; 0Gy

WDW™ =Di— ) —SLWD;W™ — == WaoW ™ for0<i<r,
0<j<r z 1
W&?()W_l =29 — Z [1130, GJ]W.D]W_I - [.'L'o,Go]WCCoW_l.
0<i<r (224)
We set 5G.
G~—{_a;i_ for0<e<r,
N [z0,G;] =0,

for 0 £ 7 < r. Then we have

o = (1 + Goo)WCCoW_l + Z GOjWDjI/V—la
0<i<r

D; = GioWazoW™ + ) (6i+Gij)WD;W™! for 0<i<r.
0<j<r (2.25)

Since G;; € &(—1), The matrix (6;; + Gijlo<i,j<r 1s invertible. Hence
WD,W~1(0 <1 <r)and WzoW™! are contained in V,,, because G;j is
independent of z¢,D;,--,D,—1. For any operator P = P(z',Dy) € &,
WPW ™! is independent of zy,Dj, -+ ,Dr—1 by (2.20) and (2.21). Hence
we get Proposition 2.7 for V;,, and Wh,.

The proposition is evident for Vy s and Wy . For W,, € W,, and
E € Vi p the operator W, EW ! is contained in Vy-pr by (2.20) and (2.21).
For Wy € Wy we have

oW .
Wy DiWyk, =D; — a;M Wyl for0<i<r,
WYMIL‘()W;}V_, =Tqg — [:I:O,WYM]W;]J{/I.
Since Wy s commutes with Dg,z;, - ,2z,—1, the operator Wy, P }_’_Zle is
contained in V for any P € V. Since V = V,,, & Vypr and W = W,, Wy,
we get Proposition 2.7. 0

Ezample 2.3 We shall write down the evolution equations (1.4) for W €
W in the case r = 3. We take DoD1, DoD, as generators of (1.4).
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We set

= ( Z —G% 5°D2)(D wi(z")Dg ),
a€N3 i
where Gi(z1,22,D) = Zgi,j(xl,xz)Dg (z=1,2).
J<o0
Then we have

~ ~ ago -1 agz —1 3?.01
DoDy)y = DoD _ Y Zimip,
( 0 1)+ oL/1 — Zo ;{) 6331 3x1

~ ~ 3go -1 dg; —1 awl
DoDs)y = DoD Yy Yimp,
( 0 2)+ 02 — Zo ;2 axz 81232

Taking time parameters s and ¢ with respect to DoD; and DyD,, respec-
tively, we obtain the evolution equations

ow dgo,— 89i,-1, O
6—+WD0D1—(D0D1 go - O_Z g;ll i wl)W

oW _ g - 9
+ WDoDy = (Do Dy — ° Lag— S “Za=lp,  lyw.
ot i=1,2 Oz - Oz (2.26)

It follows from (2.26) that we obtain the Zakharov-Shabat type equation

0di—1 py , Qw1
[ —D0D1+ zo + Z Don =Ll D; o+ B2,
i=1,2
0 89, 3w1
= — DoD> + 0 -+ Z ———D; +—]=0.
6t i=1,2 31:2 3:1:2 (2.27)

We shall investigate the infinitesimal action p of the Lie subalgebra V
of £ Remark that the Lie algebra of the group W (resp. Wp,, Wy ) is
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canonically isomorphic to the Lie subalgebra V_ = V N €y (resp. (Vin)—,
(Vym)-).

Theorem 2.8 The action p of V (resp. Vin, Vyar) preserves the space W
(resp. Wy, Wy ). The action of V_ (resp. (Vin)-, (Vyar)-) coincides
with the infinitesimal right action of on the group W (resp. W, Wy nm).

Proof. For any element P € V (resp. Vm, Vyn) and any operator
W € W (resp. Wi, Wy nm ), we have

p(P) = —(WPW™1)_W € TwéE.

By Proposition 2.7, —(WPW™1)_W is contained in the tangent space of
W (resp. Wi, Wyn) at W. Taking P € V_ (resp. (Vim)=, (Vym)-),
we have p(P)=—WUP. Hence the action p is the right action of vector
fields. O

By Theorem 2.8 the Lie algebra V (resp. Vin, Vym) acts on W (resp.
Wi, Wy p) transitively.

24



§3. Twistor theory and integrable systems

On oriented Riemannian manifolds of dimension four, the Weyl curvature
tensor C' decomposes into two components, the self-dual part C; and the
anti-self-dual part C_. A manifold is called self-dual (resp. anti-self-dual)
when C_ (resp. C ) vanishes . Penrose [5] showed that the vanishing of the
anti-self-dual part of the Weyl tensor is precisely the integrability condition
of the existence of a curved twistor space.

In this section we prove that the equation Cy=0 is the compatibility
condition of the deformation equations of filtered D-submodules in £ (See
[13] in which the Frobenius integrability condition of the equations of self
dual metrics is discussed). We get the equations of self dual metrics from
the equation (2.26) for W € Wp,.

Let M be a complex four-manifold and ¢ a holomorphic metric, i.e.
a non-degenerate symmetric holomorphic covariant two-tensor on M. We
shall choose a holomorphic orientation on M which is necessary to define the
complex Hodge *-operator. Our discussion being only local, we can assume
the existence of two complex vector bundles St and S_: the bundles of
self-dual and anti-self-dual spinors.

Let {e;};=1,2,3,4 denote a local coframe on M such that g = ejez+e3es.
We can write them in spinor language as

€4 €2 vid1 D1 ¢2]
= 3.1
[—61 63] [¢2¢1 (FY0p) (3.1)
where 1, 12 (resp. @1, ¢2) are the bases of self-dual (resp. anti-self-dual)
spinor coframes.

We take P = P(S_), the projective bundle of the rank two vector
bundle S_. We parametrize S_ locally by

(3;, B, pa) — /-‘1¢1(33) + /,l,2¢2($),
and g = py/pe is an affine coordinate for puz # 0 .

Theorem 3.1 ([5]) The Riemannian manifold (M, g) is self-dual iff the
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following Pfaffian system Q on P is integrable:

0 :=du + wa pt® — (waz — w11 )p — wiz =0,
Q: o01:=pes+ey =0, (3.2)

o9 = —pue; +e4 =0,

where w;; is the connection form of S_ with respect to the frame ¢; and

.

Let A(S2) be the sheaf of vector fields orthogonal to the Pfaffian system
). The sheaf A(Q) is a Lie algebra iff Q) is integrable. In this case there
exists a local basis (vy,vs) of A(Q) such that [v1,ve] = 0.

Proposition 3.2 Assume (M, g) self-dual. With appropriate coordinates
(A, 21,22, 5,t) of P, there exists a commuting basis (vy,v2) of A(Q), in the
following form

v_ﬂ_)‘_a__(aRa_'_BSB_l_aTi)
1= 0s 3$1 31131 3331 6331 8:132 3:31 oA ’
0 0 OR 0 oS 0 oT 0
V2= 8t /\3_332 B ((9552 0z, + Ozq Oz9 + Ozo 5)’ (3:3)

where the functions R, S and T' do not depend on A.
Proof. First we notice the following lemma.

Lemma 3.3 ([3]) Let (M,g) be a self-dual Riemannian four-manifold.
Then there exist local coordinates (py, p2,q1,¢2) of M such that

9= Y Pij(p,q)dpidg;.

i,j=1,2

It follows from Lemma 3.3 that we can take local frames {e;};=123.4
as follows:

ey = —dpy, ez = —(Pi1dq1 + P12dg2),
eq = dpy, e3 = Pardgs + Paadgs.
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By Theorem 3.1 the ideal Z generated by (,01,02) is closed under the
exterior derivative d. Thus we have

d01A9A01A02=0,
CZO'Q/\G/\O’l/\CTg:O. (34)

By direct calculations we have

dO‘l A 9/\0’1 A (o)
8P12 3P11

= (( 91 - 942 Yu? + Kp+ L)du Adpy Adpe A dgs A dga,
dos A OAc;1 A o
OP. OP
= (G~ 3g, W'+ Mu+ N)dy A dpy A dps A dgs A dgs,

for functions K, L, M and N independent of 4. Thus we have

0q1 0q2 * Opy Opz '

Hence we can define new coordinates (z1, 22, $,t, u) by the following equa-
tions:

Oz,

0q;

Oz _
9q;
8 =p2, t=—ps,

=_'P1i7 P2i, (Z=l,2)

The differential forms 6,0, and o, are written in these coordinates as fol-
lows:

0 = du + p*(Erez + Eae3) + p(Frea + Foes) + Z Jjej,
J
o1 = ,Ltd-S + (dml + AldS -+ Azdt),
o9 = udt + (Clxz + Bids + Bgdt),
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For functions A;, B;, E;, F; (j = 1,2), and J; (j = 1,2, 3,4) independent of
p. 1t is easily verified that the following vectors v1,vs belong to A():

IR 9 9 . 9
= ”33:1 + = D4 A16m1 —B1a$2 + (Eyp® + Fip +J2'U_J4)3y’
9 .8 , 8 9 s 9

v = #ax2+at~—A28xl-Bzam2+(Ezﬂ + Fou +J3ﬂ—~71)aﬂ-

We set the vector field

0 0 0
h= Js — A Oz, By Ozs’
lr = Q-‘Azﬁ"—32 0

ot 8231 8:32

The commutator [v;,v;] is written in the following form

9 9
[vl7 '02] =(E2[—53 + FZ,LL2)-6T1 — (E1#3 + Fl,uz)gg

+{(EoFy — EyFy)pt + (2B Jy — 2E1Jo + 1y(Eo ) — Iy(Ey))p

oJ. oJ.
H(Fodh — FyJy + =2 — == 4 [j(Fy) — L(F)u® }—+uu1 + uo,
Oz, Oz, ou (3.5)

where the coeflicients of vectors u; and ug are independent of u.
By the integrability condition, [v;,ve] is a linear combination of v; and

vy and since [v1,v2] does not contain a% nor 53;, v; and vy commute with

each other. It follows from (3.5) that

8T, 8y

EJ‘ZO, Fj———O(j=l,2), 6?2_8_161

Thus there exists a function f = f(z1, 22, s,t) such that

of of

Ber =" By

- J3.
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We can take new coordinates (A = p+f, 21,23, s,¢). With these coordinates
we have

0 15} 0 0 0
vy = 'a—;—/\a—l—(fh -I-Bla +018/\)

0 0 3 0 0
2T g T g, gy, T8, T O5r)

where C; = %‘5 — (J4 + Jo A1 + J3B1) and C, = at - (Jl + JoAs + J3B2).
Again taking the coefficients of u in [v1,vs], we obtain that

0A; 04, 0B, 0B, 9C; 9C

Bxg - 6:1:1 ’ 8:1,'2 B 3.'131 ’ 6582 B 8331 -
Thus there exist functions R, S and T which are independent of A such that

OR oS oT
oz, Aj, 8z, B;, ey C; fory ,
This completes the proof of Proposition 3.2. O

Remark. By Theorem 3.1 and Proposition 3.2 the equations of self-dual
metrics are equivalent to the compatibility condition [vy,ve] = 0:

AT B *T B OR &*T
O0tdzy 0s0zy  Ozy O3
OR 8S . &°T 8S 0T

Hoey ~ 82, 821005 T 90y 822 =¥
8RR 9T ORG&R
Otdz, O0sdzy ‘Ozy Ozo Oz?
OR 8S. 8R0S O°R
+(3x1 B 0w2)3x10x2 + Oz, O0z2 =0,
025  8*S OT OR S
510z,  0s0zs | B2y Oy 02
OR 05 &S 055 .

- +
+(3x1 0za )3:1:13:102 Oz, O3 (3.6)
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In the equation (2.26) we take W € W,,. In this case w; vanishes.
Replacing go,1,91,1 and g21 with R, S and T, respectively. The equations
(2.27) reduces to (3.6). Therefore we have

Theorem 3.4 The Lie algebra V,, acts on the space of self-dual metrics.
This action is transitive.

Let Wy be the space of W € W which commute with Dy. In the
equation (2.26) we take W € Wy. In this case Gy vanishes. The equation
(2.27) reduces to the composed system of the self-dual Yang-Mills equations
and the self-dual Einstein equations (see Example 2.1 and 2.2). Let Vj be
the Lie subalgebra of V:

Vo={ > Fj(z',Do)D; + E(z', Dy);
0<j<r
Fi(z',Do) € E(0 < k <), B(z',Dy) € £}.

Then Vj acts on Wy. Thus the self-dual Einstein equations are a special-
ization of our integrable system.
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