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Abstract

The first Agriculture-Vision Challenge aims to encour-

age research in developing novel and effective algorithms

for agricultural pattern recognition from aerial images, es-

pecially for the semantic segmentation task associated with

our challenge dataset. Around 57 participating teams from

various countries compete to achieve state-of-the-art in

aerial agriculture semantic segmentation. The Agriculture-

Vision Challenge Dataset was employed, which comprises

of 21,061 aerial and multi-spectral farmland images. This

paper provides a summary of notable methods and results

in the challenge. Our submission server and leaderboard

will continue to open for researchers that are interested in

this challenge dataset and task; the link can be found here.

1. Introduction

Vision in agriculture has begun gaining increasing at-

tention as recent advancements in deep learning solutions

for various tasks were proven successful. Areas such as

medicine and aerospace [18, 1, 32, 33, 34] have benefited

from the effectiveness of vision applications in their re-

spective domains. As a result, there have been numerous

efforts that aim to apply pattern recognition techniques in

agriculture to increase potential yield as well as prevent

losses. Nevertheless, progress in these directions have been

slow [15], which can be partially attributed to the lack of

datasets that encourage relevant studies.

Semantic segmentation from aerial agricultural images,

∗ indicates joint first author. For more information on our database and

other related efforts in Agriculture-Vision, please visit our CVPR 2020

workshop and challenge website https://www.agriculture-vision.com.

as one of the major topics in agriculture-vision applica-

tions, differs from common object or aerial image segmen-

tation tasks in several aspects. First, farmland images are

usually multi-spectral, since image channels such as near-

infrared and thermal inputs are extremely helpful for field

anomaly detection. Second, different from common ob-

jects with clear boundaries, farmland patterns are regions

with extremely irregular shapes and scales. These distinc-

tions make aerial agricultural image semantic segmentation

a uniquely challenging task with great academic and eco-

nomic potentials.

Nevertheless, inspirations for agricultural semantic seg-

mentation can be drawn from methods aimed for common

object segmentation. Recent works on segmentation in gen-

eral have demonstrated impressive results [31, 7, 11, 24, 14,

12, 29, 30]. For example, SPGNet [7] leverages multi-scale

context modules to improve semantic segmentation perfor-

mances. The DeepLab series [3, 4, 5, 6] uses atrous convo-

lution to further expand the receptive field, which enhanced

the network’s ability to capture objects at larger scales. CC-

Net [11] proposed a criss-cross convolution to more effi-

ciently capture non-local features. These techniques can

potentially be transferred to semantic segmentation in agri-

cultural images to yield similar performance gains.

Motivated by the above, the first Agriculture-Vision

Challenge was held to encourage research in this area. A

subset of the original Agriculture-Vision dataset [8] (i.e.

the Agriculture-Vision Challenge dataset) was used. The

challenge dataset contains 21,061 aerial and multi-spectral

farmland images captured throughout 2019 across the US.

In the following sections we describe and discuss in detail

the challenge, notable methods and results.
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(a) Cloud shadow (b) Double plant (c) Planter skip

(d) Standing water (e) Waterway (f) Weed cluster

Figure 1: RGB images of each pattern in the challenge dataset. Note that as the original Agriculture-Vision dataset [8] is

updated, more patterns are gradually being included. Images best viewed with color and zoomed in.

2. The Agriculture-Vision Challenge

2.1. Challenge Dataset

The first Agriculture-Vision Challenge focuses on se-

mantic segmentation from aerial agricultural images. Six

important anomaly patterns from the Agriculture-Vision

dataset [8] are to be recognized, which are cloud shadow,

double plant, planter skip, standing water, waterway and

weed cluster. Each image is 512 × 512 pixel with four in-

put channels, namely Red, Green, Blue and Near-infrared

(NIR). In addtion to the input channels, a boundary map and

a mask are provided to indicate areas within the farmland

and the valid pixels in the image respectively. In total, the

challenge dataset contains 12901/4431/3729 train/val/test

images respectively. Visualization of each pattern is shown

in Figure 1. Note that labels in this dataset are not mutu-

ally exclusive, which means that a pixel can contain more

than one pattern. As a result, a custom metric is designed to

evaluate submissions.

2.2. Evaluation Metric

To accommodate for overlapping labels, we modify the

conventional mean Intersection-over-Union (mIoU) metric

by categorizing predictions of any label in a pixel as a cor-

rect prediction. This enables easy adaptation of typical se-

mantic segmentation models into our agriculture challenge.

Specifically, to compute the modified mIoU, a confusion

matrix M c×c (c = 7 is the number of classes plus back-

ground) is first computed with the following rules:

For each prediction x and label set Y at a pixel:

(1) If x ⊆ Y , then My,y = My,y + 1 ∀y ∈ Y

(2) Otherwise, Mx,y = Mx,y + 1 ∀y ∈ Y

Finally, the modified mIoU is computed by:

1

c

∑

c

True positivec

Predictionc + Targetc − True positivec



The modified mIoU increases the reward for a correct

prediction by allowing any correct predictions to count as

true positives for all ground truth labels. However, it also

heavily penalizes the model if the prediction does not match

any of the ground truth labels.

2.3. Challenge Description

The first Agriculture-Vision challenge was hosted be-

tween January 27, 2020 and April 20, 2020. Around 57

teams participated in the challenge, with about 33 publi-

cized result submissions. Submissions were evaluated on

the challenge test set with 3729 images and ranked based

on the modified mIoU.

3. Results and Methods

Table 1 shows the results of the first Agriculture-Vision

challenge. In this section, we review some notable submis-

sion, such as their motivations and methodologies.

3.1. Team DSSC
Hyunseong Park, Junhee Kim, Sungho Kim

Agency for Defense Development, DGIST

Residual DenseNet [35] with Squeeze-and-Excitation

blocks [10] (RD-SE) is adopted as the base model for se-

mantic segmentation. RD-SE is based on U-Net [25] ar-

chitecture that has encoder/decoder architecture as shown

in Figure 2. In RD-SE, to compensate for the spatial

loss which arise during the feature extraction, residual

dense blocks [35] and skip connections are utilized. Also,

Squeeze-and-Excitation blocks (SE block) [10] are used

to recalibrate channel-wise feature responses. Five con-

volution layers with kernel size 3x3 and batch normaliza-

tion [13] are included in one residual dense block.

Figure 2: Team DSSC: Residual DenseNet with Expert Net-

work architecture.

Expert networks were also used to segment less frequent

class objects. In this challenge, two expert networks are

trained for minor classes (i.e. planter skip and standing wa-

ter). The planter skip expert network takes also the double

plant images as training input since many planter skip pat-

terns also appear in the same image with double plant pat-

terns. Therefore, the planter skip expert network considers

3 classes (i.e. planter skip, double plant and background).

Although expert networks are based on RD-SE, they have

a lighter architecture and can be trained faster than RD-SE.

Trained expert networks support RD-SE to segment minor-

ity patterns. The overall process is shown in Figure 2. From

the input images, RD-SE networks produce the prediction

maps. If there are pixels classified as planter skip, the ex-

pert networks are implemented to segment on the same im-

ages. The prediction results for both RD-SE and expert net-

works are combined to make final prediction. Unlike expert

networks for planter skip, the expert networks for standing

water is used when there are pixels classified as planter skip

and standing water from RD-SE. The result requires several

steps of post-processing, including transition from planter

skip to standing water (when both labels appear in the same

field), removal of small labels and morphological closing.

3.2. Team SCG Vision
Qinghui Liu, Michael C. Kampffmeyer, Robert Jenssen,

Arnt B. Salberg

Norwegian Computing Center, UiT The Arctic University

of Norway

The proposed model uses the self-constructing graph

(SCG) [20] module combined with graph convolutional net-

work [17] for aerial agricultural semantic segmentation.

Since aerial images are rotational invariant, three SCG-

GCN modules are used to extract features at multiple views.

The proposed model architecture is shown in Figure 3.

Figure 3: Team SCG Vision: Multi-view Self-Constructing

Graph Convolutional Network architecture.

To overcome the class imbalance problem in the chal-

lenge dataset, an adaptive class reweighing loss is de-

signed. A positive-negative class balanced function is fur-

ther adopted to accommodate for negative samples. Details

of this work can be found in our workshop proceedings:

Multi-view Self-Constructing Graph Convolutional Net-

works with Adaptive Class Weighting Loss for Semantic

Segmentation.

3.3. Team AGR
Alexandre Barbosa, Rodrigo Trevisan

University of Illinois at Urbana Champaign

To avoid “overlooking” the less frequent classes during

training, the concept of focal loss [19] was used for im-

balanced datasets. The key idea is to dynamically scale the



Submission
modified Back- Cloud Double Planter Standing Water- Weed

mIoU ground shadow plant skip water way cluster

DSSC 63.9 80.6 56 57.9 57.5 75 63.7 56.9

seungjae 62.2 79.3 44.4 60.4 65.9 76.9 55.4 53.2

yjl9122 61.5 80.1 53.7 46.1 48.6 76.8 71.5 53.6

SCG Vision 60.8 80.5 51 58.6 49.8 72 59.8 53.8

AGR 60.5 80.2 43.8 57.5 51.6 75.3 66.2 49.2

SYDu 59.5 81.3 41.6 50.3 43.4 73.2 71.7 55.2

agri 59.2 78.2 55.8 42.9 42 77.5 64.7 53.2

TJU 57.4 79.9 36.6 54.8 41.4 69.8 66.9 52

celery030 55.4 79.1 38.9 43.3 41.2 73 61.5 50.5

stevenwudi 55 77.4 42 54.4 20.1 69.5 67.7 53.8

PAII 55 79.9 38.6 47.6 26.2 74.6 62.1 55.7

agrichallenge12 54.6 80.9 50.9 39.3 29.2 73.4 57.8 50.5

hui 54 80.2 41.6 46.4 20.8 72.8 64.8 51.4

shenchen616 53.7 79.4 36.7 56.3 21.6 67 61.8 52.8

NTU 53.6 79.8 41.4 49.4 13.5 73.3 61.8 56

tpys 53 81.1 50.5 37.1 25.9 67.4 58.7 50.1

Simple 52.7 80.2 40 45.2 24.6 70.9 57.6 50.4

Ursus 52.3 78.9 36.3 37.8 34.4 69.3 57.1 52.3

liepieshov 52.1 77.2 40.2 46 16 71.3 62.9 51.1

Lunhao 49.4 79.5 40.4 38.8 10.5 69.4 58.3 49.1

tetelias-mipt 49.2 80.4 37.8 34.8 4.6 70.6 62.5 53.8

Dataloader 48.9 79.1 42 35.8 9.1 68.7 56.7 51.3

Hakjin 46.4 78.6 32 38.3 1.8 66.2 58 49.9

JianyuTANG 44.6 78.1 37.9 31.8 15.4 47.3 54.8 46.9

Haossr 43.9 79.2 21.4 28.1 2.7 67.5 56.4 52.3

rpartsey 41.5 72.5 21.6 36.2 9.1 59.7 40.7 50.6

TeamTiger 40.8 75.2 26.1 40.1 9.9 48 37.1 49.5

Chaturlal 40.7 77.7 23 20.4 5 55 51 52.9

Sciforce 40.2 80.5 29.6 24.4 0 41.2 55.9 50

MustafaA 40.1 76.5 34.4 25.6 11.1 46 36.5 50.3

HaotianYan 36.8 77.1 21.9 25.1 13.7 57.5 24.3 37.9

gro 36.3 76.4 37.5 8.4 0 60.3 29.7 41.8

oscmansan 35.5 71.6 29.6 3 0 52.4 46.2 45.9

ThorstenC 33.6 72.3 22.3 10 2 40.8 40.1 47.8

ZHwang 33.5 76.5 32.4 12.9 0 57.2 15.9 39.9

fayzur20 22.1 65.4 21.8 2.2 0.2 23.3 13.4 28.7

gaslen2 21.5 71 3.3 17.9 0.8 10.2 6.9 40.1

dvkhandelwal 16.3 71.5 0 0 0 42.6 0 0

ajeetsinghiitd 10.3 56.9 0.2 0.4 0 0 0.1 14.5

Table 1: Challenge results ranked by modifeid mIoU.

cross-entropy loss according to the confidence of the predic-

tion of each class. In addition to the focal loss, the Lovász-

Softmax [2] function was added, which is shown to be a

good surrogate for the intersection-over-union metric used

to evaluate the model’s performance [2]. Initial tests sug-

gest that using equal weights to combine the focal loss with

the Lovász-Softmax loss yields better results.

Two additional input channels were tested and used in

the model. The first channel contains the image’s Normal-

ized Difference Vegetation Index (NDVI). The second ad-

ditional channel used in our work is the image mask. Al-

though pixels outside the valid mask off the image are not

considered in the loss function and are not evaluated, they

bring relevant information since some classes are spatially

correlated with the presence of a non-valid pixel (e.g. water-

ways are usually marked on the border of the image mask).



The base model used is the ESP Net V2 which is a com-

putationally efficient encoder-decoder [22] network. The

model was trained from random initialization of its weights,

Adam optimizer [16]. Dropout layers were introduced with

a probability of 0.5. The training converged on average in

about 35 epochs. The final submission is trained over both

training and validation set.

3.4. Team TJU

Bingchen Zhao, Shaozuo Yu, Siwei Yang, Yin Wang

Tongji University

In the proposed model, switchable normalization [21]

modules are incorporated with the IBN-Net [23] to allow

efficient data fusion and reduce feature divergence. Figure 4

shows the proposed module. The proposed method aims at

resolving the divergence caused by appearance differences

between RGB imagery and Near-infrared inputs present in

the challenge dataset. In addition, due to potential over-

laps of labels in the dataset, the problem is treated as inde-

pendent binary segmentation tasks for each label type. The

Lovász hinge loss [2] is used to directly optimize on IoU.

Details of this work can be found in our workshop proceed-

ings: Reducing the feature divergence of RGB and near-

infrared images using Switchable Normalization.

Figure 4: Team TJU: the proposed IBN-s block.

3.5. Team Haossr

Hao Sheng, Xiao Chen, Jingyi Su, Ram Rajagopal, An-

drew Ng

Stanford University, Chegg, Inc.

This work focuses on exploring effective fusion tech-

niques for multi-spectral agricultural images. A general-

ized vegetation index is proposed that is learnable by deep

neural networks. The generalized vegetation index module

learns a vegetation index feature map given multi-spectral

inputs, which can be concatenated with the original color

channels and fed into a deep network for inference. In

addition, an additive group normalization module is intro-

duced to smoothly train the proposed model with the gener-

alized vegetation index output. An illustration of the fusion

module is shown in Figure 5. Details of this work can be

found in our workshop proceedings: Effective Data Fu-

sion with Generalized Vegetation Index: Evidence from

Land Cover Segmentation in Agriculture.

Figure 5: Team Haossr: illustration of the fusion module

for the generalized vegetation index.

3.6. Team CNUPR TH2L

Van Thong Huynh, Soo-Hyung Kim, In-Seop Na

Chonnam National University, Chosun University

A Deep Convolutional Encoder-Decoder architecture is

deployed to segment the aerial farmland images. The en-

coder is based on MobileNetV2 [26] with an attention block

to assign the contribution of each spectral channel. In the

decoder module, ASPP blocks [4] are utilized and squeeze-

excitation blocks [10] are used to upsample the feature map

to the original input size. An overview of the method is

shown in Figure 6.

Figure 6: Team CNUPR TH2L: pipeline.

The network is built with Keras in Tensorflow 2.1 and

trained with SGD optimizer. Data augmentation is per-



formed by random flip and/or 90 degree rotation on each

image except images that contain only weed clusters. This

leads to 38731 images in training set. 6400 images are

randomly selected in the training set to optimize the net-

works in each epoch. A learning rate from 0.05 to 0.3 is

used with the cyclical scheduler [27]. Due to the highly

imbalanced labels in the dataset, class-balanced weight-

ing [9] is used with focal loss [19] as objective func-

tion. The source code of the method is available at

https://github.com/th2l/Agriculture-Vision-Segmentation.

3.7. Team TeamTiger

Ujjwal Baid, Shubham Innani, Prasad Dutande, Bhakti

Baheti, Sanjay Talbar

SGGS Institute of Engineering and Technology

The following challenges were incurred for the given

segmentation task, (1) Shape and size of the area covered

by each anomaly pattern are different; (2) The number of

images each class is different; (3) There are overlapping

labels. To cope with the challenges mentioned above, an

encoder-decoder architecture using EfficientNet [28] and a

feature pyramid decoder is used. The proposed encoder-

decoder architecture is shown in Figure 7.

Figure 7: Team TeamTiger: proposed encoder-decoder ar-

chitecture.

The proposed end-to-end semantic segmentation model

is built with Tensorflow 2.0 and Keras. The network is fed

with 512×512×4 pixel images with a batch size of four for

100 epochs. To penalize incorrect outputs from the model

while training, the Jaccard loss is used with Adam [16] as

the optimizer. The learning rate is kept at 0.001 for initial

epochs and then decreased five times whenever the valida-

tion does not change for three consecutive epochs.

4. Conclusion

To accommodate the rapidly changing computer vision

technique in agriculture, the first Agriculture-Vision Chal-

lenge targets on efficiently and accurately recognizing sev-

eral important field patterns from aerial images through se-

mantic segmentation paradigm. Approximately 57 teams

around the globe participate in this competition in which 7

leading teams, together with their novel methods, are se-

lected for this paper. Yet our vision of agriculture should

be extended beyond segmentation. The inclusive topics

about agriculture have initiated many new platforms for fu-

ture computer vision researches. Therefore, we can expect

that, in the near future, more challenging agriculture appli-

cations will be brought out, and more powerful computer

vision techniques will be developed to better assist these

applications as well.
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