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A B S T R A C T   

Tumor segmentation is a crucial but difficult task in treatment planning and follow-up of cancerous patients. The 
challenge of automating the tumor segmentation has recently received a lot of attention, but the potential of 
utilizing hybrid positron emission tomography (PET)/magnetic resonance imaging (MRI), a novel and promising 
imaging modality in oncology, is still under-explored. Recent approaches have either relied on manual user input 
and/or performed the segmentation patient-by-patient, whereas a fully unsupervised segmentation framework 
that exploits the available information from all patients is still lacking. 

We present an unsupervised across-patients supervoxel-based clustering framework for lung tumor segmen
tation in hybrid PET/MRI. The method consists of two steps: First, each patient is represented by a set of PET/ 
MRI supervoxel-features. Then the data points from all patients are transformed and clustered on a population 
level into tumor and non-tumor supervoxels. The proposed framework is tested on the scans of 18 non-small cell 
lung cancer patients with a total of 19 tumors and evaluated with respect to manual delineations provided by 
clinicians. Experiments study the performance of several commonly used clustering algorithms within the 
framework and provide analysis of (i) the effect of tumor size, (ii) the segmentation errors, (iii) the benefit of 
across-patient clustering, and (iv) the noise robustness. 

The proposed framework detected 15 out of 19 tumors in an unsupervised manner. Moreover, performance 
increased considerably by segmenting across patients, with the mean dice score increasing from 0.169 ± 0.295 
(patient-by-patient) to 0.470 ± 0.308 (across-patients). Results demonstrate that both spectral clustering and 
Manhattan hierarchical clustering have the potential to segment tumors in PET/MRI with a low number of 
missed tumors and a low number of false-positives, but that spectral clustering seems to be more robust to noise.   

1. Introduction 

Medical imaging is today an integrated part of diagnostics and 
treatment planning of cancer patients. In particular, hybrid positron 
emission tomography (PET)/computed tomography (CT) has become an 
established tool in tumor detection, characterization, staging, and 
monitoring (Flechsig, Mehndiratta, Haberkorn, Kratochwil, & Giesel, 
2015; Ehman et al., 2017). A more recent advancement in hybrid 

radiologic imaging is the PET/magnetic resonance imaging (MRI) 
scanner, in which the anatomical information is obtained from MRI 
instead of CT. As opposed to CT, MRI does not involve harmful ionizing 
radiation and offers superior soft-tissue contrast with high spatial res
olution, making PET/MRI a promising hybrid modality in, for instance, 
oncology. Nevertheless, the potential of hybrid PET/MRI is still being 
investigated and remains an open question (Ehman et al., 2017). This 
includes its potential in the important task of lung tumor segmentation, 
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which is the focus of this paper. 
Lung cancer is the most frequently diagnosed cancer type in the 

world, with a predicted number of 2.1 million new incidences in 2018 
(Bray et al., 2018). An important, but inherently difficult, part of the 
treatment planning and follow-up of these cancerous patients is the 
process of isolating the tumor volume in medical images (Sauwen et al., 
2016). Today, this tumor segmentation is commonly performed manu
ally in a slice-by-slice manner. However, this work is tedious and sus
ceptible to subjective interpretation (Caldwell et al., 2001; Hurkmans 
et al., 2001). A great amount of effort has therefore been put into the 
investigation of automatic tumor segmentation (Foster, Bagci, Mansoor, 
Xu, & Mollura, 2014; Gordillo, Montseny, & Sobrevilla, 2013). 

The majority of existing methods for automatic medical image seg
mentation are based on supervised models that require fully annotated 
data sets to learn a classification of voxels into tumor and non-tumor 
voxels (De Bruijne, 2016). Such data sets are time-consuming to 
generate because segmentations have to be manually delineated for a 
large set of images. Unsupervised segmentation methods, on the other 
hand, have the benefit of not requiring annotations and is typically 
relying on voxel-wise clustering based on similarity within the data. 

Only a few studies have considered tumor segmentation in hybrid 
PET/MRI (Bagci et al., 2013; Xu, Bagci, Udupa, & Mollura, 2015; 
Leibfarth et al., 2015; Sbei, ElBedoui, Barhoumi, Maksud, & Maktouf, 
2017; Sbei, ElBedoui, Barhoumi, & Maktouf, 2020) (see related work 
section for details). In this paper, we aim to contribute to the recent line 
of work in order to further investigate the potential of PET/MRI for 
unsupervised lung tumor segmentation. 

Unlike previous approaches to unsupervised tumor segmentation in 
hybrid PET/MRI, which perform segmentation in a patient-by-patient 
manner (Bagci et al., 2013; Sbei et al., 2020), we take advantage of 
the information in all available patient scans. In patient-by-patient 
segmentation approaches where the segmentation is based on single 
image pairs (PET and MRI from one patient), the number of voxels 
representing the tumor might be insufficient for the clustering algo
rithms to recognize them as a separate cluster. By instead clustering 
across patients in a population-level manner, we open up to taking 
advantage of the information in all patients when finding patterns to 
base the segmentation on. Voxel-wise clustering across all patients is, 
however, not computationally feasible as the total number of voxels 
becomes too high. To overcome this barrier, we take inspiration from a 
recent innovative approach to the problem of clustering tumor sub- 
volumes (Wu et al., 2016; Even et al., 2017), by employing super
voxels rather than working directly on voxel level. 

In our work, we thus examine a two-stage clustering approach for 
automatic lung tumor segmentation, where we first do a patient-level 
over-segmentation into homogeneous supervoxels, before we group 
the supervoxels across all patients and do a population-level clustering 
into “tumor” and “non-tumor” supervoxels. Since the problem at hand is 
complex and requires a systematic analysis of the proposed two-stage 
approach, we provide a comparison and analysis of several different 
clustering procedures to achieve this task. We further evaluate the 
advantage of utilizing across-patients information, the method’s 
robustness to noise, the effect of tumor size and the types of segmenta
tion errors. 

The key contributions of this paper are:  

1. A novel unsupervised lung tumor segmentation framework that can 
utilize information across patients in PET/MRI images.  

2. An analysis of several commonly used clustering approaches within 
the proposed framework.  

3. An analysis of the segmentation mistakes that the different clustering 
algorithms make and how tumor size affects the performance.  

4. An analysis of the benefit of across-patients clustering compared to 
patient-by-patient clustering.  

5. An analysis of the proposed method’s sensitivity to image noise. 

In the following, Section 2 provides a brief overview of the related 
work. Section 3 introduces the data set used as part of this study and 
Section 4 presents the proposed framework for lung tumor segmenta
tion. In Section 5, the experimental results and an analysis of the seg
mentation mistakes, the effect of tumor size, the benefit of clustering 
across-patients, and a noise analysis are provided. Finally, Section 6 
and Section 7 discuss outlook, limitations, and provide conclusions. 

2. Related work 

Today there exists a large range of methods for tumor segmentation 
in established modalities such as PET, CT, MRI and hybrid PET/CT 
(Foster et al., 2014; Moghbel, Mashohor, Mahmud, & Saripan, 2018; 
Wadhwa, Bhardwaj, & Verma, 2019; Ju et al., 2015), while the use of 
hybrid PET/MRI is less explored. In order to provide the necessary 
context to place this paper’s contributions in the field, this section will 
highlight previous work within hybrid PET/MRI tumor segmentation. 
As this is a relatively new modality, previous studies are limited to only a 
handful of articles. To the authors’ knowledge, the first study on tumor 
segmentation in hybrid PET/MRI was the study by Bagci et al. (2013), in 
which a random walk based co-segmentation approach with automatic 
foreground/background seed selection was developed. By unifying the 
graph representation of each modality in a single product lattice, they 
reformulated the random walk method to jointly delineate objects in 
different image modalities. A few years later, in the study by Xu et al., 
2015, a tumor segmentation approach based on fuzzy connectedness 
with a visibility weighting scheme was proposed as a faster alternative 
achieving similar performance to Bagci et al. (2013). However, as 
opposed to Bagci et al. (2013), which performed segmentation unsu
pervised, the approach by Xu et al. (2015) required user-specified 
weights for each modality. Sbei et al. (2017) further developed the 
fuzzy connectedness approach and combined it with the graph cut 
method to address problems with leakage through weak boundaries. In 
recent work, Sbei et al. (2020) made additional modifications to the 
method by improving the automatic seed generation step and auto
matically generating intermediate images with reduced heterogeneity, 
which the segmentation is based on. 

Common to all these approaches is that the segmentation is per
formed patient-by-patient. That is, only the information in the PET/MRI 
from one patient is considered at a time. A quite different approach was 
developed by Leibfarth et al. (2015), where tumor probability maps 
were derived for both PET and MRI images using heuristic probability 
mapping functions relating probability values and intensities on voxel 
level. Then the tumor delineation was derived using the threshold level 
set segmentation algorithm on the combined probability map defined by 
the weighted sum of the single maps. In this approach, the parameters 
were optimized by considering multiple patients in a supervised leave- 
one-out manner. 

In our proposed framework, we depart from previous work and 
perform a PET/MRI tumor segmentation that is both unsupervised and 
exploits the information in all available patient scans by performing an 
across-patients clustering. 

3. Dataset 

For the current work, we used 18 PET/MRI acquisitions from a 
previous lung cancer study (Kuttner et al., 2020). The study was 
approved by the Norwegian Regional Committees for Medical and 
Health Research Ethics (REC reference 2017/915), and all patients 
signed written informed consent. The benefit of using these exams is that 
all scans contain one or multiple tumors diagnosed as either adenocar
cinoma or squamous cell carcinoma, which are the two most common 
types of non-small cell lung cancer (Raponi et al., 2006). 

Prior to PET/MRI, each patient was injected with 4 MBq/kg 18F-flu
orodeoxyglucose (FDG). Approximately two hours post-injection, a 10- 
min, one-bed position PET acquisition of the mediastinum was 

S. Hansen et al.                                                                                                                                                                                                                                 



Expert Systems With Applications 167 (2021) 114244

3

performed in a Siemens Biograph mMR (software version VB20P) 
(Siemens Healthineers, Erlangen, Germany) using a free-breathing and 
arms-down scan protocol. Simultaneous with PET, a T2-weighted TIRM 
MRI sequence was acquired. Furthermore, a standard DIXON-based MR 
sequence was used for attenuation correction of the PET images. 

PET images were reconstructed using the ordered-subset expect
ation–maximization (OSEM) algorithm with three iterations, 21 subsets, 
and 4 mm Gaussian smoothing. For each PET image, the measured tissue 
radioactivity concentration [kBq/mL] was normalized against patient 
body weight and injected dose to obtain the standardized uptake value 
(SUV) [g/mL]. The gross tumor volume was delineated in the T2 images 
for all patients based on morphology. PET images were used as an aid to 
differentiate pathology from anatomy or atelectasis, or from large hilar 
vessels. Delineations were performed by a thorax radiologist (> 10y 
experience) using Varian Eclipse Treatment Planning System version 
10.0.42. In the PET images, FDG-avid lesions were segmented using a 
41% SUVmax threshold. The union of the PET and MRI masks is 
considered the ground truth mask. 

As a pre-processing step, the images were re-sampled to the same 
isotropic voxel resolution of 2× 2× 2 mm3 using cubic interpolation, 
resulting in an image size of 114 × 152 × 93 voxels. More information 
about the data is summarized in Table 1. Fig. 1 shows two PET/MRI pair 
examples with corresponding ground truth masks. 

4. Framework for lung tumor segmentation 

Our proposed across-patients supervoxel-based clustering frame
work segments lung tumors in hybrid PET/MRI. Supervoxels are 
computed for each patient and features extracted from these are 
grouped. In order to improve the segmentation performance, the fea
tures are transformed using a Box-Cox transformation. Finally, the 
transformed features are clustered into a foreground (tumor) and a 
background class. Fig. 2 shows a schematic overview of the lung tumor 
segmentation approach. The details of the individual stages are dis
cussed in the following. 

4.1. Co-registration 

We transform the PET image volume from each PET/MRI pair by a B- 
spline transformation model to align with the MRI scan. The registration 
is performed unsupervised using the Elastix software (Klein, Staring, 
Murphy, Viergever, & Pluim, 2009) in Python by running the Sim
pleElastix toolbox (Marstal, Berendsen, Staring, & Klein, 2016). Elastix 
is an openly available and frequently used software package for 
intensity-based medical image registration where the registration 
problem is formulated as an optimization problem and solved iteratively 
(Viergever et al., 2016). In this work, the cost function consists of a 

similarity measure, defined by the mutual information between the two 
images, and a regularisation term penalizing the displacement magni
tude. The cost is optimized in an iterative manner using adaptive sto
chastic gradient descent in a three-stage pyramidal multi-resolution 
approach. 

4.2. Supervoxel generation 

The idea of supervoxels is to group similar voxels into basic regions 
that are more meaningful than individual voxels. In this way, super
voxels capture redundancy in the image and provide local image 
features. 

We apply the simple linear iterative clustering (SLIC) algorithm 
(Achanta et al., 2010), which, in the field of medical image analysis, has 
extensively been used as a pre-processing step to reduce the computa
tional cost and the effects of noise and imperfect co-registration (Even 
et al., 2017; Lucchi, Smith, Achanta, Knott, & Fua, 2011; Roth, Farag, 
Lu, Turkbey, & Summers, 2015; Soltaninejad et al., 2017). 

The SLIC algorithm is based on k-means clustering with k cluster 
centers initialized on a regular grid with intervals of S =

̅̅̅̅̅̅̅̅̅
N/k3

√
, where N 

is the number of voxels in the image volume. However, two particular 
modifications differentiate the SLIC algorithm from standard k-means 
clustering: (1) Whereas standard k-means searches the entire image, the 
search space in SLIC is limited to a region proportional to the initial 
supervoxel size N/k. (2) The distance measure D is a weighted combi
nation of the intensity proximity and the spatial proximity in order to 
control the size and compactness of the supervoxels (Achanta et al., 
2012): 

D =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

d2
c +

(
ds

S

)2

m2

√

, (1)  

where m is a constant controlling the compactness of the supervoxels, 
and the distances dc and ds, for the case of a three-dimensional grayscale 
image with voxel intensities l and spatial cooridnates (x,y,z), are given 
by 

dc =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(lj − li)
2

√

, (2)  

and 

ds =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(xj − xi)
2
+ (yj − yi)

2
+ (zj − zi)

2
√

. (3) 

The supervoxel generation is based on the same approach as in Even 
et al., 2017. All image volumes are z-normalized (subtract mean and 
divide by standard deviation) and for each image pair {IMRI

i IPET
i }

Np
i=1, an 

average image volume Iz
i is computed and used to extract supervoxels 

according to the SLIC algorithm. An initial number of k = 1500 super
voxels per patient reduces the total number of data points from 28.7 
millions (voxels) to less than 27,000 (supervoxels). The left part of Fig. 3 
shows an example slice for one patient. 

4.3. Feature extraction 

To make the analysis clean, we extract two basic intensity features 
for each supervoxel, i, and define the feature vector 

xi =
[
xMRI

i , xPET
i

]
, (4)  

where xMRI
i is the median intensity within the volume of supervoxel i in 

the MRI image and xPET
i is the median intensity within the volume of 

supervoxel i in the PET image (Fig. 3, right). By extracting the median 
intensities, the effects from outlier voxels are suppressed. 

Fig. 4 shows a scatter plot of the extracted feature vectors from all 
patients, with xMRI on the x-axis and xPET on the y-axis. The colors 
indicate the fraction of tumor voxels (according to the ground truth 

Table 1 
Detailed information about the dataset and generated supervoxels.  

Patients Total number 18  
Mean age (at exam) [yrs] 72.1 

Gender Male 12  
Female 6 

Tumors Total number 19 
Pathology Adenocarcinoma 12  

Squamous cell carcinoma 7 
Resolution PET [mm] [2 × 2 × 2]  

MRI [mm] [1 × 1 × 5] 
Ground truth Median TV (union) [mm3] 9712  

Median TV (MRI) [mm3] 6664  
Median TV (PET) [mm3] 8672 

Supervoxels Median no supervoxels 1495  
Minimum no supervoxels 1480  
Maximum no supervoxels 1511  

Minimum size [mm3] 1600  
Maximum size [mm3] 40672 

TV = tumor volume. 
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labels) within the supervoxels, where yellow translates to pure tumor 
supervoxel and purple corresponds to pure background supervoxel. This 
plot illustrates that both modalities contribute with important infor
mation in the segmentation task: thresholding any of the two marginal 
distributions will lead to significant mixing of tumor and non-tumor 
supervoxels. 

4.4. Data transformation 

As the original form of the data is not necessarily more suitable for 
analysis than any function of the data, transformations often play an 
important role in exploratory data analysis (Stoto & Emerson, 1983). We 
apply the Box-Cox transformation (Box & Cox, 1964), a long-established 

power transformation. This transform is a widely used pre-processing 
step in various fields of applications (Hossain, 2011; Liu, Yin, Wang, & 
Wang, 2013; Rayens & Srinivasan, 1991; Boroojeni et al., 2017), 
including tumor detection in MRI (Vos, Barentsz, Karssemeijer, & 
Huisman, 2012) and classification of lung nodules in CT (Shah et al., 
2005). The transformed data y(λ)i is given by 

y(λ)i =

⎧
⎨

⎩

yλ
i − 1

λ
, ifλ ∕= 0,

lnyi, ifλ = 0,
(5)  

where the parameter λ is found by maximizing the log-likelihood under 
the assumption that the transformed data is Gaussian, thereby 

Fig. 1. Two PET/MRI pair examples. Left: PET image slice. Middle: Corresponding MRI image slice. Right: Corresponding ground truth mask indicating the tumor.  

Fig. 2. Schematic of the across-patients supervoxel-based clustering for lung tumor segmentation in hybrid PET/MRI. Based on each co-registered PET/MRI image 
pair, an over-segmentation is performed to generate supervoxels. From each supervoxel in every patient, two basic intensity features are extracted from the PET/MRI, 
resulting in a two-dimensional feature space. This feature space is transformed to improve the following clustering into two clusters. Finally, the clustering labels are 
mapped back to pixel space, giving the resulting segmentation masks. Note that the colors in the scatter plots before the clustering indicate the supervoxels’ tumor 
fractions according to the ground truth and is only used for illustration purposes. 
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encouraging the transformed data to be more Gaussian. 
Since the SUV values in the original PET images lie in the range [0,

12] whereas the MRI intensities lie in the range [0,1000], we additionally 
apply a z-normalization to the transformed data. Fig. 5 shows the 
normalized feature plot after Box-Cox transformation. 

4.5. Clustering 

Cluster analysis is the study of discovering natural groupings in un
labeled data, such that samples within the same cluster are similar and 
samples in different clusters are dissimilar. There exist thousands of 
clustering algorithms in the literature, and different clustering algo
rithms (and their parameter settings) often result in different groupings. 
However, no general “best clustering algorithm” can be named (Jain, 
2010). In some way or another, each algorithm enforces a structure on 
the data and depending on the fit between the model and the data, the 
resulting clusters will be “good” or “bad” (Jain, 2010). 

In this paper, we consider some of the most well-known clustering 
algorithms in the literature in order to perform lung tumor segmentation 
in an unsupervised manner. We examine k-means clustering, spectral 

clustering, and hierarchical clustering. For the benefit of the reader not 
familiar with these algorithms, we provide a short overview in the 
following. 

4.5.1. K-means clustering 
K-means is, due to its simplicity and computational efficiency, one of 

the most used clustering algorithms in the literature (Jain, 2010). The 
algorithm partitions the data into k disjoint clusters in a two-step iter
ative optimization of the cost function, given by (Bishop, 2006): 

J =
∑N

n=1

∑K

k=1
rnk||xn − μk||

2
, (6)  

where N is the number of data points (supervoxels), xn is the feature 
vector of the nth data point, rnk ∈ {0,1} is the cluster assignment of the 
nth data point to cluster k, and μk is the cluster representative of the kth 
cluster, given by the mean of the feature vectors assigned to that cluster. 

The algorithm is initialized by choosing a set of initial cluster rep
resentatives. Then, each iteration consists of two steps which are 
repeated until convergence: 

Fig. 3. Illustration of supervoxel generation and feature extraction. Left: From the average image volume Iz, computed based on the z-normalized PET and MRI 
volumes, we compute the supervoxels. In this specific image slice, the 17,000 voxels are aggregated into 315 supervoxels. Right: Within each supervoxel, we compute 
the median PET and the median MRI intensity and extract these as supervoxel feature vectors. 

Fig. 4. Scatter plot showing the z-normalized feature space. The x-axis repre
sents the MRI feature whereas the y-axis represents the PET feature. 

Fig. 5. Scatter plot showing the z-normalized Box-Cox transformed feature 
space. The x-axis represents the transformed MRI feature whereas the y-axis 
represents the transformed PET feature. 
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1. Assign xn, n = 1,…,N to the closest cluster, defined by its cluster 
representative μk,k = 1,…,K.  

2. Update cluster representatives μk, k = 1,…,K as the mean of all data 
points assigned to it. 

4.5.2. Hierarchical clustering 
Another common clustering approach is hierarchical clustering. In 

this work we employ hierarchical agglomerative clustering, which is the 
mode where all data points (supervoxels) start out as separate clusters. 
The algorithm then consists of recursively merging the most similar pair 
of clusters until we are left with one big cluster, in this way producing a 
hierarchy of nested clusterings (Theodoridis & Koutroumbas, 2008). 

In order to identify the most similar pair of clusters in each iteration, 
the proximity g between all possible pairs of clusters (Ci,Cj) is computed 
as a function of the set of affinities between pairs of observations in Ci 
and Cj (Theodoridis & Koutroumbas, 2008). This requires us to define a 
measure of proximity between data points (vectors) and between clus
ters (sets of vectors). Thus, depending on the chosen measure of affinity 
between data points and linkage between clusters, the clustering algo
rithm may lead to completely different clustering results. 

Denoting dmn the dissimilarity between observation m in cluster Ci 
and observation n in cluster Cj, we can define average linkage (Hastie, 
Tibshirani, & Friedman, 2009): 

gCL(Ci,Cj) =
1

NiNj

∑

m∈Ci

∑

n∈Cj

dmn, (7)  

where Ni and Nj are the number of observations in cluster i and j, 
respectively. 

The average linkage measures the average dissimilarity between the 
clusters and is a compromise between measuring the dissimilarity be
tween the most similar observations (single link) and the most dissimilar 
observations (complete link) in different clusters. This middle-ground 
approach is known to be less sensitive to noise and outliers as the 
measure is based on all observations in the clusters. As for the dissimi
larity between observations dmn, we examine three different measures: 
the Euclidean norm, the Manhattan norm, and the Cosine distance, 
leading to three different average linkage clustering algorithms. 

4.5.3. Spectral clustering 
The third and final clustering approach that we consider in this work 

is spectral clustering, which has become one of the most used clustering 
algorithms in recent years (Von Luxburg, 2007). It exploits the spectrum 
of the affinity matrix to perform clustering and is designed for non- 
convex problems (Hastie et al., 2009). 

In spectral clustering, we represent our data in the form of a simi
larity graph. Each vertex corresponds to an observation (supervoxel) and 
the edges connecting pairs of vertices are weighted by their pair-wise 
similarity. The problem of clustering can then be formulated as a 
graph-cut problem where we are looking for a graph partitioning such 
that edges between subsets have low weight and edges within subsets 
have high weight (Von Luxburg, 2007). 

To construct the graph, we first have to decide on a similarity mea
sure, and one of the most common choices is the radial basis function 
(Theodoridis & Koutroumbas, 2008). This is a Gaussian similarity 
function which encodes the relation between observations in a local 
neighborhood. The function is given by 

a(xi, xj) = exp

(

−
||xi − xj||

2

2σ2

)

, (8)  

where σ is a scaling parameter controlling the width of the neighbor
hood (Von Luxburg, 2007). The affinity matrix A containing the pairwise 
similarities aij = a(xi, xj) between all n observations can then be used to 
define the graph Laplacian: 

L = D − A, (9)  

where D is the degree matrix, defined as a diagonal matrix with dii =
∑

jaij. This particular matrix is known to have an important property 
that can be used to change the representation of the data (Von Luxburg, 
2007): For every vector f ∈ Rn we know that 

f ′Lf =
1
2
∑n

i,j=1
aij
(
fi − fj

)2
. (10) 

Eq. (10) can be seen as the eigenvalue decomposition of L, 

f ′Lf = λ, (11)  

which means that the eigenvector f can be thought of as a fuzzy indi
cation vector, indicating a partitioning of the graph resulting in a cut 
cost corresponding to its eigenvalue λ. Spectral clustering exploits this 
result by containing the m eigenvectors of L corresponding to the m 
smallest eigenvalues in a matrix Fm ∈ Rn×m and performs k-means 
clustering on its rows. 

In this paper, we employ spectral clustering with the normalized 
graph Laplacian, defined by 

Ln = D− 1/2LD− 1/2. (12) 

This matrix has properties similar to L and is usually preferred for 
reasons discussed by Von Luxburg, 2007. 

5. Experiments and results 

In this section, we evaluate the above-mentioned clustering algo
rithms on the task of lung tumor segmentation. We seek a clustering 
consisting of two clusters (tumor and non-tumor supervoxels) and we 
analyze the performance of the different clustering algorithms, as well as 
the influence of the proposed pre-processing steps. That is, we apply the 
clustering algorithms to z-normalized Box-Cox transformed data 
(referred to as transformed data) and evaluate the results quantitatively 
and qualitatively. For ease of comparison, all quantitative results are 
summarized in Table 2. 

5.1. Evaluation measure 

To quantitatively compare the segmentation performance of the 
clustering methods with the manual delineations, we use the voxel-wise 
dice score. The dice score, D, between two segmentations A and B is 
given by 

D(A,B) = 2
|A ∩ B|
|A| + |B|

, (13)  

which means that a dice score of 1 corresponds to a perfect match be
tween the segmentations. 

We compute both overall dice score (treating the labels of all patients 
as one segmentation), and patient-wise dice score where we report the 
mean dice score and the standard deviation over all patients. 

Table 2 
Quantitative results of 2-class clustering on the Box-Cox transformed data.  

Method Mean SD OA #Miss 

K-means 0.011 0.015 0.015 8/19  

Hierarchical_E 0.288 0.294 0.361 4/19 
Hierarchical_M 0.461 0.321 0.657 5/19 
Hierarchical_C 0.013 0.017 0.013 7/19  

Spectral 0.470 0.308 0.668 5/19 

Mean, standard deviation (SD) and overall (OA) dice score. #Miss is the number 
of tumors completely missed in the segmentation. 
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5.2. K-means clustering 

As is apparent from Table 2, k-means clustering into two clusters 
leads to poor performance with respect to dice score and we completely 
miss 8 out of 19 tumors. Taking a closer look at the clustering result by 
mapping the labels back to the image domain, we see in Fig. 6 that the 
clusters roughly represent “air/lung” and “tissue/bone/tumor” and not 
“tumor”, “non-tumor”. This is not uncommon in the unsupervised 
setting, where the model is not steered to produce specific classes. 

In order to further analyze the performance of k-means clustering, 
we successively increase the number of desired clusters up to k = 30 and 
determine the best possible performance that can be achieved in each 
step: If the one “best cluster” out of the produced number of clusters is 
selected to represent “tumor” and the union of the remaining clusters is 
treated as “non-tumor”, we can compute the maximum dice score for 
each configuration, shown by the blue curve in Fig. 7. As is apparent 
from the plot, the dice score increases as the number of clusters increases 
and we can achieve dice scores higher than 0.7 if we use a high enough k. 
In practice, the selection of the “best cluster” could be performed by 
medical experts, but we resort to finding the cluster that gives the best 
performance using label information (the label information is only used 
for evaluation). However, the merging of all non-tumor clusters is a non- 
trivial task and is not feasible in practice. 

To examine the effect of the Box-Cox transform, we have also 
included the results of clustering the non-transformed data (orange 
curve) in Fig. 7. This curve converges at a lower dice score, which is 
related to k-means’ known problems with elongated clusters and ten
dency to cluster the data into compact and uniform sized clusters. This 
experiment further confirms our suspicion that the Box-Cox trans
formation improves clusterability and we, therefore, consider only the 
transformed data in the remaining experiments. 

5.3. Hierarchical clustering 

Table 2 presents the results of clustering transformed data into two 
clusters using the different hierarchical clustering algorithms. We see 
that clustering with Manhattan distance measure achieves the highest 
overall (0.657) and mean (0.461 ± 0.321) dice score. Further, we see 
that the Euclidean distance measure achieves significantly lower dice 
scores, but misses only four out of 19 tumors, whereas the Cosine dis
tance measure yields low dice scores and a high number of missed 
tumors. 

Fig. 8 shows the clustering results mapped back to the image domain 
for five tumor slices in five different patients. It is apparent that both the 
Euclidean and Manhattan distance measure seem to cluster the data 
roughly into “tumor” and “non-tumor”, whereas the Cosine distance 
measure leads to a poor segmentation performance, similar to k-means. 

5.4. Spectral clustering 

In spectral clustering, the affinity matrix is computed using the radial 
basis function, which is standard practice (Theodoridis & Koutroumbas, 

2008). As the scaling parameter σ decides the width of the neighbor
hoods in which we encode the relations between observations, the 
parameter choice is critical for the clustering result. Here, we apply the 
rule of thumb given in Jenssen, 2009: 

σ = 0.15⋅median{dij}
n
i,j=1, (14)  

where dij is the Euclidean distance between feature vector i and j. 
Nonetheless, in our experiments, we observed that the results are robust 
to the choice of σ. Since the radial basis function results in a connected 
graph, the eigenvector corresponding to the smallest eigenvalue (=1) is 
constant (Von Luxburg, 2007). We, therefore, ignore the smallest one 
and look at the subsequent eigenvectors. Fig. 9 shows a plot of the 2nd, 
3rd, and 4th smallest eigenvectors mapped back to the image domain for 
one slice in five different patients. From the first row, we see that the 
cheapest cut (2nd smallest eigenvector) corresponds to (soft) partition
ing the graph into two subsets roughly representing “air surrounding the 
patient” and “patient”. Moving on to the third eigenvector (second row 
in Fig. 9), we see that it appears to detect the tumors. The most common 
approach in spectral clustering is to use as many eigenvectors in the final 
k-means step as there are classes in the data. However, as the third 
eigenvector seems to have the most information about the tumors, we 
first cluster the data into two clusters based on this eigenvector alone. 
This yields an overall dice score of 0.668 and a mean dice of 
0.470 ± 0.308. No improvements were observed when including the 
second and fourth eigenvectors. 

5.5. Effect of tumor size 

In our data set we have 19 tumors ranging in size from 1944 mm3 to 

Fig. 6. Visualization of k-means clustering. Result of mapping the k-means k = 2 clustering labels back to the image domain and displaying the segmentations for 
five tumor containing slices in five different patients. The two clusters roughly represent “air/lung” (yellow) and “tissue/bone/tumor” (purple). (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. K-means as function of number of clusters. Performance of k-means 
clustering with respect to maximum overall (OA) dice score as a function of 
number of clusters for standard scaled data (orange) and Box-Cox transformed 
data (blue). (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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195,744 mm3. In order to analyze the effect of tumor size on the clus
tering dice, we define two thresholds that divide the tumors into three 
groups; eight small-sized tumor (< 8000mm3), six medium-sized tumors 

(∈ [8000,80,000]mm3) and five large-sized tumors (> 80,000mm3). The 
box-plot in Fig. 10 presents the segmentation performance with respect 
to dice score for these three groups. Note that we omitted k-means 

Fig. 8. Visualization of hierarchical clustering. Result of mapping the Euclidean (top), Manhattan (middle) and Cosine (bottom) hierarchical clustering labels back to 
the image domain and displaying the segmentations for five tumor-containing slices in five different patients. For Euclidean and Manhattan hierarchical clustering, 
the two clusters roughly represent tumor (yellow) and non-tumor (purple). For Cosine hierarchical clustering, the clusters roughly represent “air/lung” (yellow) and 
“tissue/bone/tumor” (purple). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Visualization of eigenvectors. In spectral clustering, the eigenvectors of the Laplacian can be thought of as fuzzy indication vectors, indicating a partitioning 
of the graph resulting in a cut cost corresponding to their eigenvalues. This figure shows the eigenvectors corresponding to the 2nd, 3rd and 4th smallest eigenvalue 
mapped back to pixel space in five tumor slices for five different patients. The 2nd smallest eigenvector (first row) seems to partition the graph into two subsets 
roughly representing “air surrounding the patient” and “patient”. The third eigenvector (second row) appears to pick up on the tumors whereas the fourth eigenvector 
does not contain additional information about the tumors. Note that we exclude the first eigenvector as it is constant for a connected graph. 
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clustering and hierarchical clustering with Cosine distance in this 
comparison as they did not manage to pick up on the tumors. As can be 
seen in the box-plot, there is a trend towards better dice score with larger 
tumor size for all methods. The mean dice score generally increases 
while the variance decreases, yielding more robust predictions for larger 
tumors. Specifically, we see that none of the algorithms provide reliably 
high scores for small tumors, but that spectral clustering is able to 
capture some of the small tumors with good dice scores. Further, the 
difference in segmentation performance (with respect to dice score) 
among the algorithms decreases with increasing tumor size. Euclidean 
hierarchical clustering, for instance, gets a dice score close to zero for 
small tumors but seems to perform equally good as spectral clustering 
for the large tumors. 

5.6. Analysis of segmentation errors 

As the dice score treats false negatives and false positives equally, it 
is also important to evaluate the types of mistakes that each clustering 
algorithm makes. The bar plot in Fig. 11 presents the number of true 
positive (TP), false negative (FN) and false positive (FP) voxels in each of 
the segmentations obtained from the different clustering algorithms. 
The most interesting result from this analysis is that spectral clustering, 
which overall achieves the highest dice score, turns out to have the 
highest number of FNs and the lowest number of TPs, providing an 
overly optimistic segmentation (under-estimation of the tumor volume). 
Manhattan hierarchical clustering, on the other hand, which, according 

to the dice score has comparable performance, shows to actually have 
the highest number of TPs and lowest number of FNs, in this way being 
the method detecting most tumor voxels. Euclidean hierarchical clus
tering, which has the lowest dice score of the three methods to be 
compared, has a comparable (to Manhattan hierarchical clustering) 
number of TPs and FNs, but has too many FPs, resulting in an overly 
pessimistic segmentation. This means that even though the Euclidean 
hierarchical clustering fails completely for small tumors according to the 
dice score, it does not necessarily miss the tumors in the segmentation. 
Note that the sum of the segmentation mask and the ground truth mask 
in the denominator in Eq. 13 makes the dice score more sensitive to 
over-segmentation of small tumors compared to larger tumors. 

Fig. 12 shows the effects of the different types of mistakes in the 
image domain. In general, we see that Euclidean hierarchical clustering 
does not miss the tumors, but tends to over-segment the tumor class by 
including other organs, resulting in a large number of FPs. Spectral 
clustering, on the other hand, tends to under-segment the tumor volume, 
whereas Manhattan hierarchical clustering captures the most tumor 
voxels without having an alarmingly high number of FP. The two 
rightmost columns in Fig. 12 show two slices from the same patient at 
different positions and further illustrate the over-segmentation issue of 
the hierarchical algorithms (note that slice 5 does not contain tumor 
voxels). 

An interesting observation in P118-slice50 in Fig. 12 is that there is a 
“hole” in the tumor, which is a common phenomenon for large tumors in 
PET imaging. The apparent “hole” is most likely caused by necrosis, 
occurring due to shortage of oxygen supply to the tumor. We see that the 
Manhattan hierarchical clustering succeeds in exploiting the combined 
information from both modalities and provides a closed segmentation, 
as desired. 

Regarding the complete misses, we find that Euclidean hierarchical 
clustering completely misses four out of the nineteen tumors, where two 
of the misses come from the same patient. Spectral clustering and 
Manhattan hierarchical clustering miss the same four tumors, in addi
tion to one more (the same one for both). By inspecting the number of 
overlapping tumor voxels between the two modalities (using the ground 
truth segmentation masks), we find that the five tumors that are 
completely missed by the algorithms are among the six tumors with the 
least number of overlapping tumor voxels across modalities. Moreover, 
we find that for two of the missed tumors, the maximum SUV within the 
ground truth segmentation is lower than 1.3, which is a particular low 
uptake value in PET. 

In a clinical setting, the detection of tumors is arguably of utmost 
importance and over-segmentation is preferred. Only focusing on the 
number of tumors that are missed completely and therefore choosing the 
Euclidean hierarchical clustering, would, however, result in a large 
number of false-positive voxels. This means that the clinicians would be 
presented with many potential tumors that they have to evaluate, which 
in turn could lead to real tumors getting missed. Spectral clustering and 
Manhattan hierarchical clustering, on the other hand, achieve a low 
number of misses, while at the same time producing a low number of 
false-positive voxels. 

5.7. Benefit of clustering across patients 

An important contribution of this paper is the across-patients clus
tering to improve segmentation performance. In order to quantify the 
benefit of clustering across patients, we conduct an experiment where 
we Box-Cox-transform and cluster the supervoxel features of each pa
tient separately. Fig. 13, illustrates the results and visualizes the dif
ference in performance when considering patient-by-patient clustering 
versus across-patients clustering for the two best performing models. 
Across-patients clustering achieves considerable improvements for most 
tumors. For spectral clustering, for instance, the mean dice score in
creases from 0.169 ± 0.295 patient-by-patient to 0.470 ± 0.308 across- 
patients. The results for the individual patients can also be found in 

Fig. 10. Effect of tumor size. Grouped box-plot showing the effect of tumor size 
on the segmentation dice score for Euclidean hierarchical (blue), Manhattan 
hierarchical (orange) and spectral (green) clustering. The tumors are divided 
into three groups; small (left), medium (middle) and large (right) size tumors. 
The mean dice score generally increases while the variance decreases for larger 
tumors. (For interpretation of the references to colour in this figure legend, the 
reader is referred to the web version of this article.) 

Fig. 11. Segmentation errors. Bar plot presenting the number of TP: true pos
itive (tumor) voxels; FN: false negative (non-tumor) voxels; FP: false positive 
voxels. The dotted line indicates the total number of TP tumor voxels. 
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Table 3. 

5.8. Noise robustness 

Differences in imaging protocols and acquisition conditions can 
result in variations in the signal-to-nose-ratio. To evaluate the noise 
robustness of the two best performing methods, we therefore simulate a 
reduced signal-to-noise-ratio by adding noise to the images before 

performing the segmentation. Following Jayender, Chikarmane, Jolesz, 
and Gombos, 2014, we add white Gaussian noise with standard devia
tion equal to 5%,15% and 25% of the base intensity of each voxel in the 
PET and MRI images. Fig. 14 shows an example slice in PET (top) and 

Fig. 12. Segmentation errors in image domain. Overlaying segmentation results (orange) on the MRI for a few selected slices for the different clustering algorithms. 
The first row shows the ground truth (PET delineation in blue and MRI delineation in green). Note that columns 4–5 show two slices from the same patient at 
different positions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Patient-by-patient clustering versus across-patients clustering. Scatter 
plot showing dice score for patient-by-patient clustering against dice score for 
across-patients clustering. For tumors under the diagonal, the across-patients 
clustering achieved better dice scores than the patient-by-patient clustering did. 

Table 3 
Patient-by-patient versus across-patients clustering. Dice scores for patient-by- 
patient (P-by-p) and across-patients (Across-p) clustering for the two best per
forming models.   

Dice score  

Spectral HierarchicalM  

Patient P-by-p Across-p P-by-p Across-p 

100 0.0 0.549 0.550 0.549 
102 0.0 0.0 0.0 0.0 
103a 0.0 0.0 0.0 0.0 
103b 0.0 0.0 0.0 0.0 
104 0.0 0.786 0.0 0.447 
105 0.0 0.656 0.351 0.590 
108 0.485 0.612 0.777 0.750 
109 0.0 0.0 0.0 0.0 
112 0.016 0.538 0.654 0.633 
114 0.274 0.254 0.274 0.215 
115 0.0 0.432 0.326 0.752 
116 0.760 0.760 0.841 0.760 
118 0.852 0.704 0.656 0.832 
121 0.0 0.0 0.0 0.0 
123 0.058 0.732 0.043 0.239 
125 0.0 0.668 0.0 0.745 
128 0.757 0.757 0.757 0.682 
129 0.0 0.792 0.740 0.834 
131 0.002 0.696 0.696 0.727 

Mean 0.169 0.470 0.351 0.461 
Std 0.295 0.308 0.328 0.321  
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MRI (bottom) with increasing noise level towards right. 
The segmentation maps were computed in the same way as for the 

original PET/MRI images and compared to the ground truth. The ex
periments were repeated ten times (with different random seeds in the 
noise generation) and the results are reported in Fig. 15. Overall, we see 
that the spectral clustering seems to be robust to 5% and 15% noise, 
whereas it becomes unstable for 25% noise, with a drop in mean dice 
and a considerable increase in standard deviation. For Manhattan hi
erarchical clustering on the other hand, we see that the mean dice score 
drops significantly and that the standard deviation is high for all noise 
levels. 

6. Outlook and limitations 

From our results, we can see that the algorithms detect most of the 
tumors, but that there still is a relatively high number of tumor voxels 
that are wrongly segmented. From Fig. 5, it is evident that it is impos
sible to perfectly cluster tumor voxels and non-tumor voxels into two 
separate clusters, and the reason for this is twofold. Firstly, some of the 
supervoxels contain both tumor and non-tumor voxels, and secondly, 
the chosen features are not able to completely separate tumor- 
containing and non-tumor-containing supervoxels. 

The purity of the supervoxels could in theory be enhanced by 
increasing the number of supervoxels. However, this comes at the cost of 
increased computational complexity. In our experiments, a number of 
1500 supervoxels per patient was chosen as a middle-ground between 
supervoxel purity and computational cost. Nevertheless, we can not 
guarantee that this is the best setting and improved supervoxel gener
ation is left for future work. 

The median intensities within the supervoxels are in some cases 
insufficient to detect a supervoxel as “tumor supervoxel”. Other features, 
such as shape, texture, and histogram features may be able to help the 
discrimination. Radiomics is a process that extracts large amounts of 
these types of quantitative image features from medical images and has 
shown potential to improve tumor classification (Wu et al., 2016). 
However, how to exploit these large amounts of features in an unsu
pervised manner is challenging because the variance in the features does 
not necessarily reflect the classes of interest (tumor and non-tumor). 
Future efforts should focus on searching for alternative features to 
improve the discrimination between tumor and non-tumor supervoxels. 

Further, there are potential limitations connected to the nature of the 
data acquisition. Firstly, because of respiratory motion, the PET and MRI 
can not be assumed perfectly co-registered. An unsupervised co- 
registration was performed to improve the tumor overlap, but miss- 
matches are still present in the data set. Another limitation is the rela
tively small sample size. 

7. Conclusion 

In this paper, we proposed a framework for across-patients super
voxel-based unsupervised lung tumor segmentation in PET/MRI. We 

analyzed the segmentation results for several commonly used clustering 
algorithms within the framework, investigating their advantages and 
shortcomings. Results demonstrate that spectral clustering and Man
hattan hierarchical clustering have the potential to segment tumors in 
PET/MRI by producing a low number of missed tumors while main
taining a low number of false-positives. In the presence of low to mod
erate noise levels, spectral clustering provides stable results whereas 
Manhattan hierarchical clustering seems to be more sensitive to per
turbations in the voxel intensities. The results further highlight the 
importance of performing clustering across patients, and an analysis of 
the clustering errors illustrates that it is a particular challenge to 
segment small-size tumors in the presence of imperfect co-registration. 
Moreover, the framework represents a step towards generic unsuper
vised tumor segmentation also beyond the lung tumor segmentation 
task. 
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