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Abstract: Robust and reliable classification of sea ice types in synthetic aperture radar (SAR) images
is needed for various operational and environmental applications. Previous studies have investigated
the class-dependent decrease in SAR backscatter intensity with incident angle (IA); others have
shown the potential of textural information to improve automated image classification. In this work,
we investigate the inclusion of Sentinel-1 (S1) texture features into a Bayesian classifier that accounts
for linear per-class variation of its features with IA. We use the S1 extra-wide swath (EW) product
in ground-range detected format at medium resolution (GRDM), and we compute seven grey level
co-occurrence matrix (GLCM) texture features from the HH and the HV backscatter intensity in the
linear and logarithmic domain. While GLCM texture features obtained in the linear domain vary
significantly with IA, the features computed from the logarithmic intensity do not depend on IA
or reveal only a weak, approximately linear dependency. They can therefore be directly included
in the IA-sensitive classifier that assumes a linear variation. The different number of looks in the
first sub-swath (EW1) of the product causes a distinct offset in texture at the sub-swath boundary
between EW1 and the second sub-swath (EW2). This offset must be considered when using texture
in classification; we demonstrate a manual correction for the example of GLCM contrast. Based on
the Jeffries–Matusita distance between class histograms, we perform a separability analysis for 57
different GLCM parameter settings. We select a suitable combination of features for the ice classes in
our data set and classify several test images using a combination of intensity and texture features. We
compare the results to a classifier using only intensity. Particular improvements are achieved for the
generalized separation of ice and water, as well as the classification of young ice and multi-year ice.

Keywords: classification; sea ice; ice types; SAR; Sentinel-1; texture; GLCM; incident angle

1. Introduction

Synthetic aperture radar (SAR) is a primary tool for monitoring of sea ice conditions
in the polar regions [1–3]. A radar system is an active device that both transmits and
receives electromagnetic radiation in the microwave region, and is thus independent of
sunlight and cloud conditions. The resulting continuous imaging capability of the SAR
is important for operational ice services worldwide [3,4]. The analysis and interpretation
of the SAR images and the production of ice charts is at present carried out manually
and therefore subject to the expertise of the individual ice analyst [5,6]. Furthermore,
while timeliness of ice charts is a critical requirement, the manual image analysis is a
time-consuming process [7]. In combination with an increasing volume of available SAR
imagery, this underlines the need for automated or computer-assisted classification of sea
ice. The backscatter signature of sea ice in radar images, however, depends on a variety
of different factors, including sea ice, environmental, and radar parameters [8,9]. Despite
multiple efforts and various approaches, robust and automated classification of ice types
therefore remains a challenging task [3].
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The important radar parameters that influence the signal include radar frequency,
polarization, and incident angle (IA) [9]. While frequency and polarization are fixed for a
given sensor and operation mode, IA varies across the image. The backscatter intensity
(also referred to as image brightness or tone) from a homogeneous surface varies with
IA and decreases across a SAR image from near-range (low IA) to far-range (high IA). In
the logarithmic domain, i.e., with the intensity given in dB, the decrease is approximately
linear with a constant slope per surface class [10–13]. Despite many studies showing that
the rate of decrease differs between different surface types, most classification approaches
apply a global IA correction during pre-processing, using a constant slope for the entire
SAR image [14–18]. Although such approaches can achieve good results, they neglect the
known physical differences in backscatter behavior with IA for different surface types.
Lohse et al. [19] recently introduced a method to directly incorporate the class-dependent
effect of IA into a supervised algorithm. The method is based on a Bayesian classifier (i.e., it
maximizes probabilities) with multi-variate Gaussian probability density functions (PDFs),
where the constant mean value is replaced with a linearly varying mean value. The linear
slopes are class-dependent and thus directly included in the classifier. Since it is based
on underlying Gaussian PDFs and accounts for a per-class IA effect, the classification
method is referred to as the GIA (Gaussian incident angle) classifier. The approach achieves
improved classification results compared to intensity-based methods with a global IA
correction. However, ambiguities in backscatter intensity remain for individual classes at
some IA ranges [19]. In particular, changes in the sea surface roughness (the sea surface
state), caused for example by varying wind conditions, ocean currents, or natural and oil
slicks, can complicate the reliable classification of open water (OW).

Previous studies have shown that in many cases textural information can help to
resolve ambiguities in sea ice classification, both for the binary problem of ice-water
classification and for the multi-class separation of different ice types [18,20–27]. Texture
generally refers to the local spatial variation of tone or brightness within an image at a given
scale [28]. While many different ways of extracting texture features exist [24], the most com-
mon texture features used for sea ice classification are based on the grey level co-occurrence
matrix (GLCM) [28]. A straightforward way to directly utilize information from the GLCM
in a pixel-based classifier is to extract scalar features from the matrix. Such GLCM-based
texture features have been used in a variety of studies and algorithms and improved overall
classification accuracy (CA) of OW areas vs. sea ice [14,18,21–25,27,29]. Texture extraction,
and in particular computation of the GLCM, requires several input parameters such as
window size, quantization levels, displacement distance, and displacement direction (see
Section 3 for details). Many of these parameters have been investigated in previous stud-
ies. The optimal choice, however, differs between studies (Table 1) and depends on class
definitions and data properties. To our best knowledge, a systematic investigation of the
dependence of common GLCM texture features on IA for different classes has not been
performed prior to this study. All approaches presented in the literature that use the GLCM
for the analysis of sea ice imagery either apply a global IA correction or no correction.

In this study, we therefore investigate the per-class IA dependence of different texture
features. We do so with the intention of incorporating texture directly into the GIA classifier,
which accounts for per-class IA effects. The main prerequisite for this incorporation is that
there must be a clearly defined relationship between texture parameters and IA. Ideally,
for the linear GIA, this relationship should be constant or linear, and the distribution of the
individual features around the linear function can be approximated as Gaussian. These
ideal conditions allow for the direct use of the texture features in the existing algorithm,
while a more complicated IA relationship or a clearly non-Gaussian distribution would
require changing the underlying model of the GIA classifier. After we confirm that common
texture features fulfill these conditions, we select a useful set of features and demonstrate
the benefits of including them in the classification process.

This paper is organized as follows. Section 2 gives an overview of the data set, includ-
ing the standard pre-processing steps that were applied. The outline of the investigations in
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this study is presented in Section 3, followed by a detailed description of the computation
and selection of the texture features as well as the tested parameter settings. Section 4
presents the results of these investigations. We discuss our findings in Section 5, pointing
out implications and limitations for the usage of texture in sea ice type classification from
SAR data, and in particular in the GIA classifier. In Section 6, we summarize the main
findings and conclusions.

Table 1. Overview of GLCM computation parameters from selected studies that investigate GLCM texture features for sea
ice classification. The parameters are window size w, co-occurrence distance d, displacement angle α, and number of grey
level quantization intervals k. w and d are given in number of pixels, α is given in degrees. Bold type indicates the preferred
choice selected by these studies, where applicable. The dB column indicates whether texture was computed from the linear
or from the logarithmic intensity. The question mark indicates that this information is not explicitly given in the study.

Authors dB w d α k Features

Holmes et al. (1984) ? 5 2 average 8 Con, Ent

Barber and LeDrew (1991) ? 25 1 , 5, 10 0, 45, 90 16 Con, Cor, Dis,
Ent, Uni

Shokr (1991) ? 5, 7, 9 1, 2, 3 average 16, 32 Con, Ent, Idm,
Uni, Max

Soh and Tsatsoulis (1999) ? 64 1, 2, ..., 32 average 64 Con, Cor, Ent,
Idm, Uni, Aut

Leigh et al.(2014) ? 5, 11, 25, 51, 101 1, 5, 10, 20 average ?
ASM, Con, Cor,
Dis, Ent, Hom,

Inv, Mu, Std

Ressel et al. (2015) no 11, 31, 65 1 average 16, 32, 64 Con, Dis, Ene,
Ent, Hom

Karvonen (2017) yes 5 1 average 256 Ent, Aut

Zakhvatkina et al. (2017) yes 32, 64, 128 4, 8, 16, average 16, 25, 32 Ene, Ine, Clu,
32, 64 Ent, Cor, Hom

2. Data
2.1. Sentinel-1 Data

All SAR imagery in this study is Sentinel-1 (S1) data acquired in extra-wide swath (EW)
operation mode [30]. S1 operates at C-band (5.4 GHz) providing either single- or dual-
polarization data. As part of the European Copernicus Earth observation program, all S1
data are freely available (e.g., through the Copernicus Open Access Hub). The data used
in this study are acquired at dual-polarization (HH and HV) and downloaded in ground-
range detected format at medium resolution (GRDM). The EW GRDM product comes at a
pixel spacing of 40 × 40 m with an actual spatial resolution of approximately 93 × 87 m; its
values are multi-looked intensities with 18 looks in the first sub-swath EW1 and 12 looks in
the remaining sub-swaths EW2 to EW5. As standard pre-processing, we apply the thermal
noise correction implemented in ESA’s Sentinel Application Platform (SNAP) and calibrate
the data to obtain the normalized radar cross-section σ0. All processing is performed in the
ground-range detected image geometry.

2.2. Training and Validation Data

We use the training and validation data set introduced by Lohse et al. [19] in 2020.
This data set is based on the visual inspection and expert analysis of overlapping SAR (S1)
and optical remote sensing data acquired during winter conditions between 2015 and 2019.
The main identified classes in the data set are open water (OW), leads with OW or newly
formed ice (NFI), brash or pancake ice, young ice (YI), level first-year ice (LFYI), deformed
first-year ice (DFYI), and multi-year ice (MYI). A detailed description of the data set, image
locations and acquisition times, and the selection of classes and training polygons is given
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in Lohse et al. [19]. For parts of this study, we have added new images and test polygons to
the existing data set. Generally, the training data for individual classes used in this study
are collected from a large number of scenes. In some cases we show training data from a
single image for a particular class. The image IDs (product unique IDs) are given in the
respective subsections of this article.

3. Method
3.1. Domain-Dependent Texture Extraction and Calculation of Separability

After pre-processing, we extract various texture features from both the HH and the
HV channel of the S1 images. Initially, we compute all texture features from both the
backscatter intensity in the linear domain (normalized radar cross-section σ0) and the
backscatter intensity in the logarithmic domain. In the logarithmic domain, the intensities
are given in decibels (dB):

HHdB = 10 · log10(σ
0
HH)

HVdB = 10 · log10(σ
0
HV)

(1)

The relationship of intensity with IA is approximately exponential in the linear do-
main, and thus in turn approximately linear in the logarithmic domain (Figure 1). These
differences in IA dependence, in combination with the change of variance with IA in the
linear domain, are expected to translate into differences in IA dependence of the texture
features extracted from the respective intensity domains.

Figure 1. Distribution of HH intensity with IA for OW training data selected over the first two
sub-swaths of a single image (Image ID: F2FE). Intensity is shown in the logarithmic domain (in dB)
on the left side, and in the linear domain on the right side. The dashed red line indicates the linear fit
to approximate the decrease in logarithmic intensity with IA.

The initial extraction of texture from both linear and logarithmic intensity allows us to
find the preferred domain to compute the texture features. For the preferred domain, we
test a variety of parameter settings (see Sections 3.2.1 and 3.2.2 for details), and investigate
the variation of the extracted features with IA for these different settings. We adjust the
borders of the training regions according to the size of the texture windows, such that
little or no mixing of ice classes occurs within the texture windows. We then use the
Jeffries–Matusita (JM) distance [31] to evaluate all features and parameter settings in terms
of class separability for various two-class cases.

The JM distance is an established separability measure between class distributions that
returns values between zero (no separability) and two (perfect separability). It is given by

JM = 2(1− e−DB), (2)

where DB is the Bhattacharrya distance according to

DB =
1
8
(µ1 − µ2)

TΣ−1(µ1 − µ2) +
1
2

ln
(

det Σ√
det Σ1 det Σ2

)
(3)
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Features with a JM value above one are commonly considered useful for classifica-
tion [31].

On the basis of this evaluation, we finally select a suitable feature set and demonstrate
the benefits of incorporating textural information into the GIA classifier. In particular, we
present examples for the classification of sea ice against OW, as well as YI against MYI,
and compare against results obtained from a classifier based on intensities only.

3.2. Calculation of Texture Features

Since many previous studies suggest that the GLCM provides a useful method to
generate texture features that can improve sea ice classification results [24,26], we focus
on this method (Section 3.2.1). However, calculation of the GLCM is computationally
expensive and time-consuming, which can impede its use in operational applications. As
an example for a simpler and more easily calculated texture feature, we therefore also
extract the variance (Section 3.2.2) and assess its usability compared to the GLCM features.

3.2.1. GLCM Texture Features

The GLCM provides a second-order statistic for extraction of texture features [25,28].
It calculates the probability of a pixel with grey level value i occurring at a certain distance
and angle from another pixel with grey level j within a given window. The key parameters
that must be set are the window size w for which to calculate the GLCM, the co-occurrence
distance d, the displacement angle α, and the number of grey level quantization intervals k.
Algebraically, the GLCM can be expressed as

Sw,d,α,k(i, j) =
Pw,d,α,k(i, j)

∑k
i=1 ∑k

j=1 Pw,d,α,k(i, j)
(4)

where Sw,d,α,k is an element of the GLCM for a given window size, direction, co-occurrence
distance, and grey level quantization; Pw,d,α,k is the frequency of occurrence of grey levels i
and j; and k is the number of quantized grey levels. The size of the GLCM depends on the
number of grey levels. In order to neglect effects from ice floe rotation and changes in the
angle between the radar-look direction and the physical structures on the ice, the GLCM is
often calculated for different directions (0◦, 45◦, 90◦, 135◦) and then averaged before feature
extraction [14,25]:

S(i, j) =
1
4 ∑

α

Sw,d,α,k(i, j) for α = 0, 45, 90, 135 (5)

The resulting averaged GLCM S still includes the effects of directional structures,
but the effects are diluted by the averaging. The specific orientation of the structures is not
reflected any more in the averaged GLCM. The remaining parameters are usually chosen
manually or optimized for a particular study and then kept fixed. Individual scalar texture
features can be calculated from the GLCM according to Equations (6)–(12):

Angular second moment : ASM =
k

∑
i=1

k

∑
j=1

S(i, j)2 (6)

Contrast : Con =
k

∑
i=1

k

∑
j=1

(i− j)2S(i, j) (7)

Correlation : Cor =
∑k

i=1 ∑k
j=1(i− µx)(j− µy)S(i, j)

σxσy
(8)

Dissimilarity : Dis =
k

∑
i=1

k

∑
j=1
|i− j|S(i, j) (9)
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Energy : Ene =
√

ASM (10)

Entropy : Ent = −
k

∑
i=1

k

∑
j=1

S(i, j) log10[S(i, j)] (11)

Homogeneity : Hom =
k

∑
i=1

k

∑
j=1

S(i, j)
1 + (i− j)2 (12)

Different tested parameter settings and feature choices from selected studies that use
GLCM texture features for the interpretation of sea ice SAR imagery are summarized in
Table 1. If provided, the preferred/optimal choice of each study is indicated with bold type.
It is evident that there is no consensus in the literature on an optimal set of GLCM features
and parameters. The choices that lead to the best classification results for the individual
studies differ from window sizes between 5 and 64 pixels, co-occurrence distances between
1 and 8, and grey level quantization levels between 8 and 64. The optimal features and
parameter set depend on the class definitions, the image pre-processing steps (in particular
multi-looking and re-sampling), and the data properties (in particular frequency, spatial
resolution, polarization). In this study, we therefore test a variety of GLCM parameter
settings (Table 2), covering a reasonable range of settings that is based on the literature
values in Table 1. Our goal is to assess the effect of different settings on potential IA
dependence of the features, and to find a suitable set of features and parameters for the
specific data set that we use.

To be consistent and to ensure identical quantization for all images, we choose a
uniform quantization with equally spaced grey level intervals. We clip the minimum and
maximum grey levels at −35 and +5 dB for HH and −40 and 0 dB for HV, respectively. To
avoid directional effects, we average the GLCMs obtained for four directions (0◦, 45◦, 90◦,
135◦) before computation of individual scalar features.

Table 2. Summary of GLCM computation parameters tested in this study (w: window size, d: GLCM
co-occurrence distance, k: GLCM grey levels). The window is applied on the original 40 × 40 m
pixel spacing of the S1 EW GRDM product. Quantization is performed with equally spaced intervals
between −35 and +5 dB for HH and −40 and 0 dB for HV, respectively. The GLCM is calculated for
four different directions (0◦, 45◦, 90◦, 135◦) and then averaged before feature extraction.

w d k

5 1/2 16/32/64
7 1/2/4 16/32/64
9 1/2/4/8 16/32/64
11 1/2/4/8 16/32/64
21 2/4/8 16/32/64
51 2/4/8 16/32/64

3.2.2. Simple Texture Features

Computation of the GLCM is time-consuming and depends on multiple different
parameters. Hence, it is interesting to also test other texture features that can be calculated
faster and more easily, and investigate if they can be used instead of GLCM features.
In this study, we investigate the variance (Var) as an example for such simpler texture
features. The only required input parameter is the window size. We calculate variance
from the logarithmic intensity for the same window sizes as the GLCM features (Table 2).
Unlike the GLCM, variance does not depend on a distance parameter inside the defined
texture window. Additionally, it is not sensitive to the spatial orientation of physical
structures on the ice. However, many of the physical structures that we are interested in,
for example leads or pressure ridges, have some specific spatial orientation. Even though
we are not interested in this specific orientation itself, looking in different directions can
be necessary to detect the physical structures’ presence. Hence, the larger computational
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effort of the GLCM can be beneficial to detect certain structures that the variance may
miss, depending on the applied window size and the physical size of the structures on the
ground. A comparison between the different approaches to quantify texture in terms of
class separability is therefore useful.

4. Results

In this section, we present the results of our study. As we have tested a large number
of different texture parameter settings and individual features, it is not feasible to show a
full overview of all tested combinations. We therefore present and discuss representative
examples for the various experiments performed in this study.

4.1. Texture and IA

We begin by comparing the influence of IA on GLCM texture features computed
from intensity in dB against GLCM texture features computed from linear intensity. An
example including both intensity domains and three selected GLCM features is shown in
Figure 2. When computed from the logarithmic intensity, the GLCM features showed no
significant per-class variation with IA (Figure 2, upper panel); when computed from the
linear intensity, there was an evident variation (Figure 2, lower panel). For some features
(for example entropy and homogeneity) the relationship appeared to be approximately
linear over part of the shown IA range. Overall, however, the IA dependence of the GLCM
texture features was significantly more complicated when computed from linear intensity
compared to logarithmic intensity. Furthermore, the OW class in the example of Figure 2
showed some internal variability in intensity, caused by changes in the sea surface state
across the image. The GLCM texture from the logarithmic intensity appeared to be less
sensitive to such internal class variation than the GLCM texture from the linear intensity.

Figure 2. Density distribution of HH intensity and three selected GLCM texture features with IA for OW training data
selected over the full range of a single S1 image (Image ID: 77 BA). The upper panel shows HH intensity in the logarithmic
domain (in dB) and the GLCM features extracted from it; the lower panel shows intensity in the linear domain with its
respective GLCM features. Note that the OW class displays some internal class variation in intensity due to varying sea
surface state across the image. GLCM parameter settings: w = 11, d = 4, k = 16.

All tested texture features revealed a significant offset at the boundary between the first
and the second sub-swath of the image, which is located at an IA of approximately 28.5◦.
This offset was observed for all tested parameter settings, and it occured independently of
the intensity metric. Since the offset will affect the performance of the texture features in
any classifier, it requires further investigation. It is reasonable to assume that the offset in
texture values at the sub-swath boundary is at least partly caused by the different number
of looks in the respective sub-swaths of the S1 EW GRDM product. The image contrast,
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for example, is directly linked with the variance of the image brightness within a given
window. A change in the number of looks causes a corresponding change in the magnitude
of variance. Therefore, we can presumably correct the contrast values in sub-swath EW1
manually by multiplying with the square root of the ratio of number of looks between
EW1 and EW2. Figure 3 shows the distribution of HH contrast with IA before and after
the correction. The sub-swath boundaries are visible in the distribution and additionally
marked in the figure. The proposed correction successfully removed the offset. Note that
the correction may be less straightforward for other texture features, depending on the
formula for their computation.

EW1 EW2 EW3 EW4

Figure 3. Density distribution of GLCM contrast (computed from HH intensity in dB) with IA for OW
training data selected over the full range of a single S1 image (Image ID: F2FE). The left side shows
contrast computed directly from the GRDM product; the right side shows contrast manually corrected
by multiplying with the square root of the ratio of number of looks in the sub-swaths. The sub-swath
boundaries (indicated with red arrows) are clearly visible in the texture profile. In particular the
boundary between EW1 and EW2 is characterized by a distinct offset that requires a correction.
GLCM parameter settings: w = 21, d = 4, k = 16.

On the basis of findings from the comparison of texture from linear intensity against
texture from logarithmic intensity, all of the following calculations were performed with
intensity given in dB. Further tests with different GLCM parameter settings (57 different
settings in total, Table 2) confirmed that the selected GLCM features were not (or only
weakly) dependent on the IA.

Figure 4 shows examples for two selected features and four representative parameter
settings for the MYI training data. The changes in the different parameters (w, d, and k)
clearly affected the numerical values of the texture features. The variance of the distribu-
tions around the mean value decreased with increasing window size w (Figure 4 from left to
right). Therefore, the linear trend in the feature distribution with IA was more easily visible
for larger window sizes (>∼21 pixels). The dependency of texture with IA was linear (and
almost constant) for all the tested parameter settings; hence, the parameter settings did not
affect the general inclusion of GLCM texture into the concept of the GIA classifier.

All texture features shown so far have been extracted from the HH channel of the data.
Figure 5 shows an example of three selected texture features extracted from both HH and
HV channel for LFYI training data. For a weak signal close to or below the nominal noise
floor of the sensor, the distribution of texture with IA was strongly affected by the noise
profile. This problem is of particular importance in the HV channel, as the signal at HV
polarization was generally weaker than the signal at HH polarization. These noise floor
artifacts in the texture features will complicate the inclusion of the HV texture features in
the GIA classifier. Additionally, texture profiles for both channels displayed artifacts at the
sub-swath boundaries between EW2 and EW5. The stronger these artifacts are, the more
they will affect the use of texture across sub-swath boundaries in the classification. Note
that we have only applied the calibration and nominal noise-floor corrections provided
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by ESA in the SNAP software. Improved noise-floor corrections and more accurate data
calibration between the sub-swaths may remedy this problem in the future.

Figure 4. Density distribution of two selected GLCM texture features with IA for MYI training data selected from multiple
S1 images. The texture features are computed from HH intensity in dB for different GLCM parameter settings. The first
sub-swath EW1 is excluded because of the different number of looks in the GRDM product.

Figure 5. Density distribution of intensity and three selected GLCM texture features with IA for LFYI training data collected
from multiple images. The upper panel shows HH intensity in dB and the corresponding HH texture features, the lower
panel shows HV intensity in dB and the corresponding texture features. GLCM parameter settings: w = 11, d = 2, k = 16.

Our tests for the variance as an example of a more simply calculated texture feature
give similar results (not shown). When computed from the HH channel in dB, variance
was approximately constant over the full range of the image, except for a significant offset
between sub-swaths EW1 and EW2. When extracted from the HV channel, which often
has a signal strength close to the nominal noise floor, the noise profile was clearly visible in
the IA relationship of the variance. The assumptions needed for the GIA classifier (linear
IA dependence, approximately Gaussian distribution) are then violated.

4.2. Texture and Different Sea Surface States

One of the main challenges in sea ice classification is to automatically separate sea
ice and OW. As spatial and temporal variations in sea surface state affect the backscatter
intensity from OW, a purely intensity-based classifier will often struggle with a generalized
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separation of sea ice and water, unless additional information is included. We now confirm
that texture can help to overcome the issue of different backscatter intensity for varying sea
surface states. Figure 6 shows training data of OW areas collected from multiple S1 images.
The left column shows the density distributions of HH intensity in dB with IA. Clearly,
the intensity levels differed between the images; assuming that the intensity level can be
explained by Bragg scattering, its variations can be explained by differences in OW surface
roughness. The numerical values of the texture features were consistent over the selected
images and wind states (Figure 6, column 2, 3, 4). In agreement with previous results
(Figure 4), the numerical texture values and the width of the distributions differed between
different GLCM parameter settings (not shown here). Furthermore, the distributions of the
texture features remained constant over the IA range, except for the offset between EW1
and EW2.

Figure 6. Density distribution of HH intensity in dB and three selected GLCM texture features with IA for OW training data
selected from three different images (image IDs: C113, 6346, D4FB). The lowest panel shows the data from all three images
combined. The intensity values clearly differ between the images, and the texture values are consistent. The offset in texture
between sub-swaths EW1 and EW2 is caused by the different number of looks in the respective sub-swaths. The texture
artifacts at the remaining sub-swath boundaries are caused by errors in the calibration and noise correction between the
sub-swaths. GLCM parameter settings: w = 21, d = 4, k = 16.

4.3. Separability of Different Classes

The results presented so far show that the tested GLCM texture features can be directly
incorporated into the concept of the GIA classifier, given that the signal is strong enough to
avoid noise floor artifacts. The GIA classifier assumes a linear relationship of its features
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with IA, and an approximately Gaussian feature distribution; thus, the incorporation of
GLCM texture features calculated from intensity in dB is straightforward. For the S1
EW GRDM product, the first sub-swath should be ignored or corrected according to the
number of looks. However, for the inclusion of the texture features to be useful in terms
of improving classification results, we need to investigate the separability of different
classes for individual features and varying parameter settings. Note that at this point we
are interested in the individual separability of different pairs of classes, as shown on the
left side of Table 3. The results of this kind of analysis allow a better understanding of
the specific gain achieved by single texture parameters, and they are useful, for example,
for designing decision trees such as described in [32].

Table 3. Jeffries–Matusita (JM) distance between class distributions for multiple combinations of texture features, two-class
cases, and parameter settings. Blue and green colors indicate strong JM values above 0.7 and 1.0, respectively. The parameter
settings are as follows: Set 1: w = 07, d = 2, k = 16; Set 2: w = 11, d = 2, k = 16; Set 3: w = 11, d = 4, k = 16; Set 4: w = 11, d = 4,
k = 32; Set 5: w = 21, d = 4, k = 16; Set 6: w = 21, d = 4, k = 32; Set 7: w = 51, d = 4, k = 16; Set 8: w = 51, d = 4, k = 32.

HH ASM HH Con HH Cor HH Dis HH Ene HH Ent HH Hom HH Var

Set 1 0.08 0.16 0.03 0.10 0.08 0.12 0.09 0.29
Set 2 0.20 0.29 0.11 0.22 0.21 0.29 0.19 0.49

OW Set 3 0.20 0.36 0.01 0.27 0.22 0.30 0.23 0.49
vs. Set 4 0.22 0.39 0.01 0.30 0.24 0.30 0.22 0.49

LFYI Set 5 0.61 0.70 0.16 0.64 0.63 0.75 0.59 0.85
Set 6 0.66 0.73 0.14 0.68 0.68 0.77 0.61 0.85
Set 7 1.37 1.28 0.45 1.30 1.35 1.40 1.30 1.27
Set 8 1.44 1.29 0.42 1.33 1.41 1.43 1.35 1.27

Set 1 0.11 0.21 0.09 0.13 0.12 0.18 0.11 0.48
Set 2 0.28 0.36 0.26 0.27 0.31 0.41 0.24 0.75

OW Set 3 0.30 0.58 0.04 0.43 0.33 0.43 0.36 0.75
vs. Set 4 0.33 0.61 0.03 0.48 0.36 0.44 0.35 0.75

MYI Set 5 0.79 0.91 0.29 0.84 0.81 0.90 0.81 1.06
Set 6 0.86 0.94 0.26 0.89 0.87 0.93 0.84 1.06
Set 7 1.46 1.42 0.59 1.49 1.41 1.43 1.53 1.30
Set 8 1.56 1.43 0.54 1.51 1.49 1.45 1.59 1.30

Set 1 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00
Set 2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

OW Set 3 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01
vs. Set 4 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01
YI Set 5 0.03 0.02 0.05 0.02 0.03 0.04 0.02 0.12

Set 6 0.03 0.02 0.05 0.02 0.03 0.04 0.02 0.12
Set 7 0.16 0.18 0.54 0.11 0.20 0.36 0.08 0.95
Set 8 0.18 0.19 0.51 0.12 0.22 0.34 0.07 0.95

Set 1 0.00 0.01 0.01 0.00 0.00 0.01 0.00 0.07
Set 2 0.01 0.01 0.04 0.01 0.02 0.03 0.01 0.15

LFYI Set 3 0.01 0.08 0.01 0.05 0.02 0.03 0.03 0.15
vs. Set 4 0.91 0.09 0.01 0.05 0.02 0.03 0.03 0.15

MYI Set 5 0.04 0.13 0.04 0.09 0.05 0.08 0.07 0.27
Set 6 0.04 0.14 0.04 0.10 0.05 0.08 0.06 0.27
Set 7 0.08 0.21 0.12 0.18 0.10 0.16 0.16 0.38
Set 8 0.08 0.21 0.10 0.18 0.09 0.15 0.15 0.38

Set 1 0.15 0.27 0.08 0.18 0.15 0.22 0.15 0.51
Set 2 0.34 0.44 0.20 0.36 0.36 0.45 0.33 0.68

MYI Set 3 0.35 0.58 0.02 0.46 0.37 0.45 0.40 0.68
vs. Set 4 0.39 0.61 0.02 0.50 0.40 0.47 0.40 0.68
YI Set 5 0.76 0.88 0.12 0.86 0.75 0.80 0.85 0.81

Set 6 0.84 0.90 0.09 0.90 0.82 0.84 0.90 0.81
Set 7 0.92 1.16 0.03 1.32 0.86 0.78 1.40 0.23
Set 8 1.00 1.17 0.03 1.34 0.94 0.83 1.50 0.23
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We performed this analysis by computing the JM distance between the different
feature distributions for all settings. Since the HV texture is strongly affected by the noise,
we only evaluate texture features extracted from the HH channel at this point. In total,
we have analyzed 57 different parameter settings (Table 2) for eight separate features
(seven GLCM features (Equations (6)–(12)) and variance). Table 3 presents the JM distance
for eight selected parameter settings. Corresponding class distributions for four of these
settings are shown in Figure 7.

Figure 7. Histograms of HH entropy distribution for four selected GLCM parameter settings (one setting per column).
For easier interpretation, each row shows only two classes compared against each other. Increasing window size (from left
to right) generally leads to narrower distributions and better class separability.

For the given data set and the parameter settings tested in this study, we found that
window size was the parameter with the largest influence on class separability. If a feature
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offers any separability at all between two tested classes, the separability improves with
increasing window size (Table 3 and Figure 7, rows 1, 2, and 5). In agreement with previous
studies, we found that many of the tested GLCM features allowed for partial separation
of OW from thicker ice types (that is LFYI, DFYI, and MYI). In particular, HH ASM, HH
contrast, HH dissimilarity, HH energy, HH entropy, and HH homogeneity all displayed
distinct class distributions that revealed at least some separability of LFYI/DFYI/MYI and
OW, with JM distance values close to one (for w = 21) and significantly above one (for
w = 51).

Figure 8 presents more histogram examples of HH dissimilarity and HH energy for
the classes OW and MYI. Again, significant improvement in separability with increasing
window size was clearly visible. Separation between the aforementioned thicker ice types
(LFYI, DFYI, MYI) is not possible based on the investigated texture features only. This
can be seen by the overlapping histograms for LFYI and MYI in Figure 7 (row 4) and was
confirmed by the low JM distances between the distributions for all parameter settings and
features (Table 3). Partial separation of LFYI and MYI may be possible using the GLCM
correlation from the HV channel (Figure 9, right-hand side); however, the HV signal is
often close to the nominal noise floor and the channel must be treated cautiously.

Figure 8. Histograms of HH dissimilarity and HH energy from two different window sizes (w = 21
and w = 51) for OW and MYI. Both features show improved class separability with larger window size.

None of the tested features separated well between YI and OW. The distributions
of these two classes overlapped significantly for all features and all parameter settings
(Figure 7, row 3), resulting in low JM distances. However, HH texture showed the potential
to improve the classification of MYI against YI in refrozen leads. For several features, JM
distances between these two classes were close to and exceeded one at large window sizes
(w = 21, 51). Histogram examples of HH dissimilarity and HH energy for YI and MYI are
shown on the left-hand side of Figure 9.

Figure 9. Histograms of HH dissimilarity, HH energy, and HV correlation for YI against MYI (left)
and LFYI against MYI (right). YI and MYI can be partly separated using HH texture. LFYI and MYI
are inseparable in HH texture, but can be partly separated in HV correlation, although significant
overlap of the distributions remains.
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4.4. Classification Result Examples

Finally, we demonstrate the potential of including useful texture features in the GIA
classifier to improve classification results. On the basis of class separability indicated by
the JM distances, we chose different feature combinations and trained the GIA algorithm to
classify various test images. Three examples are shown in Figures 10 and 11. The features
used for the classification of the presented images were HH intensity, HV intensity, HH
contrast, HH dissimilarity, and HH energy. Because of the offset in numerical texture values
between sub-swaths EW1 and EW2, we masked out the results for the first sub-swath.

Figure 10 shows all used features (a, b, c, and d) together with the classification result
(e) and a map of sea ice concentration (SIC) (f), which can be directly obtained from the
classification result. OW and sea ice were well separated in the image, and the ice edge
can be successfully detected in both the ice type map as well as the SIC. Some areas within
the pack ice were classified as OW; without complementary information, it is difficult to
assess whether these areas are in fact OW or YI. Classification of an image containing large
OW areas (such as the example in Figure 10) is challenging based on intensity only, as one
would need to know the sea surface state to select the correct intensity level and training
data for the OW class. Without that additional information, it is only the inclusion of
textural information that makes the classification of the image with a generalized classifier
feasible. We therefore do not present a result based on intensity only for this case.

Figure 10. Input features and classification result for image ID F2FE. The scene covers the area across the marginal ice zone
in Fram Strait between Svalbard and Greenland. Features used for classification in this example are HH and HV intensity
((a), false-color intensity image [R:HV, G:HH, B:HH]), HH dissimilarity (b), HH contrast (c), and HH energy (d). Sea ice
concentration (f) can be calculated directly from the classification result (e). Because of the offset between sub-swaths EW1
and EW2 in the GLCM features (b–d), EW1 is masked out in the classification result. GLCM parameter settings: w = 51,
d = 4, k = 32.

Figure 11 shows false-color images (a and b) and classification results (c, d, e, and f)
for two different images that were almost entirely covered by sea ice. The classification
results in the middle column (Figure 11c,d) were obtained with a GIA classifier based
on intensities only. The same generalized classifier was used for both images. While
the classifier captured the YI areas in the lower image correctly (ID B7A9), there was
significant mis-classification of YI areas as MYI in the upper image (ID 89A6). This mis-
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classification occurred despite the fact the YI areas appeared visually similar in both images.
A minor change in the properties of the YI areas and thus in the backscatter intensity from
the surface can result in the confusion of YI and MYI. The texture signatures of the two
classes can help to solve this problem. When the classification was performed including the
textural information (Figure 11e,f), the YI areas were classified correctly in both images. The
examples demonstrate the superior capability of the GIA classifier using both intensity and
texture to separate YI and MYI in situations where the purely intensity-based classifier fails.

Figure 11. False-color intensity images ((a,b), [R:HV, G:HH, B:HH]) and classification results using intensities only (c,d) and
using intensities in combination with HH dissimilarity, HH contrast, and HH energy (e,f). The top row (a,c,e) shows image
ID 89A6, the bottom row (b,d,f) shows image ID B7A9. Both images were acquired over the Arctic Ocean and cover the area
northwest of Franz Josef Land. For image ID 89A6, the purely intensity-based classifier mis-classifies many YI areas as MYI
(c). The inclusion of texture improves the classification of YI (e). For image ID B7A9, the purely intensity-based classifier
captures most of the YI areas correctly (d). The difference to the classification results based on intensities and texture is
negligible. Because of the distinct offset between sub-swaths EW1 and EW2 in the GLCM features, EW1 is masked out in
the classification result.

5. Discussion

We have investigated the class-dependent variation of different texture features with
IA, in order to include them into the GIA classifier. The GIA classifier accounts for per-
class variation of its features with IA, and it requires approximately linear relationships
and Gaussian distributions. Our results show that it is possible to directly incorporate
GLCM texture into the GIA classifier. When computed from intensity in the logarithmic
domain (that is in dB), the tested GLCM features do not depend on IA or reveal only a
weak, approximately linear dependency. When computed from intensity in the linear
domain, the tested GLCM features show considerable variation with IA. For some features
the variation is approximately linear over part of the IA range, while for other features
it is more complicated. Generally, we therefore recommend to compute texture from
the logarithmic intensity; the slope of texture with IA is then constant (approximately
zero), and the features can be used in the GIA classifier that assumes a linear relationship.
Furthermore, for any other application in a different classification algorithm, as long
as texture features are computed from logarithmic intensity, no global correction of the
IA effect during pre-processing is needed. We have tested a variety of different GLCM
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parameter settings and find that the results regarding the IA dependence of the features are
independent of the parameter choice. They hold for all tested window sizes, grey levels,
and distances. For classes with a weak intensity signal, the S1 noise profile is clearly visible
in the distribution of texture features as a function of IA. While this noise pattern will cause
problems for any classification algorithm, it is particularly challenging for the GIA classifier,
as the basic assumptions of linear IA dependence and Gaussian distributions are violated.
The HV channel is more problematic than the HH channel in this regard because the signal
at HV polarization is often weak and close to the nominal noise floor. HV texture should
thus be used carefully, and it will benefit from an improved thermal noise correction of the
S1 data.

Furthermore, we find that there is a distinct offset in all texture features at the sub-
swath boundary between EW1 and EW2 of the S1 EW GRDM product. This offset is caused
by the different number of looks applied to the individual sub-swaths; the GRDM product
is delivered with 18 looks in EW1 and 12 looks in EW2 to EW5. We demonstrate how
to correct this offset for the example of GLCM contrast, by multiplying with the square
root of the ratio of number of looks in the different EW GRDM sub-swaths. Corrections
can also be applied for other GLCM features, but it will depend on the formula for the
texture computation. The exact correction factors for all individual features require further
investigation and are not part of this study. However, the offset must be considered
whenever using texture features extracted from S1 wide-swath products in GRDM format
across the full range of the image. Generally, it must be kept in mind that texture is
dependent on the speckle contribution in the intensity, and thus on the number of looks in
the data.

When integrated into the GIA classifier, GLCM texture features help to resolve some
of the inherent ambiguities found with intensity-only classifiers. For example, the general
separation of OW and thicker sea ice types, such as LFYI, DFYI, and MYI, is significantly
improved by the inclusion of texture. While the backscatter intensity from OW is dependent
on the sea surface state and may require the training of several OW classes for different
sea surface conditions, the texture signature of OW is nearly independent of the sea
state. It suffices to train one OW class for a smooth water surface (where the signal will
be close to the nominal noise floor), and one OW class for all rough surface conditions
(Figure 6). Another challenge of a classifier based on intensity only is the separation of
YI and MYI. Especially for YI with frost flowers or a snow crust, which increases the
small-scale roughness and causes strong backscatter from the YI surface, mis-classification
of YI as MYI can occur [14,33]. We demonstrate in this study that the inclusion of texture
features can significantly improve the separation of YI and MYI.

While some ambiguities of the sea ice type classification can be improved or solved
by adding texture features, other classes are not separable in the texture feature space
alone. Their per-class texture distributions overlap significantly for all tested features
and parameter settings. Hence, backscatter intensity remains an important feature for
the classification of these ice types. In particular, this is true for the separation between
the thicker ice types (LFYI, DFYI, and MYI), and for the separation of YI and OW. FYI
and MYI can be distinguished quite well based on their intensity, as the less saline MYI
will cause more volume scattering [34], which results in a stronger signal at both HH and
HV polarization. We therefore recommend to always include intensity as a feature in ice
type classification. YI and OW, on the other hand, can be more challenging. When the sea
surface state, and thus the intensity level of OW, is known, backscatter intensity can be
used to overcome this ambiguity. However, since the sea surface conditions are not usually
known a priori, the separation of YI and OW remains difficult at this point. We will explore
possible solutions such as the inclusion of SIC from passive microwave observations [35]
or the results of SAR wind retrieval algorithms [36] in our future work.

The evaluation of features and parameter settings in this study is based on JM distances
between different class distributions. Generally, we find that larger window sizes improve
the separability between the classes in the used data set. It must be kept in mind, however,
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that large texture windows result in smoothing and thus in a coarser effective resolution
of the results. Hence, there is a trade-off between spatial resolution of the results and
separability of sea ice and OW, as well as YI and MYI.

The main focus of our analysis has been on the use of GLCM texture features, as the
GLCM method has been widely used for sea ice image analysis [18,20–27]. However,
the calculation of the GLCM requires substantial computational resources and is time con-
suming. For operational ice charting, where timeliness of the results is a main requirement,
this can be problematic. We have therefore also tested variance as an example of a more
simply calculated texture feature. We find that variance from intensity in dB is roughly
independent of IA and can potentially be used as a faster and alternative to GLCM texture.
Further investigation of other computationally cheap texture features, such as for example
the coefficient of variation or wavelets, is needed in future work and may help to speed
up the process of automated sea ice classification, making application of the algorithms
feasible in operational ice charting.

6. Conclusions

In this study, we have investigated the IA dependence of seven commonly used
GLCM texture features extracted from the S1 EW GRDM product, and we assessed their
potential to be included in IA-sensitive sea ice classification (the GIA classifier). When
calculated from intensity in dB, the GLCM features are found to be almost independent of
IA and can thus be directly included in the GIA classifier, with the estimated slope being
approximately zero. Particular attention must be paid to classes with a weak signal, which
will lead to noise artifacts in the texture parameters, and to the first sub-swath of the EW
GRDM product, as the different number of looks in the sub-swaths results in an offset of
texture at the sub-swath boundary. We have shown how this offset can be corrected for the
example of GLCM contrast.

We have tested a large number of GLCM parameters and evaluated the resulting
features in terms of class separability. Using per-class histograms of feature distributions
in combination with the JM distance, we have selected meaningful combinations of texture
features and backscatter intensities to train a classifier and demonstrate the improvement
in ice-water classification as well as the separation of YI and MYI on various examples
compared to classification based on intensity only. Our analysis shows that larger texture
windows (up to 51 × 51 pixels) generally result in better class separability, albeit at the cost
of reduced spatial resolution of the image.
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CA classification accuracy
dB decibel
DFYI deformed first-year ice
ESA European Space Agency
EW extra wide
GIA Gaussian incident angle classifier
GLCM grey level co-occurrence Matrix
GRDM ground range detected medium
IA incident angle
JM Jeffries–Matusita
LFYI level first-year ice
MYI multi-year ice
NFI newly formed ice
OW open water
PDF probability density function
ROI region of interest
S1 Sentinel-1
SAR synthetic aperture radar
SIC sea ice concentration
SNAP Sentinel Application Platform
YI young ice
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