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Abstract
Optimizing drug therapies for any disease requires a solid understanding of pharmacokinetics (the drug concentration at a 
given time point in different body compartments) and pharmacodynamics (the effect a drug has at a given concentration). 
Mathematical models are frequently used to infer drug concentrations over time based on infrequent sampling and/or in inac-
cessible body compartments. Models are also used to translate drug action from in vitro to in vivo conditions or from animal 
models to human patients. Recently, mathematical models that incorporate drug-target binding and subsequent downstream 
responses have been shown to advance our understanding and increase predictive power of drug efficacy predictions. We 
here discuss current approaches of modeling drug binding kinetics that aim at improving model-based drug development in 
the future. This in turn might aid in reducing the large number of failed clinical trials.

Keywords  Pharmacodynamics · Pharmacokinetics · Binding kinetics · Antimicrobial activity · Mathematical biology · 
Differential equations

Introduction

Over the last 50 years, mathematical models describing drug 
pharmacokinetics (PK) and pharmacodynamics (PD) devel-
oped from the first concepts of simple relationships between 
drug concentration and its effects in the 1960 s [1–5] to 
advanced models that substantially improve our compre-
hension of the drug action mechanisms [6–10]. Advances 
in computational power and the improved accuracy and 
availability of experimental data have further fuelled model 
development.

We discuss mathematical modeling approaches that 
connect drug binding kinetics with its downstream effects 
across different scales for a multitude of different applica-
tions such as treatments for bacterial and viral diseases, 

tumors, hypertension and mental illnesses. In this review, 
we will exemplarily highlight modeling approaches at dif-
ferent scales, starting with pharmacokinetic models includ-
ing drug-target binding (“Pharmacokinetic models”), over 
traditional pharmacodynamic models (“Traditional pharma-
codynamic models”) to various mechanistic pharmacody-
namic drug-target binding models (“Mechanistic pharmaco-
dynamic models”). We will conclude with a guide on how to 
select appropriate models for the system under investigation 
(“How to select the appropriate model”). An overview of the 
approaches discussed here is given in Fig. 1.

This review is not aiming at being a comprehensive 
description of all possible applications. We instead want to 
provide an overview of how mathematical models are used 
to describe PD and PK in a wide range of diseases, and more 
comprehensively describe PD models of drug-target binding 
in infectious diseases. Traditional pharmacodynamic models 
were introduced 50–100 years ago (e.g. the Emax model and 
its derivative, the Hill function or sigmoidal Emax model) [5, 
11, 12]. Starting from these models, we discuss the evolu-
tion of target binding models and the underlying assump-
tions that determine in which scenarios those models can be 
used. At all scales, model complexity can vary considerably 
depending on the existing knowledge and details required 
to answer the pharmacological question to be addressed. 
We describe what can be gained by using more complex 
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modeling approaches and which experimental data need to 
be available to parametrize those models. Of note, while 
the models we focus on describe antibacterial action, many 
of them may be applicable to other scenarios, for example 
tumor cells.

Pharmacokinetics and pharmacodynamics

PK describes the drug concentration profile in blood or at 
the site of action, i.e., the movement of drugs within the 
body after administration. PD describes how the given 
drug concentration in its target tissue elicits its effects. 
While multi-scale models that describe both PK and PD in 

mechanistic detail have been developed [13], we discuss PK 
and PD approaches separately for clarity.

PK describes the “movement” of the drug in the human 
body, often subdivided in compartments. The different drug 
concentrations in different body compartments are governed 
by absorption, distribution, metabolism and elimination or 
excretion [14]. As soon as the drug enters the bloodstream, 
it can potentially be delivered to the site of action. Often, the 
target tissue in which the drug action occurs is inaccessible 
or not practical for routinely measuring local concentrations. 
Reliable estimates of the relationship between drug concen-
tration in plasma and the target tissue are difficult to obtain 
and typically involve sophisticated models. While a detailed 
PK model has been successfully applied to tuberculosis to 

Fig. 1   Schematic overview of PK/PD modeling and review outline. 
The process from drug administration to the emergence of effects 
consists of PK and PD components. PK describes the drug concen-
tration profile in blood or at the site of action, i.e., the movement of 
drugs within the body after administration. PD describes how the 
given drug concentration in its target tissue elicits its effects. Mech-

anistically, this involves that drug molecules bind to their targets 
after reaching the desired site of action and induce various signaling 
transduction pathways, which ultimately, leads to biological effects/
responses. Integrated PK/PD models allow us to investigate the drug 
efficacy over time under different dosing regimens



383Multi‑scale modeling of drug binding kinetics to predict drug efficacy﻿	

1 3

describe local drug concentrations in the target tissue [10], 
the data used to validate the model came from an extremely 
invasive procedure (lung resection). As a result, data on local 
drug concentrations are rarely available and it is therefore 
estimated by other means, such as using a linear relationship.

Once the drug reaches the site of action, PD describes the 
relationship between drug concentration and its efficacy. It 
is important to decide which effect we are interested in, and 
how this is related to target occupancy. In some cases, such 
as virus neutralization by antibodies, the observable end-
point that defines efficacy can be easily ascribed to molecu-
lar mechanisms. Direct drug efficacy can be predicted by 
solely using binding kinetic models. In other therapeutic 
areas, the observable effects are very complex, such as 
behavioral changes in mental illnesses. These complex pro-
cesses are presumed to be related to target occupancy, which 
in turn leads to an inhibition or activation of downstream 
signaling pathways. Indirect drug efficacy is therefore math-
ematically described as a function of the amount of bound 
target, E = f(AT). This function can be either completely 
mechanistic when all contributing molecular pathways are 
known, or only partly mechanistic, such as when modeling 
drug-target binding and subsuming downstream mechanisms 
in a dose–response function.

Sometimes, the boundaries between modeling PK and PD 
are not well defined. It may, for example, depend on whether 
one defines an entire bacterium or the molecules that bind 
to the antibiotic inside the bacterial cell as the “target”. In 
the former case, diffusion across the bacterial cell envelope 
would be described by a pharmacodynamic model, and in 
the latter by a pharmacokinetic model. For the purpose of 
this review, we define mathematical models describing the 
drug penetration in a host’s target tissue as pharmacokinetics 
describing drug penetration into foreign organisms (e.g. bac-
teria) as pharmacodynamics, even though this distinction is 
somewhat arbitrary. Ultimately, these distinctions may be of 
secondary importance since the mathematical terms describ-
ing drug penetration into a body compartment or a bacterial 
cell can be part of either PK and PD model and both together 
are used to predict a drug’s effect-time profile for various 
dosing regimens (Fig. 1).

Binding kinetics

For our purposes, drug binding kinetics describes the inter-
actions between a drug molecule A (ligand) and a specific or 
unspecific binding partner B (target or receptor), which form 

the ligand–receptor complex AB: A + B
kon
−−⇀
↽−−

koff

AB . In this reac-

tion, kon (units M−1 s−1) is the association (binding) rate and 
koff (units s−1) is the dissociation rate per second. The dis-
sociation constant KD (unit M, M = mol per liter) is defined 

as KD =
koff

kon
 . It describes the molar concentration at which 

half of the total binding partner molecules are occupied at 
equilibrium and is a measure of the binding affinity. The 
half-life of the complex AB is given by t1∕2 =

ln(2)

koff
.

Pharmacokinetic models

Pharmacokinetic models are mostly used in the pre-clin-
ical and clinical drug development to calculate required 
drug concentrations and treatment schedules. They usually 
describe drug absorption, distribution, processing and elimi-
nation but not the molecular mechanisms at the drug target 
site. Drug binding can affect local and global drug concen-
trations in various ways.

Drug concentration affected by drug‑target binding

Mager and Sugiyama [15–18], combined PK and PD models 
to describe drugs that bind with high affinity, using the term 
“Target Mediated Drug Disposition” (TMDD, introduced by 
Levy [19]). TMDD refers to drug molecules that “bind with 
high affinity” to their targets [15], and a substantial amount 
of target is present and may exhibit a nonlinear PK behav-
ior. To describe such behavior, the researchers introduced a 
two-compartment PK model with a PD target binding model 
[15]. The drug concentration in the central compartment 
(Cp) binds (kon) with its targets to form a complex (DR) 
that has a total binding capacity Rmax. The complex DR can 
dissociate (koff) and degrade with a rate constant, km. In the 
central compartment (Serum), the drug can be eliminated 
(kel) or can bind with non-specific targets in tissue (DT), 
see Fig. 2. Here, targets are assumed to be homogeneous, 
equivalent and independent. Traditional pharmacodynamic 
approaches (Hill-functions) are used to describe drug effi-
cacy of the resulting local concentrations. The models con-
sist of systems of ordinary differential equations, and they 
are used (with appropriate adjustments) to describe several 
examples like angiotensin-converting-enzyme inhibitor 
(ACE inhibitor), imirestat, warfarin, bosentan, monoamine 
oxidase type B inhibitors and natalizumab [17].

Binding kinetics to plasma proteins

Drugs taken up through the gastrointestinal system are trans-
ported in the blood. It should be noted that many drugs in 
the blood are bound to transport proteins, which is strongly 
influencing their free and thus effective concentration. As 
blood transport proteins un-specifically bind to small mol-
ecules, several drugs applied in combination, competitively 
affect their respective binding and release and thus the effec-
tive drug concentration. The effective drug concentration 
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is often approximated as a constant percentage of plasma 
protein binding. However, this can be highly misleading as 
drug binding to either the targets or unspecific molecules 
decreases the free drug concentration [20]. The lower 
free drug concentration, in turn, shifts the equilibrium of 
drug-plasma protein binding and leads to a release of drug. 
Depending on the drug, modeling the kinetics of protein 
plasma binding can, therefore, be crucial [21]. As, further-
more, nutritional components as well as other drugs admin-
istered at the same time can be bound by the same transport 
proteins, other drugs as well as nutrition can affect free drug 
concentration and thus efficacy [22].

Pharmacodynamic models

Traditional pharmacodynamic models

Traditional PD models, i.e., Emax or Hill-functions can be 
derived using simplifying assumptions based upon the 
kinetics of drug-target binding. The effect of a drug at an 
observed site is related to the drug’s concentration and time 
since administration. The relationship between the drug con-
centration and its effect is not linear [5], and the Hill func-
tion has been used to describe this relationship. The model is 
based on the idea that under certain assumptions (discussed 
below and in Fig. 3), the rate of change of the drug-target 
complex AT is given by the following equation:

where kon is the association rate, koff is the dissociation rate, 
T0 is the initial number of targets and A is the drug concen-
tration. At the equilibrium, Eq. (1) becomes

(1)
dAT

dt
= kon

(

T0 − AT(t)
)

A − koffAT(t),

where KD = koff/kon.
In its simplest form, Emax models are proportional to the 

concentrat ion of the drug-target  complex AT : 
E = E0 +

EmaxA

EC50+A
 . Here, E is the effect of the drug at a 

given concentration of drug A, Emax is the maximum effect, 
EC50 is the concentration of drug that produces the 50% of 
Emax and E0 is the effect when A = 0 (additional details in 
[1]). In 1910, Hill investigated the shape of the oxy-
gen–hemoglobin saturation relationship [11, 23]. The 
shape of the curve was steeper than the predictions 
obtained with the steady-state solution (Eq. 2). To solve 
this issue, Hill added an exponential parameter to the 
model, the Hill exponent � [23]. Thus, Eq. (2) can be easily 
transformed into the Hill function (Eq. (3) and Eq. A in 
Fig. 3):

For drugs that show a steeper relationship between drug 
exposure and effect than the predictions with the Emax 
model, a Hill-function (also called sigmoidal Emax model, 
even though simple Emax models are also sigmoidal) can be 
used. The simplicity of Emax models results in their frequent 
application when little is known about the mechanisms of 
action for a given drug. However, it is important to realize 
that these models rely on a large number of assumptions 
(many of which are likely invalid in reality):

1.	 The number of target molecules is constant. In the case 
of intracellular targets, the number of targets per cell, 
i.e., the concentration is constant. If binding is modeled 

(2)AT =
T0A

kD + A
,

(3)E = E0 +
EmaxA

�

EC
�

50
+ A�

.

Fig. 2   PK/PD model. The drug 
can be infused in the central 
compartment (Serum) and it can 
bind to non-specific targets in 
the tissue compartment. Also, 
the drug can be eliminated 
from the central compartment 
with a rate kel, or bind to free 
targets (free receptors) to form 
a drug-target complex (receptor 
complex) with an association 
rate kon and a dissociation rate 
koff. The complex can degrade 
with a rate km, while free recep-
tors can degrade with a rate kdeg. 
Modified from [15]
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as a multistep process to a macromolecule, the number 
of binding sites per macromolecule is constant.

2.	 Independence of receptors. The probability of a receptor 
to bind a drug molecule is not affected by the number 
of other bound complexes. This implies that it is not 
important in which order they bind.

3.	 The distribution of receptors is homogeneous. The intra-
cellular space and diffusion are not included in these 
models, and for this reason, each receptor has the same 
probability of contact and therefore binding with the 
ligand.

4.	 Reversible binding has biologically reversible conse-
quences. This assumption is violated when cells, such 
as bacteria or cancer cells, die due to the effect of bound 
targets. Even if the drug afterwards dissociates from its 
target, the cell death is irreversible.

5.	 No changes in the number of target molecules in the 
entire system, e.g., in a bacterial population or in a 
tumor. This precludes cellular growth or death.

6.	 All targets or receptors are equivalent. This means that 
all the targets that bind the drug with the same rate elicit 
the same response to the drug.

7.	 The time required to pass through the cell envelope is 
negligible. Under this assumption, the drug concentra-
tion outside the cell is equal to the drug concentration 
inside the cell.

8.	 The drug concentration is constant during the time 
required to reach the equilibrium. This ensures that we 
can consider only the steady-state for each value of drug 
concentration, and it is sufficient to know only the rate 
kD = koff/kon (see Eq. 2).

9.	 The rates of drug-target association and dissociation 
are very fast. Since the equilibrium happens when the 
derivative is zero (no more variation in time), one of 
the assumptions is that the association and the disso-
ciation rates have to be fast enough so that the time to 
reach the equilibrium can be neglected. It is important to 
remember that, if the reaction rates are not fast enough, 
we need to use the full Eq. (1) instead of using only its 
equilibrium approximation in Eq. (2).

Mechanistic pharmacodynamic models

To overcome the limitations of empirical PD models, more 
and more detailed mechanistic models of drug binding and 
response have been developed in recent years. We start out 
with discussing approaches of increasing complexity that 
describe drug-target binding

Modeling drug‑target binding

The use of mechanistic PD models for describing antibacterial 
action was pioneered by Hedges in 1966 [24]. In this work, 

the authors describe the adsorption kinetics of a lethal amount 
of the bacterial toxin colicin by bacteria (e.g. E. coli). In this 
model, by analogy with photons in radiation, the targets are hit 
(and not bound) by the drug molecules. The model includes 
assumptions 1–9, which are listed above. The model describes 
two phases, in the first one the colicin is absorbed by recep-
tors, and, in the second one, the lethal effect happens after the 
completion of phase 1 [4]. Finally, the lethal effect is defined 
once r targets (the threshold) are occupied (r < n).

Since then, models of increasing complexity have been 
employed. Figure 3 summarizes the main developments in 
the modeling of drug-target binding kinetics, starting from 
traditional Hill functions and successively relaxing assump-
tions, culminating with the equations describing the entire 
population dynamics of bacteria in response to drug-target 
binding.

The role of drug‑target residence time  Both traditional PD 
models and the earliest mechanistic PD model by Hedges 
[24] assume that the binding equilibrium is instantaneously 
reached. This makes the implicit assumption that only the 
equilibrium constant KD = koff/kon determines drug efficacy. 
The magnitude of the association rate kon and dissociation 
rate koff, and thereby binding kinetics, is assumed to have 
negligible influence. This has been challenged by Copeland 
et al. [25], who develop a concept from Ehrlich [26]: “a drug 
is efficacious only so long as it is bound to, and modulating 
the action of, its physiological target(s)”. The focus is, there-
fore on the crucial role played by the drug-target complex. In 
other words, the residence time (tred = 1/koff, which depends 
on the dissociation rate) of the drug-target complex is more 
important than the simple affinity. For the authors (see [25, 
27]), the dissociation rate koff is more important than kon, 
due to several constraints acting on kon (it can range consid-
erably), while the dissociation rate koff is entirely depend-
ent on the reaction kinetics between the drug molecules and 
their targets. They, therefore argue that the optimization of 
the dissociation rate is of primary importance. The authors 
applied this modeling concept to viruses, inhibitors of 
steroid 5β-reductase, inhibitors of purine nucleoside phos-
phorylase (PNP) and angiotensin II type 1 receptor (ATR1). 
Other interesting studies modeling the kinetics of drug-
target binding rather than instantenous equilibria include 
Tonge [28], Shimada [29] and Walkup [30].

Models describing multimer targets  The majority of mod-
els assume that the target is one molecule with one single 
binding site. Many drug targets are homo- or hetero-mul-
timers with multiple binding sites. One example is homo-
trimeric spikes on the surface of HIV virions that enable the 
virion to enter host cells. This has been modeled by Magnus 
et al. [31–33]: the authors estimate the number of antibod-
ies (called stoichiometries) required for neutralizing a sin-
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gle virion and a whole virion population. The number of 
(HIV) spikes necessary for cell entry, combined with the 
minimal number of antibodies able to neutralize one spike 
(or trimer), permits to estimate how many antibodies are 
needed to neutralize a single virion and an entire population 
of virions. However, this estimation is not trivial as Fig. 4 
illustrates: if there are more binding sites per trimer than 
needed for neutralization, a substantial fraction of antibod-

ies will bind “unnecessarily” to already neutralized trimers, 
thereby reducing efficacy.

Here, the assumption of equivalent receptors (assumption 
6 on the list in “Traditional pharmacodynamic models”) is 
invalid, because the same number of bound targets, com-
bined differently, can have different outcomes.

A

B

C

D

E

F
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Drug‑target binding with  a  diffusion barrier  In some 
cases, we need to extend the model to include the diffu-
sion throughout the bacterial cell envelope for a variable 
drug concentration. Notably, the influx and efflux of drug 
molecules across the cell envelope are regulated by multi-
ple mechanisms, which depends on the structure of the cell 
envelope and characteristics of drug molecules. Mathemati-
cal models on how drug molecules cross the cell envelope 
have been developed with different complexity levels (e.g. 
[7, 34]). However, the modeling approach can be limited due 
to lack of knowledge on the specific mechanisms. Assuming 
that the drug molecules only enter into the cell by diffusion, 
as shown in Fig. 3d (passive diffusion), we consider drug 
molecules outside bacterial cells that need to traverse the 
cell membrane by diffusion.

Here, Ae is the external number of antibiotic molecules, 
Ai is the intracellular number of antibiotic molecules, T is 

(4)

dAe

dt
= −p

(

Ae

Vi

Ve

− Ai

)

dAi

dt
= p

(

Ae

Vi

Ve

− Ai

)

− konAiT + koffAT

dT

dt
= −konAiT + koffAT

dAT

dt
= konAiT − koffAT .

the number of free targets, AT is the number of drug-target 
complexes, p is proportional to the permeability.

Unspecific binding  An additional step involves the inclu-
sion of unspecific binding by adding terms that describe 
how a drug A binds to an unspecific binding site U to form 
an unspecific complex AU (see Fig. 3e). Unspecific binding 
partners are often assumed to be ubiquitous, such that bind-
ing never saturates and therefore the number of free binding 
sites U does not change (i.e., does not need to be modeled 
explicitly). The unspecific binding rate is denoted as ku,f and 
the unspecific dissociation rate as ku,r. This model can be 
expressed as follows [7]:

Changes in the numbers of target molecules  For antibiot-
ics and anti-cancer drugs, the number of targets can change 
over time, because cancer cells or bacteria replicate (vio-
lating assumption 5). At the same time, bacteria or cancer 
cells die due to the effect of bound targets. This violates 
assumption 4, i.e., that a chemically reversible process is 
also biologically reversible: Let us assume that n bound tar-
gets kill a bacterial or cancer cell and that exactly n targets 
are currently bound to a dead cell. One drug-target complex 
may dissociate such that only n − 1 targets are bound, but 
this will not lead to a resurrection of the dead cell. Thus, if 
the desired pharmacological effect means minimizing a cell 
population and that cell population replicates and dies, the 
binding kinetics will be affected by the dynamics of that cell 
population. This can only be neglected when the action of 
the drug is sufficiently fast such that the cells neither repli-
cate nor die until the chemical reaction has reached equilib-
rium.

To incorporate both bacterial growth and death into the 
model, living bacteria can be classified into compartments 
based on the number of bound target molecules x [6], out 
of a total of n target molecules per bacterium. Here, bac-
terial cells with n target molecules are equivalent to mol-
ecules with n independent binding sites. The association 

(5)

dAe

dt
= −p

(

Ae

Vi

Ve

− Ai

)

dAi

dt
= p

(

Ae

Vi

Ve

− Ai

)

− konAiT + koffAT − kufAiU + kurAU

dT

dt
= −konAiT + koffAT

dAT

dt
= konAiT − koffAT

dU

dt
= −kufAiU + kurUT

dUT

dt
= kufAiU − kurUT .

Fig. 3   Overview of the main developments in modeling PD. In this 
figure, we give an overview of modeling approaches with increasing 
complexity that are commonly used to describe the molecular mecha-
nisms of anti-infective drugs. The left column refers to the respective 
section in the text that describes the model as well a list of assump-
tions that are relaxed compared to a traditional Hill function. A draw-
ing in the central column illustrates the model. Finally, the column on 
the right gives the respective equations. The parameters are described 
in the table below. In a, we describe the reaction at the equilibrium 
(Emax, Hill), i.e., the time to reach the equilibrium of the reaction is 
neglected (“Traditional pharmacodynamic models”). In b, we relax 
the assumption 9 of the instantaneous equilibrium, i.e., we have the 
complete kinetic equation to describe the variation in time of the 
drug-target complex (see “The role of drug-target residence time”). 
In c, we release assumption 8 of constant drug concentrations, i.e., we 
add an equation describing a variable drug concentration. This can 
be a PK model added to our binding kinetics equation (“Drug con-
centration affected by drug-target binding”). In d, we release assump-
tion 7. In this way, the internal drug concentration is not equal to the 
external drug concentration, i.e., we need an equation for the exter-
nal and one for the internal drug concentration (“Drug-target binding 
with a diffusion barrier”). In e, we add unspecific targets with their 
own equations, and drug molecules can associate/dissociate to unspe-
cific targets. Thus, fewer drug molecules are available for drug action 
(“Unspecific binding”). In f, we introduce the replication and death of 
bacteria, which leads to changes in the number of target molecules, 
i.e., we relax assumption 4 and 5, but not 6 and 7. To do so, bacteria 
are classified in compartments according to the number of bound tar-
get molecules. Each compartment is described by separate equation. 
(“Changes in the numbers of target molecules”)

◂
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and dissociation of the target and antibiotic molecules are 
described by the following system of differential equations.

where living bacteria replicate at a rate rx, a function of the 
number of bound target molecules x, as well as they die at a 
rate dx, a function of the bound targets x. K is the carrying 
capacity of the total bacterial population.

The number of targets per bacterium is constant, i.e., it 
doubles when bacteria duplicate, but the number x of bound 
targets in the mother cells remains constant during the dupli-
cation and it is distributed in the two daughter cells follow-
ing the hypergeometric distribution fi,x (see Fig. 3f).

Linking target occupancy to drug efficacy

Drug efficacy is the capacity of a drug to produce an effect 
after binding to its target. Various measures are used to 
quantitatively evaluate the drug efficacy in in vitro, ex vivo 
and in vivo studies. Binding kinetics and the residence time 

(6)

dBx

dt
= kon(n − x − 1)ABx−1 − koffxBx − kon(n − x)ABx + koff(x + 1)Bx+1 + �x − rxBx

K−
∑n

j=0
Bj

K
− dxBx

dA

dt
= −kon

n−1
∑

x=0

(n − x)ABx + koff

n
∑

x=1

xBx

�x = 2

n
∑

i=x

fi,xriBi

K−
∑n

j=0
Bj

K
,

of the drug-target complex gain more and more attention 
and are recognized as reliable indicators for drug efficacy. 
The traditional PK/PD approach to predict drug efficacy by 
correlating an observable drug effect to measures of drug 
exposure such as peak concentration (Cmax) or average con-
centration (area under the curve, AUC) is based on assump-
tions of a rapid equilibrium between the free and bound 
drug (Fig. 3a). PK/PD models that incorporate the complete 
kinetic scheme of drug-target binding (Fig. 3b–f) enable us 
to predict drug efficacy from target occupancy under non-
equilibrium conditions, which is more likely to occur in 
an open systems such as the human body [19]. For drugs 
that slowly dissociate from their targets, the free drug and 
drug-target will not be in rapid equilibrium. In this case, the 
traditional PK/PD model may underpredict the drug effect 
[22], whereas models with time-dependent drug-target bind-
ing will be more mechanistic and suitable for analyzing the 
relationship between drug concentration and efficacy [21].

However, it is challenging to estimate the relationship 
(i.e., define the function effect E = f(AT), see “Pharmacoki-
netics and pharmacodynamics”) between target occupancy 
and drug effects. Here we summarize models incorporating a 
detailed kinetic scheme of drug-target binding and a function 
f for various diseases in Table 1.

The simplest approach (and the implicit assumption in 
most PD models) is to assume a linear relationship between 
target occupancy and drug effects. For example, models of 
calcium channel blocker in essential hypertension patients 
[29], gastric acid secretion in dogs [39], antiplatelet effects 

of aspirin and ibuprofen in human [35] and inhibition of 
DPP-4 activity in patients with type 2 diabetes [40], use 
positive or negative linear functions to convert the level of 
drug-target complex to the corresponding pharmacological 
responses. When the total number of targets at the site of 
action is uncertain or impossible to be measured, apparent 
fractional receptor occupancy can be used by setting the 
receptor level to one unit [36]. Some models define a lin-
ear correlation with certain conditions. In a model of paL-
pxC inhibitor in animal studies of Pseudomonas infection, 
Walkup et al. [30] assume a saturation limit of the drug-
induced killing of bacteria that the killing rate is linearly 
increased to target occupancy between the minimum and 
maximum target occupancy required for the antibacterial 
effects. Similarly, we earlier defined [6] that the replication 

Fig. 4   Virion neutralization. An example of how random antibody 
binding can have different effects. Here, eight antibodies bind in two 
different ways to a virion with six trimers. In this example, the mini-
mum number of bound trimers to neutralize a virion is four with at 
least two antibodies each. In (A), the virion is neutralized, four differ-
ent trimers are bound to two antibodies. In (B), one trimer is bound 
to three antibodies and one trimer is bound with only one antibody 
(dashed circle), then there are only three trimers neutralized. Modi-
fied from [31]
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rate of bacteria linearly depends on the uninhibited ribo-
somes above a critical threshold.

For some cases, experimental evidence also suggests a 
nonlinear relationship between observed receptor occupan-
cies and effects [41], and several models that use sigmoid 
functions to define the relationship between the level of 
drug-target complex and the pharmacological effects [37, 
38]. For instance, a recent in vitro and in silico combined 
model consists of competitive binding between D2 receptor 
antagonist and endogenous dopamine as well as the down-
stream response of cellular cyclic adenosine monophosphate 
(cAMP) [37]. The production rate of cAMP is oppositely 
affected by the concentration of D2-receptor-antagonist com-
plex and receptor–dopamine complex, using a combination 
of Hill equations.

Alternatively, PD/PK models that incorporate explicit 
mechanistic simulation of downstream processes initiated 
by drug- target binding is possible. With increasing knowl-
edge about the molecular mechanisms of diseases, we can 
develop increasingly complex models of intracellular drug 
responses. This approach is especially useful when the direct 
relationship between target occupancy and response is com-
plicated and uncertain. Models demonstrate that the binding 
of drug-target can induce downstream signal transduction 
and feedback mechanisms, therefore, affect the drug efficacy 
at a network level [42].

Illustration of mechanistic antibiotic PD models

Figure 5 illustrates the observable endpoints of antibiotic 
efficacy in vitro and crucial aspects of antibiotic action that 
can be described by mechanistic PD models.

The aim of antibiotic treatment is to reduce the number 
of bacteria in a patient’s body. The efficacy of antibiotics 
to do so is typically assessed by so-called time-kill curves 
(Fig. 5a), where bacterial counts are measured over time 
after exposure to antibiotics at increasing concentrations. 
These can be used to estimate the PD curves for a given 
drug-bacteria combination in a given environment (Fig. 5b). 
It is important to note that PD curves measure the net popu-
lation change rather than the replication (Fig. 5c) and death 
of bacteria (Fig. 5d) separately. As a result, a zero-net change 
in the population size at the minimal concentration at which 
bacterial growth stops, i.e., when the net change in the popu-
lation is exactly zero (minimal inhibitory concentration or 
MIC) does not necessarily mean that there is no replication 
of bacteria in a given sample, a very high replication and 
death rate that neutralize each other would yield the same 
observation. Figure 5c, d also demonstrate mechanisms that 
can alter the effects of antibiotic action: upon the replica-
tion of bacteria, the bound targets in cells are distributed 
(randomly) among the daughter cells. If drug-target asso-
ciation and dissociation are on a comparable timescale to 

replication rates, this can affect the efficiency of the given 
antibiotic (“Changes in the numbers of target molecules”). 
Furthermore, after a cell dies, its targets do not immediately 
disappear, and these targets can leak into the extracellular 
space. Therefore, even replication and death can eventually 
lower the free extracellular antibiotic concentrations, which 
in turn can affect the antibiotic action on other cells.

How to select the appropriate model

Traditional PD models have substantial advantages, such 
as their simplicity and the fact that a relatively moder-
ate amount of experimental data is needed to parametrize 
them. However, traditional PD models are typically unable 
to capture a variety of PD effects. When such effects are 
observed, an explicit, mechanistic model may be a better 
choice because “tweaking” traditional approaches may result 
in equally complex mathematical models that, in addition 
to their complexity, have no mechanistic basis and are chal-
lenging to parametrize with experimental data. Table 2 pro-
vides an overview of PD effects (with a focus on antibiotics, 
but similar effects have been observed in other systems) that 
can be easily described using mechanistic models.

Post‑antibiotic effect

Sometimes, after antibiotic exposure, bacterial regrowth is 
delayed. This is called “post-antibiotic effect” (PAE). The 
reason is that the drug-target complex requires some time 
to dissociate and free the targets, as well as the drug mol-
ecules to leave the intracellular space. To explain this effect, 
we need models with explicit association and dissociation 
terms, but also a growth rate and a death rate as a function 
of the number of bound targets are helpful. Models with the 
association and dissociation rates can explain this effect as 
demonstrated by Walkup [30] and Abel zur Wiesch [6, 7].

Inoculum effect

A second challenge is to determine reliable drug dosing able 
to clear an infection. Predictions for optimal drug concen-
trations can be distorted by the initial bacterial concentra-
tion, i.e., increased initial bacterial concentration can imply 
a decreased antibiotic efficacy [43]. A useful review of 
the inoculum effect in vivo and in vitro with beta-lactams 
(where this effect is pronounced) is given in [44]. One expla-
nation for this effect relates to the fact that the change in the 
drug availability after binding can be a function of the drug 
affinity. This effect can be explained by a kinetic model of 
binding—intuitively, drug molecules that are already bound 
to their targets cannot kill more bacteria [6, 8].
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Heterogeneous population

In reality, the bacterial population can be heterogeneous. 
Several parameters can change, and this has consequences 
on the behavior of the bacterial population. For example, 
parameters can include the minimum inhibitory concentra-
tion or the minimum bactericidal concentration, the total 
number of target molecules, the permeability of the cell 
membrane, the minimum threshold of bound targets to kill 
bacteria and the growth rate and the death rates described 
as a function of the number of bound targets. All of these 
parameters and functions are important in determining 
the efficacy of a drug and can be easily incorporated into 

mechanistic models [6] by using distributions rather than 
fixed parameter values to inform a model.

Synergistic and antagonistic action of drugs

It is crucial to determine when multiple antibiotics can 
have synergistic or antagonistic effects. Understanding how 
bacterial populations react to multi-drug treatment can be 
surprisingly complex. In particular, it is unclear what the 
“null-hypothesis” for an independent action of two anti-
biotics should be, and this precludes determining synergy 
or antagonism. Several models describe the independent 
action of two drugs, for example, Loewe additivity and Bliss 

A B

C

D

Fig. 5   Illustration of the modeled antibiotic action—a illustrates typi-
cally measured bacterial count measurements over time. These meas-
urements are often used to create “pharmacodynamic curves” (b) that 
define the relationship between the net growth of bacteria (the total 
replication minus death) at a given antibiotic concentration. In this 
framework, the minimal inhibitory concentration (MIC) is the con-
centration when the net growth rate predicted by pharmacodynamic 
curve is zero. In drug-target binding models, the number of bound 

targets (at a given intracellular antibiotic concentration) affects either 
bacterial replication, death, or both (c, d). c Illustrates the replication 
part, in addition, it also illustrates the assumption that during this pro-
cess the bound targets are distributed randomly among daughter cells 
[6]. d Illustrates the bacterial elimination part, it also illustrates the 
possibility that upon elimination, bacteria lyse and release their con-
tents into the extracellular space. This, in turn, may eventually reduce 
the free antibiotic concentrations
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independence. Baeder et al. [9] described a multi-hit model 
(following the idea of Hedges [24]) in which bacteria die 
when a given number of targets are “hit” by antimicrobi-
als. Bliss independence assumes that there is no interaction 
between antimicrobials. While, Loewe additivity represents 
a measure of antimicrobials interaction, i.e., if there is syn-
ergy or antagonism. The authors suggest which model is 
best, based on the antimicrobials. In particular, Bliss inde-
pendence is the best choice in the presence of different tar-
gets, while Loewe additivity is recommended when the two 
antimicrobials target the same component.

Conclusions

Over the last 50 years, PK and PD modeling have shifted 
toward mechanistic approaches. In particular, the develop-
ment of mechanistic PD modeling allows a deeper under-
standing of drug action, implying a broad array of future 
applications [45], such as antivirals, antibiotics, hyperten-
sion, inhibitors and any application that involves target 
binding. Here, we have discussed mathematical models 
describing molecular mechanisms of the drug action, 
and how these models can be applied to several diseases, 
which underlying assumptions we need and which phe-
nomena can be captured. It is important to be aware of 
these assumptions.

For example in viruses, which neither replicate inde-
pendently or can irreversibly die, the dynamics of the viral 
population can be neglected and viruses can be idealized 
as macromolecules with multiple binding sites [46]. Bacte-
ria and cancer cells continuously divide and thereby repro-
duce the drug target. The chemically reversible processes 

(binding) are coupled to biologically irreversible processes 
(death). Depending on the speed of population turnover, a 
simplified model of a bacterium as a macromolecule will fail 
to adequately capture drug efficacy. It is also important to 
consider which parameters have been experimentally deter-
mined and to judge how much confidence one can have in 
those parameters. When chosing a more complex model, one 
should always be aware of the dangers of overparametriza-
tion if the parameters are not well known. However, when 
model and parameter choices match the biological systems, 
it has been repeatedly shown that both quantitative predic-
tions, as well as biological understanding, can be vastly 
improved by the use of mechanistic models.
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Table 2   Summary of effects explained by the models in the last column

Effect Description Models 
including this 
effect

Post-antibiotic effect (PAE) PAE is a delayed bacterial regrowth after antibiotic exposure [6, 7, 30]
Inoculum effect The efficacy of a drug concentration can be a function of the initial bacterial concentration. 

Increased initial bacterial concentration can imply decreased antibiotic efficacy
[6, 8, 43, 44]

Heterogeneous population The bacterial population can be heterogeneous, i.e. with different values in:
(a) Minimum inhibitory concentration
(b) Minimum bactericidal concentration
(c) Total number of target molecules
(d) Permeability of the cell membrane
(e) Minimum threshold of bound targets to kill bacteria
(f) Growth rate as a function of bound targets
(g) Death rate as a function of bound targets.
All of these parameters and functions are important in the efficacy of the drug.

[6]

Off-target binding Unspecific targets that can bind to the drug molecules. This implies that the total amount of drug 
molecules available to bind to main targets (action of the drug) can be smaller

[6]

Synergistic and antagonis-
tic action of drugs

Loewe additivity and Bliss independence are compared. Bliss independence is suggested in the 
presence of different targets. Loewe additivity when the antimicrobials target the same component

[9]
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