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Merkel cell polyomavirus (MCPyV) is the major causative factor of the rare but aggressive cancer, Merkel cell car-
cinoma (MCC). Two characteristics of MCPyV-positive MCCs are integration of the viral genome and expression
of a truncated version of one of its oncogenic proteins, namely large T antigen. The strong association of MCPyV
with MCC development has incited researchers to further investigate a possible role of this virus in other cancers.
However, many of the examples displaying the presence of the virus in the various non-MCC cancers are not able
to clearly demonstrate a direct connection between cellular transformation and the presence of the virus. The
prevalence of the virus is significantly lower in non-MCC cancers compared to MCCs, with a lower level of viral
load and sparse viral protein expression. Moreover, the state of the viral genome, and whether a truncated large T
antigen is expressed, has rarely been investigated. Nonetheless, considering the strong oncogenic potential of
MCPyV proteins in MCC, the plausible contribution of MCPyV to transformation and cancer growth in non-
MCC tumors cannot be ruled out. Furthermore, the absence of MCPyV in cancers does not exclude a hit-and-run
mechanism, or the oncoproteins of MCPyV may potentiate the neoplastic process mediated by co-infecting oncov-
iruses such as high-risk human papillomaviruses and Epstein–Barr virus. The current review is focusing on the
available data describing the presence of MCPyV in non-MCC tumors, with an aim to provide a comprehensive
overview of the corresponding literature and to discuss the potential contribution of MCPyV to non-MCC cancer
in light of this.
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Members of the Polyomaviridae family are naked
viruses with a circular double-stranded DNA gen-
ome, typically approximately 5000 base pairs. Their
genome can be divided into three functional
domains. The early region is expressed at the initial
phase of infection and encodes the regulatory pro-
teins large T antigen (LT) and small T antigen (sT).
The late region is transcribed after the initiation of
viral DNA replication and encodes the capsid pro-
teins, typically VP1, VP2, and VP3. Interspersed
between the early and late region is the non-coding

control region, with the origin of replication and
transcription control region directing the expression
of the early and late genes (1). Polyomaviruses
(PyV) have predominantly been isolated from birds
and mammals, but recently viral nucleotide
sequences have also been detected in invertebrates,
fish, amphibians, and reptiles (2, 3). Their name
(poly = many; oma = tumors) is derived from the
observation that the first isolated polyomavirus was
able to induce several tumors in an animal model
(4, 5). The oncogenic potential of PyV is attributed
to LT and to a lesser extent sT (6–8). Later, it was
shown that other polyomaviruses, including human
polyomaviruses, also provoked tumors in animal
models and that they could transform cells in cell
culture (reviewed in Ref. (9–11)). However, thus far
only two polyomaviruses cause cancer in their
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N. Nejsum.
This is an invited article.

This is an open access article under the terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

104

APMIS 128: 104–120 © 2020 The Authors. APMIS Published by John Wiley & Sons Ltd

on behalf of Scandinavian Societies for Medical Microbiology and Pathology.

DOI 10.1111/apm.13019

JOURNAL OF PATHOLOGY, 
MICROBIOLOGY AND IMMUNOLOGY

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Munin - Open Research Archive

https://core.ac.uk/display/392180352?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:
http://creativecommons.org/licenses/by/4.0/


natural host. Raccoon polyomavirus is associated
with brain tumors in raccoons (12), while the human
polyomavirus Merkel cell polyomavirus (MCPyV) is
strongly correlated with the rare skin tumor Merkel
cell carcinoma (MCC) (13–16). MCPyV was origi-
nally identified in 2008 by the group of Cheng and
Moore (13), who showed that the viral genome was
integrated into the host genome, interrupting the late
region. In addition, a C-terminal truncated LT was
also expressed. This deletion removed the helicase
activity of LT, which is required for viral DNA repli-
cation. Worldwide studies by many groups have now
shown that approximately 80% of all MCCs are pos-
itive for MCPyV and that the viral genome is inte-
grated, and a C-terminal truncated LT is expressed
(14). Virus-positive tumors usually contain >1 gen-
ome copies per cell (17–21). MCC is considered as a
rare but aggressive type of skin cancer, being among
the fastest growing tumors with a mortality rate of
~45% (14). The incidence has increased significantly
during the last 10 years and is prospected to increase
further, as its occurrence is associated with aging
and exposure to the sun (22). It is generally accepted
that MCPyV is a major cause of MCC (14). During
the transformation process, the virus is monoclon-
ally integrated into the genome of the tumor cells,
thereby indicating that the proto-tumor cell was
infected with the virus prior to its cancerous expan-
sion (13). Furthermore, the oncogenic LT of the
virus is expressed in all of the tumor cells, and when
it is inhibited, MCPyV-positive cells die (23).

Seroepidemiological studies revealed that MCPyV
infects most humans and establishes a life-long
harmless persistent infection in healthy individuals
(24–26). Antibodies against viral proteins are
detected in 50%–80% of the serum from healthy
adults and children (27, 28). Moreover, MCPyV is
chronically shed from the skin of healthy individuals
(29), thereby indicating that MCPyV is a part of the
human skin microbiome. The natural host cell for
MCPyV replication in the human body could be
dermal fibroblasts cells, as virus could be propa-
gated in human dermal fibroblast cell cultures (30).
The replicated viral genome was measured in an
extremely high copy number at approximately
12 000 copies per cell in cell cultures (30), in contrast
to MCC samples in which the MCPyV genome was
assessed to be present at an average copy number of
5.2 (range 0.8–14.3) per cell (21). MCPyV was also
shown to be capable of expressing LT and VP1 in
fibroblast cell lines originating from lung tissue (30).
Hence, an active viral replication of MCPyV might
be connected to fibroblast tissues in general. Besides
the fact that dermal fibroblasts are primarily resid-
ing in the dermis layer of the skin, cutaneous swabs
were also shown to contain MCPyV DNA (31). This

suggests that viral particles can be more widespread
from the site of replication and release. A study
using a wide cohort of patients has also described an
age-related increase in the prevalence of MCPyV
DNA in the sun-exposed skin of patients (32), thus
suggesting an age-related association of viral replica-
tion in the host. Increased viral activity may result
from a weakened immune survey (immune senes-
cence or immunosuppression), which is supported
by the fact that a higher occurrence of MCC was
observed in organ transplant patients undergoing
immunosuppressive treatments (33), as well as in
patients with severe T-cell leukemia (34).

MCPYV IN NON-CANCEROUS TISSUES

Despite the fact that the replication of MCPyV has
so far shown to be limited to fibroblasts from the
dermis and potentially from the lung (30), MCPyV
DNA has been detected in various non-cancerous
tissues of the body like the adrenal gland, spleen,
bone mar\row, stomach, gallbladder, pancreas,
heart, and aorta, although with a relatively low
viral load between 0.00026 and 0.22 copies per cell
(35). On average, the viral genome copy number of
MCPyV was 60 times lower in healthy tissues
across the body compared to MCC samples (36). A
study identified the highest presence for MCPyV
among different tissues in the digestive system, sal-
iva, and in the upper aerodigestive tract (36).
MCPyV DNA was also present in bodily fluids,
such as the blood and urine from two patients with
advanced MCC (one with immunosuppression and
one without immunosuppressive side treatments).
However, viral DNA was not detected in the whole
blood samples of patients without MCC by using
simple PCR (37). MCPyV positivity in blood was
associated with monocytes, and MCPyV was shown
to be selectively associated with the CD14+CD16�

‘inflammatory’ monocyte subpopulation. This find-
ing suggests that inflammation-associated mono-
cytes might serve as potential vehicles for MCPyV,
which could aid viral transmission in the body
through harboring and transferring the virus to
inflammation sites (37). In contrast, MCPyV DNA
sequences were amplified in the buffy coats of
blood, with a very low viral load of 10 to 100 mole-
cules/100 000 cells (38). The reason that the low
levels of MCPyV DNA were identified in this study
might have originated from the fact that the blood
samples were prefractionated by a density gradient
centrifugation in order to obtain the leukocyte rich
fraction. Subsequently, circulating MCPyV DNA
was detected in the unfractionated sera of healthy
individuals by using a more sensitive quantitative
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Table 1. Incidence of MCPyV in non-Merkel cell carcinoma tumors

Tissue (n) Prevalence
(average%;
range)

Viral load1 Method Comments Reference

Lymphatic system
Tonsillar SCC (150) 48 (32.0; 21.1–35.7) 0.000064–0.0038 qPCR (LT, sT) (41, 77, 78)
Chronic tonsillitis and
tonsillar hyperplasia (497)

21 (4.2) 0.000004–0.00018 (78, 143–145)

Hypertrophy adenoid (179) 3 (1.7; 1.3%–10%) 0.00036 qPCR (LT) (145)
Thymoma (46) 7 (15.2; 0–19.4) qPCR (LT, sT), FISH

(LT), IHC (LT)
6/7 were also
positive by
ISH and
3/7 were
positive
by IHC.

(69, 79, 80)

Carcinoid of the thymus
(5)

0 (0) qPCR (LT) (146)

Normal healthy lymph
nodes (2)

0 (0) IHC (LT) (17)

Nervous system
Brain tumors (176) 3 (1.7; 0–30) 0.0000007–0.05051 qPCR (LT, sT, VP1),

nPCR (LT), IHC (LT)
(62, 75, 98, 118, 146,
147)

Glioblastoma (46) 2 (4.3; 0–28.6) <0.0001 qPCR (LT) (115, 148)
Meningioma (12) 8 (66.7) 0.000 qPCR (LT) (115)
Neuroblastoma (57) 0 (0) qPCR (LT, VP1) (65, 105)
Neurofibroma (1) 0 (0) qPCR (sT) (80)
Schwannoma (19) 12 (63.2; 0–78.6) One

schwannoma
sample
had LT
transcripts.

(80, 100, 115)

Skeletal system
Bone from patients with
Langerhans cell
histiocytosis (5)

4 (80) 0.002–0.027 qPCR (LT) (149)

Chondrosarcoma (25) 0 (0) RT-PCR (LT, VP1) (114)
Chordoma (18) 0 (0) RT-PCR (LT, VP1) (114)
Ewing sarcoma (37) 1 2.7; 0–14.3) qPCR (LT); PCR (LT,

VP1)
(65, 105)

Rhabdosarcoma (5) 0 (0) qPCR (LT) (105)
Small-cell cancer of the
bone (2)

0 (0) IHC (LT) (98)

Endocrine system
Neuroendocrine carcinoma
(102)

3 (2.9; 0–5) PCR (LT), qPCR (LT,
sT), IHC (LT)

None
were
positive
by IHC
(LT).

(62, 119, 150, 151)

Neuroendocrine tumor of
the gastrointestinal tract
(1)

0 (0) IHC (LT) (17)

Excretory system
Bladder cancer (149) 6 (4.0; 0–75) 0.004 qPCR (LT, VP1), IHC

(LT)
(36, 62, 65, 98)

Renal cancer (81) 3 (3.7; 0–18.9) 0.001 qPCR (LT, VP1), IHC
(LT)

(36, 62)

Respiratory system
Bronchial carcinoid (11) 0 (0) PCR (LT) (146)
Large-cell carcinoma (32) 1 (33.3) PCR (LT, VP1), qPCR

(sT)
RT-PCR
(LT) and
IHC (LT)
were negative.

(69)

Extrapulmonary small-cell
carcinoma (16)

3 (18.8) qPCR (LT, sT) (152)

Lung cancer (388) 12 (3.1; 0–35.7) 0.001 qPCR (LT, VP1), nPCR
(VP1), IHC (LT)

(36, 60–62, 65, 153)

Mesothelioma (138) 1 (0.7; 0–4.2) <0.00015 qPCR (LT, sT), IHC
(LT)

(62, 69, 154)

Neuroendocrine cancer of
the lung (37)

0 (0) PCR (LT), IHC (LT) (57, 146, 155)

NSCLC (910) 148 (16.3; 0–100) PCR (LT, VP1), qPCR
(LT, sT, VP1, VP2),
RT-PCR (LT, VP1)

Integrated
viral DNA in
one
adenosarcoma
sample with
expression of
truncated LT.

Integrated +
episomal viral
DNA in one

(67, 69–72, 76, 156–161)
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Table 1. (continued)

Tissue (n) Prevalence
(average%;
range)

Viral load1 Method Comments Reference

SCC sample
with expression
of full-length
and truncated LT.

Pleomorphic carcinoma (3) 1 (33.3) 0.0008 PCR (LT, VP1), qPCR
(sT)

RT-PCR (LT)
and IHC (LT)
negative.

(69)

SCLC (193) 10 (5.2; 0–38.9) 0.000005–0.026 PCR (LT, VP1), qPCR
(LT, VP2), PCR (LT)/
Southern blot2, nPCR
(LT, VP1), IHC (LT)

Two different
LT antibodies
were used.

(17, 63, 64, 66–68, 98,
146, 155, 162)

Digestive tract
Oral cavity (including lip,
cheek, tongue, throat,
larynx, jaw) (531)

56 (10.5; 0–42.8) 0.00024–0.026 PCR (LT, sT, VP1),
nPCR (LT), qPCR
(LT, sT, VP1), IHC
(LT)

(36, 60, 62, 98, 100, 110,
141, 163, 164)

Salivary gland cancer (185) 27 (14.6; 0–66.7) qPCR (LT, sT), IHC
(LT)

One positive
parotid sample
expressed
truncated LT.

(107, 108, 165)

Esophagus cancer (156) 56 (35.9; 30–60) 0.0000054–0.000024 qPCR (LT, VP1) (36, 106, 109)
Stomach cancer (58) 1 (1.7; 0–5) PCR (LT, VP1)IHC

(LT)
(57, 62, 65)

Liver cancer (27) 10 (37; 0–62.5) qPCR (LT, VP1), IHC
(LT)

(36, 60, 98)

Gallbladder cancer (1) 0 (0) qPCR (LT) (60)
Pancreas cancer (1) 0 (0) qPCR (LT) (60)
Intestine cancer (11) 0 (0) nPCR (LT, VP1) (57, 66)
Colorectal cancer (340) 12 (3.5; 0–16) PCR (LT, VP1), nPCR

(LT) qPCR (LT, VP1),
FISH (LT), IHC (LT)

(41, 57, 60, 62, 65, 96,
112, 113, 166)

Appendix (4) 0 (0) IHC (LT) (57)
Gastrointestinal cancers (8) 0 (0) IHC (LT) Two different

LT antibodies
were used.

(17)

Reproductive system
Prostate cancer (64) 5 (7.8; 0–18.2) 0.002 qPCR (LT, VP1)qRT-

PCR (LT), NGS, IHC
(LT)

(36, 98, 101, 167)

Testicular cancer (9) 1 (11.1) 0.934 qPCR (LT, VP1) (36)
Penile intraepithelial
neoplasia and
acanthoma/benign
papilloma (20)

6 (30; 28.6–33.3) nPCR (LT) HIV-positive
men.

(166)

Cervical cancer (328) 129 (39.0; 0–56.4) 0.00003055–0.0015 PCR (LT, VP1), qPCR
(LT, sT), RT-PCR
(LT), IHC(LT)

Some samples
also positive
for LT
transcripts
and protein
140 of the
examined
women were
HIV-positive.

(65, 98, 103, 155, 168);

Uterine cancer (4) 1 (25; 0–100) PCR (LT), nPCR (LT,
VP1)

(66, 155)

Ovarian cancer (186) 0 (0) PCR (LT, VP1), qPCR
(LT), IHC (LT)

(65, 105, 155, 169)

Cancer of the vulva (2) 0 (0) PCR (LT) (155)
Breast cancer (474) 20 (4.2; 0–14) PCR (LT, VP1), qPCR

(LT), qRT-PCR (LT),
transcriptome
sequencing

Three positive
samples
were also
positive for
LT transcripts.

(65, 102, 170–174)

Integumentary system
Actinic keratosis (101) 15 (14.9; 0–100) 0.00014–0.068 PCR (LT, sT, VP1),

nPCR (LT, sT, VP1),
qPCR (LT, sT), IHC
(LT)

Of the six
samples tested
by IHC (LT),
none were
positive.

(43, 47, 48, 50, 122, 175–
178)

Atypical fibroxanthoma
(37)

8 (21.6; 17.4–28.6) 0.0001–0.031 PCR (LT, VP1), qPCR
(LT), IHC (LT)

IHC (LT)
was negative.

(48, 179)

BCC (451) 135 (29.3; 0–100) 0.0001–0.662 PCR (LT, sT, VP1),
nPCR (LT, sT, VP1),
PCR (LT, sT)/Southern
blot, qPCR (LT, sT),
IHC (LT)

All IHC (LT)
were negative.

(41, 48–50, 58, 91, 176,
177, 180–182)
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Table 1. (continued)

Tissue (n) Prevalence
(average%;
range)

Viral load1 Method Comments Reference

Mixed MCC-BCC (1) 1 (100) PCR (LT, sT, VP1),
qPCR (LT), IHC (LT)

Both tumors
had a different,
but truncated
LT mutation.

(183)

Bowen’s disease (110) 17 (15.5; 0–69.2) PCR (LT, VP1), nPCR
(LT, sT, VP1), qPCR
(LT)

(41, 50, 175–177)

Dermato
fibrosarcoma (1)

1 (100) nPCR (LT) (50)

Kaposi’s sarcoma (39) 11 (28.2; 0–66.7) 0.00001–0.00685 PCR (LT, VP1), nPCR
(LT, sT, VP1), qPCR
(LT, VP1)

(13, 52, 53, 122, 184)

Keratoacanthoma (215) 25 (11.6; 0–100) 0.0001–0.10 PCR (LT, sT, VP1),
nPCR (LT), qPCR
(LT), IHC (LT)

IHC (LT)
was negative.

(43, 48, 50, 51, 175, 176,
185)

Langerhans cell sarcoma
(7)

3 (42.9) qPCR (LT) All samples
were negative
for IHC (LT).

(55)

Melanoma (189) 9 (4.8; 0–191.) 0.0016–0.082 PCR (LT, sT, VP1),
nPCR (LT, sT, VP1),
PCR(LT, sT)/Southern
blot, qPCR (LT, sT)

(47, 49, 56, 57, 91, 122,
162, 177, 182)

Non-melanoma skin
cancers (99)

31 (31.3; 6.3–36.1) PCR (LT), nPCR (LT) Included BCC,
SCC, Bowen’s
disease, and
actinic keratosis.
Sixteen of the
patients were
bone marrow
transplant patients
(8) or CLL
patients (8). Of
these, the skin
tumor of one
bone marrow
transplant was
MCPyV positive.

(186, 187)

Porocarcinoma (67) 45 (67.2; 0–100 0.00022–0.212 PCR (sT), nPCR (LT),
qPCR (LT, sT), ddPCR
(sT)

(45, 48, 50, 54, 188)

SCC (877) 24.9 (0–75) 0.00013–0.316 PCR (LT, sT, VP1),
nPCR (LT, VP1),
qPCR (LT, sT, VP1,
ddPCR (sT), NGS,
IHC (LT)

All IHC(LT)
were negative;
sequencing of some
LT revealed.
Truncated LT.

(36, 41–43, 45–50, 57,
122, 162, 175, 176, 178,
180, 189–191)

SCC + BCC (10) 4 (40) PCR (LT) and qPCR
(LT)

Not specified
how many
BCC and
how many
SCC samples
were positive.

(192)

Combined SCC and
neuroendocrine
carcinoma (7)

0 (0) IHC (LT) (153)

Fanconi anemia-associated
head and neck SCC (43)

17 (39.5; 10.3–100) 0.0007–0.0359 qPCR (LT); IHC (LT,
sT)

3/29 samples
positive by
IHC (LT) 14/14
additional samples
positive by qPCR.

(193)

Mixed MCC-SCC (21) 2 (9.5; 0–100) PCR (LT, VP1), qPCR
(LT), IHC (LT)

(59, 98, 162)

Seborrheic keratosis (20) 3 (15; 0–33.3) PCR (LT, VP1), PCR
(LT,sT)/Southern
nPCR (LT, sT, VP1)

One of the three
patients
with MCPyV
seborrheic
keratosis was
immunosuppressed.

(91, 176, 177)

Trichoblastoma (41) 11 (26.8) PCR (LT, VP1) (181)
Circulatory system
ALL (50) 0 (0) qPCR (LT, VP1) (99)
AML (29) 6 (20.7; 0–100) qPCR (LT, sT, VP1),

NGS
(81, 82, 194)

CBCL (180) 5.6 (3.6; 3.1–20) 0.002–12.467 PCR (LT, sT)/Southern
blot, qPCR (LT, VP2),
IHC (LT)

IHC (LT) was
negative for all
samples.

(21, 92, 95)
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PCR and droplet digital PCR, with the prevalence
of 2.6% and a low viral load of 1–5 copies/lL (39).
The presence of MCPyV VP1 transcripts was also
detected in the urine of both immunosuppressed
and non-immunosuppressed individuals (40). This
draws a picture that MCPyV could potentially be
transferred to many tissues through bodily fluids.
Yet, it is clear that because the viral load in these
compartments is low, the virus is most likely just
passively being transferred and actively replicating
not in blood cells the bloodstream nor in epithelial
cells in urine.

MCPYV IN NON-MCC TUMORS

Considering the role of MCPyV in the development
of MCC and the widespread prevalence of the virus
across the body prompted researchers to investigate
a possible role and presence of MCPyV in non-
MCC cancers. Malignant tissues have been exam-
ined for the presence of viral DNA, transcripts,
and proteins, with the results of these studies sum-
marized in Table 1. A more detailed overview is
given in Table S1. In most of the non-MCC tumors

investigated, MCPyV DNA was detected by PCR.
However, in those cases in which the copy number
of the viral genome per cell was determined,
MCPyV copies were shown to be very low with
<<1 copy/cell, that is, several logs lower compared
to virus-positive MCPyV tumor cells. In those
cases, in which the expression of LT was monitored
by immunohistochemistry, LT could only be
detected in a handful of cases, even though the viral
DNA was present.

The earliest observation associating MCPyV with
non-MCC was the detection of MCPyV DNA in
non-melanoma cancers of the skin from immuno-
suppressed patients (41). MCPyV was eventually
detected in many other neoplasia in non-immuno-
compromised individuals as well (listed in detail in
Table 1 and Table S1). Among the various body
sites, the integumentary system is well represented
as a site for MCPyV-positive non-MCC tumors.
Many non-melanoma skin cancers, including squa-
mous cell carcinomas (41–47) and basal cell carci-
nomas (41, 48–50), are frequently found to contain
MCPyV DNA or transcripts at a varying level. The
presence of the virus was also detected in a few
cases of keratoacanthoma (43, 48, 51), Kaposi’s

Table 1. (continued)

Tissue (n) Prevalence
(average%;
range)

Viral load1 Method Comments Reference

CLL/SLL (378) 54 (14.3; 0–66.7) 0.000017–0.002 PCR (LT, sT, VP1),
qPCR (LT, sT, VP1,
VP2), FISH (LT), IHC
(LT)

Six had truncated
LT (Two of them
also full-length LT).

(21, 83–87, 96, 194, 195)

CTCL (352) 13.9 (2.7; 0–88.9) 0.0012–12.467 PCR (LT, sT)/Southern
blot, qPCR (LT, VP2),
IHC (LT, VP1)

Two MCPyV
DNA-positive
samples examined
by IHC (LT) were
negative for LT.

No truncated LT in
those samples that
were sequenced.
4/4 were positive
for IHC (LT) and
IHC (VP1); Two
other studies: All
examined samples
were negative for
IHC (LT).

(21, 88–90, 92–95, 122,
177, 184)

Lymphoma (12) 0 (0) qPCR (LT) Eleven were AIDS
patients.

(52, 60)

Lymph nodes CLL/SLL
patients (18)

6 (33.3) <0.0004 PCR (LT, VP1), qPCR
(sT)

(97)

CML (6) 0 (0) qPCR (sT) (82)
Follicular lymphoma (17) 0 (0) PCR (LT, VP1), qPCR

(sT)
(97)

Lymphoma (196) 13 (6.6) 0.000016–0.0027 qPCR (sT) (80)
Mantle cell lymphoma (1) 0 (0) FISH (LT) (96)
Non-Hodgkin’s lymphoma
(10)

1 (10) qPCR (LT) (100)

Primary effusion
lymphoma (4)

0 (0) qPCR (LT) From AIDS patients. (52)

Small-cell carcinoma
lymph node (4)

0 (0) IHC (LT) (98)

Soft tissue
Desmoplastic tumor (24) 0 (0) PCR (LT, VP1) (105)

1Viral genome copies/cell;
2Southern blot of positive PCR products.
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sarcoma (52, 53), porocarcinoma (45, 54), atypical
fibroxanthoma (48), and langerhans cell sarcoma
(55). On the contrary, melanomas are not associ-
ated at all with MCPyV (56–58), with the exception
of one case in which MCPyV LT transcripts were
detected in four acral lentiginous melanomas and in
five nodular melanomas, whereas superficial spread-
ing melanomas were virus-negative (49). The viral
load of MCPyV was significantly higher in these
skin-related samples compared to other virus-posi-
tive non-MCC cancers, but the expression of the
viral LT was solely detected in only one case of a
combined MCC–squamous cell carcinoma (59). The
high viral load observed in skin-related non-MCC
cancers might not be a surprising phenomenon as
one would expect, in that such a close proximity to
the original replication of the virus would render
other cells of the skin susceptible to the presence of
the virus. Still, the observed tissues are showing a
picture, in which the virus is not actively participat-
ing in the maintenance of the cancerous growth, as
its LT is not present in the tumors or expressed at
undetectable levels using immunohistochemistry.

As previously mentioned, MCPyV can also repli-
cate in cultures of lung fibroblasts (30). Therefore,
it might not be unexpected to detect MCPyV in
tumors of the respiratory system. The virus was
detected in 10 cases of lung carcinomas (36), but
the majority of the studies demonstrated a general
lack of viral presence in these tumors (60–62). The
situation is similar in combined small-cell lung car-
cinomas, in which only a few number of tumors
were found to contain MCPyV DNA (63–65),
though the large majority of analyzed samples were
lacking any sign of the virus (66–68). However, nei-
ther of them showed a detectable level of LT pro-
tein expression. Non-small-cell lung carcinoma was
associated with the presence of MCPyV more
tightly (69–71), although none of the examined
non-small-cell lung carcinoma samples showed any
LT protein expression (72). One exception was the
detection of truncated LT in two non-small-cell
lung carcinoma (69). Intriguingly, in one of these
two non-small-cell lung carcinomas, a sample dis-
played a peculiar duality by containing both episo-
mal and integrated MCPyV DNA, and expressing
both the full-length and truncated LT protein (69).
Despite the fact that this latter case has only been
detected in one sample, it highlights the possibility
that the episomal viral genome could possibly be
maintained separately in the cytoplasm despite the
integration event to the genome, as similarly
observed in a few MCCs (73, 74). It is worth men-
tioning that healthy lung tissues are relatively well
studied in this respect (36, 52, 60, 61, 75), with
MCPyV transcripts detected in a similar number of

cases compared to lung carcinomas and small-cell
lung carcinomas. Nevertheless, compared to skin-
related non-MCC tissue, tumors of the circulatory
system do not have a higher frequency of MCPyV
transcript-positive tissues or a higher rate of geno-
mic integration, while a full LT protein expression
could be detected in some of the tumors. LT was
also expressed in 30 non-small-cell lung carcinoma
(76) and in another 14 samples (69). Since the
MCPyV has been successfully propagated in vitro
in a lung fibroblast cell line (30), it is tempting to
hypothesize that this high number of LT expressing
lung carcinoma cells are arising from the fact that
the virus could potentially propagate in the vicinity
of these cells. Therefore, it could potentially inte-
grate to some of the lung-related cancer cells.

MCPyV prevalence is low in most of the lym-
phatic system cancers studied, with the exception of
tonsillar squamous cell carcinoma (32%; n = 150)
(77, 78) and thymoma (15.2%; n = 46) (69, 79, 80).
The expression of the LT was only examined in
thymomas and from the seven samples that were
MCPyV DNA-positive, with three containing
detectable LT protein levels (79). It is important to
note that benign lymph nodes also contained the
transcript of the MCPyV sT to a small extent (80)
and that the genome copy number in all positive
examined lymphatic system tumors ranged between
0.000004 and 0.0013 (77, 78).

MCPyV also exhibited a presence in tumors of
the circulatory system, as many leukemia cells were
found to harbor MCPyV sequences. One acute
myeloid leukemia sample was positive for MCPyV
DNA (81), in contrast to other observations in
which no sign of the virus was observed (82).
Chronic lymphocytic leukemia cell also contained
MCPyV transcripts (83–86), whereas truncated LT
mRNA was also detected in six samples, of which
two also harbored full-length LT mRNA (84).
Although when examined, all the chronic lympho-
cytic leukemia samples were negative for LT pro-
tein expression (21, 87). The presence of the
truncated LT transcripts may be a sign of viral
genomic integration. Even so, considering that
some samples also contained full-length LT, it is
plausible that in these tumors the virus was initially
present in the cytoplasm for a longer period before
integration, but later lost its ability to express its
proteins. In the one case in which the viral load
was determined, it was markedly low between
0.000017 and 0.0012 viral copies per cell (86). Cuta-
neous T-cell lymphoma (CTCL) is a special non-
Hodgkin’s lymphoma, which is migrating to and
resides in the skin. Therefore, it is potentially more
exposed to MCPyV than other leukemia cells. The
studies on the association between MCPyV and
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CTCL are seemingly antagonizing each other, since
some are reporting no detectable levels of MCPyV
in CTCL cells (88–90), while others described a cer-
tain level of MCPyV DNA and transcripts in
CTCL (91, 92). Although where the CTCL contain-
ing skin lesions were examined together with neigh-
boring non-lesional skin tissues, the viral prevalence
was similar between the two (93, 94). However, it is
important to note that one of these studies has
detected the expression of the VP1 protein in four
and the expression of LT protein in one CTCL-re-
lated samples, which were completely absent in the
controls (93). Cutaneous B-cell lymphomas (CBCL)
are skin-resident, generally slowly growing B-cell
lymphomas. Considering the fact that these cells
are also in close proximity to the viral replication
sites at the skin, the potential contribution of the
virus to the development of CBCL cannot be ruled
out. Yet, the available studies were only able to
detect the MCPyV in CBCLs with a relatively low
prevalence, without viral protein expression (21, 92,
95), and with a low viral load, with the average
viral copy per cell at 0.009 copy/cell (92). No pres-
ence of MCPyV was detected in the studies examin-
ing chronic myelomonocytic leukemia cells (82),
mantle cell lymphoma cells (96), follicular lym-
phomas (97), primary effusion lymphomas (52),
small-cell carcinomas of the lymph nodes (98), and
acute lymphoblastic leukemia (99). LT transcripts
were found in one study, analyzing a set of non-
Hodgkin’s lymphomas (100).

The available reports regarding the presence of
MCPyV DNA in reproductive system-related
tumors are scarce, although some studies are dis-
playing some level of occurrence of the virus in
prostate cancer (36, 101), breast cancer (102), and
cervical cancer (103). Surprisingly, in one case of
testicular cancer, the viral load was relatively high
at 0.934 copies per cell. Unfortunately, LT protein
expression was not assessed in this case (36). On
the other hand, MCPyV-positive prostate cancers
exhibited a lower viral copy number at 0.002 copies
per cell (36), with samples from cervical cancer con-
taining an even lower level of viral copies between
0.00003055 and 0.0015 per tumor cell (103, 104).
MCPyV viral transcripts were not detected in any
examined ovarian cancer samples and in the cancers
of the vulva (65, 105), and only a small set of
breast cancer cells were shown to contain viral tran-
scripts (65, 102). Despite the low viral genome copy
number in cervical cancer (≤0.0015), LT transcripts
and protein were detected in cervical cancers origi-
nating from HIV-positive women (104). It is possi-
ble that the expression of LT in these tumors will
have originally resulted from an HIV-related
immunosuppression.

Compared to the previous examples, some of the
tumor samples originating from the digestive track
are harboring the MCPyV sequences, with a
slightly higher frequency as in the case of esopha-
gus cancer (45.1%) (106), liver cancer (62%) (36),
or salivary gland cancer (26.2%) (107). In contrast,
the maximum of detected viral genome copies per
cell was 0.33 in an exceptionally outstanding case
of a small-cell carcinoma of the parotid (108), fol-
lowed by 0.026 in a case of oral cavity tumors
(100). In other cases, the viral genome copy number
per cell was even lower, between 0.0000054 and
0.0063 (44, 106, 109, 110). However, only one
tumor sample, a small-cell carcinoma of the parotid
showed expression of LT protein (108). In this par-
ticular case, a LT truncating mutation was also
found (108). There was a significant difference
between squamous cell carcinomas of the oral cav-
ity and other oral cavity tumors, since approxi-
mately 40% of the examined oral cavity squamous
cell carcinomas were positive for viral transcripts
(36), even though the presence of the virus was
barely detectable in other oral tumors. Only spo-
radically were tumors of the larynx, and in one case
in the tumors of the mandible, throat and tongue
(110) and one tumor of the jaw (100) MCPyV
DNA-positive, but it is important to note that
healthy oral tissues contained MCPyV transcripts
at a relatively higher frequency of approximately
17% (111). LT protein was not detected in either of
them, and the copy number of the virus per cell
was low (0.00024–0.026) (100). Many other exam-
ined digestive track-associated cancers, including
stomach cancer (62, 65) and colorectal cancer (41,
62, 112, 113), showed a very low or no positivity
toward viral transcripts. This pattern of occurrence
might draw a picture, in which the virus is present
in the proximal part of the digestive system at a
low level (rather in a latent from), but not in other
parts.

A low prevalence of MCPyV was detected in
bladder (4%; n = 147) (36, 62, 65) and renal cancer
(3.7%; n = 81) (36, 62) samples, with the viral load
in the tumor cells relatively low compared to
MCCs, between 0.001 and 0.004 copies per cell
(36). Considering that none of these tumors had a
detectable level of LT protein (62, 65), it is pre-
sumed that the virus does not play a causative role
in these cancers. It has to be noted that the virus
was observed in the urine of healthy patients (40),
though until now it is not clear whether this repre-
sents a way the body clears out the virus or
whether these viral particles are originating form a
potential host cell in the excretory system. In either
case, the tissues of the excretory system could be
potentially exposed to a higher titer of viral
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particles, which could be acquainted for the
detected viral DNA in the bladder and renal cancer
samples.

MCPyV has sporadically been identified in
tumors originating from other organ systems.
MCPyV can rarely be traced in tumors of the
skeletal system, including Ewing sarcomas, chordo-
mas, chondrosarcoma, and rhabdosarcomas (105,
114). A limited number of desmoplastic tumors
are the only soft tissue-related tumors examined
thus far and did not harbor MCPyV DNA (105).
Studies focusing on tumors of the nervous system
described a limited number of cases in which
MCPyV transcripts were detectable in a few
schwannomas, meningiomas, glioblastomas (115),
and neurofibromas (100), whereas no relation to
the virus was established in neuroblastomas (65,
105, 116). Neuroblastoma is a childhood cancer,
with approximately 90% of the cases occurring in
children less than 5 years old (117). At this early
age, children may not yet have been infected with
MCPyV because seroepidemiological studies
demonstrated that <20% of children aged 0–
5 years displayed antibodies to the virus. This may
explain the lack of involvement of MCPyV in this
malignancy. Nevertheless, even in the cases of
viral presence in tumors of the CNS, the assessed
number of viral copies in the host cell was mark-
edly low between 0.0000007 and 0.05 (75, 115).
These results are in accordance with the study
describing the lack of MCPyV in healthy brain tis-
sues (118). The detected virus-positive samples
were correspondingly low in neuroendocrine carci-
nomas, from which none were shown to be posi-
tive for LT protein expression (65, 119). This is
particularly interesting, considering the initially
proposed interaction between neuroendocrine Mer-
kel cells and the MCPyV.

In summary, MCPyV DNA can be detected in
most of the tumor tissues that have been examined.
However, the role of MCPyV in tumors other than
MCC remains obscure for several reasons:

1. The viral genome copy number is very low.
2. LT transcripts and protein are seldomly

detected.
3. Truncated LT and viral genome integration are

hallmarks for MCPyV-positive MCCs, but these
characteristics have not systematically been
investigated in non-MCC tumors. Only a few
cases reported an expression of truncated LT
and/or integration of the viral genome.

4. Not all groups studying the same type of tumor
could reproduce a similar level of prevalence,
viral load, or LT antigen expression.

5. Healthy adjacent non-tumor tissue was seldom
tested.

6. The prevalence in healthy tissue was in several
cases comparable to malignant tissue.

7. Potential pitfalls and shortcomings of the stud-
ies. They will be discussed in the next para-
graph.

The prevalence of MCPyV in a specific tumor
sometimes varied from study to study. Several rea-
sons can explain the discrepancies between different
studies. The detection of MCPyV DNA on PCR-
based methods can be affected by the primers that
were used. Indeed, many studies applied the LT pri-
mers originally used by Feng et al. (13). These pri-
mers are superior to primers directed against VP1
(41, 42, 120, 121). The quality of the samples may
also affect the outcome of the PCR reaction, as sev-
eral studies have reported that MCPyV DNA
detection in fresh-frozen tissues is more reliable
compared with detection in FFPE samples (66, 73,
122). Other factors that may influence the geno-
prevalence may be that the cohort that was exam-
ined (immunocompetent vs immunocompromised
patients, smoking and drinking habits, age, gender,
geographic differences, etc.). Furthermore, the num-
ber of specimens examined may give a wrong idea
of the incidence of MCPyV in a specific tumor
(e.g., case reports vs large cohorts examined).
Another flaw of PCR-based studies is that DNA is
extracted from a tumor biopsy. The tumor is a
heterogeneous population that contains among
others the tumor cells, infiltrating immune cells,
endothelial cells, and cancer-associated fibroblasts
(CAFs) (123). Knowing that fibroblasts can support
viral replication and may be genuine host cells for
the virus (30) and that infiltrating monocytes are
reservoirs for the virus (37), positive PCR products
may derive from viral sequences in CAFs and/or
monocytes. PCR-based methods are also prone to
contamination. Because MCPyV is chronically shed
from the skin (29), contamination during tumor
sample taking or handling cannot be excluded.

Fluorescence in situ hybridization (FISH), cou-
pled with DNA hybridization chain reaction (HCR
DNA FISH), has been shown to provide a highly
sensitive approach to detect the viral genome in
MCPyV-infected dermal fibroblasts in cell culture
(124). This method can theoretically be adapted to
detect integrated viral DNA elements in order to
monitor the presence and relative copy number of
the virus in non-MCC tumors. Combined with
immunofluorescence, HCR DNA FISH was also
proven to be useful in the detection of MCPyV pro-
teins in cultured dermal fibroblasts, simultaneously
with viral DNA (124). This combination of meth-
ods might provide an alternative solution to help
identify fibroblast cells in tissues samples together
with viral DNA elements.
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FUTURE DIRECTIONS

To unequivocally establish a role of MCPyV in
malignancies, other than MCC, additional well-con-
trolled investigations are required, and larger
cohorts should be examined for the presence of
viral proteins (LT and/or sT). Several studies in cell
culture and in animal models indicate that MCPyV
sT, rather than LT, may be the main oncogenic
protein (125–133). Hence, it may also be important
to monitor the expression of sT. The genome state
of the virus should be determined (episomal or inte-
grated). Integration of the viral genome may be a
prerequisite for the neoplastic process. This event is
fulfilled in virus-positive MCC, but may be charac-
teristic for polyomavirus-induced cancers, because
integration of the human polyomavirus BK
(BKPyV) genome seems to be an essential step in
BKPyV-associated cancers (134). The gene-encod-
ing LT should be sequenced to determine whether
full-length or truncated LT is expressed. In situ
hybridization against viral DNA or RNA should
be done to ensure that the viral sequences are
detected in tumor cells and not in other cell types
in the tumor microenvironment. Matching adjacent
non-neoplastic specimens should be included, and
the viral load (genome copies/cell) should be deter-
mined. Moreover, fresh-frozen samples are favored
over paraffin-embedded tissues. PCR-based studies
on DNA extracted from tumor tissue should
include a reverse transcriptase PCR control with
primers against transcripts not found in the tumor
cells but are exclusively expressed in cells of the
tumor microenvironment to ensure that non-tumor
cells of the tumor microenvironment are not the
source for MCPyV DNA in the biopsy sample. A
similar control can be implemented to screen for
transcripts of skin cells to exclude contamination of
the sample during surgery or handling. Finally,
other techniques such as digital droplet PCR and
deep sequencing can be considered. Tumor samples
of different stages should be examined because the
virus may be involved in initiating the neoplastic
process but may not be required for further pro-
gression of the tumor. Indeed, a hit-and-run mecha-
nism for MCPyV in some MCC cases has been
suggested based on the observation that a knock-
down of LT in the MCPyV-positive MKL-1 cell
induced growth repression, whereas no impaired
growth was observed in LT-deprived LoKe cells. In
this scenario, MCPyV would be necessary for
tumor initiation, but at later stages the virus is dis-
pensable (135).

One potential mechanism through which the
short presence of MCPyV could contribute to
tumorigenic transformation is LT- and sT-induced

genomic instability in the host. LT expression was
shown to upregulate the host defense factors DNA
cytosine deaminases, APOBEC3G, and APO-
BEC3B (136). APOBEC3B, a host defense factor
against viruses, was described to have a high muta-
genic effect on the genome and is suggested to be
the main responsible factor for the majority of the
mutations observed in human papillomavirus-in-
duced cervical carcinomas and in other multiple
cancers (137, 138). APOBEC3G was primarily con-
sidered as an anti-HIV factor which can restrain
HIV viral DNA integration into the host genome
(139). In contrast, APOBEC3G-mediated mutations
were recently shown to contribute to the generation
of HIV variations by introducing sublethal muta-
tions into the virus genome (140). This feature of
APOBEC3G could also potentially introduce non-
lethal alterations to the genome of MCPyV hosts
cells as well, which might contribute to the develop-
ment of cancer in the long term. sT was also
recently detected to induce genomic instability in its
host genome by targeting the E3 ubiquitin ligase
(131). Such features of the two viral antigens may
contribute to the accumulation of mutations in the
host genome and could subsequently pave the road
to cancerous transformation, even in the absence of
the initial causative factor. However, this hypothe-
sis should be verified by experimental evidence by
future studies.

Although MCPyV may not be the culprit, its
gene products may enhance the expression of onco-
proteins from another co-infecting oncovirus, which
may be responsible for the tumor. As such, MCPyV
can enhance the oncogenic potentials of the co-
habitant virus. The co-presence of MCPyV and
human papillomavirus and Epstein–Barr virus in
tumors has been reported (78, 103, 141, 142). The
high seroprevalence of MCPyV in the human popu-
lation, the in vitro oncogenic potentials of LT and
sT, and its causal role in MCC suggest that this
virus may play a role in other human cancers, espe-
cially in individuals with a compromised immune
system.

ABBREVIATIONS

AD: adenocarcinoma; ALL: acute lymphoblastic
leukemia; AML: acute monocytic leukemia; BCC:
basal cell carcinoma; CBCL: cutaneous B-cell lym-
phoma; CLL: chronic lymphocytic leukemia; CML:
chronic myelomonocytic leukemia; CTCL: cuta-
neous T-cell lymphoma; ddPCR: droplet digital;
FISH: fluorescence in situ hybridization; IHC: im-
munohistochemistry; LT: large T antigen; PCR:
polymerase chain reaction; NEC: neuroendocrine
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carcinoma; NGS: next generation sequencing;
nPCR: nested PCR; NSCLC: non-small-cell lung
cancer; qPCR: real-time PCR; RT-PCR: reverse
transcriptase PCR; SCC: squamous cell carcinoma;
SLL: small lymphocytic lymphoma; sT: small T
antigen; VP1: viral protein 1 (capsid protein.
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