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High spatially sensitive 
quantitative phase imaging 
assisted with deep neural network 
for classification of human 
spermatozoa under stressed 
condition
Ankit Butola1,2,8, Daria Popova2,3,8, Dilip K. Prasad4, Azeem Ahmad2, 
Anowarul Habib2, Jean Claude Tinguely2, Purusotam Basnet3,5, Ganesh Acharya5,6, 
Paramasivam Senthilkumaran7, Dalip Singh Mehta1,7 & Balpreet Singh Ahluwalia2,6*

Sperm cell motility and morphology observed under the bright field microscopy are the only criteria 
for selecting a particular sperm cell during Intracytoplasmic Sperm Injection (ICSI) procedure of 
Assisted Reproductive Technology (ART). Several factors such as oxidative stress, cryopreservation, 
heat, smoking and alcohol consumption, are negatively associated with the quality of sperm cell 
and fertilization potential due to the changing of subcellular structures and functions which are 
overlooked. However, bright field imaging contrast is insufficient to distinguish tiniest morphological 
cell features that might influence the fertilizing ability of sperm cell. We developed a partially 
spatially coherent digital holographic microscope (PSC-DHM) for quantitative phase imaging (QPI) 
in order to distinguish normal sperm cells from sperm cells under different stress conditions such as 
cryopreservation, exposure to hydrogen peroxide and ethanol. Phase maps of total 10,163 sperm cells 
(2,400 control cells, 2,750 spermatozoa after cryopreservation, 2,515 and 2,498 cells under hydrogen 
peroxide and ethanol respectively) are reconstructed using the data acquired from the PSC-DHM 
system. Total of seven feedforward deep neural networks (DNN) are employed for the classification of 
the phase maps for normal and stress affected sperm cells. When validated against the test dataset, 
the DNN provided an average sensitivity, specificity and accuracy of 85.5%, 94.7% and 85.6%, 
respectively. The current QPI + DNN framework is applicable for further improving ICSI procedure and 
the diagnostic efficiency for the classification of semen quality in regard to their fertilization potential 
and other biomedical applications in general.

Semen quality and male fertility potential have been continuously declining all over the world1–4. At the same 
time, biomedical and technical advances have made it possible to treat male infertility using assisted reproduc-
tive technology (ART) including intracytoplasmic sperm injection (ICSI). Evaluation of semen quality and ICSI 
procedure are the important steps for the successful outcome of ART. Generally, semen parameters evaluation 
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and ICSI procedure are guided by the bright field microscopy and experience of laboratory personnel. Recently, 
computer-assisted sperm analysis (CASA) a digital microscopic technique made it possible as a machine-based 
analysis for semen parameters such as sperm cell concentration, sperm cell motility, kinematics, and morphology. 
For instance, CASA systems acquire successive images of the cells and use special software to track the motion 
of heads of each spermatozoon5,6. However, it fails to provide any supportive information regarding subcellular 
changes within the sperm cells which could be useful to ICSI procedure. Another powerful technique is a label 
free holographic imaging, for 3D reconstruction of freely moving sperm cells7. Apart from this, other optical 
as well as spectroscopic techniques have been proposed so far to determine motility of the sperm cells8–11. For 
example, fluorescence imaging and laser scanning confocal microscopy have been demonstrated to investigate 
the mitochondrial functionality of sperm cells12 since the motility of the cells partially depends on the mito-
chondrial function13 and get affected by cryopreservation of the cells. Semen quality is also analyzed based on 
Raman micro-spectroscopy which can provide the spectral features of human sperm cells14. Oxidative stress is 
also known to affect the integrity of sperm genome, result in lipid peroxidation and decrease in sperm motility, 
which was quantified recently using partially spatially coherent digital holographic microscopy and machine 
learning15. Additionally, smoking and alcohol consumption are negatively associated with sperm concentration 
and percentage of motile sperms when compared with the persons without these habits16. All these factors can 
affect the morphology, physiology and subcellular structures of the sperm cells and these changes can be inves-
tigated by extracting the quantitative information of the cells.

For label-free sperm imaging, quantitative phase imaging (QPI) is an attractive non-invasive technique to 
extract the quantitative information of the samples17–21. QPI can measure the combined information of refrac-
tive index and local thickness of the specimens with a nanometric sensitivity, which can be utilized detecting 
any deviations from normality22–24. QPI has several biological applications, such as 3D imaging of human red 
blood cells (RBC)25, bovine embryo26, bovine spermatozoa27, tissue imaging28, and others. Although, QPI is a 
potentially powerful technique as it provides morphological changes of the specimens, it has not yet been ame-
nable to interpretation by human experts due to the lack of chemical specificity29. Therefore, merging QPI with 
artificial intelligence (AI) is a promising route to provide virtual image classification of the QPI data29. Recently, 
AI techniques have been used to differentiate between healthy and unhealthy phase images of sperm cells. In these 
techniques, morphological and texture features are extracted from the head part of the cells, and these features 
are fed to the machine learning classifier to separate them into diagnostically relevant classes15,30,31. However, 
the variations in an imaging system, and, difficulty in deriving a consistent and reliable feature out of thousands 
of features, base pose difficulty in applying conventional machine learning techniques for classification of the 
sperm cells. For example, precise segmentation of the head part is required to measure the length, width and 
area of the sperm head30. Due to the lack of chemical specificity of QPI technique, the boundary between head 
and mid-piece of the cell cannot be located very precisely. Secondly, measuring the length and area of the head 
part to differentiate between normal and stressed sperm cells depends on the human expertise and segmenta-
tion algorithm. Additionally, the actual value of morphological features such as surface area, volume, surface to 
volume ratio and sphericity cannot be accurately determined without decoupling the refractive index and thick-
ness of the cells32. Therefore, it is beneficial to use advance machine learning technique i.e. convolutional neural 
network (CNN), which does not require to extract any features and can automatically generate abstract convo-
lutional features from the training dataset. CNN/deep learning is rapidly growing as an automated technique 
in biomedical imaging for example disease classification33–35, image segmentation36, resolution enhancement37, 
digital staining18, noise reductions38, among others39,40.

We demonstrate the use of QPI technique assisted with deep learning for the classification of sperm cells 
under different stressed conditions. A total of four different classes were considered in this study, which included 
healthy, externally induced oxidative stressed, cryopreserved, and externally induced alcohol affected sperm cells. 
The four classes of sperm cells were also studied using conventional techniques to quantify and compare the 
progressive and the non-progressive motility of spermatozoa. Figure 1 shows the schematic representation of a 
partially spatially coherent digital holographic microscope (PSC-DHM) developed to acquire the interferomet-
ric images of the sperm cells as can be seen in Fig. 1b. Figure 1c,d shows the quantitative phase map of sperm 
cells. The PSC-DHM system offers single shot phase reconstruction of the cells especially the thinnest i.e. tail 
part of the sperms by utilizing partial spatial coherent properties of light source. QPI system commonly uses 
direct laser light (high spatially and temporally coherent) or white light (spatially and temporally incoherent). 
Direct laser suffers with low spatial phase sensitivity and hence accurate phase estimation of a thin sample is 
usually difficult. On the other hand, white light provides high spatial phase sensitivity but due to low temporal 
coherence it requires phase shifting technique to utilize the whole field of view of the camera. In contrast, the 
PSC-DHM system offers single shot phase extraction of the sample due to high temporal coherence and high 
spatial phase sensitivity because of its spatial incoherent nature. The details of the PSC-DHM system is provided 
in “Methods” section. The spatial phase sensitivity of the system developed is around ± 20 mrad which is utilized 
to reconstruct the phase information of the cells including the tail part. The thickness of the tail of the sperm 
cells are typically 100 nm and thus more challenging to image unless high spatial phase sensitivity is achieved. 
This is particularly useful as the tail plays an important role in progressive motility of the cells and it may change 
under different stressed conditions.

In this study, total 10,163 interferometric images (2,400 normal, 2,750 cryopreserved, 2,515 oxidative stressed 
and 2,498 alcohol affected) of the sperm cells were acquired from the PSC-DHM system. The comparison 
between phase measurement sensitivity of direct laser and PSC source can be found in supplementary infor-
mation. The phase maps of these cells are used as input to the deep neural network (DNN) which is trained by 
70% of the data and validated against the 30% testing data to check the classification accuracy of the networks. 
The current PSC-DHM + DNN framework has several advantages over the conventional bright field imaging 
techniques for sperm classification. QPI offers the quantitative information i.e. combined information of the 
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refractive index and the local thickness of the sperm cells. This quantitative morphological information of the 
sperm cells is not obtained using a bright field microscopy. Additionally, the PSC-DHM system offers a label-free 
platform with nanometric sensitivity to detect any small sub-cellular changes in the head, mid-piece and tail 
of the sperm cells. These sub-cellular parts of sperm cells are influenced by the alcohol, oxidative stressed and 
cryopreservation of the cell. It has been shown that cryopreservation affects the mitochondrial dysfunctional-
ity, damage of cellular membrane, failure of chromatin de-condensation and reduction in motility of the sperm 
cells41–45. Also, oxidative stressed and consumption of alcohol damage the plasma membrane, DNA and reduce 
the percentage of motile sperm cells44. Since, head contain the nucleus i.e. hold DNA of the cells, midpiece 
packed with mitochondria and tail play an important role in the progressive motility of the cells, therefore, PSC-
DHM + DNN could be a valuable label-free tool to detect any morphological changes in these parts of the cells. 
Finally, DNN architectures provide automated classification of the phase map of the sperm cells. In contrast to 
the conventional feature extraction-based machine learning classifier15, multiple layers in DNN architectures 
can automatically characterize relevant morphological and texture features to separate the samples into their 
relevant classes. Therefore, we believe that QPI coupled with DNN would find usage in IVF clinics in diagnosis, 
and for selection of healthy cells.

Figure 1.   (a) Schematic diagram of the partially spatially coherent digital holographic microscope (PSC-
DHM) system and (b) the interferometric image of the sperm cell acquired from the PSC-DHM. (RD—rotating 
diffuser, Ref—reference mirror, BS—Beam splitter, MO—microscope objective, MMFB—multiple multi-mode 
fiber bundle). Reconstructed phase map (c) and (d) the zoomed view of head, neck and tail part of the sperm 
cell. Color bar represents the phase map in radian.
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Results and discussion
Motility test of spermatozoa exposed to ethanol, hydrogen peroxide, and cryopreserva-
tion.  The effect of ethanol, hydrogen peroxide and cryopreservation on progressive and non-progressive 
motility of spermatozoa was investigated and the results are shown in Fig.  2. Sperm motility were analyzed 
manually by the trained biologist from the IVF clinic using phase contrast microscope, 40× magnification with 
Makler counting chamber in accordance as World Health Organization (WHO) standards. Motility are cat-
egorized as progressive, non-progressive or immotile. Spermatozoa with progressive motility moves actively, 
linearly or in a large circle. Non-progressive motility has different patterns of trajectory without progression. The 
number of progressive motilities assessed first, then the number of non-progressive motility and immortality. 
Further, progressive and non-progressive motilities are important to count the percentage of motile sperm cells 
and cross-validate the effect of cryopreservation, externally induced ethanol and H2O2. After motility test, these 
sperm cells are imaged by PSC-DHM system for automated identification of normal sperm cells.

In this study, the concentration of H2O2 and ethanol were selected such that it triggers visible stress effect, i.e. 
impair the progressive motilities within 1 h. The effect of various concentration of H2O2 on the motility of sperm 
cells has been also shown in the previous study15. To simulate stress condition, we incubated sperm cells for 1 h 
in 2% ethanol or 200 µM H2O2. Lower concentration of ethanol or H2O2 did not influence the motility strongly 
in 1 h, at the same time higher concentrations eliminated cells with progressive motility. For cryopreservation, it 
is assumed that the time of storage semen mammals in liquid nitrogen at − 196 ℃ does not change the viability 
and the motility of sperm cells. For example, it is shown in the study of Ramírez‐Reveco46 that the total sperm 
motility of bull was not affected by long-term storage at − 196 ℃. In our study thawing of human semen sam-
ples were performed in 2–5 h of freezing. Sperm cells were exposed to ethanol or hydrogen peroxide for 1 h at 
37 °C. For the control group, same amount of medium as in the test group were added. Figure 2 shows the box 
plot of the sperm cells after different stressed conditions. After incubation for 1 h, ethanol and H2O2 produced 
a significant decrease in progressive motility of sperm cells as compared with control (Table 1): 18.7 ± 13.8% for 
ethanol and 2.4 ± 4.0% for H2O2 vs. 73.9 ± 19.5% for control cells. At the same the non-progressive motility after 
incubation both with ethanol and H2O2 increased: 33.1 ± 11.9% (ethanol) and 77.7 ± 16.2% (H2O2) vs. control 
14.6 ± 13.8% (ANOVA, paired t-test, p < 0.05). Cryopreservation resulted in a significant decrease in progressive 
motility (Fig. 2, Table 1). Spermatozoa with progressive motility had a mean value before cryopreservation of 
73.9 ± 19.5%, while mean value after thawing was 17.3 ± 11.9% (p < 0.01). The non-progressive motility decreased 
after thawing, but not significantly: 27.1 ± 19.5% vs. 14.6 ± 13.8% (p > 0.01).

Figure 2.   Progressive (a) and non-progressive (b) motility changes of sperm cells after incubation (1 h/37 °C) 
with ethanol, hydrogen peroxide (H2O2) and after cryopreservation as compared with control (n = 7, seven 
ejaculates from different donors). The middle line of the box represents the median, the “x” represents the mean, 
the whiskers extend from the ends of the box to the minimum value and maximum value. Outliers marked as 
dots.

Table 1.   Effect of cryopreservation, ethanol and hydrogen peroxide incubation on human sperm cells motility. 
Analysis of the differences among group means using Paired Two Sample t-Test for Means (alpha 0,05). Values 
are shown as a mean ± standard deviation (SD). P-value for the analysis of the differences between the sample 
means of control and ethanol (C/E), control and H2O2 (C/H), control and cryopreserved groups (C/Cryo).

Variable
Control
Mean ± SD

Ethanol, 2%
Mean ± SD

Cryopreservation
Mean ± SD

H2O2, 200 µM
Mean ± SD P-value

Progressive motility (PR, %) 73.9 ± 19.5 18.7 ± 13.8 17.3 ± 11.9 2.4 ± 4.0
C/E 0.00009
C/H 0.00005
C/Cryo 0.0001

Non-progressive motility (NP, %) 14.6 ± 13.8 33.1 ± 11.9 27.1 ± 19.5 77.7 ± 16.2
C/E 0.01
C/H 0.0002
C/Cryo 0.2
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A possible mechanism of decrease in sperm motility after treatment with ethanol is distortion of cell mem-
brane caused by altering of membrane protein structure47,48. On the other hand, the principle mechanism of 
the effect of hydrogen peroxide on sperm motility is peroxidation of unsaturated fatty acids, which is a part of 
membrane lipids. As a result of peroxidation, the membrane loses flexibility and plasticity which determines 
disrupted tail motion49. The functional changes of sperm cells after cryopreservation might be influenced by 
oxidative stress, cryo-protector used (type and concentration), methods of cryopreservation and thawing itself, 
and is also dependent on original semen characteristics, such as concentration and motility49. In accordance 
with the concept of “partial survival” current procedures used for sperm freezing and thawing lead to decrease 
of more than 50% in motility and survival rate50, ultrastructure and cell morphology changes51–53, mitochondrial 
activity reduction54, and damages of sperm chromatin49.

Figure 3 shows a schematic of our framework for the selection of normal sperm cells. The interferometric 
image of a sperm cell is acquired from PSC-DHM using 60×, 1.2 NA objective lens. These interferometric images 
are processed using standard Fourier transform algorithm55 and Goldstein phase unwrapping algorithm56. The 
details of the Fourier transform and steps for reconstruction of phase map are described in Methods section. 
Recently, classification of the phase map of sperm cells is performed using simple machine learning techniques15 
where texture and morphological features are extracted from the phase image. These features are fed into machine 
learning models to separate the corresponding phase images into their relevant classes30. In contrast, we develop 
an end-to-end deep learning approach for the classification of normal sperm cells, which does not require extrac-
tion of any features from the phase image.

The DNN takes a phase image as input and provide a diagnostically relevant class label as an output i.e. normal 
cells, H2O2 stressed cells, ethanol stressed cells, and cryopreserved cells. DNN architecture consists of difference 
combination of convolution layer, rectifier linear unit layer (ReLU), maxpooling layer, fully connected layer and 
finally softmax layer. Details of these layers can be found elsewhere57. A total of seven DNN, namely AlexNet, 
GoogLeNet, Inception-ResNet-V2, VGG-16, VGG-19, ResNet-50 and ResNet-101 are used for the classifica-
tion purpose. These networks are trained by total 70% of the phase images and 30% for testing the accuracy 
of each model. The training time of the model increased as the number of layers (combination of convolution 
layer, maxpooling and ReLU layer) increased in the network. The training time and other details of each model 
is mentioned in the data analysis section. Accuracy of these network are shown in terms of confusion matrices. 
Confusion matrix shows the number of correct and incorrect prediction of the network. Further, the accuracy 
of DNN models are compared with total 3 different machine learning classifiers i.e. support vector machine, 
Naive Bayes and k nearest neighbor. For machine learning classifier, total 11 parameters are extracted from the 
head part of the cells. These parameters are fed into the classifier for training and testing purpose. The details of 
all parameters and the classification accuracy of the machine learning models can be found in supplementary 
information 1.

Figure 4 represents the reconstructed quantitative phase maps of human sperm cells under different stressed 
conditions. All interferometric images were acquired using 60×, 1.2NA (UPLSAPO 60XW, Olympus) microscopic 

Figure 3.   Workflow diagram showing the important steps for the classification of quantitative phase map of 
sperm cells. Phase map of the images is reconstructed by the interferogram captured using PSC-DHM system. 
Classification of the phase images is done by total 7 deep neural networks (DNN). Each network is trained 
with total 6,720 phase images and 2,880 phase images are used to test its accuracy. The final performance and 
sensitivity of the network is reported in term of confusion matrix.



6

Vol:.(1234567890)

Scientific Reports |        (2020) 10:13118  | https://doi.org/10.1038/s41598-020-69857-4

www.nature.com/scientificreports/

objective lens. Figure 4a–d are the quantitative phase maps of normal, cryopreserved, externally introduced etha-
nol and H2O2 sperm cells respectively. The scale bar corresponds to 5 μm distance in both x and y directions and 
the color bar shows the phase value in radians. A total 12,332 phase images (2,906 healthy, 2,981 cryopreserved, 
3,222 ethanol and 3,223 oxidative stressed) are reconstructed from the interferometric images acquired from 
the proposed setup. Among the 12,332 images, only those phase images are retained which satisfy the following 
criteria: correct phase unwrapping, background subtraction and only one cells lies throughout the field of view. 
The first criterion allows for filtering of phase images that are reconstructed correctly and the later criterion is 
to promote accurate classification of the sperm cells using DNN. Selection of images with single cells is done 
automatically by converting phase image into a binary image and setting certain threshold value of white pixels. 
For the empirical threshold determination, a small set of images with only one cell each were hand-picked as the 
candidate images. The process of thresholding generally filtered away most images with multiple cells. Nonethe-
less, all the retained images were checked manually to assess if both the above-mentioned criteria were satisfied, 
so that the retained images are indeed suitable for classification purpose. A total of 10,163 phase images of sperm 
cells (2,400 healthy, 2,750 cryopreserved, 2,515 oxidative stressed and 2,498 alcohol affected) are thus retained.

From Fig. 4, the quantitative phase map of healthy sperm’s head is found maximum as compared to the cells 
under different stressed conditions. The color bar represents the phase map (thickness + refractive index) in 
radian. Deep red indicates the maximum phase and the deep blue corresponds to zero phase. Change in phase 
value might indicate the change in morphology of the head of the cells under different stressed condition. 
However, no general trend in the maximum phase map of the cells is observed which can be explained from 
the progressive/non-progressive motility and number of mobile (Fig. 2) cells. Although, the number of mobile 
sperms get decreased as compared to the normal class, there are still some cells which are mobile. Thus, they 
may sustain their morphology close to normal cell and therefore, no general trend of maximum phase map is 
observed between these four classes.

The performance of the different DNN architectures used in this study are shown in Fig. 5. Total 70% of the 
data is used for the training purpose while 30% is used to test the accuracy of each model. It is important to note 
that sufficient training is necessary to train the network and to achieve best accuracy while validating against 
the test dataset. Figure 5a depicts the confusion matrices of the DNN on the testing datasets of the phase image 
of sperm cells. The confusion matrices show performance of the network against the testing dataset. Rows and 
column of the matrix indicate the predicted class and the ground truth respectively. Diagonal elements of the 
matrix show the correct predictions of the data while off-diagonal elements are the wrong classified data. Con-
sider the confusion matrix of AlexNet in Fig. 5a. Total 720 phase images of the normal phase image of sperm 
cells are tested by the network. Out of 720, 525 phase images are predicted correctly and 13, 103 and 79 are the 
wrong predictions. Similarly, 525, 520 and 637 are the correct prediction by the AlexNet for Ethanol, H2O2 and 
cryopreserved cells, respectively. Performance of the GoogLeNet, Inception-ResNet-V2, VGG-16, VGG-19, 
ResNet-50 and ResNet-101 can be also seen in Fig. 5. Note that, the total test images are 30% of the total image 
(n = 9,600) i.e. 2,880 which is summation of all the elements presents in the matrix.

Figure 6 depicts the average sensitivity, specificity and classification accuracy of all deep learning architec-
tures. Out of all DNN, ResNet-101 provides the best sensitivity, specificity and accuracy of 85.5%, 94.7%, and 
85.6% respectively. Final value for ResNet-101 represents the average value of sensitivity, specificity and accuracy 
shown in the table of Fig. 5b. The training time for each architecture is shown in data analysis section. Though, 
performance of DNN classifiers is much better than the feature extraction-based machine learning classifier 
for the same datasets, the mismatch between ground truth and prediction of the network can be understand 

Figure 4.   Quantitative phase map of human sperm cells, reconstructed from the interferogram captured by 
PSC-DHM system: (a) normal cell, (b) after cryopreservation, (c) oxidative stressed cell and (d) alcohol affected 
cell. Color bar represents the phase map in radian. Scale bar: 5 μm.
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with following reasons. QPI offers optical thickness i.e. combine information of refractive index and thickness 
of the specimens but due to the lack of chemical specificity, it cannot precisely identify the changes in different 
organelles such as mitochondria, nucleus, DNA and the membrane of the cells. Therefore, a label free technique 
with high chemical specificity is required for more accurate classification of the sperm cells. Additionally, the 
technique must offer the quantitative changes in the sample under different stressed condition. Virtual staining18 
in the phase map of sperm cells using deep learning can improve the chemical specificity of the QPI technique. 
Virtual staining in the phase imaging can offer the chemical changes in the cells under different stressed condi-
tion and simultaneously the morphological changes in the cells. Therefore, combining stained information with 
QPI technique might improve the classification accuracy of the system.

However, a careful examination must be required during the training process and to locate the stained part 
i.e. head, mid-piece and tail of the cells. Any discrepancies in the training set i.e. mismatch in the correlation 
between stained mid-piece and phase map of mid-piece can degrade the final performance of the network. 
Finally, PSC-DHM can be replace with phase shifting low coherence interferometry (PS-LCI) technique58. PS-
LCI requires multiple frames but offer superior phase sensitivity as well as lateral resolution as compare to other 
QPI techniques. Using, PS-LCI might help to detect the fine structural changes in the sperm cells thus will be 
useful to detect the healthy sperm cells with better accuracy. Nonetheless, PS-LCI requires multiple frames to 

AlexNet

Normal Ethanol H2O2

Cryopre
served

Normal 525 50 106 32

Ethanol 13 525 24 8

H2O2 103 70 520 43

Cryopre
served 79 75 70 637

GoogLeNet

Normal Ethanol H2O2

Cryopre
served

Normal 479 7 62 33

Ethanol 51 640 34 52

H2O2 133 32 593 47

Cryopre
served 57 41 31 588

Inception-ResNet-V2

Normal Ethanol H2O2

Cryopre
served

Normal 563 27 79 41

Ethanol 24 636 32 37

H2O2 88 24 577 24

Cryopre
served 55 33 32 618

VGG-16

Normal Ethanol H2O2

Cryopre
served

Normal 531 26 41 69

Ethanol 13 589 13 20

H2O2 150 77 644 74

Cryopre
served 26 28 22 557

VGG-19

Normal Ethanol H2O2

Cryopre
served

Normal 575 45 74 76

Ethanol 12 604 17 24

H2O2 110 43 612 47

Cryopre
served 23 28 17 573

ResNet-50

Normal Ethanol H2O2

Cryopre
served

Normal 578 15 62 43

Ethanol 19 634 21 20

H2O2 82 35 613 35

Cryopre
served 41 36 24 622

ResNet-101

Normal Ethanol H2O2

Cryopre
served

Normal 567 17 66 25

Ethanol 23 662 23 33

H2O2 84 20 595 22

Cryopre
served 46 21 36 640

Per class accuracy of ResNet-101

Sensitivity Specificity Accuracy

Normal 84.0 92.5 78.8

Ethanol 89.3 96.9 91.9

H2O2 82.5 93.7 82.6

Cryopreserved 86.1 95.8 88.9

(a)

(b)

Figure 5.   Performance of the deep neural networks (DNN) on the testing datasets of the phase images of sperm 
cells. (a) Confusion matrices of different DNN with number of phase images for classification of healthy and 
non-healthy phase map of sperm cells. Diagonal elements show number of correct predictions and the off-
diagonally elements are the wrong classified observations. (b) Per-class sensitivity, specificity and accuracy of 
ResNet-101.
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extract the phase map of the cells whereas PSC-DHM can extract the phase map with a single frame with high 
spatial phase sensitivity.

Conclusion
Our current QPI + DNN framework allows for the automated classification between normal and abnormal 
sperm cells. QPI is a promising technique which provides quantitative information of the sample and hence an 
edge over the conventional intensity-based identification of healthy cells. PSC-DHM system has been used to 
extract the quantitative phase map of the sperm cells enabling single shot phase reconstruction with high spatial 
phase sensitivity (± 20 mrad). High spatial phase sensitivity is utilized to acquire the phase map of the entire 
sperm cells, i.e. head, neck and tail of the sperm cells, which is otherwise difficult to image using direct laser 
based DHM15. Sperm cells after cryopreservation, oxidative stress and exposure to ethanol are imaged by the 
proposed setup. Previous studies show that oxidative stress initiates concentration dependent increase of DNA 
fragmentation because of DNA strand breaks47. Also, ethanol distorted the cell membrane resulting from the 
alteration of membrane protein structure4. Therefore label-free, non-invasive methods such as PSC-DHM are 
highly desirable to detect these changes and hence for the selection of good quality sperm for ICSI procedure 
that can be used to improve the success of ART however it need further clinical trials.

Quantitative analysis of sperm cells provides an opportunity to identify healthy sperm cells using deep learn-
ing approaches. Deep learning can be potentially a powerful technique for automated classification of sperm 
cells into normal and abnormal. Our results demonstrate that a variety of DNN architectures provide good clas-
sification accuracy to separate the 4 different type of sperm cells into their relevant classes. We also compared the 
proposed method with previously shown feature extraction-based machine learning models for the classification 
of sperm cells. However, these classifiers (SVM, Naive Bayes and KNN) provide very poor accuracy as compare 
to the modern DNN where ResNet-101 provided the best accuracy, i.e. 85.6%, for classification into healthy, 
oxidative stressed, cryopreserved and ethanol affected sperm cells. Moreover, the use of seven different network 
allows us to understand the capabilities of each networks and to apply best deep learning architecture for the 
identification of healthy cells. We applied our automated classification model for studying clinically relevant 
problems of semen quality in different patients attending the in-vitro fertilization clinic of University Hospital 
of North Norway, Norway. Fully automated classification of the sperm cells could be an intermediate tool for 
the expert that can be utilized for the selection of healthy sperm cells as per World Health Organization (WHO) 
criteria59. QPI + DNN framework for healthy sperm identification could be potentially used for real time selection 
of healthy living sperm cells that can be used for improving the success of fertilization during ART procedures.

Methods
Experimental setup.  PSC-DHM is developed for quantitative phase imaging (QPI) of the sperm cells. 
Schematic diagram of PSC-DHM setup is shown in Fig. 1. To reduce the spatial coherence of the direct laser 
(He–Ne laser), it first focused by using microscopic objective lens (MO1) and rotating diffuser is placed at the 
focus plane of the MO1. Rotating diffuser scattered the light into multiple directions which captured by multi-
multimode fiber bundle (MMFB). Output of MMFB consist high temporally and low spatial coherence prop-
erties and thus act as an extended light source. The extended light source coupled at an input port of the Lin-
nik type interferometer. The light beam is first collimated and then focused by using a combination of lens L1 
(f = 50 mm) and L2 (f = 150 mm) respectively. A beam splitter is placed to divide the focused beam into reference 
and sample. The sample beam is focused into the back focal plane of MO3 (UPLSAPO 60XW, Olympus) and 
hence the output beam is nearly collimated to extract the accurate phase information of the sample. The light 
beam reflected from the sample and reference mirror, interfere at the beam splitter plane which consist the coded 
phase information of the sample. The interferogram is finally projected into the camera sensor (Hamamatsu 
ORCA-Flash4.0 LT, C11440-42U) by using a tube lens L4 (f = 150 mm). The 2D intensity variation of an inter-
ferogram can be expressed as:

Figure 6.   Sensitivity, specificity and classification accuracy of different deep neural network. The blue bar 
shows the average accuracy of each architectures out of which ResNet-101 provide the best accuracy (85.6%) on 
the testing datasets.
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where fx and fy are the spatial carrier frequencies of the interferogram. Background (DC) and the modulation 
terms are defined by a

(

x, y
)

 and b
(

x, y
)

 , respectively. Phase φ
(

x, y
)

 contains information of the specimen. By 
applying Fourier transform, the phase map of the specimen can be measured by the following expression:

where

where Im and Re are the imaginary and real part of the complex signal. As the wrapped phase map lies between 
–π to + π, the unwrapping is done by standard Goldstein phase unwrapping algorithm56.

Semen preparation.  The Regional Committee for Medical and Health Research Ethics of Norway (REK_
nord) has approved the study. Ethical guideline was followed. At the IVF Clinic, Department of Obstetrics and 
Gynecology, University Hospital North Norway, Tromsø, 7 semen samples were collected from patients who 
were attended the IVF clinic for the service of ART. The sample were collected from the patients of age between 
30 and 40 years. All patients were informed, and informed consent was obtained. The semen sample was col-
lected according to the criteria established by the WHO59 after 3–5 days of assistance. After liquefaction, sperm 
counts were evaluated using the Neubauer-improved counting chamber. All ejaculates used in the experiments 
meet as the good quality semen sample as per requirements of WHO 2010 (Table  2). To eliminate seminal 
plasma and isolate cells with good quality sperm cells, one milliliter of semen was carefully placed on each 
1.5 ml of 90% and 45% gradient layers (Vitrolife, Sweeden) and centrifugated at 500g for 20 min. The resultant 
pellet was washed twice with human Quinn’s sperm washing medium (Origio, Denmark) at 300 g for 10 min. 
The supernatant was discarded, and the concentration of the cells from the pellet was adjusted to 1 × 106 sperm 
per mL with Quinn’s Advantage fertilization medium (Origio, Denmark) supplemented with 5 mg/ml Human 
Serum Albumin (Sigma).

To perform experiments, 96-well cell culture plates (Corning) were filled with purified sperm in a concentra-
tion of 2 × 104 cells per mL with 200 µM H2O2 (for oxidative stressed samples) or 2% ethanol (for alcohol affected 
samples), the reference chamber was filled with purified semen only. The samples were incubated for 1 h at 37 °C, 
5% CO2. After incubation evaluation of cell motility was graded according to WHO 2010 criteria as a progressive 
(PR) and non-progressive motility (NP). Sperm counting was performed using Neubauer-improved counting 
chamber and examined under the inverted phase contrast microscope at 40× magnification. Cryopreservation 
and thawing of purified semen were performed in accordance with Sperm Freeze medium protocol (Origio, 
Denmark). Motility of post-thaw spermatozoa was evaluated using Neubauer-improved counting chamber. For 

(1)I
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)
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(
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+ b
(
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Table 2.   Age and semen quality measured before the purification by gradient method (n = 7, number of 
donors). Values are shown as a mean ± standard deviation (SD).

Parameter Mean ± SD

Age (years) 34.7 ± 4.8

Semen volume (ml) 3.1 ± 1.5

Semen concentration (× 106/ml) 51.6 ± 22.8

Total sperm count (× 106) 166.8 ± 142.1

Progressive motility (%) 59 ± 11.9

Table 3.   Training time of total 7 deep neural network for the classification of normal and stressed affected 
phase map of sperm cell.

Deep neural network for classification of sperm cells Training time (s)

AlexNet 3,222

GoogLeNet 8,359

Inception-ResNet-V2 60,992

VGG-16 5,183

VGG-19 8,783

ResNet-50 7,756

ResNet-101 16,943
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the purpose of quantitative analysis by PSC-DHM the cells of each sample were transferred in a PDMS chamber 
on reflecting silicon. Sperm cells were immobilized by fixation with 4% PFA for 30 min at RT and washed in PBS 
(Phosphate-Buffer Saline, Sigma) for 5 min. Finally, fixed and attached at the surface of PDMS chamber sperm 
cells were mounted in PBS and covered by the cover glass of 170 μm thickness.

Data analysis.  Extracting phase information from the interferogram and deep learning is implemented 
in MATLAB 2019a on a 64-bit Windows OS, Intel Xeon CPU E5-1650 v4 @ 3.6 GHz with 64 GB RAM and 
NVIDIA 2080 Ti GPU. Transfer learning is performed by using pretrained DNN and retraining them for our 
desired classes. Classification results are obtained by randomly assigning 70% of the images in the dataset for 
training and the remaining 30% for testing. The training time of each DNN can be seen in Table 3. In each train-
ing iteration, the initial learning rate is set as 10-4 and stochastic gradient descent with momentum (SGDM) is 
used for training. Maximum number of epochs in the learning process is set as 30.
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