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ABSTRACT
Current projections suggest that climate warming will be accompanied by more
frequent and severe drought events. Peatlands store ca. one third of the world’s soil
organic carbon. Warming and drought may cause peatlands to become carbon sources
through stimulation ofmicrobial activity increasing ecosystem respiration,with positive
feedback effect on global warming. Micro-eukaryotes play a key role in the carbon cycle
through food web interactions and therefore, alterations in their community structure
and diversity may affect ecosystem functioning and could reflect these changes. We
assessed the diversity and community composition of Sphagnum-associated eukaryotic
microorganisms inhabiting peatlands and their response to experimental drought
and warming using high throughput sequencing of environmental DNA. Under drier
conditions, micro-eukaryotic diversity decreased, the relative abundance of autotrophs
increased and that of osmotrophs (including Fungi and Peronosporomycetes) de-
creased. Furthermore, we identified climate change indicators that could be used as early
indicators of change in peatland microbial communities and ecosystem functioning.
The changes we observed indicate a shift towards a more ‘‘terrestrial’’ community in
response to drought, in line with observed changes in the functioning of the ecosystem.
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INTRODUCTION
Although much remains to be done before we can fully predict future climate variability
(Ljungqvist et al., 2016), current projections suggest that climate warming will be
accompanied by more frequent and severe drought events (Dai, 2013) thus affecting
terrestrial communities. Amongst these, eukaryotic micro-organisms play key roles
in ecosystem functioning as primary producers, decomposers predators and parasites
(e.g., Fell et al., 2006; Geisen et al., 2018; Jassey et al., 2013a). Alterations in micro-
eukaryotic community structure and diversity caused by ongoing environmental changes,
including global warming and drought, may affect ecosystem functioning (Arndt &
Monsonís Nomdedeu, 2016; Petchey et al., 1999), making it all the more necessary to include
micro-eukaryotes in climate change studies (Cavicchioli et al. (2019).

Peatlands store one third of the world’s soil organic carbon (i.e., 500 ±100 GtC; Yu,
2012), but are particularly sensitive to climate induced perturbations, threatening their
role in the C-cycle. Indeed, warming accompanied by drought which stimulates microbial
activity (Bardgett, Freeman & Ostle, 2008; Freixa et al., 2017) leads to disruption of the
peatlands’ function as C sinks and turns these ecosystems into carbon sources through
increased respiration (Dorrepaal et al., 2009), with positive feedback effect on warming
(Baird et al., 2013; Davidson & Janssens, 2006; Gorham, 1991; Yu, 2012). Peatland carbon
balance is controlled by primary production (mainly by plants, to a lesser extent by
autotrophic and mixotrophic micro-organisms; Jassey et al. (2015)) and decomposition
(mainly by bacteria and fungi). Microbial activity is increased by micro-eukaryotic grazing
on bacteria and fungi (e.g., Hahn & Höfle, 2001), implying that the standing biomass of
bacteria and fungi does not necessarily correlate to decomposition intensity and their
turnover may be enhanced under warmer or drier conditions. Therefore, identifying the
factors that influence micro-eukaryotic community structure and diversity is crucial for
our understanding of potential peatland feedbacks on climate warming.

The significance of peatlands in the global C cycle is in large part due to the unique
biological characteristics of Sphagnummosses, the main builders of high latitude peatlands.
Sphagnum mosses are adapted to acidic, water-logged and nutrient-poor conditions,
which they contribute to create (Rydin, Jeglum & Hooijer, 2006). Clymo & Hayward (1982)
suggested that more C might be stored in Sphagnum (living and dead) than in any other
plant genus. Sphagnum and its associated specific microbial community constitutes a
microecosystem called ‘‘sphagnosphere’’ and this complex system may be the key to the
nutrient cycling in peatlands (Chiapusio et al., 2013), and hence to its C-sequestrating
function. Sphagnum-associated microbial communities change in composition and
also functionally along climatic (Singer et al., 2019) and micro-environmental gradients
(Mitchell et al., 2003). The Sphagnum microbiome may supports its host through nutrient
supply and defence against pathogens (Bragina et al., 2013; Raghoebarsing et al., 2005), and
ultimately the ecosystem under changing climate (Bragina et al., 2014).

Micro-eukaryotes include protists, fungi, microscopic animals and eukaryotic ‘‘micro-
algae’’. These organisms are essential components of peatland ecosystems (Lara et al., 2011;
Reczuga et al., 2018). Phototrophic micro-eukaryotes (=‘‘microalgae’’, here excluding
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cyanobacteria) in peatlands play key roles in photosynthetic C fixation and thus in
primary production (e.g., Jassey et al., 2015; Schmidt, Dyckmans & Schrader, 2016), while
organic matter cycling is driven by phagotrophic protists predating on bacteria and fungi
(Jürgens & Sala, 2000; Ribblett, Palmer & Wayne Coats, 2005). Micro-eukaryotes take part
in nutrient cycling by transferring nutrients to higher trophic levels through microbial
food web (Crotty et al., 2012; Gilbert et al., 1998). For example, soil protists grazing on
bacteria and other microorganisms release nitrogen and other nutrients making them
available for plants (Bonkowski, 2004). In Sphagnum-associated microbial community,
large amoebae are top microbial predators and consume a wide variety of prey, such as
bacteria, fungi, micro-algae and micro-invertebrates (Jassey et al., 2012). Micro-eukaryotes
can also act as parasites of other organisms (Geisen, 2016b; Geisen et al., 2015) and play
numerous important, previously unrecognized, functions (Geisen, 2016a). Despite growing
knowledge about the diversity of eukaryotic microbes associated with Sphagnum (Jassey et
al., 2013a; Jassey et al., 2015; Singer et al., 2019; Tsyganov et al., 2012), still little is known
about their response to climate changes.

Warming has indirect effects on microbial food web structure, altering the community
composition and ecosystem functioning (Jassey et al., 2011). For instance, Tsyganov et al.
(2012) have shown that the response to climate change differs among seasons, and that
testate amoebae, a dominant group of microbial top predators in peatlands (Gilbert et al.,
1998; Jassey et al., 2013b; Jassey et al., 2012;Meyer et al., 2013;Mieczan, 2007) are especially
sensitive during the growing season. Tveit et al. (2015) showed that warming caused an
increase in the relative abundance of Cercozoans (phagotrophic protists), higher substrate
turnover and microbial activity as well as changes in methanogenic pathways. Jassey et
al. (2013a) demonstrated that warming reduced the abundance of top predators while
the biomass of bacteria increased. Such changes in microbial community structure can
potentially alter the above- belowground linkages, destabilizing the C cycle (Jassey et al.,
2013a).

Peatlands are particularly sensitive to drought, as these ecosystems are primarily
controlled by the highwater level that creates anoxic conditions allowing peat to accumulate.
Indeed, severe droughtmight induce changes in peatland ecosystem function, turning them
into carbon sources (Jassey et al., 2018). Drought alters community composition (Potter et
al., 2017), shifting the community towards species adapted to dry habitats (Koenig, Mulot &
Mitchell, 2018). Prolonged drought conditions might lead to loss of key species or decrease
their abundance below the level necessary to drive ecosystem function (Jenkins & Boulton,
2007). The resulting destabilization of the food-web structure might then cross a tipping
point and shift the C balance (Dakos et al., 2019; Lamentowicz et al., 2019).

The goal of this study was to assess the diversity and community composition of
eukaryotic microorganisms inhabiting Sphagnum in peatlands, with amain focus on protist
communities, and their response to experimental drought and warming. We hypothesized
that (1) the diversity and community structure of micro-eukaryotes vary in response
to drought and warming. More specifically, we hypothesised that (2) drought causes a
decrease in the relative abundance and diversity of primary producers, as microalgae
predominantly inhabit aquatic environments (e.g., Ray et al., 2019), (3) an increase in
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the diversity and relative proportion of fungi, as it has been suggested that drought leads
to increased dominance of fungi (Jensen et al., 2003), and this agrees with observational
evidence for a higher contribution of fungi to overall microbial biomass under drier
conditions (Mitchell et al., 2003), although responses might be site-specific (Jaatinen et al.,
2007); (4) the effects of drought are exacerbated by the effects of warming; and (5) drought
has a stronger effect than warming. To this aim, we conducted a passive warming and water
table depth field manipulative experiment and assessed the diversity of micro-eukaryotes
by high throughput sequencing (Illumina HiSeq) of the SSU rRNA V9 region.

MATERIALS AND METHODS
Study site and field experiment
The study site, Linje peatland (53◦11′15′′N, 18◦18′34′′E), is situated in northern Poland
within the Complex of Chełmno and Vistula Landscape Parks at 91 m a.s.l. The climate is
classified as warm temperate, fully humid with warm summers (Kottek et al., 2006) or cold
without dry season with warm summer (Beck et al., 2018). Average annual precipitation in
this region is between 500–550 mm and average annual air temperature is between 7.5–
8.0 ◦C. The peatland is dominated by Sphagnum fallax, Eriophorum vaginatum, Oxycoccus
palustris, Andromeda polifolia, Aulacomnium palustre, and Drosera rotundifolia (Boiński &
Boińska, 2004). The experimental site included also shrubs and young trees such as Betula
nana and Pinus sylvestris, respectively.

To simulate warming, we used Open Top Chambers (OTCs), which are commonly
used in manipulative experiments in situ (e.g., Delarue et al., 2011; Jassey et al., 2013a;
Marion et al., 1997), while water table depth was manipulated by adding or removing
peat (Lamentowicz et al., 2016; Reczuga et al., 2018). The advantage of manipulative
field experiments is that they are performed under realistic environmental conditions
with community composition and abiotic drivers as they appear and work in the field
(Underwood, 2009). Field experiments were approved by The Regional Directorate for
Environmental Protection in Bydgoszcz (WPN.6205.70.2011.KLD). The experimental
design with plots and treatments are given in Fig. 1.

In August 2012, experimental plots were defined according to a full factorial design
involving two temperatures and three water table depths. The temperature increase effect
was manipulated using OTCs or let under ambient temperature as control (AMB). OTCs
are passive warming systems that allow increasing mean temperature by ca. 1.2 ◦C to 1.8 ◦C
(Marion et al., 1997). The hexagonal OTC chambers were constructed with transparent
polycarbonate material. The internal diameter between opposite corners was 250 cm at the
base. To allow for air circulation, the OTCs were placed 10 cm above the soil surface. We
manipulated water table depth by adding or removing 10 cm layers of peat in 1-m2 plots.
For each plot four subplots (50 × 50 cm and 30 cm thick) were cut. They were attributed
to different measures (e.g., moss sampling for this study, respiration, biomass). Each plot
belonged to one of three water table treatments: control (subplots cut and put back in place,
abbreviation: CON), wet (10 cm of peat removed beneath each subplot before putting the
subplot back in place, abbr.: WET), dry (10 cm of peat added from the wet treatment before
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Figure 1 Experiment design showing localization of the plots on the experimental site with its board
walk.Hexagons indicate warming treatment (OTC), squares indicate plots without OTC. Water table
treatments are indicated with colours as shown in the legend. Adapted from Lamentowicz et al. (2016).

Full-size DOI: 10.7717/peerj.9821/fig-1

putting the subplot back in place, abbr.: DRY). CON treatment was cut and put back in
place to control for the disturbance introduced by cutting. Each plot was a combination
of one of the three water table treatments and one of the two warming treatments. All
six combinations were replicated three times, giving a total of 18 plots (subplots within
the experimental plot belonged to the same treatment). Treatments were assigned to the
plots randomly. Air temperature was recorded in each plot at 30 cm height using HOBO
U23 Pro v2 data loggers (Onset Computer Corporation, USA) and the water table depth
(WTD) was measured at each sampling (given in cm below the soil surface). Whenever
we are referring to the measured values we use abbreviation WTD, while term ‘‘water
table treatments’’ is used when we refer to the levels of manipulation (i.e., DRY, CON,
and WET). A subset of the data from the experiment described in this study has already
been published elsewhere (Jassey et al., 2018; Lamentowicz et al., 2016; Samson et al., 2018).
The experimental design was described by Lamentowicz et al. (2016), where further details
can be found. The effect of warming manipulation on temperature has been published in
Samson et al. (2018), a study describing influence of warming and water table treatments
on carbon dioxide release.
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DNA extraction, PCR amplification and next-generation sequencing
Two to three individual Sphagnum stems (top three cm, including capitula) were sampled
in three different seasons in each of the plots on May 16th (spring), August 20th (summer)
and November 7th (autumn) in year 2013 and fixed in LifeGuardTM Soil Preservation
Solution (MoBio, Carlsbad, CA USA). The plots were placed in monospecific Sphagnum
fallax lawns and therefore we did not consider the species level identification of the sampled
Sphagnum. In total 54 samples were taken (6 combinations of treatments * 3 replicates * 3
seasons). We sampled only the top part of the mosses as previous studies proved this part
to be the most sensitive to the changes in the water table depth and warming manipulations
(Basińska et al., 2020; Reczuga et al., 2018). DNA was extracted using the PowerSoil R©DNA
isolation kit (MoBio, Carlsbad, CA USA) according to the manufacturer’s instruction. The
DNA was extracted from two to three sampled Sphagnum mosses, which is approximately
0.3 –0.5 g of material per plot. PCR amplification of the SSU rDNA V9 region was
carried out with eukaryotic-specific primers 1380F (CCCTGCCHTTTGTACACAC) and
1510R (CCTTCYGCAGGTTCACCTAC) (Amaral-Zettler et al., 2009). PCR reactions were
conducted according to the following conditions: denaturation at 95 ◦C for 3 min, 25
cycles at 94 ◦C for 30 s, 57 ◦C for 30 s and 72 ◦C for 60 s and final extension at 72 ◦C
for 10 min (Amaral-Zettler et al., 2009). PCR reactions were run with a SensoQuest
Labcycler (GmbH, Göttingen, Germany) with 3 l of environmental DNA extract, 4 µL of
5X Colorless GoTaq R©Buffer, 0.6 µl of each primer, 0.6 µl of dNTP Mix 10 mM (Promega,
Dübendorf, Switzerland) and 0.2 µl of 0.05U/ µl Go Taq Polymerase (Promega, Dübendorf,
Switzerland). Each PCR reaction was performed with a positive and a negative control.
Negative controls included PCR reaction mix with DNA extract replaced with water. The
purification step was done using theWizard R©SVGel and PCRClean-Up System (Promega,
Madison, WI USA). Library preparation and paired end sequencing was performed at the
iGE3 Genomics Platform of the University of Geneva, Geneva, Switzerland using Illumina
Hiseq technology (2 × 150 bp).

Sequence analysis
The computational pipeline used to analyse the reads includes the following steps: trimming
of the tagged primer sequences, quality check, removal of rare sequences (i.e., OTU’s
occurring less than 3 times in the full dataset), clustering, and taxonomic assignation.
For a given read, the quality check was based on moving windows of 50 nucleotides. The
probability of incorrect base call was calculated for every nucleotide based on the phred
score and arithmetic mean of these probabilities was calculated for every window. To
avoid artefactual sequences; for the same purpose, we kept only reads that were present
at least three times in the full dataset (De Vargas et al., 2015). Sequence clustering was
then performed using Swarm v. 1.2.12 (Mahé et al., 2014). Taxonomic assignation of the
resulting OTUs (Operational Taxonomic Units) was done by pairwise alignment of the
dominant sequences of each OTU against a selection of dereplicated V9 regions from
the PR2 database (Guillou et al., 2013) using ggsearch36 v. 36.3.6 (Pearson, 1999). The
sequences assigned to Metazoa and Embryophyceae were excluded from further analysis.
In order to remove possible false positive sequences only OTU’s occurring at least 10
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Table 1 Taxonomic groups corresponding to each functional group. The list of taxa is based on OTU
assignations using the PR2 database.

Functional group Taxonomic groups from PR 2 database assigned to the
given functional group

Autotrophs Dinophyceae, Chlorophyceae, Mamiellophyceae,
Trebouxiophyceae, Klebsormidiophyceae,
Zygnemophyceae, Bacillariophyta,
Eustigmatophyceae

Mixotrophs Euglenozoa, Cryptophyceae, Prymnesiophyceae,
Chrysophyta (pro parte)

Phagotrophs Colpodea, Heterotrichea, Litostomatea, Nassophorea,
Oligohymenophorea, Phyllopharyngea, Prostomatea,
Spirotrichea, Mycetozoa-Myxogastrea, Variosea,
Discosea-Longamoebia, Heterolobosea, Centroheliozoa,
Katablepharidaceae, Choanoflagellatea, Nucleariidea,
Endomyxa, Filosa-Granofilosea, Filosa-Imbricatea, Filosa-
Metromonadea, Filosa-Sarcomonadea, Filosa-Thecofilosea,
Bicoecea, Hyphochytriomyceta, Labyrinthulea, MAST,
Chrysophyta (pro parte)

Osmotrophs Ascomycota, Basidiomycota, Blastocladiomycota,
Zoopagomycota, Mucoromycota

Parasites Apicomplexa, Cryptomycota, Rhyzophidiales,
Ichthyosporea, Oomycota (Peronosporomycetes)

times in the dataset were retained for further numerical analyses. Based on the taxonomic
assignation, each OTU was assigned to a functional group (autotrophs, mixotrophs,
parasites, osmotrophs and phagotrophs) according to Table 1. The assignation of OTUs to
the functional groups was based on the expert curation (Enrique Lara). OTUs annotated
in PR2 database with an unknown taxonomic identity (Guillou et al., 2013), were cross-
checked individually by aligning them against the NCBI’s nucleotide database using BLAST
algorithm with default parameters.

Growing degree day
To link the micro-eukaryotic communities with warming, we used a growing-degree day
(GDD) approach, also known as accumulated degree day (ADD). The GDD is widely being
used to predict plant and insect phenology and has more recently been used to relate e.g.,
grasshopper and butterfly community changes to climate change (e.g., Cayton et al., 2015;
Nufio et al., 2010).

GDD=
Tmax+ Tmin

2
− Tbase

where,
Tmax are daily maximum air temperature in ◦C,
Tmin are daily minimum air temperature in ◦C,
Tbase is a base temperature, equal to 10 ◦C.
For each sample, the GDD was calculated for 135 days—the number of days since the

beginning of the year until the first sampling.
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Numerical analysis
All statistical analyses were performed in R version 3.5.1 (R Core Team, 2012) using
RStudio Version 1.1.423 (RStudio Team, 2012). Whenever measured water table depth is
used as a variable, we call it WTD, while whenever term ‘‘water table treatments’’ is used
we refer to the levels of manipulation (i.e., DRY, CON, WET). The warming treatment
effect on GDD and water table treatment on WTD was tested using ANOVA followed
by Tukey multiple comparisons of means. We tested for treatment effects (both warming
and water table manipulation) on the diversity patterns of micro-eukaryotic communities
using the Shannon diversity index, rarefied OTU richness and evenness. OTU richness
was estimated using rarefy function in the vegan package (Oksanen et al., 2014) at the
sample size of 2410 (minimum number of reads across all samples) to compensate for the
variability of the sample sizes. The sequencing effort between the samples was compared
by drawing rarefaction curves using rarecurve function and by comparing slope calculated
using rareslope function of the vegan R package (Oksanen et al., 2014). The slope was
also calculated at the sample size of 2410. To test the significance of differences along
measured WTD and temperature gradient (calculated GDD) linear mixed effects models
with measured WTD and calculated GDD as fixed factors and season nested in plot as a
random effect to account for the differences between plots across time. The assumptions
of homoscedasticity and normality were previously tested. The tests were performed using
lme function in the nlme package (Pinheiro et al., 2019). To further test the correlation
between diversity and WTD and GDD, we calculated Pearson’s correlation using cor.test
function.

Subsequently, to test the response of micro-eukaryotes to the GDD, measured water
table depth (WTD (cm)) and seasons, at the community level, we performed an RDA
(Redundancy Analysis) based on Hellinger-transformed OTU counts. The RDA was done
using rda function in the vegan package (Oksanen et al., 2014). Significance tests of each
variable and axis in RDA models were tested using permutation tests (anova.cca function
in the vegan package). To identify micro-eukaryotic indicators of climate change, we used
Dufrene-Legendre indicator species analysis (Dufrêne & Legendre, 1997) and multipatt
function in the indicspecies package (De Cáceres & Legendre, 2009). To manually verify
taxonomic assignation against more wholesome database, the selected indicators’ (with the
highest indicator value) sequences were cross-checked by aligning them against the NCBI’s
nucleotide database using BLAST algorithm with default parameters.

RESULTS
Warming and water table manipulation effects on microclimatic
conditions
Mean maximum daily temperature was about 1.1–1.2 ◦C higher in the OTC than in
the ambient plots (Samson et al., 2018). The warming effect varied seasonally and over
daytime, reaching a maximum effect of 1 4.1 ◦C on 5th of May 2013 and causing a slight
cooling effect during winter and during the night (Lamentowicz et al., 2016). Mean daily
air temperature was calculated on the basis of 10-minute averages. For each sampling, the
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temperature of the month prior to the sampling was calculated as the average of the mean
daily air temperature. This mean was higher in the OTC than in ambient plots in spring
and summer periods (by 0.54◦ and 0.43◦, respectively). In each season WTD was higher
(i.e., lower water table) in DRY as compared to the CON and WET. Mean WTD in DRY
was 15 cm, 46 cm and 25 cm in spring, summer and autumn sampling, respectively, while
in CON it was nine cm, 40 cm and 19 cm and in WET it was eight cm, 40 cm, 19 cm
(Table S1, Fig. S1). Significant differences were observed between CON and DRY as well
as between WET and DRY (Tukey, p< 0.05), while no significant difference was observed
between WET and CON (Tukey, p= 0.6). GDD differed significantly (ANOVA, p <0.05)
between AMB and OTC across seasons, with mean GDD of 76, 732 and 549 in AMB spring,
summer and autumn periods, respectively, while OTC mean GDD was 101, 847 and 615
in spring, summer and autumn periods, respectively (Table S2). Significant differences
between GDD in AMB and OTC were observed at each season (Tukey, p< 0.05). The
environmental variables in experimental plots are provided in Data S1.

Micro-eukaryotic community structure
The Illumina sequencing generated 37,804,202 raw eukaryotic SSU V9 reads. Of these, the
number dropped to 29,791,631 after quality check. These sequences were then clustered
in 2,043 OTUs, reduced to 1,397 OTUs after removing sequences assigned to Metazoa or
Embryophyceae. The abundance of each of the 2,043 OTUs in experimental plots is shown
in Data S2, while the dominant sequence of each OTU is shown in Data S3. For ecological
analysis, all assignations with similarity below 80%were excluded, leaving 1,226 OTUs. The
majority of OTUs were assigned to the following five eukaryotic supergroups in decreasing
order of taxonomic richness (i.e., 614, 214, 152, 99 and 83 OTUs): Opisthokonta, Alveolata,
Archaeplastida, Rhizaria, respectively. A total of 369 OTUs (26.4% of the total number of
OTUs) were assigned to taxa with a similarity above 97%. Among these, 250 were assigned
to fungi and 119 to other taxa. Fungi OTUs reaching 97% of identity with the database
constituted 40% of all fungi while only 16% of the other taxa reached the identity threshold
illustrating the knowledge gap between fungi and protists.

Warming and water table manipulation effects on micro-eukaryotic
diversity
The rarefaction curves (Fig. S2) clearly showed that the sequencing effort was not saturated
at the sample level. However, when considering the whole dataset, the rarefaction curve
indicated that the majority of micro-eukaryotic diversity was recovered. To compensate
for the saturation variability among treatments, the OTU richness was calculated on a
rarefied community in order to compare the effect of the different treatments. We did
not observe significant differences in the slope of the rarefaction curves among water
table or warming treatments (ANOVA, p= 0.6 and p= 0.9, for warming and water
table treatments, respectively; Fig. S3). Linear mixed effect models revealed that Shannon
diversity, evenness and rarefied OTU richness differed significantly along WTD and GDD
(ANOVA, p< 0.01, Table S3). All diversity indices declined significantly with increasing
WTD (Fig. 2, cor = −0.3 for all diversity measures, p< 0.05). No significant correlation
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was observed between GDD and biodiversity metrics. Shannon diversity and OTU richness
were higher in autumn as compared to summer and spring. No significant difference was
observed between warming treatments. The Shannon diversity, evenness, OTU richness
and rarefied OTU richness in each analysed sample are given in the Table S4.

Micro-eukaryotic community response to the experimental
manipulation
The redundancy analysis (RDA) revealed significant correlations betweenmicro-eukaryotic
communities and WTD (anova.cca permutation test, p= 0.001), GDD (p= 0.001) and
season (p= 0.001). The full RDA model explained 22.5%, most of this (16.6%) being
explained by seasons. To disentangle the seasonal effects from the influence of other
environmental factors, we performed RDA with season as a conditional variable (Fig. 3).
Here again, WTD (p= 0.014) and GDD (p= 0.017) were significant. The partial RDA
model explained 5.9% (p= 0.003) of the variance. RDA model with water level and
temperature treatments as variables and with season as a conditional variable revealed
significant differences between water level treatments (p= 0.001), while the difference
between temperature treatments was insignificant (p= 0.147; Fig. S4).

Among the 1,226 OTUs, 216 were considered autotrophs, 52 mixotrophs, 42 parasites,
579 osmotrophs and 319 phagotrophs (Table 1). Eighteen OTUs that could not be placed
phylogenetically within any phylum, and therefore could not be functionally assigned, were
excluded from the analysis. In the DRY treatment in spring, we observed a higher relative
abundance of autotrophs and phagotrophs and a lower relative abundance of osmotrophs
and parasites as compared to the WET and CON treatments. No such difference between
treatments was observed in summer and autumn (Fig. 4).

Micro-eukaryotic indicators of global change
The indicator species analysis with each treatment as a separate group, allowed identifying
109 indicator OTUs (Table S5). A total of 96 OTUs were DRY indicators, 10 were WET
indicators and three were identified as CON indicators (p< 0.05). Among the 96 DRY
indicators, 28 were assigned to Fungi, 23 to Chlorophyta, 17 to Ciliophora, 14 to Cercozoa,
six to Dinophyta, two to Cryptophyta and Stramenopiles, one to Apicomplexa, Discoba,
Mesomycetozoa and Streptophyta. The DRY indicator with the highest indicator value was
OTU_X77 (100% similarity with Cortinarius sp.) which had an indicator value of 0.963.
The relative abundance of this OTU was highest in autumn (Fig. 5). Among the 10 DRY
indicators with the highest indicator value, five were assigned to Archaeplastida (including
four assigned to Trebouxiophyceae), four to Fungi and one to Alveolata (Colpodidae;
Table 2). The increase of the relative abundance of autotrophs in spring corresponded to
indicator algae adapted to dry soil environment and capable of symbiosis with lichens,
such as Elliptochloris, (Trebouxiophyceae, Metz et al., 2019). The relative abundance of
OTUs assigned to Elliptochloris, predominantly terrestrial taxa (Gustavs et al., 2017; Rindi,
Hodkinson & Jones, 2011), increased from 1% in CON plots in May to 6% in DRY plots in
May (Fig. S5), showing a shift towards a more terrestrial community.

A total of 27 indicators were identified for ambient vsOTC, nine of whichwere indicators
of ambient temperature and 18 were indicators of warming (p< 0.05; Table S6).
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Figure 2 Diversity measures (Shannon diversity - A, evenness - B and rarefied OTU richness - C) plot-
ted against water table depth (WTD (cm)). Colours indicate different seasons: green for spring, yellow for
summer and blue for autumn sampling campaigns. Filled symbols indicate warming (OTC), empty sym-
bols indicate ambient temperature. Water table treatments are indicated by symbols: ‘�’ = CON (control);
N = DRY and ‘H’ = WET. The solid line represents the coefficients estimated in the linear mixed effects
model.

Full-size DOI: 10.7717/peerj.9821/fig-2
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Figure 3 Redundancy analysis (RDA) ordination diagram showing patterns of eukaryotic communi-
ties on Sphagnum shoots as assessed by OTUs in the different plots. Season (spring, summer and au-
tumn sampling campaigns) is specified as a conditioning variable (‘‘covariable’’) partialled out before
analysis. Filled symbols indicate warming (OTC) and empty symbols indicate ambient temperature. Water
table treatments are indicated by symbols: ‘�’ = CON (control); ‘N’ = DRY and ‘H’ = WET. Centroid of
each water table treatment is connected with its members with lines. Percentages of variance explained are
given for each axis.

Full-size DOI: 10.7717/peerj.9821/fig-3

DISCUSSION
Micro-eukaryotes, as key components of terrestrial ecosystems functioning, are vulnerable
to ongoing climate change, which threatens global biodiversity (Geisen, Wall & Putten,
2019; Urban, 2015) making it urgent to gain insight into upcoming changes. Micro-
eukaryotes are vulnerable to extinctions (Cotterill et al., 2013) and species loss may lead to
cascading effects (Pearse & Altermatt, 2013) and disrupt ecosystem functioning (Santschi
et al., 2017). It is expected that in stable habitats where the majority of species are near
their thermal optima, taxonomic diversity will decrease with warming (Woodward, Perkins
& Brown, 2010). Analogically, in stable peatlands, where the majority of micro-eukaryotes
are near their humidity optimum, the diversity in the Sphagnum layer can be expected
to decrease under drier conditions. Here, we confirm these hypotheses as diversity was
negatively correlated with WTD. The diversity decrease might result in local loss of
specialized species adapted to permanently water-logged conditions. These disappearing
species may be replaced by taxa better adapted to new conditions.

Conserving biodiversity is viewed as essential in part because our current knowledge does
not allow to state which species are critical to the functioning of ecosystems and provide
resilience and resistance to global changes (Chapin III et al., 2000). This is particularly true
for micro-eukaryotes, whose significance in functioning of ecosystems has only recently
been re-brought to light and which we know have important and sometimes unrecognized
functions (Geisen et al., 2017).

The community composition of Sphagnum-associated micro-eukaryotes has only
recently started being studied through molecular approaches. High throughput
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Figure 4 Relative abundance of sequences assigned to functional groups by water table treatment and
by season in the different plots. Taxonomic groups corresponding to each functional group are given in
Table 1. Bars indicate standard errors. The relative abundance (%) is a number of OTUs in a given func-
tional group, divided by the total number of all OTUs combined.

Full-size DOI: 10.7717/peerj.9821/fig-4
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Figure 5 Relative abundance of a selected DRY indicator (OTU X77) with the highest indicator value
(0.96), assigned to Fungi, Cortinarius (see also Table 2). The relative abundance (%) is a number of a
given OTU, divided by the total number of all OTUs combined.

Full-size DOI: 10.7717/peerj.9821/fig-5

Table 2 Micro-eukaryote indicator OTUs and corresponding taxonomic assignation of DRY indicators with the highest indicative value. P-
value indicate the probability to have a higher IndVal by chance.

Taxonomic assignation of OTUs OTU code Accepted taxonomic rank Indicator value p-value Percent identity

Alveolata Colpodida X227 Colpodidae 0.887 0.001 95
Archaeplastida Trebouxiophyceae X104 Elliptochloris reniformis 0.941 0.001 100

Microthamniales X118 Environmental seq 0.933 0.001 100
Trebouxiophyceae X100 Coccomyxa sp. 0.916 0.001 100
Trebouxiophyceae X115 Environmental seq 0.864 0.002 100
Trebouxiophyceae X250 Elliptochloris sp. 0.84 0.002 95

Fungi Agaricomycotina X77 Cortinarius sp. 0.963 0.001 100
Pezizomycotina X43 Venturia sp. 0.957 0.019 100
Agaricomycotina X64 Agaricomycete 0.896 0.017 95
Agaricomycotina X180 Lactarius sp. 0.827 0.004 100

sequencing (HTS) studies revealed that taxa previously believed to appear almost only
in aquatic environments are present in moss-associated communities. For example,
Dinoflagellates were recently reported in moss-associated communities (Heger et al., 2018)
and Chrysophyceae and Kinetoplastida in soils (Lentendu et al., 2018). We also recorded
these three groups in our study. As we gain insight into the community composition of
micro-eukaryotes, the information on the function of the micro-eukaryotes associated
with Sphagnum remains largely unknown. Identifying which micro-eukaryotes form close
associations with Sphagnummosses and what influence they have on their host and on the
functioning of the ecosystem, remain open questions.

Accordingly, the DRY plots were characterized by the presence of predominantly
terrestrial taxa, among which many Trebouxiophyceae, such as Elliptochloris (Gustavs et al.,
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2017; Rindi, Hodkinson & Jones, 2011). Soil microalgae are better adapted to dehydration,
rapid changes in temperature and intense solar radiation than their freshwater counterparts
(Gray, Lewis & Cardon, 2007). Several members of the Trebouxiophyceae form symbiotic
associations with lichenizing fungi (Metz et al., 2019). These associations are primarily
terrestrial and most of them cannot survive permanently water-logged conditions
(Hawksworth, 2000).

One of the indicators of drought (OTU_X77) is related to Cortinarius sp.,
(Agaricomycetes). This ectomycorrhizal fungi, commonly found in peatlands, is associated
with the roots of Picea, Larix, Salix, and Betula (Thormann, 2006). Betula nana occurred in
our plots and Pinus sylvestris grew in proximity of the plots, and both of these species could
thus be the host for the OTU_X77. Encroachment of shrub and tree species is observed in
pristine and drained peatlands in response to water loss and/or warming (Berg et al., 2009;
Fay & Lavoie, 2009). It determines a shift in plant formation towards forest ecosystem.
This transition increases water losses through evapotranspiration (Fay & Lavoie, 2009).
Our observation of the drought indicator OTU_X77 may, therefore, be an early sign of
these transition. However, contrary to our expectation, we did not observe an overall
increase in diversity and relative abundance of fungi.

The HTS approach allows for DNA-based species identification and biodiversity
assessment (Taberlet et al., 2012) but does not directly inform on the species’ function,
activity or metabolic state. While functions can, to some extent, be inferred from taxonomy
(Adl et al., 2019), detailed knowledge about the function of many protists is still missing.
Nevertheless, our study allows already to identify taxa which should be studied in more
detail in priority to better understand how the observed changes in their abundance will
affect ecosystem functioning.

The presence of these new taxa suggests a shift in the species composition and structure
of microbial communities in response to water table drawdown towards terrestrial taxa.
We also observed an increase in the diversity and relative abundance of terrestrial algae
during the late spring, at the time of spring blooms (Fig. 4). Earlier algae blooms can
be triggered by climate warming (Peeters et al., 2007) as warming might physiologically
facilitate algal growth (Barton et al., 2003). Shifts in algal blooms timing are known to
affect biological interactions within food-webs, such as competition (Peeters et al., 2007).
Therefore, further studies are necessary to better understand by which mechanism drought
stimulates the appearance of terrestrial algae and its consequences for the food-web. The
drought simulated in this work, as a result of the manipulation, was probably more severe
than the simple water table fall of about 10 cm. Possible cause of such scenario is a change
in the peat position in boundary layer, and so altered evapotranspiration leading to more
extreme drying. We can also expect more convective effects further enhancing the drought
effect.

Changing biodiversity is affecting ecosystem functioning and the resilience of ecosystems
to environmental change (Chapin III et al., 2000). For example, increased species richness
may accelerate the decomposition of peat as a result of synergistic effects (Salonius, 1981).
These effects are likely to be observed in species-poor ecosystems, where the occurrence
of new species entails new functionalities (Vitousek & Hooper, 1994). In species-rich
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ecosystems, the impact of increased species richness on ecosystem processes is likely to
be lowered due to functional redundancy (Chapin III et al., 2000; Johnson et al., 1996).
Although there is no universal link between species diversity and ecosystem processes,
certain processes are being fulfilled only by a handful of species and loss of these species
might have huge consequences for ecosystem functioning (Chapin III et al., 2000; Kardol et
al., 2016). Due to the scarcity of invertebrates in Sphagnum, micro-eukaryotic communities
play major roles in the functioning of these ecosystems. Identifying Sphagnum-associated
species which are vulnerable to climate change and inferring their function is useful to
better predict future changes in the underlying peatland functioning and possible species
loss (Midgley et al., 2002).

In a changing climate, the vulnerability of ecosystems is more likely to depend on
community composition than on biodiversity (Chapin III et al., 2000). Changes in the
relative abundance in favour of autotrophs at the expense of osmotrophs might affect the
functioning of the ecosystem either by decreasing or by increasing decomposition rates,
depending on how the food web structure responds. Increases in decomposition rates
are, however, likely to occur deeper in the soil horizon were most of the decomposition
processes take place, while our study investigated only the top part of the moss stem, where
living Sphagnum dominates. In the DRY treatment, we identified some fungal indicators
and we can expect that the appearance of these taxa might entail new functionalities in the
ecosystem. Indeed, in the same experiment, (Jassey et al., 2018) did observe an increase in
multifunctionality of enzymes in the DRY treatment. As pointed out by Kostka et al. (2016)
Sphagnum-associated microbes might act as keystone species regulating C and N flow in
peatlands. Changes in their community may therefore have consequences for the overall
functioning of peatlands and their feedback on climate change.

CONCLUSIONS
Our study revealed substantial changes in the diversity and community structure of
micro-eukaryotes, both at the OTU and functional levels, in response to experimental
manipulation of temperature and water table depth, confirming our first hypotheses.
Regarding the responses to water table variation, we observed a decrease in abundance and
diversity of micro-eukaryotes, an increase in the relative abundance and a decrease in the
diversity of eukaryotic micro-algae along with the water table depth. The increase in the
number of autotrophs was due to the occurrence of predominantly terrestrial taxa (e.g.,
Elliptochloris, Trebouxiophyceae), indicating a shift from ‘‘Sphagnum community’’ to a
‘‘terrestrial community’’. Furthermore, we showed a decrease in the relative abundance of
osmotrophs, including Fungi and parasites, including Oomycota (Peronosporomycetes).
Overall, our work provides insight into the composition of Sphagnum-associated micro-
eukaryotic communities and their response to drought and warming. We also show the
potential of these organisms as indicators of ongoing changes. Identifying indicators of
climate change using HTS might be a useful tool to identify state of the ecosystem and the
direction of changes.
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