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§0. Introduction 

In his lectures (1984-85) at Kyoto University, Professor M.Sato presented a 
program for generalizing the soliton theory ([9]; c.f. [10]). The Kadomtsev-
Petviashvili (KP) equation is a typical example of the soliton theory. The 
KP equation is written in the form of deformation equations of a linear 

ordinary differential equation. The time evolutions of a solution are inter-

preted as dynamical motions on an infinite dimensional Grassmann mani-
fold ([7],[9]). The Lie algebra of microdifferential operators of one variable 
acts on this manifold transitively. He conjectured that any integrable sys-
tems can be written in the form of deformation equations of a linear systems, 
and proposed to investigate a deformation of differential equations in higher 
dimensions. He showed a simple example of a deformation of holonomic sys-
tems in higher dimensions ([9]), and its generalization is treated in [4]. In 
this paper we study a deformation of  D-modules in higher dimensions. 

   First we review the KP equation. We denote by E the ring of microdif-

ferential operators of one variable x. We fix a microdifferential operator  P, 

and denote by tp a time variable with respect to P. We study the following 

evolution equation associated to  P: 

             aw 
               +  WP =  (WPW-1)+W, (0.1) 

               at, 

where W  -=W(x,Dx)= 1 +  Ei<0  wi(x)D1 E E. We denote by  IN the set 
of such operators W. This space  W is a group by the composition of  E. 

We get the KP-hierarchy taking P =  Dzn (n =  1,  2,  3, ...) in (0.1). The 
equation (0.1) defines a dynamical motion on W. This infinitesimal action 
of the Lie algebra  E on  W is transitive. 

   The purpose of this article is to give a foundation for higher dimensional 

generalization of the KP hierarchy. Let now  5 be the ring of microdiffer-
ential operators in several variables. Similarly to the one dimensional case, 
fixing an operator P E  5, we shall study the following equation 

 aw 
  +  WP =  (WPW-1)+W, (0.2) 

 at  p 

where the operator W is a 0-th order microdifferential operator. Here we 

choose a decomposition  E=  DT  Eq, and  (WPW-1)+ E  D is the component 
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of  W  PW' according to this decomposition . In general the equation (0.2) 
imposes some constraints on the initial value  W  (t  p = 0), since the vector 
field defined by (0.2) is not tangent to the space  £(0). There is no operator 

 Wo such that the equation (0.2) has a solution W(t) E  E with the initial 
value  Wo for any P  E E. We take generators P in (0.2) only in the Lie 
subalgebra V of  E 

   V =  {Fo(x', Do)xo  >  Fj(x',  Do)D  E(x', Do); 
 o<i<r 

 Fk(xl  Do),  E(x`  ,D0)  E  e for  0  <  k  <  r  1, 

where x' = (x1, x2, ...,  xr_i). This Lie algebra contains the transformation 
groups both of the self-dual Yang-Mills equations and of the self-dual Ein-
stein equations (see [7],[8]). In §2 we will determine the subspace  IN of  £(0) 
so that the vector field defined by (0.2) for any P E V is tangent to W. 
The space  W is a subgroup in  E. The Lie algebra V acts on  1/V transitively. 

   In the case of r = 3, our integrable system is nothing but a composed 

system of the self-dual Yang-Mills equations and the equations of self-dual 

metrics on Riemannian manifolds of dimension four. The Lie algebra V acts 

transitively on the space of self-dual connections on self-dual spaces. Thus 

we obtain a group-theoretical description of the twistor theory ([1],[5]). 

 Notations. We use the following notations: Z denotes the set of integers. 

N denotes the set of non-negative integers. We denote by C the complex 

number field. We denote by  In the unit matrix of size n x n. 
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 §1. Deformations of  7)-modules 

Throughout this paper we shall work in the category of formal power series, 

 0 =  C[[x]] =  C[[xo,  xi,  •  •  •  ,  xr-1]] (r  > 2). Let  7, be the ring of differential 
operators with coefficients in 0. Then every differential operator P of order 

 m can be written as: 

 P  =  a„,(x)14, 
 cxENr,lal<m 

where  a,„(x) are elements of 0, a =  (ao,  ai,  •  •  •  ,  ar—i) E  Nr, =  a0 
 al +•  •  +  cxr_i,  =  Doa°D1r1  •  •  •  Dra_TV  and  Di =  79i7  (j  =  0,  1,  •  •  ,r  —1). 

   The ring E of formal  micro  differential operators is a set of formal Lau-

rent series in  Do,  Di,  •  •  •  ,  Dr_i with only non-negative powers of  Di,  •  •  •  , 

 Dr—i. The precise definition is as follows. We denote by  E(m) the space of 
formal series  : 

 P =  ac,(x).D 
 cvEZ  xNr-1,1a1<m 

where  ozo,'s are elements of 0, and the summation is taken through  -a = 

 (cxo,  ai,.  •  • ,  ar_i), where  ao E  7L,  al E N,  •  •  • E N. We set 

 E =  U  E(m). 
 mEZ 

We endow the 0-module  E with a structure of ring by extending the Leibniz 

formula. For two elements P =  Ea  aaDc; and Q -=Ei3b#.13): of  E, we define 
the composition P o Q by 

                           (a7) a i,(-0 nce+13--r         p o  Q                                               co'fl 

 a,/3E71  xNr-1,-yENT 

where  b(') =  Dgbg). The ring E has an increasing filtration by subspaces 
 {E(m)}„,Ez. We have 

 E(m)E(n) =  E(n  m). 
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For any 0-submodule of E we define the induced filtration  {C(m)}rnez 
of  .0 by  C(m)  =  n  e(m). 

   Let  50 be the 0-module  consisting of the formal microdifferential op-
erators of the form 

 ao,(x)D2,, 
 «o  <0 

The ring  E is the direct sum of  D and  E. For any P  E  5, we define 

 P+ E  D and P_ E  50 by the decomposition of  E: 

 =  D  ®  E0 

 P  =  P+  +  P_  . 

For any 0-submodule of  E we define the 0-module  .C_ by =  fl 

Remark that  5(0) =  C7  ®  eo(o). 
   In the following we shall study a left  V-submodule I of  e which satisfies 

the following condition: 

 5(m).  I(m)e  eo(m) for any  m  E  Z. (1.1) 

For example I =  D satisfies (1.1). We make clear the structure of such a 
 V-submodule I. 

Lemma 1.1 Suppose that a  V-submodule I of  E satisfies the condition 

(1.1). Then I is generated as  VI-module by a unique operator W such that 

             W  E  5(0) and  W+ = 1. (1.2) 

Proof. The operator W is obtained by decomposing the identity operator 
1 E  5(0) into the  sum of an operator in  I(0) and an operator in  50(0) 
according to the condition (1.1): 

 5(3) =  /(3)  ED  eo(o) 
       1  =  W U 

It is evident that W is contained in  5(0) and that  W+ = 1. Since we have 

 E(m)W =  e(m),  Eo(m)w =  eo(m) 
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for any m  E  7L, we obtain that 

          E(m) =  D(rn)W e  E,(m) for any m E  7. 

Thus the  D-module =  DW also satisfies (1.1). Because I contains I' 
and both satisfy (1.1), I coincides with  I'. The uniqueness is clear.  ^ 

   Remark that W in  Lemma 1.1 is invertible by (1.2). 

   We investigate nonlinear evolution equations according to the program 

of M. Sato  ([9],[10]). For any P  E E and any  D-submodule  10 of E we define 
the time evolution  It of  10 by the following differential equations: 

 av(t)                  V(
t)P E  It for any V(t) E It. (1.3) 

 at 

We call P  E  5 the generator of the evolution equation (1.3). 
   In general we cannot find any  D-submodule  It which solves (1.3). In 

this paper we shall study the case that we can find a solution It of (1.3) 
which is a  D-module satisfying (1.1) for any t. Then It is generated by an 
operator  W(t) E  5(0) by Lemma 1.1 and we can rewrite the equation (1.3) 
in terms of the generator W(t). 

Lemma 1.2 We fix an operator P E  E. We assume that the solution  It 

of the evolution equation (1.3) is a  D-submodule which satisfies (1.1) for 
any t . Then the equation (1.3) reduces to the following equation 

 aw(t)                 W(t)P =  (W(t)PW(t)-1)+W(t), (1.4) 
 at 

where the operator  W(t) is the generator of  It in Lemma 1.1. 

Proof. From the equation (1.3) there exists an operator B(t)  E  1) such 
that 

 aw(t)                     W(t)P = B(t)W(t). 
 at 
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Thus we have 

          B(t) =  W(t)PW(t)-1 +wa (t)W(t)_i 
                            at 

Since the operator W(t) is contained in  1+  E,i5 , the operator  2V/W(t)-1 
is contained in  Es. Thus we obtain that B(t) =  (W(t)PW(t)-1)+.  ^ 

Remark. The equation (1.4) is rewritten as 

             aw 

 at=  (wpw-1)+w — WP 
            = —(WPW-1) ._W. (1.5) 

   The evolution equation (1.4) is associated with an infinitesimal action 
p of E on the space E. For P E E the vector field p(P) is given as follows. 

                 W  ---4  —(wpw-1)_w E TwE, 

where the tangent space  TwE is identified with E by the structure of vector 
space of E. 

Theorem 1.3 For any  P,  Q E E we have 

 p([P,  Q])  =  —[p(P),  P(Q)]. 

Proof. We denote by  ei and  62 the time parameters with respect to P 

and Q, respectively. We set P  =WPW-1 and Q  =WQW-1. We have 

N 

                                exp(eip(P))W-L--=_(1 — e1(P)_)W  model, 

 exp(e2P(Q))W (1  — E2(Q                         ---)—)W  mod  4. 
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Hence we have, modulo 

 exp(eiP(P))(1-e2(WQW-1)-) 

                          1- e2“1- 

 1- E:6- 

Thus we obtain, modulo  el,  e3 

 exp(eiP(P))  exP(E2P(Q))T/17 
 exp(eip(P))(1 -  e2(W  QW-1)_)W 

             =_(1 - e:64-fie2[1"-,-6]--)(1 - €11;     .-_-.--)W 

                                "  - (1  --+ ElE2([73--,"6]- +"6:1-))T47. 

Similarly we have, modulo  el,  6:4 

 exp(e2p(Q))  exp(eip(P))W 

 (1  -- e113-fie2([-)1:]-- 

By the formula 

 exp(fi  P(P))  exP(E2P(Q))TV -  exp(e2P(Q))  exP(EiP(P))W 
 f1e2  [P(P))  P(CgT47  mod  ET,  EL 

we obtain 

 [P(P), P(QATV=-+-iji"6-}vv 
            =  {[P  Q+  +Q -]-  -[Q-,P+  P-]-  -F[Q--)13-]}W 

                                           (1.6) 

SinceCi)+,P‘6+]__ = 0, the right hand side of (1.6) is equal to 

            [-11       "6] -W =  P([13)Q])W  ^ 
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   When  P,  Q  E E commute with each other, the following equations are 
compatible by Theorem 1.3: 

 aw 
               as (wpw-i  )±w —  WP, 

 aw 

 at 
 =  (wQw-1)+w —  WQ, 

where W  =W(s,t). 
   In the case r 1, for any P  E E and for any  Io  =  DW(0) the solution 

It of the equation (1.3) satisfies the condition (1.1) for any t. With the 
choice P (n = 1,  2,  •  •  •  ), we obtain the KP-hierarchy  ([7],[8]): 

 aw(t)  
 +w(t)D702  (w(t)D,7w(t)-1)+w(t). 

 at 

In higher dimensional case, we must choose a nice pair of the generator P 

and  Io =  DW(0) in order that  It satisfies the condition (1.1) for any t. We 
shall see the evolution equation (1.4) constrains the initial value  W(0) in 
the following example. 

Example 1.1 We consider (1.4) in the case r = 2. We take  A' as the 
generator of the equation (1.4). We write 

 W(t) =  E  wi  JD6D1,  wo,o 1. 
 i+j<ohi>o 

The operator  W(t)D,3 is decomposed into the sum 

 DW  E0 

 W(t)Dg =  (W(t)DgW(t)-1)+W U  . 

Then we have 

 (w(t)D(2,w(t)-i)+  =  (D02 2 aw
,'1D+12aw2a_wia,F,01 

                              oixo 

                       2atvi-1        U =-E 
            oxo  axo ax,1 

                              at v_1,0 
tv2,3+ 20w-1,1 awi••           +2')Dp3i. 

                0x0ox° 
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The equation (1.4) is equivalent to the following: 

                  atvi 

               at +  ui,i  =  o for i + j <0, 

 w,,3_1=0,  for  i  j  =  1.  a
xo  axo 

The second equation constrains the initial data W(0). 

 §2. Integrable systems in higher dimensions 
In the example 1.1 we have considered the equation (1.3) for one generator 
P =  D. In this section we will introduce a space V of generators, and 

determine the space of  D-submodules I of E such that the condition (1.1) 
is preserved under the time evolution (1.3) for any P E V. 

   First we review two known examples, the self-dual Yang-Mills equations 

and the self-dual Einstein  equations  . We can interpret both the equations 

as integrable systems of three variables (see [14]). 

Example 2.1 Self-dual Yang-Mills equations (see [15],[11]). 

The self-dual Yang-Mills equations are written in the following form 

      (aA                              x2, s, t)Xl.) X2) S) t), 
           UX2OX21 

 ra 
             L—Ai(xi, x2, s, —A2(xi, X2)8701:----0 (2.1) 

   as at 

for gauge fields  A1, A2 E Mat(n x n) on four-dimensional manifolds. 
   The evolution equation (1.4) is generalized to the case that W and 

P have matrix coefficients. We introduce the space  Wym(n) and the Lie 
algebra  Vym  (n): 

 VVym(n) =  {W(xi,x2,Do) =  x2)Doi; 
 iEN 

 tVi E Mat(n x  n,C[[xi,x2]]), wo  1,21. 
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 Vym(n) =  {Fi(xi,x2,Do)D1  F2(xi, x2,  DO)D2  E(X11  x2,  Do); 

 F17  F2 E Mat(n x  n,D), E E Mat(n x  n,  E)} 

The evolution equation (1.4) for P E  Vym(n) with any initial value W E 
 Wym(n) has a solution in  WyM(n) . We consider the equation (1.4) for 

P =  DoDi,  DoD2  E  VyM(n): 

          aw             — +wpoD, =  (wDop1w-1)+w , 
              as 

 aw            - +wpoD2 = (wD0D2147-1)+W (2.2) 
            at 

In terms of the coefficients  wj of W the equation (2.2) is written in the 
form 

 awi  awi+i  awl 
                                - wi

, 
 as  °xi  ax„ 

 awi  awi+i  awl                -wi , (2.3) 
 at=ax2 0x2 

for i > 0. We set  •Ai =  a (j  =  1,  2). By eliminating w2 from the equation 
(2.3) for i = 1, we obtain the equation (2.1). 

Example 2.2 Self-dual Einstein equations (see [2],[12]). 

The self-dual Einstein equations are  written in the form (see [6]) 

 5A, (0A2 
            XX27SI t) =X 1 7X27 s, t),

OX2ux, 
 0.81 \0132 ( 

                  x2) 67 t) =X 7X27 .5) t), 
 UX2 (ix] . 

 ,a, a,a 
   [—++ Bi(Xi) X2'' t)- 
 as ox,ax2 

     a 0\a.L\a                     A2(X1X2) S)t)---nB2(S1X27 S7-= 
    atox,0x2 

                            \ 

             S21 8,0+°Ai (X11 X27 S) t) 0 (j =  1,2). (2.4) 
 as2  oxi 
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In the following we forget the last equation in (2.4) for simplicity. 
   We introduce the space  WE and the Lie algebra VE: 

 WE = =1G3,Gok Di Dok* G• =-(xix2)Dg(i= 1,  2)  }. 
   4!k!, 

 j,kEN j<0 

      VE =  {Fi(X17  X21  DO)D1  F2(X  11  X2)  D  0)D2;  Fi  F2 E  E}. 

The evolution equation (1.4) for P E VE with any initial value W E WE 
has a solution in  WE.  We consider (1.4) for P =  DoD1,DoD2 E VE: 

 aw 

              as - +wpopi =  (wDopiw-')+w, 
 aw 

 at - +wpoD2 =  (w  DoD2w-1)+w (2.5) 

In terms of the coefficients  gi  j the equation (2.5) is written in the form: 

 agi,i  agi ,j-iagi,i 892,-1  agi,i 
   U.S  axi  axi  axi axi  ax2 

      — 

                  N1,-1  ag2,-1 agi  
                                   „for  i — 1,2,  j  <O.   at ax

2  ax2 ax2ax2                                            (2.6) 

We set  Ai =  Bi =aax~=  1,  2). By eliminating  gi,-2  (i = 
 1,  2) from the equation (2.6) for i =  1,  2, j = —1, we obtain the equation 

(2.4). 

   We shall unify these two examples and obtain more general systems. 

We introduce the Lie subalgebra V of E which contains both the Lie algebras 

 VY  M and VE: 

 V  =  {F0 (X1  D  0)X  0  E  FAxi  ,  DOM  E(xi  Do); 
 0<j<r 

 Fk(x1  ,  Do),  E(x'  ,D0) E  E, (0 k < r)}, 
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 where x'=  (x1,  x2,  •  •  •  ,  xr—i)• 

Lemma 2.1 V is isomorphic to  7,(1)  00  C[[x]][x01] as a Lie algebra. 

Proof.  Set  X  =  Cr  =  {(zo,zi,  •  •  •  ,zr _i)  E  Cr},  and  Y  =  {z  E  X;  zo  =  0}. 
We take the transformation 

 xo---zg'.Dzo, D xo =,z0-1  , x = ,z`  , D x, = D x,  . 

Then the transform of V is  7,(1)  0  C[[z]][z0-1].  D 

   The Lie algebra 7.",(1)  ®  C[[x]][x0-1] is the direct sum of the Lie al-
gebra  0  00  C[[x]][xo-1] of vector fields and the commutative Lie algebra 

 C[[x]][x0-1], where the Lie algebra  0 is defined by 

 0  =  E  OD  j. 
 0<j<r 

The Lie algebra  0  00  C[[x]][x0-1] corresponds to the infinitesimal coordi-
nate transformations, and the Lie algebra  C[[x]][x0-1] corresponds to the 
infinitesimal gauge transformations of a line bundle. 

   Now we shall determine the set of  D-submodules in E such that the 

condition (1.1) is preserved under (1.3) with respect to any P E V. We 
introduce the subspaces  Wm and  VVy  m of E: 

 Wm  =  {W(x,  Dx)  =  E1—oe!G"x1:7°D2  E  E; 
 aENr 

 G' =  Goce°  Gi"i  ..  Gar  i1 where  Gi =  G3(xl,D0) E E(-1)}, 

 Wym  =  {W(Xl,  Do) =  E  wi(x/)Doi;  wi  E  C[[xi,  •  •  •  lxr_i]],  W0  -.__  1.1. 
 iEN 

Proposition 2.2 Let  /0 =  DWI) be a  D-submodule of E. Assume that 

 the time evolution of  /0 for any P E V also satisfies the condition (1.1). 
Then Wo factorizes into the product of Wm E Wm and  Wym E  Wym; 

 Wo =  Wm  WYM. 
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Remark. The operator Wm corresponds to the equation of self-dual met-

rics (see  §3). 

Proof of  Proposition 2.2. 

 Step 1. 

Lemma 2.3 Let W(t) be the solution  of  (1.4) for P  E V with  W(0) =  Wo. 
Then  (w(t)pw(t)-1)_ is contained in  £0(0). 

Proof. 
   It follows from the equation (1.5) that 

 5147(t)w(t)_1  =-(w(t)pw(t)--1) _. 
 at 

Since the operator  apw(t)—i is contained in  E(0), we obtain Lemma 
2.3. 

 Step  2. For any P E E, let71'be WoPK-1. 

Lemma 2.4 Suppose that  P,  Q  E V commute with each other. The 

operator  [134_,Q_]_ is contained in  E4,(0). 

Proof. We consider the solution  W  =  W(s,  t) of the equation (1.5) for the 
operators  P,  Q: 

              aw 
 as=-(wpw-i)_w, 
 aw  =-(wQw-1)-w) (2.7) 

                at 

where W =  W  (s  ,t). Since  [P, Q] = 0, the system (2.7) is compatible by 
Theorem 1.3. It follows from Lemma 2.3 that  wpw-i is contained in 

 D  E0(0). We have 

  —a (wpw-'awlawW-1        ),—WPW—7
t-    atat 

 (wQw_i)_wpw-i  +wpw-i(wQw_i) 

 [wpw_1,(wQw-i)  ]. 
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Hence  [P  ,Q  _] is contained in  7.",  £0(0). Since  [P  _,Q  _] is contained in 

 go(0) by Lemma 2.3,  [P+,  Q_] is contained in  7,  eck(o).  ^ 

Step 3 Recall that P denotes  W0PW0-1 for any P E  E. We define the 

operators  Gi,  Hi E  e (0  < i < r) as follows: 

 7Do =  D0 —  Go(x,Dx), 

            xi =  xi +  Gi(x,Dx) for i =  1,2,  •  •  ,r — 1, 

            xp = xo+Ho(x,Di), 

           Di =  Di +  Hi(x,Dx) for i =  1,2,  •  •  •  ,r — 1. (2.8) 

Lemma 2.5 Assume that  W0 satisfies the condition in Proposition 2.2. 

The operators  Gi,  Hi are written in the following form: 

 Gi =  Gi(xl  ,  Do) E  £(-1), 

 Hi =  -E  Kii(x',D0)Di  Li(x, D0)  for  0 i  <  r, 
 0<j<r 

             where  Kii(xl,  Do) E  e,  Li(x,  Do) E  e(-1), 

                  and  x  =  (xi,  •  •  ,xr_1). 

Proof. We shall show the following statement  (2.9)72 by the induction on 
n: 

 Gi  =  H:-F  H:' 
     for some  GZ,  H:, and  H:' (0  < i  <  r) such that 

 H:' E  e(—n),  GI",  Ht;' E  e(—n — 1) for 0 < i  <  r, 
 GZ =  G(ccs  ,  Do)  E  £(-1), 

 H: =  E  Kii(s'  ,  Do)Di  Li(x,  Do)  for0<i<r 
 0<j<r 

     with  Kii(x'  ,  Do),  Li(x,  Do) E  E(-1).  (2.9)„ 

                        14



It is evident that the statement  (2.9)0 is true . By assuming  (2.9)72 we shall 
prove  (2.9)72+1 

   We expand the operators: 

             rr =E,(i)nkna' 
                                                                            x' 

 k<0,a'END-1 

 =  h(j),Dk                    ka0 • (2.10) 
 k<0,a'ENr-1 

Since  Co belongs to  E(—n), we have 

       Don+2=(D0GI()Gonn-F2 

 (Do —  GO )n+2 —  (n  2)G0(D0 —  Go)n+1 
           -==  (Do —  Go  )n+2 — (n  2)GP(7+1 modulo  e(0). 

The operator  (D0  —GOn+2 belongs to  7)+40), because  Co does not contain 
 Dj(0  <  j  <  r). Hence we obtain 

 Don+2 —(n  2)GicjDon+1 modulo  7) +  5(0). 

Since D702+2 is contained in7)+ 5(0) for any n E Z by Lemma 2.3, G'01D0+1 
is also contained in  1) +  5(0). Therefore we obtain 

            g(0)g= 0 for la' I 2. (2.11) 

Similarly we have, modulo  7:)+E(0) 

 Don+1Di —(n  1)GouNDid-  HjilDon+11 

 ;0Don+2 —(n  2)xoGPon+1  Hotipon+2, 

     x jpri Dk .1_1=Gpno-F1Dkxj(HikiDn+1o(n1)GP(Pk). 
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By Lemma 2.3, DrlDj,  x0D70242 and xiDrlDk are contained in  v+e(o). 
Thus we obtain 

            h(j)                       =0 for loe'l > 3, 

 h(3)  =(n +  1)g(°J)._,,,,,,, for  WI = 1, 

                     = 0 for WI > 2,                    h(—°)ceil—n-1,ce 

            =  0 for 2, (2.12) 

 V 

 where  j =  1,  2,  •  •  •  ,r  —  1 and  ej  =  (0,  •  •  •  ,  1,  •  •  •  ,  0) E  Nr-1. 
   We denote by V and  V' the subspaces of  D+E(0): 

 V  = {  E  Fk(x,Do)Dk  E(x,  Do);  Fk(x,  Do),  E(x,  Do)  E  E}, 
          0<k<r 

  V =  E  Fk(xl  ,Do)Dk  E(x,  Do);  Fk(x1,  Do),  E(x,  Do) E  el. 
 0<k<r 

For  P,  Q  E  Vi the commutator  [P,  Q]  is,  contained in V. Since (0  < j  <  r) 
are contained in V',  [HI/  [xo,Hli] (0  <  i,j < r) are contained in V. 

   For j > 0 we have 

        ,rLT 

     [X0)131] =[X07 HjJ11/071-131                  axOH°i 

                arr         =[Xol—+Hy] + [B-L, HY]Hj]) 
               3OX j 

                                      H, 
                   +axo)111-] sa+ [HO,Wi])                         3x

.; 

 OH" 
           a--[x0,1/1—modulo  E(—n — 2) + V.              3oxi 

Since[;0,13j]0,[xo,Hy]—'49-11;11-belongs toE(—n —2)+V. By (2.10)we 

                       16



have, modulo  £(—n — 2) +  V 

 au" 

          axj 

               aho)  

   E((n).D(1—n-1                                            7121ID:                                 axi 
 Icel>2(2.13) 

   We obtain from (2.12) and (2.13) that 

 h(j)2_72.,a, = 0 for  jail = 2, 0  <  j  <  r, 
 (0)               = 0 for  lail  = 1. (2.14) 

   Similarly by the equations 

 [Do,Dj]aH-+aGo--[Go,Hj]= 0 for 0  <  j  <  r, 
 axo axi 

 aG-
      [D0,xj]=[G-,Go] —  [Go,  xj] = 0 for 0  <  j < r, 

 axe3 

      ['no,=  1  +  [Do,  Ho] —  [Go,  xo]  +  [Go,  Ho] = 1, 

we obtain 

        ah(j),„ahN, 

                                                    0                                      0 

               —0)  k — 07=0.(2.15) 
     ax0 OX0  OX0 

   For 0  <  i  <  r we have modulo  £(-1) 

 Do  Di =  (Do —  Go —  GO)n(Di  +11: 
          a-- ((Do —  Gio)n —  nG101(Do —  G'0)72-1)(Di+  Hi + 

 —nCo'griDi + (Do —  Co)n(Di  +  Hi" 

                                           (2.16) 
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By (2.12) and (2.14) we have 

 E  Dv  Di modulo  £(--1), 
 0<j<r 

       —nGP.701-1Di —ng(cC,),0Dc71Di modulo  4-1). 
   We set  Kii and  Li in  (2.9)72 as follows: 

 Kii(x'  ,D0)  =  E  ki,j,m(xf  )Dr, 
 m<0 

 Li(x,Do)=  E  (x/)Dir 
 m<o 

By  (2.9)72 we have 

       (-1-50-bi)+ =  (Do —  Go)(Di  H: -F  HI) 
 =  DoDi  {Do(H:-F  E  Kii  Li)}± 

 1<j<r 

           =  DoDi  E  (h(1,„ + + 
 1<j<r (2.17) 

Sublemma. We have  ag:n)'°  =0.(2.18) 
 uxo 

Proof. The commutator  [(DoDi)±,D1j,Di] is contained in  D+E(0) by 
Lemma 2.4. By (2.16) and (2.17) we have, modulo E(0) 

   [(60i)i)+7"frol"ni] 
   [030j3i)+,_ng(o.),0DvDi 

          +  E  h(q_n,e,  Dv  Di + (D0 —  Co)'  (D +  HD] 
 0<i<r 

 E-E[DoDil 

 E  Dj +  (Do —  Co)72 (D +  HD]. 
 0<i<r 

                       18



Since  (DoDO+ and  E0<j< r  Do1Di +  (Do —  Co)72(Di +  HD are 
contained in V, the operator 

 [DoDi, — ng(07),,0D0-1 Di] 
 (0) (0) (0)  ag _,  nag-0a2g_n,0  

 —n Do n n, D2n  a
xo°axi axoaxi 

is contained in  D+E(0). This implies (2.18).  ^ 

   It follows from (2.11), (2.12) and (2.14) that we have 

 Glo —  g(C)),0Do-n  E  £(—n — 1), 
 g(i)n-1,oDon-1  E(-n—  2)) 

    Ho — ( E L(0)nn-2Dkh(0)n 1,0r-1) E          16—n-2,ek1-"0Dn —  2)) 
            0<k<r 

 Hi —  ( E h(i)                         —n-1 ,ek0Dn-1D.+(i)                             k-T-E  E(-7/ — 1). 
               0<k<r 

for 0 < i < r. Thus we obtain  (2.9)72+1 from (2.15) and (2.18).  ^ 

Step 4 Now we shall prove Proposition 2.2. We introduce a micro-

differential operator 

 Wm 1  =  E -
a!Ga 

 «ENT 

where  Gc' = G,7°Gi'l • • • Gis given in Lemma 2.5. Then we have 

               a°—1, 
                                   G'x'°        [Do,Win] Eox 

                              «ENT 

                        1          =  Go  E GoWm. 

                                        o 

 «ENT 
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Hence we get 

 WmD0W;i1 =  Do  —  Go. (2.20) 

Similarly we obtain that 

 WmxiW77,1 =  Xj  Gj (1  < j  <  r). (2.21) 

Set  WYM  W„VW. Then it follows from (2.8), (2.20) and (2.21) that 
WYM commutes with  Do,  xl,  •  •  • ,  xr—i. Therefore  WYM is contained in 

 WYM. 

   Thus we have completed the proof of Proposition 2.2.  ^ 

   We set 

            =  {WmWym; Wm E  Wm, WYM E  WYM}. 

We shall investigate the structure of  W, Wm and  Wym. 

Proposition 2.6 The spaces  W ,  Wm and  WYM are groups by the 
composition of microdifferential operators, and  WYM is a normal subgroup 
in  W. 

Proof. It is evident that  WYM is an abelian group. 

   Let Wm =c÷,G'xrDxce: andW Efi  791-,F1xg°  DI:: be operators 
in Wm. For any microdifferential operator  P(x'  ,  Do), we set 

 P :=  WmPW,V =  P(x1 + G1,  •  •  •  ,xr—i  Gr-1,  DO —  Go). 

The last equality follows from (2.20) and (2.21). Noting that P commutes 
with  G;, the composition 

 1  —  WmWm1  =  E  —F$Wmxg°  Dfi: 
 t3! 

 1 —1  =2 ,FP—G'4°4-130Dc+,a' 
                     /3!  a!  ce,i3 

 ^' 

 E  7(F  ±x-'01° D, (2.22) 
 'Y 
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is contained in  Wm. For  Wym =  Ei  wi(x1)D02  E  Wym the operator 

        WrnWYMW772-1 

           wi(xi + G1, X2 +  G2, •Xr—iGr-1)(DoCo)i 
 i>0 (2.23) 

is contained in  Wym  . Since  W =  Wm  Wym  , it follows from (2.22) and 

(2.23) that  1/V is a group and that  Wym  is a normal subgroup of W.  0 

   We define the Lie subalgebras  Vn, and  Vym of V 

 Vn, =  (Fo(xl,Do)xo  E  Fj(x1,130)Di, 
 0<j<r 

 Fk(XI)  Do)  E£,  (0  k  <  r)}, 

 Vym =  (E(x1,D0),  E(x`  ,D0) E  El. 

We have 

 V  =  Vm  Vy  m. 

Proposition 2.7 For any P E V (resp.  V,„  Vym) and W E  W (resp. 
 Wm,  Wym), we have  WPW' E V (resp.  17,,,Vym). 

Proof. For W =  E„  cGaxoce'D": E Wm we have 

 a  • aG  - 
         [Di,W] = E  E  a!  axi 

 0<j<r  a 

                      aGiTxr,aGo, 
                                                    So  EVVJJ•+—VV                  ax•axi  0<j<

r z 

for any i =  1,2,  •  •  •  ,r — 1. Similarly we have 

 [xo,  =  E  [X0)  GjiWpj  +  [X0)  G0]WX0. 
 0<j<r 
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Hence we obtain 

 • WDiW"ac=  Di —  E-.7w.DiwaGo—i—, Wx0W-1 for 0  <  i  <  r, 

                            i 

 0<j<rOl                      axai 

 WX0W-1 =  X0 —  >  [xo,cj]wpiw—i—[xo,G0]147X0W-1• 
 0<j<r (2.24) 

We set 
                                      LOG-                             for 0 < i < r,  Gii = { ax; 

 [xo,Gi] i = 0, 
for 0  <  j  <  r. Then we have 

 xo = (1 +  Goo)Wx0W-1 +  E  Goiwpivv—i, 
 0<j<r 

 Di=  GioWx0W-1 +  >  (8ii  +  Gii)WDiW-1 for 0 < i  <  r. 
 0<j<r (2.25) 

Since  Gii E  E(-1), The matrix  (Sii  +  Gii)0<i,j<r is invertible. Hence 
 WDiW-1 (0 < i  <  r) and  Wx0W-1 are contained in Vm, because  Gii is 

independent of  xo,D1,•  •  •  ,  Dr_i. For any operator P =  P(x',  D0) E E, 
 WPW' is independent of  xo,D1,•  •  •  ,Dr_i by (2.20) and (2.21). Hence 

we get Proposition 2.7 for Vm and  Wm. 

   The proposition is evident for  Vym and  Wym. For Wm E Wm and 

E E  Vym the operator  WmEWV is contained in  Vym by (2.20) and (2.21). 
For  Wym E  Wym we have 

                        awym  W-1  f
or  0  <  i  <  r,         WymDiWy14  —Di 

 axi YM 

 WY  MXo  WIT  LI  -=-X0  -[x0,WYM]Wyle 

Since  Wym commutes with  Do, xi,  •  ,xr_i, the operator WymPT471,1,/ is 
contained in V for any P E  V. Since V = Vm  ®  Vym and  W =  WmiNym, 

we get Proposition 2.7.  ^ 

Example 2.3 We shall write down the evolution equations (1.4) for W  E 
 W in the case r = 3. We take  DoDi,  DoD2 as generators of (1.4). 
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   We set 

    W  = ( E1—a! Gax;°  Df:)(EWi(XI)Doi), 
 aEN3  i 

         where  Gi(x1,x2,  Do) =  Egi ,i(xi7x2)D (i =  1,2). 
 j<o 

Then we have 

                        ago,--i. E agi,-1 D,awl       (DoDo+= Dopixo 
 axi oxi °x1' 

 i=1,2 

                     ago,-1Eag
ni'l D,—anwl       (D0D2)+=D0D2xo 

         axaxax 
                                                 i=1,2 

Taking time parameters s and t with respect to  D0  D1 and  D0  D2, respec-

tively, we obtain the evolution equations 

 aw-ago ,_iagi,-1naW1\TAT
1       + WD0D1 = (Dopixo../.-/z----e,)VY 

 as ax,  axioxi 
                                                   i=1,2 

   2----W+WD0D2 = (DoD2ago-1agi-1ow'y                     ,'x0E „,D,—,,w.  atux2orx2ax2  i=1,2(2.26) 

It follows from (2.26) that we obtain the Zakharov-Shabat type equation 

     r a, ago -1agi_i,,awl        L——DoD1-1-,'x0 + E ,,i.,,_,_—,,   asaxaxax 
 i=1,2 

          a iag0 -1,Eagi,_iT-1,awl1n 

                                                                                                                                                                                                                   . 

             - DOD21- ,,'X01-,.,Liz1-,,j=U  ataxaxox2  i=1,2 (2.27) 

   We shall investigate the infinitesimal action p of the Lie subalgebra V 

of E. Remark that the Lie algebra of the group  W (resp. Wm,  Wym) is 
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canonically isomorphic to the Lie subalgebra V_ = V  fl  E4, (resp. (Vm)_, 
 (Vym)_). 

Theorem 2.8 The action p of V (resp. Vm,  Vym) preserves the space  14) 
(resp.  Wm,  Wym). The action of V_ (resp. (Vm)_,  (Vym)_) coincides 
with the infinitesimal right action of on the group  VV (resp.  Wm,  WyM). 

Proof. For any element P E V (resp. Vm,  Vym) and any operator 
W E W (resp.  Wm,  Wym), we have 

               p(P) =  —(W  PW-1)_W E TwE. 

By Proposition 2.7,  —(W  PW-1)_W is contained in the tangent space of 
 14) (resp.  Wm,  Wym) at W. Taking P E V_ (resp.  (V„,)_,  (Vym)_), 

we have p(P) =  —WP. Hence the action p is the right action of vector 
fields.  ^ 

   By Theorem 2.8 the Lie algebra V (resp. Vm,  Vym) acts on  14) (resp. 
 Wm,  Wym) transitively. 
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§3. Twistor theory and integrable systems 

On oriented  Riemannian manifolds of dimension four, the Weyl curvature 
tensor C decomposes into two components, the self-dual part C+ and the 
anti-self-dual part  C_. A manifold is called self-dual (resp. anti-self-dual) 
when C_ (resp.  C+)  vanishes  . Penrose [5] showed that the vanishing of the 
anti-self-dual part of the Weyl tensor is precisely the integrability condition 

of the existence of a curved twistor space. 

   In this section we prove that the equation  C+=-0 is the compatibility 

condition of the deformation equations of filtered  D-submodules in (See 
[13] in which the Frobenius integrability condition of the equations of self 
dual metrics is discussed). We get the equations of self dual metrics from 
the equation (2.26) for W E  Wm. 
    Let M be a complex four-manifold and g a holomorphic metric, i.e. 

a non-degenerate  syinmetric holomorphic covariant two-tensor on M. We 

shall choose a holomorphic orientation on M which is necessary to define the 

complex  Hodge  *-operator. Our discussion being only local, we can assume 

the existence of two complex vector bundles S+ and S_: the bundles of 

self-dual and anti-self-dual spinors. 

    Let  lei  li.1 ,2,3,4 denote a local  coframe  on M such that g =  e1e2+e3e4. 
We can write them in spinor language as 

             e4  C2  =  [0101 0102 (3.1)  —el  e3 02010202 

where  01,  09 (resp.  01,  02) are the bases of self-dual (resp. anti-self-dual) 
spinor coframes. 

   We take P =  P(S_), the projective bundle of the rank two vector 
bundle S_. We parametrize S_ locally by 

 (x)Pi)P2)  P101(x)d-  P202(x), 

and p  pi  /,u2 is an affine coordinate for  p2  0  . 

Theorem 3.1 ([5]) The Riemannian manifold (M, g) is self-dual  if the 
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following Pfaffian system  Q on P is integrable: 

               0 :=  dia +  w2ii-t2 — (w22 —  wii)P —  W12 = 0, 

 Ci  :  Cri  :=  pe4  +  e2  =  0, (3.2) 

                a2  :=-  —Pei + e4 = 0, 

where  Wii is the connection form of S_ with respect to the frame  01 and 
 02. 

   Let  A(Q) be the sheaf of vector fields orthogonal to the Pfaffian system 
 Q. The sheaf  A(1) is a Lie algebra  iff  Q is integrable. In this case there 

exists a local basis  (vi,  v2) of  A(Q) such that  [vi,  v2] = 0. 

Proposition 3.2 Assume (M, g) self-dual. With appropriate coordinates 

(A,  x1, x2,  .s, t) of  P, there exists a commuting basis (vi, v2) of  A(Q), in the 
following form 

 a  a  aR  a  as  a  aT  a 
         vi = __ A___—(.____++___.), 

          as axi 0x,  ax,ax,  ax2 ax, aAi 

 a  a  aR  a  as  a  aT  a         ,v9=— (__++) , (3.3)         -at ax2 ax2  ax, ax2  ax2 ax2 aAi 

where the functions R, S and T do not depend on A. 

Proof. First we notice the following lemma. 

Lemma 3.3 ([3]) Let (M, g) be a self-dual Riemannian four-manifold. 
Then there exist local coordinates  (p1,P2,qi,  q2) of M such that 

 g  =  E  Pij(p,q)dpidqi. 
 ij=1,2 

   It follows from Lemma 3.3 that we can take local frames  {ei}i=1,2,3,4 
as follows: 

 61 =  —411  e2  =  —(131141  +  P1242  )) 

 e4 =  dp2,  e3 =  P2141  4-  P2242. 
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By Theorem 3.1 the ideal I generated by  (0  ,o-i,  (72) is closed under the 
exterior derivative d. Thus we have 

 dal  A  0  A  cri  A  cr2  0, 

 do-2  A  0  A  al A  cr2  =  O. (3.4) 

By direct calculations we have 

 dcr1 A  Mai A  0-2 

 aPi2  aPii 2  =  ((
oqio,q2)1.zK L)dy  A  dpi  A  dp2  A  dqi  A  dq2, 

 do-2 A  OAcri A  0-2 

          ((OP22.9/321         =—)/12M pN)dizAdpiAdp2AdqiA dq2,               uqi .0472 

for functions K, L, M and N independent of  tt. Thus we have 

 aPi251311 OP22 OP21n 
        —=V

)=V. 
              ON2  0/31  0/32 

Hence we can define new coordinates  (x1, x2, s, t,  p) by the following equa-
tions: 

 ax,ax2, 
          7—=-r2i)=11Z)  aqi 

 s  =  p2,  t  =  —131) 

The differential forms  0,  o-i and  cr2 are written in these coordinates as fol-

lows: 

 0  =  dp+122(Eie2  -FE263)  tt(Fie2  F2e3)-F  E  Jjej, 

         pds +  (dxi +  Aids + A2dt), 
 o2  -=  pdt + (dx2 +  Bids + B2dt), 
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For functions  Ai,  Bj,Ej,Fj(j =  1,2) , and  ifj(j =  1,2,  3,4) independent of 
 it. It is easily verified that the following vectors v1, v2 belong to  A(5-2): 

     a aA
la aT.,37_,27 a  V1= —IL—e,—B1.C/1/-Lr1/1+J2/1-,    OX

iOSOXiUX2 ait 
  a a a a77a 

 V2=– A2—— D2—+123± F2I-12+ (13/-L –)—    a
x2ataxiax2 ait 

We set the vector field 

        asaas                 11=– Al—nB1n 
                        ("XiuX2 

      ,aaa                /
2—A27—-02n              ata

xUX2 

The commutator  [vi, v2] is written in the following form 

                a 

  [vi, V2] =(E2113F2112)(E1P3F1I-L2)— 
       Cal UX2 

      +{(E2F1  E1F2)/14  (2E2J1 —  11(E2) – 12(E1))/13 

                                        ,2,a    +(F2J,.–+--„ah 11(F2) – 12(F1)11-z-I++ U0 7 
                 OX2  UX1 

 (3.5) 

where the coefficients of vectors u1 and u0 are independent of 

   By the integrability condition, [v1, v2] is a linear combination of v1 and 
v2 and since  [vi,  v2] does not contain  a9 nor g-t-, v1 and v2 commute with 
each other. It follows from (3.5) that 

                               eIN)0,12 =              =o, Fi =o=1,z,— „                                  o
x2 oxi 

Thus there exists a function f =  f(xi,  x2,  S7  t) such that 

 af 7afT 
               =J213. 

            ux1ux2 
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We can take new coordinates (A =  ti+  f,  x1,  x2,  s,  t). With these coordinates 
we have 

               a 
        v1 =a—— A—— (A1aa—c, +  B1—nCITA)) 

          SS ax1UX 1UX 2 

     a,,aa, 
           V2 =--A--V1.2+B2 D2 + L/2-DA),          a
tax2oxiux2 

where  Ci  —  (J4  J2  Al  J3131) and C2 =att- + J2 A2 +J3B2)• 
Again taking the coefficients of  it in [vi, v2], we obtain that 

 aA„ 
=5A2 aB, aB1  ac,  ac„ 

 ax2ax„= ax2ax, ax2  ax1 

Thus there exist functions R, S and T which are independent of A such that 

 aR
_asaT. 
       axi== Di,=101'3=2. 

This completes the proof of Proposition 3.2.  ^ 

Remark. By Theorem 3.1 and Proposition 3.2 the equations of self-dual 

metrics are equivalent to the compatibility condition  [v1, v2] = 0: 

 02T  02T  aR  a2T 

 atax1  asax2 

 aR as  02Tas 02T 

                                         =                                + 

                          ax2)ax,ax2  ax, ax2o, 

 02R  02  R  aT  aR  a2R 

 DtOxi  asax2  ax2  ax2  axi 

 +(— 
 ORas  02  Ras  02R  —)— = U,  ax

1  ax2  axiax2  ax1 
 D2  S  02s  aT  aR  a2S 

 atax1  asax2 

              +(— 
                 aRas a2sas 52s

= U„         —) + . 
 ax1  ax2  ax,ax2 ax1 ax2 

                                           (3.6) 
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   In the equation (2.26) we take W E  Wrn. In this case w1 vanishes. 
Replacing  goo .,  gi,l and g2,1 with R, S and  T, respectively. The equations 

(2.27) reduces to (3.6). Therefore we have 

Theorem 3.4 The Lie algebra  Vni acts on the space of self-dual metrics. 

This action is transitive. 

   Let  1/V0 be the space of W  E  VV which commute with  Do. In the 

equation (2.26) we take W E  .W0. In this case  Go vanishes. The equation 

(2.27) reduces to the composed system of the self-dual Yang-Mills equations 
and the self-dual Einstein equations (see Example 2.1 and 2.2). Let  Vo be 
the Lie subalgebra of V: 

 Vo  =  {  E  Fj(x1  ,  Do )Di  E(x'  ,  Do); 
 0<  j<r 

 Fk(X1  Do)  E  5(0  < k  <  r),  E(xl  ,  Do)  E  El. 

Then  Vo acts on  Wo. Thus the self-dual Einstein equations are a special-

ization of our integrable system. 
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