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H I  G  H  L I  G  H  T  S   

 
 

• In 5165 patients with acute coronary syndromes, ALCAM was independently associated with adverse outcome including CV death. 

• Circulating ALCAM may be useful in identifying high-risk patients who benefit from more intense secondary prevention measures. 

• The role of ALCAM and the associated underlying processes during post-MI remodeling merits further investigation. 
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A B  S  T  R  A  C  T   

 
 

Background and aims: Activated leukocyte cell adhesion molecule (ALCAM) is upregulated during inflammation 

and involved in transmigration of leukocytes and T-cell activation. We hypothesized that ALCAM might be 

associated with recurrent events in patients with acute coronary syndromes (ACS). 

Methods:  ALCAM was measured in serum obtained on admission, at discharge, 1 month and 6 months in a subgroup 

of 5165 patients admitted with ACS and included in the PLATelet inhibition and patient Outcomes (PLATO) trial 

(NCT00391872). The association between ALCAM and the composite endpoint and its components, including car- 

diovascular (CV) death, non-procedural spontaneous myocardial infarction (MI) or stroke during 1-year follow-up, was 

assessed by Cox proportional hazards models with incremental addition of clinical risk factors and biomarkers (in- 

cluding high-sensitivity troponin T, N-terminal pro−B-type natriuretic peptide and growth diff factor-15). 

Results: The median (Q1-Q3) concentration of ALCAM at admission was 97 (80–116) ng/mL. A 50% higher level 

of ALCAM on admission was associated with a hazard ratio (HR) of 1.16 (95% confidence interval [1.00–1.34] 

p = 0.043) for the composite endpoint in fully adjusted analysis, mainly driven by the association with CV death 

(HR 1.45 [1.16–1.82] p = 0.0012). 

Conclusions: In patients with ACS, admission level of ALCAM was independently associated with adverse out- 

come including CV death even after adjustment for established inflammatory and cardiac biomarkers. 
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1. Introduction 

 
Following plaque rupture and myocardial infarction (MI), cell ad- 

hesion molecules (CAMs) are involved in attraction and recruitment of 

leukocytes into the site of plaque destabilization and tissue damage, 

promoting trans-endothelial migration that involves coordinated events 

between inflamed endothelium and activated leukocytes [1,2]. These 

events could be both protective (e.g., stimulating repair processes) and 

harmful (e.g. enhance tissue damage and further plaque destabiliza- 

tion). Proteolytic cleavage of the extracellular portion of CAMs from 

activated cell surfaces lead to soluble isoforms that can be detected in 

the circulation. Systemic levels of several CAMs correlate with disease 

severity and outcome in various cardiovascular disorders [2,3]. Thus, 

high levels of soluble intracellular adhesion molecule −1, vascular cell 

adhesion molecule-1 and P-selectin have been detected in patients with 

acute coronary syndromes (ACS) and are associated with poor prog- 

nosis [4–6]. 

Activated leukocyte cell adhesion molecule (ALCAM), also denoted 

CD166, belongs to the immunoglobulin gene superfamily and was ori- 

ginally identified as a transmembrane receptor involved in T-cell acti- 

vation [7,8]. ALCAM is also expressed on cardiomyocytes and used as a 

surface marker for enrichment of these from human embryonic stem 

cells [9]. ALCAM is markedly upregulated during inflammation and is 

involved in transmigration of leukocytes across CNS endothelium [10]. 

We detected consistently higher serum levels of ALCAM in the first days 

following acute ischemic stroke in patients who subsequently suffered 

an adverse event and serum ALCAM remained an independent predictor 

of outcome in adjusted analysis [11]. However, there are currently no 

data on ALCAM in relation to ACS. 

Based on its role inflammation including transmigration of leuko- 

cytes into inflamed tissue, we hypothesized that ALCAM might be as- 

sociated with the risk of new events following ACS. The PLATelet in- 

hibition and patient Outcomes (PLATO) trial encompassed a broad ACS 

population and proved ticagrelor to be superior to clopidogrel in re- 

ducing the composite endpoint of cardiovascular (CV) mortality, MI, or 

stroke [12,13]. In the current PLATO sub-study, we evaluated serum 

ALCAM levels in a subgroup with blood sampling on admission and if 

available also at outpatient visits during 6 months follow-up after ACS, 

together with important prognostic biomarkers, in relation to the 

composite endpoint of CV death, spontaneous MI and stroke [12,13]. 

We also explored changes in ALCAM concentrations from admission 

through 6 months follow up and evaluated modifying effects of tica- 

grelor on ALCAM levels. 

 
2. Patients and methods 

 
2.1. Design and study population 

 
The randomized, placebo-controlled PLATO trial (NCT00391872) 

included a total of 18,624 patients with ACS [12,13]. The patients 

presented with either ST-elevation ACS or non ST-elevation ACS and 

were randomized to either clopidogrel or ticagrelor treatment in addi- 

tion to optimal medical therapy, including aspirin, and optional in- 

vasive therapy [12,13]. Patients were recruited between October 2006 

and July 2008 and were followed for up to 12 months after ACS. Ve- 

nous blood samples were obtained from all patients at randomization as 

part of the main study. In addition, there was a predefined sub study 

with serial blood sampling conducted at selected sites aiming to obtain 

samples from 4000 patients at discharge and after 1 month and from at 

least 3000 of these patients also at 6 months [12,13]. All patients at 

these selected sites were continuously invited to the sub study and in- 

clusion of new patients proceeded until it was estimated that at least 

3000 patients would be available for blood sampling at 6 months. Pa- 

tients with a blood sample at baseline and at least one additional blood 

sample during follow-up were eligible for inclusion in the current 

analyses. The overall aims of the biomarker sub study program have 

previously been published [12,13]. The study adhered to the Declara- 

tion of Helsinki, the research protocol was approved by national and 

institutional regulatory and ethics committees, and written informed 

consent was obtained from the patients. 

 
2.2. Endpoint definition and follow up 

 
The pre-specified primary endpoint of the present sub study was the 

composite of CV death (defined as any CV cause of death, sudden death 

or any death with no clear attributable non-cardiovascular cause), 

spontaneous MI (defined as non-procedure related, non-fatal, MI type 1 

[14], or stroke within one year of follow up [12]. The components of 

the composite endpoint were also evaluated separately. All endpoints in 

the PLATO trial were centrally adjudicated by an independent and 

blinded clinical events adjudication committee, comprising cardiolo- 

gists or neurologists, in order to subclassify causes of death and to 

subdivide types of MIs, stroke and bleeding events [12,14]. 

 
2.3. Sampling and laboratory analysis 

 
Baseline venous blood samples were obtained within 24 h of ad- 

mission, prior to the administration of study medication. The venous 

blood was allowed to clot and serum centrifuged, isolated and frozen in 

aliquots and stored  at  −70 °C in  a  central repository  in Uppsala 

Biobank until biochemical analyses were performed. ALCAM con- 

centrations were determined by enzyme-linked immunoassay (RnD- 

systems, Stillwater, MN) with intra- and inter-assay coefficients of 

variation < 10%. Hs-TnT, NT-proBNP and cystatin C were determined 

with sandwich immunoassays on the Cobas® Analytics e601 

Immunoanalyzer (Roche Diagnostics, Mannheim, Germany). Total and 

differential (i.e., neutrophils, lymphocytes and monocytes) white blood 

cell (WBC) counts and high-sensitivity C-reactive protein (hs-CRP) were 

analyzed at the UCR laboratory, Uppsala, Sweden, with a spectro- 

photometric analysis (Architect, Abbott, IL, USA). GDF-15 was mea- 

sured with a pre-commercial assay (Roche Diagnostics) using a mono- 

clonal mouse antibody for capture and a monoclonal mouse antibody 

fragment for detection in a sandwich assay format. The results of these 

analyses in relation to outcomes and effects of study treatment has 

previously been reported [15–17]. We also include data on Fibrin D 

dimer, sCD40L, P-selectin, IL-6, IL-10, IL-18, oxidized LDL (oxLDL), 

ApoA1 and ApoB [18–20]. 

 
2.4. Evaluation of ALCAM expression from public databases 

 
Data used for the analyses of ALCAM expression in mouse models in 

this manuscript were obtained from the GEO repositories. GSE4648: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4648 

[21], LV from sham and from ischemic/infarcted tissue and the sur- 

viving free wall from AMI animals, 15 min to 48 h post AMI (n = 2 for 

each condition). GSE775: https://www.ncbi.nlm.nih.gov/geo/query/ 

acc.cgi [22], LV from sham and from non-infarcted and infarcted area 

of AMI mice at 1 h, 4 h, 24 h, 48 h, 1 week, and 8 weeks (n = 3 for each 

condition). 

 
2.5. Statistical analysis 

 
Baseline characteristics and patient demographics were compared 

between ALCAM quartile groups using Kruskal-Wallis tests for con- 

tinuous variables and Chi-square tests for categorical variables. The 

association between ALCAM and other biomarkers were assessed by 

Spearman rank correlation coefficient. Biomarkers were logarithmic 

transformed when appropriate. The relationship between natural log- 

transformed ALCAM and baseline characteristics was assessed by mul- 

tivariable linear models. We calculated geometric means using the 

antilogarithms of the model-adjusted means (i.e. predicted marginal 

means), and subsequently compared geometric means between groups 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE4648
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi


 

 

 

(e.g. males/females) using ratios. 

The unadjusted association between ALCAM quartile groups and 

clinical outcomes were presented by Kaplan-Meier curves. Cox pro- 

portional hazards models were used to investigate the covariate-ad- 

justed association between ALCAM and composite endpoint of CV 

death, spontaneous MI or stroke, and secondly these components in- 

dividually. Six models, with incremental addition of co-variates, were 

used. Model 1 included ALCAM and randomized treatment (ticagrelor 

or clopidogrel). Model 2 added clinical baseline risk factors; age, 

gender, body mass index (BMI), diabetes mellitus (DM), chronic kidney 

disease (CKD), hypertension, smoking status, type of ACS, and history 

of heart failure (HF), MI, percutaneous coronary intervention (PCI), 

CABG, stroke, or peripheral artery disease (PAD). Model 3 included all 

variables from model 2 together with hs-CRP and WBC. Model 4 in- 

cluded all the previous mentioned co-variates, with the addition of 

cystatin C, a marker of kidney dysfunction. Model 5 included all vari- 

ables in addition to hs-TnT and NT-proBNP. Model 6 included all 

variables and growth differentiation factor −15 (GDF-15). All bio- 

markers were included as continuous variables after logarithmic 

transformation. The results were presented as the relative hazard for 

50% increase in ALCAM concentration at baseline. The proportional 

hazards assumption was assessed by visual inspection of Schoenfeld 

residual plots. 

The discriminative value of ALCAM was assessed using C-index. The 

models with and without ALCAM were compared using likelihood ratio 

tests. 

The effects of ALCAM levels on outcomes in relation to predefined 

subgroup factors (i.e. randomized treatment, ACS type, invasive/non- 

invasive in-hospital treatment approach, DM, gender and smoking), 

were evaluated using Cox proportional hazards models including 

quartile divided ALCAM levels, the respective subgroup factor and the 

ALCAM subgroup factor interaction term as independent variables. 

Two-sided p-value of < 0.05 was considered to be statistically sig- 

nificant and there were no adjustments for multiple comparisons. All 

statistical analyses were performed with SAS 9.4 (SAS Institute, Cary, 

NC). 

 

 
3. Results 

 
3.1. ALCAM in relation to baseline characteristics 

 
ALCAM concentrations were available in 5156 patients, with a 

median (Q1-Q3) of 97 (80–116) ng/mL. The blood samples for ALCAM 

analysis were collected 15 h (Q1-Q3: 8–21 h) after the index event, i.e., 

10 h (Q1-Q3: 3–17 h) after admission. 

Baseline  characteristics  by  ALCAM  quartile  divided  group  are 

 

Table 1 

Baseline characteristics by quartile divided ALCAM concentrations at baseline. 
 

Characteristic Q1 

< 80.2 ng/mL 

n = 1289 

Q2 

80.2–96.5 ng/mL 

n = 1289 

Q3 

96.5–116.1 ng/mL 

n = 1290 

Q4 

> 116.1 ng/mL 

n = 1288 

p-value 

Age, yrs 59 (52–67) 61 (53–69) 63 (55–71) 66 (56–73) < .0001 

Female 191 (14.8%) 319 (24.7%) 462 (35.8%) 573 (44.5%) < .0001 

Weight kg 82 (73–90) 80 (70–90) 80 (70–90) 79 (69–90) < .0001 

BMI kg/m
2

 27.6 (25.0–30.1) 27.5 (24.8–30.5) 27.7 (25.2–30.7) 27.7 (25.0–31.2) 0.0489 

Risk factors a features      
Habitual smoker 557 (43.2%) 512 (39.7%) 416 (32.2%) 413 (32.1%) < .0001 

Hypertension 755 (58.6%) 844 (65.5%) 877 (68.0%) 924 (71.7%) < .0001 

Dyslipidemia 506 (39.3%) 531 (41.2%) 576 (44.7%) 565 (43.9%) 0.0208 

Diabetes mellitus 222 (17.2%) 251 (19.5%) 313 (24.3%) 361 (28.0%) < .0001 

Medical history      
Angina pectoris 553 (42.9%) 580 (45.0%) 634 (49.1%) 633 (49.1%) 0.0017 

Myocardial infarction 226 (17.5%) 242 (18.8%) 262 (20.3%) 280 (21.7%) 0.0419 

Congestive heart failure 41 (3.2%) 53 (4.1%) 82 (6.4%) 120 (9.3%) < .0001 

Percutaneous coronary Intervention 139 (10.8%) 163 (12.6%) 159 (12.3%) 176 (13.7%) 0.1660 

Coronary artery bypass grafting 61 (4.7%) 54 (4.2%) 62 (4.8%) 79 (6.1%) 0.1335 

Transient ischemic attack 23 (1.8%) 30 (2.3%) 24 (1.9%) 36 (2.8%) 0.2662 

Non-hemorrhagic stroke 37 (2.9%) 43 (3.3%) 45 (3.5%) 51 (4.0%) 0.5004 

Peripheral arterial disease 71 (5.5%) 90 (7.0%) 90 (7.0%) 98 (7.6%) 0.1818 

Chronic kidney disease 20 (1.6%) 36 (2.8%) 43 (3.3%) 81 (6.3%) < .0001 

ST-elevation myocardial infarction 711 (55.2%) 592 (45.9%) 574 (44.5%) 485 (37.7%) < .0001 

GRACE risk score 133 (116–149) 132 (116–149) 135 (120–151) 138 (120–157) < .0001 

In-hospital medication      
Aspirin 1274 (98.8%) 1264 (98.1%) 1265 (98.1%) 1270 (98.6%) 0.2900 

Unfractionated heparin 735 (57.0%) 707 (54.8%) 673 (52.2%) 702 (54.5%) 0.1043 

Low-molecular-weight heparin 676 (52.4%) 718 (55.7%) 676 (52.4%) 714 (55.4%) 0.1610 

Fondaparinux 16 (1.2%) 19 (1.5%) 21 (1.6%) 17 (1.3%) 0.8463 

Bivalirudin 21 (1.6%) 14 (1.1%) 16 (1.2%) 25 (1.9%) 0.2649 

Glycoprotein IIb/IIIa inhibitors 421 (32.7%) 367 (28.5%) 312 (24.2%) 271 (21.0%) < .0001 

Beta-blockers 1131 (87.7%) 1135 (88.1%) 1125 (87.2%) 1095 (85.0%) 0.0925 

ACE
‡‡

-inhibition and/or ARB
§§

 1121 (87.0%) 1096 (85.0%) 1115 (86.4%) 1144 (88.8%) 0.0400 

Cholesterol lowering (Statin) 1238 (96.0%) 1221 (94.7%) 1196 (92.7%) 1174 (91.1%) < .0001 

Biomarkers      
Cystatin mg/L median (Q1-Q3) 0.75 (0.62–0.89) 0.79 (0.65–0.96) 0.84 (0.69–1.02) 0.90 (0.73–1.13) < .0001 

eGFR median (Q1-Q3) 120 (94–120) 112 (85–120) 103 (78–120) 93 (67–120) < .0001 

Creatinin mg/dL 80 (71–88) 80 (71–88) 80 (71–97) 80 (71–97) < .0001 

CRP mg/L 3.2 (1.4–7.7) 3.4 (1.6–8.6) 3.7 (1.6–8.8) 3.7 (1.8–9.6) 0.0083 

GDF-15 pg/mL 1361 (1032–1853) 1468 (1107–2035) 1551 (1155–2218) 1807 (1326–2592) < .0001 

Troponin T hs ng/L 167 (42–582) 158 (39–566) 160 (41–511) 152 (36–580) 0.5743 

NT-proBNP pmol/L 313 (99–842) 389 (119–993) 448 (149–1311) 560 (199–1572) < .0001 

White blood cells x10
9 

cells/L 9.6 (7.7–11.9) 9.4 (7.4–11.6) 9.3 (7.5–11.7) 9.0 (7.1–11.2) 0.0002 

For continuous variables, data are given as median and (25th/75th) percentiles. Categorical variables are given as n= (%). p-values from the Chi-square test 

(categorical variables) or Kruskal-Wallis test (continuous variables). 



 

 

 

shown in Table 1 (n = 5156) and comparison between the current sub- 

study and total PLATO cohort (n = 18421) is shown in Supplemental 

Table 1. The populations were similar except for more frequent STEMI 

in the current sub-population. Supplemental Table 2 shows multi- 

variable effects of baseline characteristics on ALCAM at baseline and 1 

month. The four strongest determinants of ALCAM at both time-points 

were female sex, chronic renal disease, age and STEMI. Of note, patients 

with Q4 ALCAM had a 1.9 times higher history of previous HF com- 

pared to Q1. 

Of other relevant biomarkers previously determined in PLATO, high 

ALCAM levels were associate with poorer kidney function (i.e. high 

cystatin C and lower eGFR), high NT-proBNP and GDF-15 as markers of 

poorer cardiac function, but not with hsTnT, and with declining WBC 

counts. 

 
3.2. ALCAM in relation to circulating cardiac and inflammatory markers 

 
As shown in Supplemental Table 3, the strongest correlation for 

ALCAM was with GDF15 and cystatin C, followed by Fibrin D-dimer, 

NT-proBNP and IL-18. Moreover, ALCAM correlated positively with P- 

selectin, another cell  adhesion molecule reflecting platelet and en- 

dothelial cell activation. Furthermore, these associations were present 

also at 1 month with slightly attenuated coefficients. In contrast, 

weaker or negative correlations were observed with markers reflecting 

plaque progression such as CRP, oxLDL, WBC or leukocyte subgroups. 

 
3.3. ALCAM concentrations during follow up 

 
Fig. 1 shows ALCAM levels during 6 months of follow-up. ALCAM 

levels gradually increased from the acute event. Already at discharge, 

there was a significant increase from baseline (median change 1.5, 

25th/75th percentile: −10.2, 14.2 ng/mL, p < 0.0001). ALCAM was 

further elevated  at  1  month  (median  change  14  [1,30]  ng/mL, 

p < 0.0001) and thereafter remained stable until 6 months (median 

change 13 [-2, 29] ng/mL, p < 0.0001) compared with baseline levels. 

A modest increase in ALCAM was observed in the ticagrelor group 

compared to the clopidogrel group at 6 months (112 vs. 110 ng/mL, 

p = 0.003) (Supplemental Table 4). 

 
3.4. ALCAM and CV outcomes 

 
During follow-up, the primary endpoint was observed in 434 (8.4%) 

patients (191 CV fatalities, 243 spontaneous MI and 62 stroke events). 

Restricted cubic spline analysis revealed a relatively linear association 

between ALCAM levels at baseline and incidence of the primary end- 

point (Fig. 2A). 

KM rates showed a lower event rate (6.2%) for quartile divided 

group 1 of baseline ALCAM, with similar event rates for quartile divided 

group 2 (6.8%), an increase in quartile divided group 3 (8.8%) and a 

markedly higher  event  rate  for  quartile  divided  group  4  (11.8%, 

p < 0.0001). As shown in Table 2, the unadjusted hazard ratio (HR) 

and 95% confidence interval, for the primary outcome measures per 

50% increase in baseline ALCAM concentration, was 1.43 (1.25–1.62), 

p < 0.0001. This remained significant after adjustment for clinical 

characteristics, inflammatory (e.g. CRP, WBC) and cardiac (e.g. hsTnT 

and NTproBNP) biomarkers as well as GDF-15 and cystatin C (1.16 

[1.00–1.34], p = 0.043). 

The results for individual components of the primary endpoint 

showed that the association between ALCAM and this endpoint was 

driven by the effects on CV-death. Restricted cubic spline analysis re- 

vealed a somewhat linear association between ALCAM levels at baseline 

and incidence of CV-death (Fig. 2C), and a gradual increase in event 

rates was observed from quartile 1 through 4 of ALCAM (1.4%, 2.9%, 

4.2%, 6.4%). This association remained significant also in the fully 

adjusted analysis (1.45 [1.16–1.82], p = 0.0012, Table 2). 

Supplemental  Table  5  shows  model  improvement  by  addition  of 

ALCAM at the different steps of adjustment for the primary endpoint 

and CV-death. Modest gains in the C index were observed in the more 

advanced models, but the LR-test demonstrated model improvement. 

No association of ALCAM with spontaneous MI or stroke was observed 

(Supplemental Table 6). 

There were no interactions between ALCAM levels and outcomes by 

randomized treatment, type of ACS, in-hospital treatment approach, 

diabetes, gender or smoking (Supplemental Table 7). 

 
3.5. ALCAM concentrations and outcomes at 1 month 

 
As shown in Table 2, the association between high ALCAM levels 

and the primary endpoint and CV death was also present at 1 month, 

with a slightly lower HRs and wider CIs. These associations were sig- 

nificant also after adjustment for clinical variables, but were lost upon 

adjustment with inflammatory markers and further declined with the 

inclusion of more adjustment variables. No association between ALCAM 

at 1 month and either sMI or stroke was  observed (Supplemental 

Table 6). 

 
3.6. Evaluation of ALCAM expression from public databases 

 
To elucidate the regulation of ALCAM during MI, we finally eval- 

uated the expression of this adhesion molecule in relevant settings from 

public available databases. In the first study (GSE4648), ALCAM mRNA 

expression was similar in myocardial tissue obtained from the left 

ventricular (LV) of sham animals and LV tissue from the surviving free 

wall and ischemic/infarcted area from MI animals until 12 h post-MI 

(Supplemental Fig. 1A). After 12 h, however, ALCAM expression in- 

creased and peaked at 24 h (~2-fold increase) in LV from the ischemic/ 

infarcted area as compared with non-infarcted/ischemic LV and LV 

from sham animals. In another MI mouse study (GSE775), ALCAM 

mRNA expression in LV was stable in sham animals and in the non- 

infarcted area, but increased markedly in LV infarcted tissue from 24 h 

and peaked at 1 week (~6-fold increase) followed by a decline to 

normal levels at 8 weeks (Supplemental Fig. 1B). As mice age generally 

25x faster than humans (i.e. 25 times shorter lifespan) [23], these 

temporal changes in myocardial ALCAM mRNA expression in MI mice 

corresponds to the systemic increase we observe for ALCAM in PLATO. 

 
4. Discussion 

 
In a large, contemporary ACS population treated with dual anti- 

platelet treatment, serum levels of ALCAM were independently asso- 

ciated with increased risk of the composite of CV death, sMI and stroke. 

This was mainly driven by an association with CV death, which per- 

sisted also after adjustment with multiple clinical, CV and inflammatory 

biomarkers prognostic for CV events. A similar, but weaker association 

 

 

Fig. 1. ALCAM levels at baseline and during follow up. 

***p < 0.0001 vs. baseline. 



 

 

 

 
 

Fig. 2. Restricted cubic splines (A and C) and Kaplan–Meier estimated event rates by quartile divided ALCAM (B and D) of the primary outcome (composite of 

cardiovascular death, spontaneous myocardial infarction, and stroke) and cardiovascular death (CV-death). 

 

of this biomarker with outcome was also seen at 1 month, but not 

significant in fully adjusted analysis. There was no interaction between 

ALCAM and the effects of ticagrelor although ALCAM levels were 

slightly higher during ticagrelor treatment at 6 months follow-up. Data 

on ALCAM in ACS are scarce, but our study suggests that ALCAM might 

reflect important pathophysiological processes that are only partly 

mirrored by other biomarkers, contributing to CV death in ACS pa- 

tients. 

We have previously demonstrated that high serum levels of ALCAM 

following acute ischemic stroke are associated with all-cause- and in 

particular CV-mortality during long-term follow-up, also in multi- 

variable analysis including stroke severity, CRP and TnT levels [11]. In 

the present much larger study in ACS patients, we found a similar as- 

sociation between high admission levels of ALCAM and the primary 

endpoint (CV death, sMI and stroke). This was mainly  driven  by  a 

strong association between ALCAM and CV death. There are numerous 

studies on biomarkers in ACS, but as opposed to the current study, in 

most cases these markers lose their prognostic value after adjustment 

for established markers such as CRP, troponins and natriuretic peptides. 

Notably, in the present study the association of ALCAM and CV-death 

 
Table 2 

Associations between continuous (hazard ratios [HRs] per 50% increase in ALCAM at baseline and 1 montha and the primary outcome and CV-death. 
 

 

Model Time Primary (CV-death, spontaneous MI, and stroke) CV-death 
 

 N (event rate%) HR (95% CI) p N (event rate%) HR (95% CI) p 

M1 BL 5156 (8.4%) 1.43 (1.24–1.62) < .0001 5156 (3.7%) 2.01 (1.66–2.44) < .0001 

 1 Mo 4238 (5.7%) 1.40 (1.16–1.68) 0.0004 4238 (2.0%) 1.94 (1.43–2.64) < .0001 

M2 BL 5144 (8.4%) 1.27 (1.11–1.46) 0.0004 5144 (3.7%) 1.82 (1.48–2.25) < .0001 

 1 Mo 4231 (5.7%) 1.25 (1.03–1.52) 0.0247 4231 (2.0%) 1.71 (1.23–2.36) 0.0013 

M3 BL 4454 (8.4%) 1.27 (1.10–1.47) 0.0013 4454 (3.8%) 1.68 (1.34–2.10) < .0001 

 1 Mo 3061 (5.5%) 1.21 (0.96–1.53) 0.1118 3061 (1.7%) 1.52 (0.99–2.32) 0.0553 

M4 BL 4453 (8.4%) 1.21 (1.05–1.40) 0.0097 4453 (3.8%) 1.56 (1.24–1.96) 0.0001 

 1 Mo 3061 (5.5%) 1.12 (0.88–1.42) 0.3466 3061 (1.7%) 1.25 (0.81–1.94) 0.3162 

M5 BL 4429 (8.4%) 1.19 (1.03–1.238) 0.0203 4429 (3.8%) 1.49 (1.18–1.87) 0.0007 

 1 Mo 3057 (5.5%) 1.10 (0.87–1.40) 0.4285 3057 (1.7%) 1.20 (0.77–1.86) 0.4276 

M6 BL 4429 (8.4%) 1.16 (1.00–1.34) 0.0430 4429 (3.8%) 1.45 (1.16–1.82) 0.0012 

 1 Mo 3057 (5.5%) 1.09 (0.86–1.38) 0.4575 3057 (1.7%) 1.21 (0.78–1.88) 0.3883 

Model 1 (M1) randomized treatment; (M2) age, gender, body mass index, diabetes mellitus (DM), chronic kidney disease, hypertension, smoking status, type of ACS, 

and history of heart failure (HF), MI, percutaneous coronary intervention, CABG, stroke, or peripheral artery disease; (M3) hs-CRP and white blood count; (M4) 

cystatin C; (M5) hs-TnT and NT-proBNP; (M6) GDF-15. 
a  The 1-month data are for patients who had no CV events (spont. MI or stroke) before the date of the 1-month sample. 
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remained significant following the addition of CRP, NT-proBNP, hs- 

TnT, GDF-15 and cystatin C which previously have been shown to 

display independent associations with CV-death in this study popula- 

tion [15–17,24]. This could indicate that ALCAM reflects activation of 

pathways not mirrored by more established biomarkers. 

Several observations suggest that the enhanced ALCAM levels in ACS 

patients with poor prognosis could be related to the infl re- 

sponse and myocardial remodeling following acute MI rather than 

plaque progression and destabilization prior to ACS. First, WBC has been 

shown to correlate strongly with plaque characteristics in ACS [25] and 

our finding that ALCAM correlated poorly with WBC or other leukocyte 

sub-populations, does not support interactions between ALCAM and 

plaque vulnerability. Second, ALCAM consistently (i.e. at baseline and 1 

month)  correlated  with  markers  linked  to  LV  remodeling  and  in- 

fl following cardiac injury such as NT-proBNP, GDF15, IL-18 

and P-selectin, and less with markers refl immediate myocardial 

damage (TnT) or atherogenic and metabolic risk (e.g. CRP, WBC, oxLDL). 

Third, a markedly higher proportion of patients with high ALCAM levels 

(i.e. Q4), compared to low ALCAM, had a history of HF, further sup- 

porting a link to cardiac dysfunction. Fourth, ALCAM was associated 

with CV death, but not MI or Stroke suggesting a stronger correlation 

with cardiac dysfunction rather than atherosclerotic progression. Taken 

together, we speculate that increased serum ALCAM levels could, at least 

partly, refl     myocardial infl in ACS. 

ALCAM levels increased at 1-month follow-up and remained at the 

same levels until 6 months. As the inflammatory response increases 

during post-infarction cardiac remodeling, the higher levels of ALCAM 

during follow-up may suggest a role for ALCAM in this process. The 

persistently raised myocardial ALCAM expression following experi- 

mental MI in mice, corresponding to the time frame in the current 

study, may further support such a notion. Although  the impact of 

ALCAM in this setting is unknown, the association between high 

ALCAM levels and CV-death at both baseline and 1 month may suggest 

a detrimental effect. ALCAM is expressed by activated monocytes and 

macrophages and while the inflammatory response is integral to the 

healing process, an excessive, prolonged infiltration of inflammatory 

cells in the infarcted area is harmful and may contribute to tissue de- 

struction, interstitial fibrosis, cardiac dysfunction, and adverse LV re- 

modeling [26,27], thus resulting in poor clinical outcome [28]. Indeed, 

in vivo silencing of endothelial CAMs impaired post-MI monocyte re- 

cruitment to the remote myocardium and preserved ejection fraction 

[29]. Furthermore, through interaction with CD6 on T cells, ALCAM 

promotes an inflammatory phenotype and is required for optimal T cell 

activation, which could contribute to inflammation and tissue damage 

through T cell-mediated mechanisms [7,8]. It is tempting to hypothe- 

size that a similar mechanism could be operating within the myo- 

cardium following MI. The role and function of ALCAM during post-MI 

remodeling deserves further attention in mechanistic studies. 

The reason for the higher levels of ALCAM at 6 months follow-up 

during ticagrelor maintenance therapy are at present not clear but some 

possibilities may be relevant. First, we have previously reported from 

the PLATO study that patients treated with ticagrelor have elevated 

levels of some inflammatory markers such as IL-6 as compared with 

those receiving clopidogrel [18]. Moreover, the potential involvement 

of ALCAM in maladaptive remodeling may not necessarily involve anti- 

apoptotic affects during the acute phase, but rather a hypertrophic and 

maladaptive effect in the post-MI remodeling phase. Whatever the 

mechanisms, it is tempting to speculate that whereas ticagrelor im- 

proves outcome following ACS, additional improvement could be ob- 

tained by targeting pathways that are not modified by this treatment 

option such as ALCAM related pathways. 

 
4.1. Limitations 

 
The generalizability of this study might be limited to patients 

meeting  the  inclusion  criteria  for  PLATO.  However,  the  patients 

included in PLATO represent a broad range of ACS patients fairly well 

corresponding to the real-life situation. We evaluated interactions be- 

tween ALCAM levels and outcomes by several subgroups (e.g., diabetes, 

type of ACS) but we cannot exclude that other comorbidities could 

influence our results. Thus, ALCAM has been shown to be suitable as a 

prognostic marker for different types of cancer [30], which, however, 

has a non-negligible prevalence and impact on outcome in ACS patients 

[31]. Beyond NT-proBNP and demographic data on previous HF, our 

study lacks objective measures concerning LV systolic function, which 

would allow us to mare closely assess the association between ALCAM 

and cardiac dysfunction. We speculate on the role of ALCAM in ACS 

based on correlation analysis with established markers reflecting spe- 

cific cell numbers or pathophysiological processes, but correlations do 

not necessarily imply any causal relationship and the mechanisms and 

role of ALCAM in underlying processes during post-MI remodeling will 

have to be assessed in mechanistic studies. Finally, the prognostic value 

of ALCAM and other variables might be different in relation to longer 

follow-up. 

 
4.2. Conclusions 

 
In conclusion, in patients with ACS treated with dual antiplatelet 

treatment, we observed an independent association between admission 

levels of ALCAM and risk of CV-death. Although the clinical benefit and 

utilization of ALCAM as a viable biomarker in patients with ACS on 

optimal antithrombotic therapy could be promising, this should be as- 

sessed in independent studies. Based on the strong association with CV 

death, the role of ALCAM and the associated underlying processes 

during post-MI remodeling merits further investigation. 
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