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Abstract

Combating and controlling sea lice causes large economic costs for the farmers,

with estimated values of more than 305 million euros (€) per year. Increased resis-

tance against traditional chemotherapeutants due to evolutionary drivers in the

sea lice combined with the lack of an effective vaccine and few other chemical

treatments available are expected to cause these costs to increase. Several possible

methods for managing sea lice infestations have been investigated, but only clea-

ner fish has proven to have an effect on lice levels. Cleaning activity is well known

in marine fish and has been observed in the wild as a form of symbiosis between

two species: one species, the ‘client’ fish, seek out the other species, the ‘cleaner’

fish, to have ectoparasites and dead tissue cleared from its body. The Atlantic

lumpfish is a relatively new aquaculture species, and wild-caught mature fish are

used as brood stock for farmed production. This poses a biosecurity risk, as wild

fish can carry pathogens, and the use of quarantine and health screening is recom-

mended. Vaccine development is unfortunately lagging far behind relatively to

the wide spread and high utilisation of the fish. This review contains description

of the main pathogens and diseases that affect cleaner fish.
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Introduction

Aquaculture is currently one of the fastest growing food

sectors in the world, with the majority being finfish pro-

duction. The total world fish production is expected to

reach 196 million tons (Mt) by the year 2025, where aqua-

culture is estimated to surpass the total production of cap-

ture fisheries. The majority of growth will take place in

developing countries, where freshwater species is expected

to become more important. However, the capture sector is

expected to remain dominant for a number of fish species

and still be vital for supplying seafood both locally and

globally (Organisation for Economic Co-operation and

Development/Food and Agriculture Organization of the

United Nations, OECD/FAO (2016)).

In 2018, the global production of farmed salmonids

exceeded 2.36 million tons, while the total catch volume of

wild salmonids was a bit more than 1/3 of that size. Atlantic

salmon (Salmo salar L.) is produced in high amounts and

is used for smoked, fresh, sushi and ready-made meals.

Farmed Atlantic salmon is produced in Norway, Chile, UK,

North America, Faroe Islands, Ireland, New Zealand and

Tasmania (MOWI, 2019). These are the countries which

produce most of the salmon. Several fish health-related

issues inhibit continued industry growth, however the main

challenge being ectoparasitic infestation by the copepod

(small crustaceans) sea lice (Jones et al., 2015; Treasurer,

2018b). Several species exist, but the majority of disease

outbreaks in the Atlantic Ocean are caused by Lepeoph-

theirus salmonis (specific for salmonids) and Caligus elonga-

tus (generalist; less host-specific) (Boxaspen, 2006). Other

species have been described on salmonids in the Pacific

Ocean, such as Caligus rogercresseyi in Chile (Boxs hall &

Bravo, 2000).

When attached to a host (Figs 1 and 2), the parasite use

rasping mouthparts to feed on mucus, skin, blood and

underlying tissue (Costello, 2006; Thorstad et al., 2015).

This leads to tissue damage/loss, bleedings and increased

mucus discharge from the host’s skin, eventually causing

the host to suffer from reduced growth, loss of bodily flu-

ids, stress, reduced osmoregulatory and respiratory ability,

impaired body defences, risk of secondary infections and,
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ultimately, death (Whelan, 2010; Thorstad et al., 2015).

Combating and controlling sea lice causes large economic

costs for the farmers, with estimated values of more than

305 million euros (€) per year (Costello, 2009). Increased

resistance against traditional chemotherapeutants due to

evolutionary drivers in the sea lice (Denholm et al., 2002;

Aaen et al., 2015; Helgesen et al., 2018), combined with the

lack of an effective vaccine and few other chemical treat-

ments available, is expected to cause these costs to increase

(Powell et al., 2018; Brooker et al., 2018). For the Norwe-

gian salmon farming industry alone during 2016, the total

costs for controlling, preventing and treating sea lice were

close to 5 billion NOK (about 500 million €) (Iversen et al.,

2017). Only two years later, in 2018, that number had risen

to 5, 2 billion NOK, which was a five-fold increase since

2011 (Berghlin, 2019b). Also considering the threat the par-

asite poses for wild stocks of salmonid fish (Forseth et al.,

2017; Thorstad & Finstad, 2018; Nekouei et al., 2018;

Kristoffersen et al., 2018), it becomes clear how sea lice cur-

rently is one of the major challenges for the aquaculture

industry to overcome.

Integrated pest management was introduced to salmon

farming in 2002 (Mordue & Pike, 2002), an ecosystem

approach that was already used for healthy crop productions

in agriculture. It integrates different management strategies

and practices to suppress and keep pest populations below

the crop’s economically sustainable limits, while keeping the

use of pesticides and other interventions to levels that min-

imise risks to humans and the environment. It also encour-

ages the use of natural control mechanisms. The same

principles are important for combating sea lice, and several

non-medicinal methods have been developed as alternatives

to chemical removal. This includes barriers between the sea

lice and the salmon (e.g. skirts, snorkel cages, bubble cur-

tains), anti-sea lice diets (that strengthen the fish natural

defence system or affects the lice), traps, lasers, thermal

treatment and different forms of mechanical removal of the

lice (e.g. water flushers). Other methods under develop-

ment/investigation include ultrasound and freshwater treat-

ments (Global Salmon Initiative; Aaen et al., 2015; Holan

et al., 2017). In Norwegian salmon farming, the number of

such non-medicinal approaches has increased in recent

years, the majority being from use of thermic delousing

(Helgesen et al., 2018). However, such methods are not

without issues of its own, which affect the health and welfare

of the treated salmon (Poppe et al., 2018).

Another strategy is to apply biological pest control by

natural enemies. This is the utilisation of other living

organisms, such as parasites, pathogens and predators, for

controlling pests, by using their beneficial actions (para-

sitism, infections and predation) to manage pest invasions

(Treasurer, 2002). Several possible methods for managing

sea lice infestations have been investigated, but only cleaner

fish has proven to have a deleterious effect on lice levels

(Treasurer, 2002). Cleaning activity is well known in mar-

ine fish and has been observed in the wild as a form of sym-

biosis between two species: one species, the ‘client’ fish,

seek out the other species, the ‘cleaner’ fish, to have

ectoparasites and dead tissue cleared from its body. This

mutually beneficial association apparently results in the

client fish having its parasite burdens removed while the

cleaner fish receives a source of food (Hobson, 1969;

Grutter, 2001; Arnal et al., 2001; Leung & Poulin, 2008). In

salmonid aquaculture, different species of European wrasse

(Labridae), such as ballan (Labrus bergylta Ascanius), gold-

sinny (Ctenolabrus rupestris L.), corkwing- (Symphodus

melops L.), wrasses and Atlantic lumpfish (Cyclopterus

lumpus L.) (Fig. 3), are used for this specific purpose (Trea-

surer, 2002; Erkinharju, 2012; Powell et al., 2018; Imsland

et al., 2018a). In 2018, a total of near 49 million cleaner fish

were put to sea together with salmon and rainbow trout in

Figure 1 Atlantic salmon infested with sea lice at different developmen-

tal stages. Adult female (fat arrow), and different chalimus stages can be

observed ( ). Photograph: Mattias B. Lind (Norway Royal Salmon Ltd.).

Figure 2 Adult female sea lice bearing egg strings. Photograph: Tore

Seternes.
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Norway, of which near 31 million were lumpfish. The

majority of these originate from commercial lumpfish pro-

duction (approximately 93%), while the rest are wild-

caught (Norwegian Directorate of Fisheries 2019).

The lumpfish is a relatively new aquaculture species, and

wild-caught mature fish are used as brood stock for farmed

production. This poses a biosecurity risk, as wild fish can

carry pathogens, and the use of quarantine and health

screening is recommended (Powell et al., 2018; Brooker

et al., 2018; Scholz et al., 2018a). Once hatched, the lump-

fish can display rapid growth rates (up to 3.65% per day)

under optimal conditions (Nytro et al., 2014). This makes

it possible to produce lumpfish of deployment size within a

few months (about 5–7 months for 20 g fish), which is sig-

nificantly shorter than farming ballan wrasse (about

18 months for 40–50 g fish) (Powell et al., 2018; Brooker

et al., 2018). Ballan wrasse, however, are considered to be

extremely efficient in delousing salmon (Skiftesvik et al.,

2013). Lumpfish have in studies shown to lower sea lice

infestation levels on affected salmon (Imsland et al., 2014a;

Imsland et al., 2018a), but the species feeding behaviour is

strongly opportunistic, and as such can vary with whatever

food items are presentable (Imsland et al., 2014c; Eliasen

et al., 2018). Sea lice foraging behaviour might be possible

to improve using different implementations strategies

(Imsland et al., 2016a; Imsland et al., 2016b; Imsland et al.,

2019a). Recently, the current knowledge base of lice

removal by cleaner fish has come under scrutiny for being

far too limited and not reflecting the conditions within sea

cages on commercially scaled levels (Overton et al., 2020).

More species-targeted, detailed and replicable experiments

performed at larger scaled levels under various environ-

mental conditions and farm management procedures are

among the recommendations for additional studies needed

to address the concerns and justify the continued use of

cleaner fish in aquaculture (Overton et al., 2020).

Lumpfish is preferably deployed in sea pens when the

water temperatures are low, as the fish continue to actively

feed at temperatures close to 4�C (Nytro et al., 2014; Elia-

sen et al., 2018), and it has been suggested that higher tem-

peratures (>10�C) make them more susceptible to diseases

(Nordstrand et al., 2017; Ronneseth et al., 2017; Brooker

et al., 2018). Interestingly, a recent study observed that

keeping mature lumpfish at a temperature level of 14�C
resulted in notable reductions to their reproductive perfor-

mances and that an optimum holding temperature for

spawning would be within the >6°C and <14°C thermal

window (Pountney et al., 2020). Wrasses are also affected

by temperature, showing reduced activity at lower levels

and eventually entering torpor, a state of reduced physio-

logical activity, at temperatures below 5–7�C (Sayer &

Reader, 1996; Espeland et al., 2010). As such, lumpfish have

been suggested as a cold-water cleaner fish, better suited to

remove sea lice when deployed at the northernmost salmon

farms and during the autumn/winter season (Imsland

et al., 2014a). However, the infestation pressure or disper-

sion of sea lice in northernmost coastal areas, with low sea

water temperature, may be lower; this may limit the use of

cleaner fish in salmon aquaculture (Myksvoll et al., 2018).

In order to ensure healthy and well-kept cleaner fish, the

aquaculture sector has established their own guidelines for

good farming practices (available at Lusedata, n.d.). Impor-

tant factors for lumpfish in sea pens include shelters, feed-

ing, clean nets, stocking density and health checks. Shelters

are essential for providing refuge and a place to rest for the

lumpfish when it is not actively searching for feed or feed-

ing (Imsland et al., 2014c). Artificial substrates appear to

function just as good as natural variants, as long as they

(a) (b)

Figure 3 Two commonly used fish species for cleaner fish management in salmonid farming. Ballan wrasse (a) and Atlantic lumpfish (b). Pho-

tographs taken at Bergen Aquarium, Norway. Photograph: Toni Erkinharju.
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have smooth, vertical surfaces for the lumpfish to attach to

(Imsland et al., 2015). Supplementary feeding is necessary

during periods with low lice counts, to ensure that the

cleaner fish stay healthy and fit (Skiftesvik et al., 2013;

Imsland et al., 2019b). Anecdotal evidence from the field

also indicates that lumpfish will search for alternative food

sources, or nibble on the fins and skin of salmon, if not

fed properly (Lusedata, n.d.). Regular cleaning of nets is

also recommended; otherwise, the cleaner fish might eat

fouling organisms on the net instead of sea lice (Skiftesvik

et al., 2013). There are no clear recommendations for opti-

mal stocking densities of lumpfish together with salmon,

and ratios vary from 2–5% (Brooker et al., 2018). Imsland

et al. (2014b) reported that differences in cleaner fish size,

rather than stocking ratios, had negative effects on feed

conversion ratio, specific growth rates and sea lice infec-

tion levels for cohabitated Atlantic salmon. In this study,

cleaner fish size of 360 g (average) duocultured with large

salmon (ca. 2.4 kg) resulted in higher feed conversion rate

and lower specific growth rate – compared to results where

smaller salmon (average weight of 619 g) was reared with

smaller lumpfish (54 g). However, any size recommenda-

tion for cleaner fish to be cultured along the salmon has

not been provided. The current practise is culling lumpfish

after only one salmon production cycle. This has

received harsh criticism by animal welfare organisations

(Powell et al., 2018).

Finally, monitoring of health and welfare through rou-

tine checks and investigations of the cleaner fish are impor-

tant to keep the prevalence of diseases as low as possible

and ensure the natural behaviour of the fish are maintained

(Brooker et al., 2018, Lusedata). Establishing proper indica-

tor levels for each cleaner fish species are as such helpful.

Lumpfish for instance does not show a clear stress response

compared to salmonids, which is possibly due to evolution-

ary adaptions in the species (Hvas et al., 2018; Espmark

et al., 2019). A recent study suggested using liver coloura-

tion as a welfare indicator of lumpfish, with increased inci-

dence of dark reddish-brown livers being a sign of reduced

lipid reserves and nutritional status, while pale livers could

be an indication of a struggling immune system, such as

caused by disease (Eliasen et al., 2020). In addition, both

lumpfish and wrasses swim poorly in fast currents com-

pared to salmon, which might be challenging at farming

localities with strong water currents (Hvas et al., 2018; Hvas

et al., 2019).

Atlantic lumpfish

The Atlantic lumpfish, also called lumpsucker (Cyclopterus

lumpus, Linnaeus 1758), is a marine teleost belonging to

the order Scorpaeniformes, family Cyclopteridae (Daven-

port, 1985; Nelson et al., 2016). It is morphologically

distinct from other fish. A compact, near spherical body

shape with vivid skin colouration is observed in sexually

mature specimens; males typically display red, orange or

purple colour, while females are usually grey or blue-green.

On the dorsal side of the body, the anterior fin is covered

by thick skin, which forms a long and high crest with com-

pressed, bony tubercles that increases in height with age,

giving the back a more humped appearance in older fish.

Compressed, pointed tubercles are adorning the lateral

sides of the fish in three longitudinal rows (upper, middle

and lower) along its body length. No lateral line is present.

On the ventral side of the body, between the pectoral fins,

is a suction disc that is a modification of the pelvic fins,

which the fish use to adhere to the substrate in its environ-

ment. Lumpfish have a peculiar skin structure, scale less,

with a high proportion of subcutaneous gelatinous tissue,

giving it a rubbery texture. The majority of the skeleton,

except for the skull, is ossified but has been perceived to be

of a cartilaginous nature, which initially led the species to

be classified together with the elasmobranch fish (Hase,

1911; Davenport, 1985; Budney & Hall, 2010; Nelson et al.,

2016). Specific features to note internally (Fig. 4) include a

long gastro-intestinal tract with numerous pyloric caeca, a

bi-lobed anterior kidney, lack of a swim bladder and a large

urinary bladder, especially in adult females (Davenport,

1985; Budney & Hall, 2010; Nelson et al., 2016; Treasurer,

2018a).

The lumpfish is typically found in colder regions of the

northern hemisphere. Adults are semi-pelagic and spend

most of the year freely swimming out in the open ocean,

often over abyssal depths and across distances of several

kilometres (km) per day. They return to the shoreline dur-

ing springtime for spawning, which occurs in shallow

Figure 4 Internal organs of juvenile lumpfish with the left operculum

and abdominal wall removed. Left gill (G), the heart (H), the liver (L),

bands of pyloric caeca (P), posterior kidney (K), part of the stomach (St),

parts of the intestine (I), layers of skeletal musculature (Mu) and parts of

the skin (Sk) are visible. External features, such as the mouth (Mo), left

eye (E), the dorsal hump (DH), several bony tubercles (Tu), the tail (Ta)

and some fins (F) are also noticeable. Photograph taken at Tromsø Aqua-

culture Research Station. Photograph: Toni Erkinharju.
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coastal waters. Females lay their eggs as sizeable masses on

to the surface of a nest, while males start fertilising the eggs

immediately. During incubation, the eggs receive paternal

care and guardianship from the male fish. Upon hatching,

the larvae disperse rapidly with the water currents within a

short time. They remain in shallow, warmer water until

they are fully developed adults (Davenport, 1985; Kennedy

et al., 2015; Bakketeig et al., 2017; Treasurer, 2018a). Dur-

ing this time, hatchlings mainly feed on surface plankton

and then switch to larger invertebrate fauna upon reaching

juvenile life stages. They are opportunistic as juveniles and

adults and display a variable diet, including jellyfish, small

crustaceans, insects, young fish and seagrass – and also

copepods. Some have even shown preference for the sal-

mon feed pellets, when kept in sea cages together with sal-

mon (Davenport, 1985; Davenport & Rees, 1993;

Ingolfsson & Kristjansson, 2002; Vandendriessche et al.,

2007; Rusyaev & Orlov, 2014; Imsland et al., 2014c; Trea-

surer, 2018a).

Wild lumpfish populations are regarded as abundant,

distributed across both sides of the North Atlantic Ocean

in coastal areas with 32 000 km of coastline (Fig. 5) (Pow-

ell et al., 2018; Treasurer, 2018a). The Western distribution:

as far north as the island of Disko off the west coast of

Greenland; from there southwards along most of eastern

Canada, down to the Chesapeake Bay area in eastern USA.

On the Eastern side: in northern parts of Europe, including

Jan Mayen, the Svalbard archipelago and east across the

Barents Sea to Novaya Zemlya in northern Russia; from

there southwards along countries bordering the North Sea

(especially Iceland, Norway, the Faroes, the UK, Ireland

and France), down to the Iberian peninsula, just off the

Algarve coast in southern Portugal (Davenport, 1985;

Holst, 1993; Vasconcelos et al., 2004; Eriksen et al., 2014;

Treasurer, 2018a). There have also been records of lumpfish

observed in the Mediterranean Sea, near the coast of Croat-

ia; however, this has been reported as a probable case of a

vagrant specimen (Dulcic & Golani, 2006; Katsanevakis

et al., 2020). In Norway, the largest natural stocks are con-

sidered to be just off the coast of Nordland, Troms and Fin-

nmark county, although the fish can be found along the

entire Norwegian coastline (Bakketeig et al., 2017). Despite

the species having a wide geographic distribution, and

being of considerable economic value, there is limited

knowledge available on the genetic structure of lumpfish

populations from different origins. One study identified

three distinct genetic groups: Maine-Canada-Greenland,

Iceland-Norway and Baltic Sea, with limited detections of

gene flow between them (Pampoulie et al., 2014). However,

there are still several knowledge gaps for other areas of the

Atlantic Ocean (Powell et al., 2018).

Lumpfish had little commercial value up until the late

20th century, when several countries in the North Atlantic

began large-scale targeting of female fish for their roe, start-

ing with Iceland and Norway in the 1940s-1950s, Canada in

the 1970s and Greenland in the 1990s (Davenport, 1985;

Kennedy et al., 2019). The eggs are marketed as either

whole roe or separated from the ovaries and further pro-

cessed into lumpfish caviar, with Iceland, Canada and Nor-

way as major producers (Johannesson, 2006). Apart from

the roe, the fish carcass has low economic value and is usu-

ally discarded at sea. The fishery is seasonal, and timing can

vary between different areas. Participation has been declin-

ing in all countries except Iceland in recent years, with a

price drop on lumpfish roe compared to other fish species

suggested as the main reason (Kennedy et al., 2019). The

increased use of lumpfish as cleaner fish in the salmonid

aquaculture industry has in some places led to a demand

for ripe females and fertilised eggs. This has also generated

some concern, however, as increased lumpfish capture leads

to depletion of wild stocks (Halvorsen et al., 2017; Trea-

surer, 2018a; Kennedy et al., 2019). Currently, lumpfish is

listed as near threatened (NT) on the IUCN Red List (Lor-

ance et al., 2015). In order to prevent disease transmission,

lumpfish deployed as cleaner fish are culled after the pro-

duction cycle ends, not reused or put to alternative uses.

This leads to demand for additional cleaner fish, to replen-

ish the fish that were removed, when the next salmon pro-

duction cycle begins (Erkinharju et al., 2013; Anonymous,

2013; Brooker et al., 2018). Some proposals for alternative

use to reduce wastage include human or animal feed,

reconditioning into brood stock for captive breeding or a

source for extraction of valuable marine components, such

as proteins, lipids, minerals and pigments (Davenport,

1985; Mudge & Davenport, 1986; Nøstvold et al., 2016;

Clark et al., 2016; Powell et al., 2018; Brooker et al., 2018;

Treasurer, 2018a; Dave et al., 2019). However, despite the

large numbers of cleaner fish used, there are large knowl-

edge gaps concerning several factors affecting the lumpfish

health and welfare under farmed conditions, such as possi-

bility for expressing natural behaviour, optimal morpho-

logical and physiological status, the impacts of stressful

situations, injuries and environmental conditions, and diet-

ary/feeding requirements. Combined with the potential

negative effects from these different factors, in addition to

those from diseases and parasites, the overall welfare of

cleaner fish in sea cages has been considered poor for both

lumpfish and wrasse (Grefsrud et al., 2019).

Wrasse (Labridae)

Wrasses (order Labriformes, family Labridae) are a family

of marine fish commonly found on rocky reefs along the

coastlines of the Atlantic, Indian and Pacific oceans. The

pharyngeal region of wrasse and closely related species is

particularly designed for food processing, with thick,
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protruding lips, strong teeth and protractile mouths, suited

for preying on different invertebrates, such as hard-shelled

crustaceans. Protruding from the upper body is the dorsal

fin with 8–21 spines and 6–21 soft rays, while the anal fin

with 2–6 spines and 7–18 soft rays is located on the lower

body. They possess cycloid, overlapping scales and a con-

tinuous or interrupted lateral line system (Erkinharju,

2012; Nelson et al., 2016). Features to note internally

include an agastric digestive system and a closed swim blad-

der. Most wrasse species are protogynous hermaphrodites,

capable of changing sex with female-to-male change being

most common under natural conditions. This can result in

complex mating systems. Many species are brightly

coloured, with diverse variations in colour patterns

depending on the sex and size of the fish (Fig. 6). In addi-

tion to cleaner fish utilisation, several wrasse species are

commonly used as display fish in public aquaria (Erkin-

harju, 2012; Nelson et al., 2016; Brooker et al., 2018). Inter-

estingly, the cleaner wrasse, Labroides dimidiatus, has

recently been reported as the first fish to seemingly pass the

mirror mark test, a behavioural technique used to measure

and determine whether an animal possess self-awareness

(Kohda et al., 2019). The study has received some criticism,

however, as the mirror mark tests is viewed as being too

limited and simplistic, and a more gradualist model is

needed to determine how different animal species, includ-

ing fish, construe and position the self in the world around

them (de Waal, 2019).

Initial laboratory trials for wrasse as cleaner fish began

near the end of the 1980s, which later commenced with

field experiments in sea cages, before commercial fishing

for wrasse as lice cleaners increased, as sea lice in several

Figure 5 Spawning and distribution area of wild lumpfish stocks in the Atlantic Ocean, the North Sea, the Baltic Sea and the Barents Sea. Adapted

from the Norwegian Institute of Marine Research’s topic pages on Atlantic lumpfish (available at https://www.hi.no/hi/temasider/arter/rognkjeks-

rognkall) (01.03.2020). Used with permission.
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regions developed resistance to chemical treatment (Erkin-

harju, 2012; Skiftesvik et al., 2013). Of the three most com-

monly used wrasse species in Norway, ballan wrasse is

highly prized for its size, hardiness and grazing efficiency.

However, ballan wrasse also has the lowest natural abun-

dance, compared to goldsinny and corkwing wrasse (Skif-

tesvik et al., 2013; Skiftesvik et al., 2014; VKM et al.,

2019a). Rock cook- (Centrolabrus exoletus L.), cuckoo-

(Labrus mixtus L.) and scale-rayed wrasse (Acantholabrus

palloni L.) are either less suited for captivity or are rarely

caught in commercial fisheries and are as such not com-

monly used as cleaner fish (VKM et al., 2019a). Currently,

commercial farming of wrasse is still in its infancy and bal-

lan wrasse is the species predominantly used in northern

Atlantic countries (Erkinharju, 2012; Brooker et al., 2018;

Treasurer, 2018a).

Diseases of lumpfish and wrasse

Bacteria

Bacterial diseases are one of the major health and welfare

challenges in aquaculture and the most significant cause of

mortality in cleaner fish. Some are primary pathogens,

while others are opportunistic, and do not cause disease in

healthy individuals with an uncompromised body defence

system (Nilsen et al., 2014; Scholz et al., 2018a). Fish patho-

genic bacteria isolated from cleaner fish disease outbreaks

in Norwegian aquaculture, include atypical Aeromonas

salmonicida, different species of Vibrio, Pasteurella sp.,

Pseudomonas anguilliseptica, Tenacibaculum spp. and Mori-

tella viscosa (Hjeltnes et al., 2019). It is expected that the

number of recorded bacterial pathogens will no doubt

increase (Table 1), as the use of cleaner fish in salmonid

aquaculture continue to grow (Powell et al., 2018).

Aeromonas salmonicida is a well-known bacterium iso-

lated from a wide range of different fish species worldwide

and the cause of typical furunculosis as A. salmonicida also

causes atypical furunculosis (Wiklund & Dalsgaard, 1998;

Cipriano & Bullock, 2001). It is considered a primary

pathogen of fish, with infection often resulting in forma-

tion of skin ulcers and large boils (furuncles), and granulo-

mas and haemorrhages in internal organs. Mortality can be

quite high (Cipriano & Bullock, 2001; Roberts, 2012). A

presumptive diagnosis is often made on observation of clas-

sical furuncle type lesions and/or internal granulomas, and

on histological observation of characteristic bacterial

microcolonies within organs of susceptible fish (Fig. 7). A

definitive diagnosis requires verification of the pathogen,

through bacterial isolation and/or molecular analysis

(Whitman, 2004; Cain & Polinski, 2014). As for

A. salmonicida, agglutination tests are commonly used for

species confirmation but does not discriminate between

subtypes (Wiklund & Dalsgaard, 1998). The species consists

of several subspecies that are grouped into typical and atyp-

ical divisions. Typical A. salmonicida, or A. salmonicida

ssp. salmonicida (ASS), is the cause of the disease furun-

culosis in salmonids (Hirvelakoski et al., 1994; Menanteau-

Ledouble et al., 2016). Typical furunculosis caused

mortality of lumpfish (while the cohabitated salmon

appeared unaffected most probably due to vaccination

against this disease) in a sea farm in mid-Norway in 2015.

The cause was traced back to a local strain of ASS affecting

wild salmonid populations in the area (Johansen et al.,

2016a). Another outbreak was reported the following year,

but ASS is otherwise rarely seen in lumpfish (Hjeltnes et al.,

2019). Mortalities from typical furunculosis have been

reported from wrasse (Treasurer & Cox, 1991; Treasurer,

2012). Atypical A. salmonicida, however, is often described

as the largest disease challenge of both lumpfish and wrasse

in many areas (Scholz et al., 2018a). Recently, a new

method of characterising A. salmonicida has emerged based

on sequence variation in a region of the virulence array

protein gene (vapA), which encodes the outer membrane

protein known as the ‘A-layer’. Bacterial isolates were

grouped into 14 different clusters or A-layer types, with the

A-layer type V and VI almost exclusively consisting of iso-

lates from cleaner fish (Gulla et al., 2016). Type VI was

most prominent in lumpfish. The A-layer protein appears

to be related to the pathogenicity of the bacteria, as strains

lacking the protein only cause mortality of cleaner fish

when other stressors are present (Ronneseth et al., 2017).

Vibrio anguillarum (synonym Listonella anguillarum)

causes the disease classical vibriosis and is a significant bac-

terial pathogen of marine fish (Haastein & Holt, 1972;

Myhr et al., 1991; Frans et al., 2011). Infection initially

starts with haemorrhages in the skin and musculature,

which then proceeds to a generalised septicaemia (Fig. 8).

Figure 6 Cuckoo wrasse (Labrus mixtus) with highly colourful skin

patters. Photograph taken at Bergen Aquarium, Norway. Photograph:

Toni Erkinharju.
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Table 1 Summary of bacterial pathogens reported from wrasse (Labridae), lumpfish (C. lumpus) and Atlantic salmon (Salmo salar) with relevant ref-

erences

Bacterial pathogens Wrasse Lumpfish Salmon Comments References

Aeromonas

salmonicida subsp.

salmonicida (ASS)

X X X Furunculosis vaccination provide protection for

salmon. Disease outbreaks are rare in all species.

Transmission from salmon to cleaner fish in sea

cages has been suggested.

Hjeltnes et al. (2019), Treasurer and

Cox (1991), Treasurer (2012),

Menanteau-Ledouble et al. (2016),

Hjeltnes et al. (1995), Hirvel€a-Koski

et al. (1994)

Atypical Aeromonas

salmonicida

X X X Vaccination for furunculosis might provide cross-

protection. Salmon appear less susceptible to

atypical variants. Vaccination of cleaner fish might

reduce infection pressure.

Hjeltnes et al. (2019), Wiklund and

Dalsgaard (1998), Laidler et al.

(1999), Frerichs et al. (1992),

Treasurer (2012)

Vibrio anguillarum

serotype O1

X X X Vaccination provide protection for salmon. Disease

outbreaks are rare in all species. Primarily serotype

O1 and O2 are considered pathogenic for fish.

Vaccination of cleaner fish might reduce infection

pressure.

Hjeltnes et al. (2019), Marcos-L�opez

et al. (2013), Biering et al. (2016),

Frans et al. (2011), Haastein and

Holt (1972), Ronneseth et al. (2014),

Myhr et al. (1991)

Vibrio anguillarum

serotype O2 and O3

X X X Vibriosis vaccination (V. anguillarum serotype O2a)

provide protection for salmon. Primarily serotype

O1 and O2 are considered pathogenic for fish.

Vibriosis outbreaks in salmon is rare.

Hjeltnes et al. (2019), Johansen et al.

(2016), Sørensen and Larsen (1986),

Frans et al. (2011), Myhr et al.

(1991)

Vibrio ordalii (formerly

Vibrio anguillarum

biotype 2)

X X X Selective breeding of V. ordalii disease-resistant

lumpfish stock might be possible. The bacterium

has caused severe disease of farmed salmon in

Chile and other parts of the world. Genetic

differences between North Atlantic and Pacific

bacterial strains have been reported. Severe

pathogen for lumpfish but disease outbreaks are

rare.

Hjeltnes et al. (2019), Johansen et al.

(2016), Colquhoun et al. (2004),

Poppe et al. (2012), Bornø et al.

(2016), Breiland et al. (2015), VKM

et al. (2017), Steinum et al. (2016)

Misc. Vibrio spp. X X X Salmon appear unaffected by certain species. Some

species, V. splendidus, V. ichtyoenteri and

V. pacinii, have been found in the digestive tract of

wrasse. V. tapetis causes disease in bivalves.

V. splendidus commonly isolated from ballan

wrasse with fin erosions.

Hjeltnes et al. (2019), Bergh and

Samuelsen (2007), Myhr et al.

(1991), Jensen et al. (2003),

Birckbeck and Treasurer (2014),

Gulla et al. (2015), Gulla et al.

(2017), Paillard et al. (2006)

Pasteurella sp. - X X Pasturella pathogen in lumpfish (not yet

characterised) and Pasturella pathogens in salmon

(P. skyensis and P. varracalbmi) are considered

genetically distinct. Recently, Pasteurella isolates of

same genotype were found in diseased salmon and

lumpfish kept at the same farming locality.

Considered a pathogen of special concern

regarding importation of lumpfish.

Hjeltnes et al. (2019), Poppe et al.

(2013), Birckbeck et al. (2002),

Alarcon et al. (2016a), Valheim et al.

(2000), Reid and Birckbeck (2015),

VKM et al. (2019b)

Pseudomonas

anguilliseptica

X X X Considered opportunistic. Suggested as a primary

lumpfish pathogen.

Isolated from several different fish species.

Considerable variability in disease susceptibility

indicate some degree of host specificity. Important

emerging fish disease. Reported from one locality

with wrasse in Norway in 2017.

Hjeltnes et al. (2019), Wiklund and

Bylund (1990), Poppe et al. (2012),

Treasurer and Birckbeck (2018),

Scholz et al. (2018a), Wakabayashi

and Egusa (1972), Mjølnerød (2019)

Tenacibaculum spp. X X X Several different variants exist, showing little degree

of host specificity. Cross-species transmission have

been suggested. Tenacibaculum spp. often

detected in diseased cleaner fish. T. maritimum

(formerly Flexibacter maritimus) can cause disease

in both lumpfish and salmon. Appear opportunistic.

T. finnmarkense and T. dicentrarchi reported from

lumpfish, and T. dicentarchi and T. solae reported

Hjeltnes et al. (2019), Johansen et al.

(2016), Habib et al. (2014),

Avenda~no-Herrera et al. (2006),

Olsen et al. (2017), Nilsen et al.

(2014), Sm�age et al. (2016), Sm�age

et al. (2018), Avenda~no-Herrera

(et al). (2016), Klakegg et al. (2019),
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Table 1 (continued)

Bacterial pathogens Wrasse Lumpfish Salmon Comments References

from wrasse. T. dicentrarchi is an emerging

salmonid bacterial pathogen in Chile. Associated

with ‘crater disease’ in lumpfish.

Ostland et al. (1999), Johansen and

Poppe (2017), Frisch et al. (2018)

Moritella viscosa

(formerly Vibrio

viscosus)

X X X Primarily a disease problem in salmonid aquaculture.

Vaccination does not appear to offer full

protection. Two genetic divisions exist, a ‘type’

strain and a ‘variant’ strain. Only the variant strain

has been detected in lumpfish. Type strain is

common in salmon and can cause severe problems.

Variant strain includes other fish species and has

caused disease problems for salmon on a few

occasions. Indications that salmon are susceptible

to lumpfish M. viscosa isolates. Could become a

problem if lumpfish is used more often during the

winter season.

Hjeltnes et al. (2019), Lunder et al.

(1995), Gudmundsdottir et al.

(2007), Benediktsdottir et al. (2000),

Johansen et al. (2016), Grove et al.

2010, Karlsen et al. 2014,

Einarsdottir et al. (2018), VKM et al.

(2017)

Piscirickettsia salmonis - X X Only reported on one occasion from lumpfish in

Ireland. SRS has been challenging in salmon

aquaculture in Chile. Appear to be differences in

virulence between European and Chilean strains. A

pathogen of special concern regarding import of

cleaner fish.

Hjeltnes et al. (2019), Marcos-Lopez

et al. (2017), Rozas and Enriques

(2014), Fryer et al. (1992), House

et al. (1999), Olsen et al. (1997),

Reid et al. 2004, Rosas-Serri et al.

2017, VKM et al. 2019b

Photobacterium

damselae subsp.

damselae (formerly

Vibrio damselae)

X - X Reported from a single wild-caught ballan wrasse

with systemic infection. Not reported from

lumpfish. Closely related bacteria, P. damsela

subsp. piscicida, cause disease in Mediterranean

countries. Reported from diseased rainbow trout

during warm summer periods. Demonstrated

pathogenicity to Atlantic salmon during

experimental settings. Usually a disease issue for

warm water marine fish. P. damselae infection

might potentially become problematic with

increasing ocean temperatures. Virulence

properties tied with increasing water temperatures.

Also reported as a human pathogen.

VKM et al. (2019b), McMurtrie et al.

(2019), Austin et al. (1997),

Pedersen et al. (1997), Colorni and

Diamant (2014), Matanza and

Osorio (2018), Rivas et al. (2013)

Lactococcus garvieae X - X Reported from wild Red sea wrasse (Coris aygula).

Not detected in Norway, or from any wrasse species

currently used as cleaner fish. Pathogenicity

connected to increased water temperatures.

Rainbow trout is very susceptible to disease.

Atlantic salmon appears less susceptible than

rainbow trout. Carrier state of live bacteria might

occur. Might potentially become problematic with

increasing ocean temperatures. Considered an

emerging fish pathogen worldwide. May potentially

be a zoonotic pathogen. Associated with disease

conditions in humans, such as bacterial

endocarditis.

VKM et al. (2019b), Colorni et al.

2003, Alg€oet et al. (2009), Colorni

and Diamant (2014), Vendrell et al.

(2006), Fefer et al. (1998), Elliot

et al. (1991)

Mycobacterium spp. - - X Might potentially be a zoonotic pathogen.

Associated with disease conditions in humans, such

as bacterial endocarditis. Over 120 bacterial species

have been documented, and at least 167 fish

species have been reported as susceptible to

mycobacterial infection and disease.

M. salmoniphilum andM. marinum are among

those present in Norwegian waters

Hjeltnes et al. (2019), Zerihun et al.

(2019), VKM et al. (2019b), Jakobs

et al. (2009), Hashish et al. (2018),

Aro et al. (2014), Brocklebank et al.

(2003), Colorni and Diamant (2014)
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It can be quite severe, with high and rapid mortalities in sus-

ceptible fish (Frans et al., 2011; Roberts, 2012). Both lump-

fish and wrasse have demonstrated disease and mortality

after challenge with V. anguillarum (Ronneseth et al., 2014;

Biering et al., 2016). Diagnosis is often based on the clinical

history, combined with histopathology and bacterial isola-

tion with biochemical characterisation and serotyping

(Whitman, 2004; Jansson & Vennerstr€om, 2014). Serotyping

is based on variability of the bacterium’s O-antigens, and a

total of 23 different serotypes (O1-O23) have been described

from fish (Pedersen et al., 1999). Among these, serotype O1

and several subtypes of O2 (O2a, O2a-biotype II and O2b)

are frequently isolated from Norwegian cleaner fish, with

serotype O1 being the most prominent in lumpfish (Johan-

sen et al., 2016a; Hjeltnes et al., 2019). Serotype O1 and O2

infections have also been reported in salmonids (Sørensen &

Larsen, 1986; Myhr et al., 1991). Classical vibriosis are often

associated with increasing temperatures (Frans et al., 2011);

however, disease outbreaks in lumpfish have occurred at

temperature levels as low as 6�C in Scottish aquaculture

(Marcos-Lopez et al., 2013).

Vibrio ordalii (formerly Vibrio anguillarum biotype 2) is

a different bacterial species, known for causing severe

haemorrhagic septicaemia in salmonids in Europe, South

America, Oceania and parts of Asia (Colquhoun et al.,

2004; Frans et al., 2011; Jansson & Vennerstr€om, 2014).

The bacteria was isolated from lumpfish in Norway in 2011

(Poppe et al., 2012) and can potentially lead to high mor-

talities and recurring disease outbreaks (Fig. 9) (Johansen

et al., 2016a; Hjeltnes et al., 2019). However, the suscepti-

bility to infection can vary widely between different

Table 1 (continued)

Bacterial pathogens Wrasse Lumpfish Salmon Comments References

Epitheliocystis bacteria

(phylum Chlamydiae)

X X X Intracellular bacterial disease, sometimes observed in

varying numbers within secondary gill lamellae. The

novel species Candidatus sp. Similichlamydia labri.

nov. have been reported from ballan wrasse. None

of the species detected in wrasse have been found

in farmed salmonid fish. As such, they do not likely

represent a disease problem with salmonid and

cleaner fish polyculture. New species on other

wrasse fish have recently been suggested. Reported

from lumpfish, but no species have been

characterised. A few species have been reported

from Atlantic salmon. Associated with complex gill

disease in Atlantic salmon.

Nilsen et al. (2014), Brooker et al.

(2018), Steigen et al. (2015), Steigen

et al. (2018), Colorni and Diamant

(2014), Gjessing et al. (2019)

 

Figure 7 Bacterial microcolony in the heart of a lumpfish with sus-

pected atypical furunculosis disease caused by infection with atypical

Aeromonas salmonicida. Haematoxylin and eosin (HE) stain. Scalebar:

20 µm. Photograph: Toni Erkinharju.

Figure 8 Peripancreatic blood vessel with several curved, rod-shaped

bacteria (arrows) in a lumpfish affected by generalised infection with

Vibrio anguillarum serotype O1. May–Gr€unwald–Giemsa (MGG) stain.

Scalebar: 10 µm. Photograph: Toni Erkinharju.
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lumpfish families (Breiland et al., 2015). The bacteria have

also been associated with lesions of the eyes in infected

lumpfish (Bornø et al., 2016). Several other Vibrio species

commonly found in the marine environment have also been

isolated from cleaner fish, such as V. splendidus, V. logei,

V. wodanis and V. tapetis, but their significance as disease-

causing pathogens is largely unclear (Scholz et al., 2018a;

Hjeltnes et al., 2019). V. splendidus for instance is often iso-

lated from farmed ballan wrasse with fin erosions, some-

times in mixed culture with Tenacibaculum spp. bacteria

(Scholz et al., 2018a; Hjeltnes et al., 2019). V. splendidus and

V. tapetis have been reported as pathogenic for certain

wrasse species (Sigmund et al., 2003; Bergh & Samuelsen,

2007; Johansen et al., 2016a), although recent studies have

suggested they might represent opportunistic pathogens

rather than causing primary infections (Gulla et al., 2015;

Gulla et al., 2017). V. tapetis is also the cause of brown ring

disease in the bivalve Ruditapes philippinarum (Paillard

et al., 2006). Some species, V. splendidus, V. ichtyoenteri and

V. pacinii, have been found in the digestive tract of different

larval wrasse species (Birkbeck & Treasurer, 2014).

Pasteurellosis is a severe bacterial disease that was first

detected in lumpfish in Norway in 2012 and is occasionally

observed in aquaculture (Poppe et al., 2013; Gu & Skjelstad,

; Scholz et al., 2018a). The bacterium Pasteurella sp. has yet

not been characterised to species level, but show close rela-

tion to P. skyensis and P. varracalbmi, two Pasteurella bac-

teria affecting salmon (Valheim et al., 2000; Poppe et al.,

2013; Alarcon et al., 2016a). Infection leads to bacterial sep-

ticaemia and mortality may be as high as 100%. Macro-

scopically visible lesions in moribund fish include tail rot,

bleeding gills, fin haemorrhages, ascites and skin ulcers

appearing as white nodules, especially on the head. Inter-

nally, affected fish display multiple granulomas and haem-

orrhages in visceral organs (Alarcon et al., 2016a; Gu &

Skjelstad, ; Hjeltnes et al., 2019; Ellul et al., 2019b). Aggre-

gates of bacteria, often with variable tissue reactions

(necrosis, inflammation, haemorrhages or none at all), are

observed histologically, which can easily be mistaken for

atypical furunculosis (Fig. 10) (Poppe et al., 2013; Alarcon

et al., 2016a; Gu & Skjelstad, ). Both infections can also

occur together (Gu & Skjelstad, 2018). Definitive diagnosis

should therefore only be made on proper identification of

the bacterial agent. Pasteurella sp. is considered a pathogen

of special concern regarding importation of lumpfish

(VKM et al., 2019a).

Pseudomonas anguilliseptica is an opportunistic pathogen

causing disease in a wide variety of fish species in freshwater,

seawater and brackish water. Originally, it was a serious prob-

lem in eel farming being the cause of red spot disease (Wak-

abayashi & Egusa, 1972; Wiklund & Bylund, 1990; Scholz

et al., 2018a). It manifests as a haemorrhagic septicaemia,

causing external skin haemorrhages on the ventral side of the

body, and petechial haemorrhaging in the peritoneum, liver

and adipose tissue. Some individuals also develop lesions in

the eyes. Mortality can vary greatly depending on the species

affected (Roberts, 2012; Scholz et al., 2018a). Bacterial colo-

nies are observed histologically, both within blood vessels and

in internal organs (Fig. 11; Roberts, 2012). Diagnosis can be

challenging, as the bacterium grows slowly on culture media,

and is as such easily overgrown by more rapidly dividing bac-

terial species (Roberts, 2012; Scholz et al., 2018a). P. anguil-

liseptica was first isolated from lumpfish in Norway in 2011

and has since then been diagnosed on several occasions

(Poppe et al., 2012; Johansen et al., 2016a; Treasurer & Birk-

beck, 2018). The bacteria has been reported from a single

farming locality with wrasse in Norway in recent years (Hjelt-

nes et al., 2019), but has otherwise not been described from

wrasse (Scholz et al., 2018a). It has recently been indicated as

a primary pathogen of lumpfish (Mjølnerød, 2019). Infected

fish present similar clinical signs to other susceptible fish spe-

cies, in addition to haemorrhages within the brain and the

operculum, which have not been previously described from

other species (Poppe et al., 2012; Hjeltnes et al., 2019; Mjøl-

nerød, 2019).

Tenacibaculosis is an ulcerative disease affecting marine

fish, caused by species of Tenacibaculum bacteria, such as

T. maritimum (previously Flexibacter maritimus) (Aven-

dano-Herrera et al., 2006). It causes deep ulcers with ero-

sion and necrosis of the skin, especially on the fins, tail and

parts of the head. Histologically, Tenacibaculum spp. can be

observed as mats of abundant long, thin and rod-shaped

bacteria associated with epithelial ulcers, which can lead to

a presumptive diagnosis (Roberts, 2012; Jansson & Venner-

str€om, 2014). Bacterial isolation can be challenging,

Figure 9 Lumpfish skeletal muscle with liquefactive necrosis of muscle

tissue (arrows). Vibrio ordalii infections show predilection for muscle

and skin with resulting necrosis and haemorrhage. HE stain. Scalebar:

20 µm. Photograph: Stefanie C. W€ustner.
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however, as T. maritimum grows slowly on agar media,

and colonies can be overgrown or inhibited by other bacte-

rial species in mixed infections (Avendano-Herrera et al.,

2006; Scholz et al., 2018a). It has been suggested to be an

opportunistic pathogen, since the bacteria are found within

the mucus layer of fish skin, and as such appear to be a nat-

ural part of the skin microbial population (Avendano-Her-

rera et al., 2006). T. maritimum was first isolated from

diseased lumpfish in Norway in 2015. Affected fish were

characterised by increased mucus production and white

necrotic lesions in the skin on the head, around the eyes

and over the bony tubercles (Sm�age et al., 2016). Although

T. maritimum infection can be systemic, descriptions of

associated pathologic changes in internal organs have not

been reported from lumpfish (Scholz et al., 2018a).

Tenacibaculum spp. are regularly detected in diseased

lumpfish (Fig. 12), in both pure and mixed culture (Hjelt-

nes et al., 2019). Other species reported from lumpfish are

T. finnmarkense and T. dicentrarchi in Norway, Scotland,

Ireland and the Faroes (Olsen et al., 2017; Scholz et al.,

2018a). T. dicentrarchi and T. soleae have been reported

from wrasse (Olsen et al., 2017). T. dicentrarchi is an

emerging disease problem in Chilean aquaculture (Aven-

dano-Herrera et al., 2016), but its significance for cleaner

fish is still unknown. Tenacibaculum spp. have also been

associated with ‘crater disease’ in lumpfish, which forms

circular crater-like depressions in skin, especially near the

bony tubercles (Johansen & Poppe, 2017).

Winter ulcer disease is caused by infection with the bac-

terium Moritella viscosa (formerly Vibrio viscosus), which

forms large open ulcers in the flanks of affected fish during

the winter season (Lunder et al., 1995; Roberts, 2012; Jans-

son & Vennerstr€om, 2014). This can lead to severe economic

loss, as the ulcers can lead to high mortality during the pro-

duction cycle, and in addition, cause downgrading or rejec-

tion of affected salmon at time of slaughter (Tørud &

H�astein, 2008; Jansson & Vennerstr€om, 2014). Diagnosis of

winter ulcer disease in salmon is generally made on the basis

of clinical history and bacterial culture (Whitman, 2004;

Gudmundsdottir & Bjornsdottir, 2007). The bacterium is

regularly isolated from skin lesions of cleaner fish, some-

times in mixed infections (Fig. 13) (Hjeltnes et al., 2019).

M. viscosa in lumpfish was initially isolated as a low- or

Figure 10 Lumpfish skin infected by several bacterial microcolonies of

Pasteurella sp., with surrounding inflammation and necrosis. HE stain.

Scalebar 20 µm. Photograph: Toni Erkinharju.

Figure 11 Kidney of lumpfish with suspected bacterial septicaemia

caused by Pseudomonas anguilliseptica. The renal tissue appears necro-

tic (arrow), and several thin, rod-shaped bacteria are observable.

Giemsa stain. Scalebar: 10 µm. Photograph: Toni Erkinharju.

(a)

(b)

Figure 12 A: Infected dermal ulcer of lumpfish, covered by a large

matrix of mixed bacterial types (arrow) (long, filamentous and shorter,

rod-shaped). The epidermal layer is missing. The fish presented clinical

symptoms characteristic for ‘crater disease’. B: Skin erosion with several

long, filamentous bacteria (dark pink; arrow) (Tenacibaculum spp.). HE

stain. Scalebar 50 µm (a) and 20 µm (b). Photograph: Toni Erkinharju.

Reviews in Aquaculture, 1–49

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd12

T. Erkinharju et al.



non-virulent strain from the gills of one healthy individual

(Benediktsdottir et al., 2000), but have recently been isolated

from skin lesions on fish at several occasions (Hjeltnes et al.,

2019). It has been reported that the bacterium has been the

cause of mortalities of lumpfish in Norway (Scholz et al.,

2018a). Among the knownM. viscosa isolates, there appears

to be two different clusters based on phenotypic (Western

blotting, plasmid profile, pulsed field electrophoresis) and

genetic analysis (16S rRNA and GyrB sequencing), a ‘type

strain’ consisting of almost exclusively isolates from Atlantic

salmon, and a ‘variant strain’ consisting of several different

fish species, including lumpfish (Grove et al., 2010). To date,

very few cleaner fishMoritella isolates have been studied and

more information is needed to better understand the signifi-

cance of M. viscosa in lumpfish (Johansen et al., 2016a;

Scholz et al., 2018a). However, in a study by Einarsdottir

et al. (2018) it was shown that salmon was susceptible to

M. viscosa isolated from affected lumpfish, but not the other

way around. Vaccination of salmon is possible, but does not

appear to offer full protection from the disease (Gudmunds-

dottir & Bjornsdottir, 2007; Scholz et al., 2018a).

Salmonid rickettsial septicaemia, or piscirickettsiosis, is a

disease affecting fish in marine and brackish waters. It is

caused by an intracellular bacterium called Piscirickettsia

salmonis and was initially observed in salmonid fish in Chi-

lean aquaculture (Fryer et al., 1992; Rozas & Enriquez,

2014). Mortality can be quite high and is difficult to treat

with antibiotics, possibly due to the bacteria’s intracellular

life cycle (Jansson & Vennerstr€om, 2014). Typical signs of

infection are white, sometimes haemorrhagic, circular nod-

ules in the liver, which occasionally rupture and forms cra-

ter-like lesions (Roberts, 2012; Rozas & Enriquez, 2014). A

presumptive diagnosis is usually made on clinical history

and histological demonstration of pleomorphic bacteria,

associated with necrotic and inflammatory lesions in

affected organs. Confirmation of the pathogen requires

additional analysis by either immunohistochemistry, isola-

tion with cell culture or specific bacteriological media, sero-

logical or molecular methods (Jansson & Vennerstr€om,

2014; Rozas & Enriquez, 2014; Scholz et al., 2018a).

P. salmonis has never been detected in Norwegian cleaner

fish (Hjeltnes et al., 2019), but was isolated from a lumpfish

hatchery in Ireland in 2015 (Marcos-Lopez et al., 2017).

Infected fish displayed distended abdomen with marked

ascites, pale organs, enlarged kidney and green-coloured

liver with numerous cream-coloured patches. Although the

reported mortality and morbidity rates were very low, there

is a risk of subclinical infection resulting in the infection

going unnoticed, and thus potentially spreading the bacte-

ria when moving lumpfish to new areas (Marcos-Lopez

et al., 2017). P. salmonis has caused disease in Atlantic sal-

mon in Norway (Olsen et al., 1997).

Systemic infection with Photobacterium damselae subsp.

damselae (Pdd) (formerly Vibrio damselae) was recently

reported from a single wild-caught ballan wrasse from the

British south-west coast during the warmest average water

temperatures that year (McMurtrie et al., 2019). Photobac-

teriosis is a devastating fish disease in warm and temperate

aquaculture locations, where a closely related subspecies,

Photobacterium damselae subsp. piscicida, has been

described from several marine fish species in Mediterranean

countries, in the United States and in Japan (Colorni &

Diamant, 2014). Fish photobacteriosis might potentially

become a problem with increasing water temperatures

(VKM et al., 2019a). Regulation of physiological and viru-

lence-related properties of Pdd have been suggested to be

associated with changes in the water temperature (Matanza

& Osorio, 2018). Pdd is also an opportunistic human

pathogen, potentially causing severe necrotising fasciitis in

affected individuals (Rivas et al., 2013).

As for other bacterial species, there are only limited

information available. Lactococcus garviae has been isolated

from wild Red sea wrasse Coris aygula (Colorni et al.,

2003). Lactococcosis in fish manifests as a hyperacute and

haemorrhagic septicaemia and is regarded as an emerging

pathology, and as with Pdd, the pathogenicity is closely tied

to increasing water temperatures (Vendrell et al., 2006; Col-

orni & Diamant, 2014). Rainbow trout is very susceptible

to disease, while other salmonids, such as Atlantic salmon

and brown trout (Salmo trutta), appear less susceptible

(Alg€oet et al., 2009). Fish surviving infection might poten-

tially become carriers, and thus contributing to further

spread of the disease if it is undetected (Vendrell et al.,

2006; Alg€oet et al., 2009). It has been associated with rare

cases of bacterial endocarditis in humans (Elliott et al.,

1991; Fefer et al., 1998). Its relevance as a fish pathogen in

Figure 13 Mixed bacterial infection in skin ulcer of lumpfish. Several

short bacterial rods (arrows), of which some might be Moritella viscosa,

can be seen around the centre of the image. HE stain. Scalebar 10 µm.

Photograph: Toni Erkinharju.
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northern parts of Europe might change with increasing

water temperatures (Alg€oet et al., 2009; VKM et al., 2019a).

It has not been detected in Norway or in any wrasse species

used as cleaner fish to date (VKM et al., 2019a).

Mycobacterium spp. causes chronic disease in fish with

formation of granulomatous lesions within internal organs

in severe cases (Colorni & Diamant, 2014). Numerous bac-

terial species have been recognised, and at least 167 fish

species, both cultured and wild, have been reported as sus-

ceptible to infection and development of disease (Jacobs

et al., 2009). M. salmoniphilum and M. marinum are

among those species considered present in Norwegian

waters (VKM et al., 2019a). M. salmoniphilum has been

diagnosed as an increasing pathogen in Norwegian Atlantic

salmon farms lately (Zerihun et al., 2019; Hjeltnes et al.,

2019). Similar cases of fish mycobacteriosis in Atlantic sal-

mon have also been reported from other parts of the world,

such as M. salmoniphilum in Chile and M. chelonae in

Canada (Brocklebank et al., 2003; Aro et al., 2014). There is

some degree of zoonotic potential associated with these

bacteria, and especially M. marinum infection is considered

a possible occupational hazard when handling aquarium

fish (Colorni & Diamant, 2014; Hashish et al., 2018). As far

as the authors are aware, there have been no reports of

Mycobacterium spp. in fish species used as cleaner fish.

Epitheliocystis bacteria (phylum Chlamydiae) are several

intracellular bacterial species, capable of causing gill disease

with formation of spherical or ellipsoid ‘cysts’ within the gill

tissue (Colorni & Diamant, 2014). A novel species, Candida-

tus sp. Similichlamydia labri. nov, was recently discovered in

ballan wrasse in Norway (Steigen et al., 2015; Brooker et al.,

2018). Subsequently, two putative new species of Chlamy-

diae were then reported from wrasse collected on the west

coast of Norway (Steigen et al., 2018). Epitheliocystis has

been reported from lumpfish (Fig. 14) (Nilsen et al., 2014),

but no species have been identified. A few species that have

been reported from Atlantic salmon, Ca. Piscichlamydia sal-

monis and Ca. Branchiomonas cysticola, may be associated

with the multifactorial disease condition known as complex

gill disease (Gjessing et al., 2019). The newly described spe-

cies in wrasse have not been found in farmed salmonids and

are as such not considered a relevant disease problem for

aquatic polyculture (Steigen et al., 2018).

Fungi

Fungal infections are common in lumpfish aquaculture and

can cause significant mortalities, especially in hatcheries. Dif-

ferent species are probably involved, but Exophiala spp. (me-

lanised fungi, also known as black yeast) are considered the

most common, and have also been found in wild-caught

lumpfish (Table 2) (Powell et al., 2018; Brooker et al., 2018).

Exophiala infections have also been reported from numerous

fish species, such as Atlantic salmon (Langdon & McDonald,

1987; de Hoog et al., 2011; Jansson & Vennerstr€om, 2014).

Generally, the pathogen causes systemic infection whichman-

ifests as multiple granulomas in internal organs, and occa-

sionally as dark dermal nodules on the body surface.

Histologically, septated fungal hyphae are observed in affected

organs, such as the kidney and liver (Fig. 15) (Gjessing et al.,

2011; Roberts, 2012). Different special stains (such as periodic

acid-Schiff (PAS) and Grocott’s silver stain) may aid in the

interpretation of pathologic changes (Jansson & Venner-

str€om, 2014). Culturing usually requires special growth

media, and molecular analysis is required for species identifi-

cation (de Hoog et al., 2011; Scholz et al., 2018a).

Currently, five species have been identified in lumpfish;

these are E. angulospora, E. psychrophile, E. salmonis,

E. aquamarina and Cyphellophora sp (de Hoog et al., 2011;

Johnson et al., 2018; Scholz et al., 2018b). E. angulospora

have previously been isolated from a lumpfish hatchery in

Scotland (Saraiva et al., 2019). Both E. angulospora and

E. psychrophila were recently detected in a lumpfish brood-

stock facility, in addition to E. salmonis and another fun-

gus, Chyphellophora sp., from lumpfish at sea, in Ireland

and Iceland (Scholz et al., 2018b). Affected fish had several

dark-pigmented ulcerative lesions in the skin, especially

around bony tubercles, and multifocal black discolouration

or nodules on internal organs. Diffuse swelling was also

observed, especially in the kidneys (Johnson et al., 2018;

Scholz et al., 2018b; Saraiva et al., 2019). Finally, the species

E. aquamarina has also been reported from lumpfish, in

addition to several species of fish commonly kept in aquari-

ums (de Hoog et al., 2011). It is currently unknown to what

degree Exophiala spp., or other pathogenic fungus, might

be present in farmed lumpfish in Norway. Systemic

Figure 14 Gill tissue from lumpfish, with several epitheliocysts located

within the secondary lamellae (arrows). Slight lifting of the respiratory

epithelium is also noticeable (arrowheads). HE stain. Scalebar 10 µm.

Photograph: Toni Erkinharju.
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mycoses are occasionally reported (Hjeltnes et al., 2019),

but the species is not always identified. It has also been sug-

gested that some species, such as E. pisciphila and

E. salmonis, might have potential as zoonotic pathogens

(Revankar & Sutton, 2010; Yoon et al., 2012; Kebbe &

Mador, 2016). The Table 2 sums up the occurrence of

known fungal pathogens in the fish species.

Parasites

Several different parasites have been reported from both

wild-caught and farmed lumpfish and wrasse (Table 3).

Some are specific to their host species, while others require

intermediate hosts as part of their life cycle. A few can

potentially infect cohabitated salmon, and some are a con-

cern due to their zoonotic potential. Most of the time, par-

asites are not detrimental to their host, but may become

harmful under stressful conditions. (Karlsbakk et al., 2014;

Johansen et al., 2016a; Powell et al., 2018; Scholz et al.,

2018a). Important parasites in lumpfish include the proto-

zoans Paramoeba perurans (Oldham et al., 2016), Nucle-

ospora cyclopteri (Freeman et al., 2013), Trichodina sp.

(T. cyclopteri, T. galaye) (Karlsbakk et al., 2014), Ichtyobodo

sp. (Karlsbakk et al., 2014), coccidians (Eimeria sp.) (Krist-

mundsson et al 2018), and the metazoans Kudoa islandica

(Kristmundsson & Freeman, 2014), Gyrodactylus sp., Gyro-

dactylus cyclopteri (Karlsbakk et al., 2014; Pietrak & Rosser,

2020), nematodes (H. aduncum, A. simplex) (Rolbiecki &

Rokicki, 2018) and Caligus elongatus (Davenport, 1985;

Heuch et al., 2007).

Paramoeba perurans (synonym Neoparamoeba perurans)

is the cause of amoebic gill disease (AGD) affecting many

different fish species all over the world (Mitchell & Rodger,

2011; Jansson & Vennerstr€om, 2014). The main tissue

affected are the gills, which become hyperplastic and dis-

play increased mucus production upon colonisation with

the amoeba. The thickening of gill filaments then causes

impairment in the diffusion of respiratory gases across the

gill surface, potentially resulting in respiratory distress, car-

diac changes, disturbances in the acid-base homeostasis

and, ultimately, death (Roberts, 2012). Diagnosis of the dis-

ease is made on observation of the parasite on affected gills

with hyperplastic respiratory epithelium and fused fila-

ments, while confirmation of the species require identifica-

tion by additional analysis, such as in situ hybridisation

(ISH) or PCR (Mitchell & Rodger, 2011; Jansson & Ven-

nerstr€om, 2014). AGD can have high impacts on aquacul-

ture production due to the increased mortalities and

reduced growth of affected fish, caused either by the para-

site alone, or from concurrent infection with other gill

pathogens. Another important factor is the increased pro-

duction costs from labour-intensive and time-demanding

parasite treatments, which does not completely eliminate

all of the infective amoeba from the fish (Mitchell & Rod-

ger, 2011; Jansson & Vennerstr€om, 2014; Johansen et al.,

Table 2 Summary of fungal pathogens reported from wrasse (Labridae), lumpfish (C. lumpus) and Atlantic salmon (S. salar) with relevant refer-

ences

Fungal agent Wrasse Lumpfish Salmon Comments References

Exophiala spp. - X X E. salmonis, E. psychrophila and E. pisciphila reported from

Atlantic salmon. E. salmonis, E. psychrophila, E. angulospora

and E. aquamarina reported from lumpfish. Reported from

several fish species. Fish appear generally susceptible to

disease. There is a general lack of information regarding

fungal pathogens in cleaner fish. May potentially cause

opportunistic zoonotic infections in humans.

Powell et al. (2018, Scholz et al.

(2018a), de Hoog et al. (2011),

Pedersen and Langvad (1989),

Langdon and McDonald (1987),

Johnson et al. (2018), Scholz

et al. (2018b), Saraiva et al.

(2019), Bornø et al. (2016),

Jansson and V€annerstrøm (2014),

Gjessing et al. (2011), Kebbe and

Mador (2016), VKM et al. (2019b)

Figure 15 Necrotic liver of lumpfish with systemic mycosis. Several

light brown septated fungal hyphae can be seen (arrows), suspected of

being Exophiala sp. A demarcation between severely affected and less

affected liver tissue can be noted (dotted line, ---). HE stain, Scalebar

20 µm. Photograph: Toni Erkinharju.
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Table 3 Summary of parasitic agents reported from wrasse (Labridae), lumpfish (C. lumpus) and Atlantic salmon (S. salar) with relevant references

Parasitic agents Wrasse Lumpfish Salmon Comments References

Paramoeba perurans

(syn. Neoparamoeba

perurans)

X X X Experimental transmission confirmed

between lumpfish and salmon. Cleaner fish

a possible reservoir. Salmon is very

susceptible to infection. Low host

specificity. The amoeba is considered

common along the Norwegian coastline as

far north as Nordland county. Treatment is

difficult and costly.

Hjeltnes et al. (2019), Mitchell and

Rodger (2011), Young et al. (2007),

Young et al. (2008), Steinum et al.

(2008), Karlsbakk et al. (2013),

Karlsbakk et al. (2014), Oldham

et al. (2016), Haugland et al. (2017),

Steigen et al. (2018), Scholz et al.

(2018a)

Nucleospora cyclopteri - X - N. cyclopteri only described from lumpfish.

Closely related to N. salmonis in salmon.

Direct transmission has been shown for

certain microsporidian parasites in fish, such

as N. salmonis. The parasite is common in

wild lumpfish along the Norwegian coast.

Hjeltnes et al. (2019), Mullins et al.

(1994), Freeman et al. (2013),

Freeman and Kristmundsson (2013),

Karlsbakk et al. (2014), Alarcon

et al. (2016b), Scholz et al. (2018a),

VKM et al. (2017), Aloui et al.

(2006), Lom and Nilsen (2003),

Johansen et al. (2016a)

Tetramicra brevifolium - X - Only described from lumpfish in Ireland. Not

reported from cleaner fish in Norway. Direct

transmission has not been proven. Potential

problem in turbot farming in Southern

Europe. Transmission to salmon has not

been investigated, but considered unlikely.

Hjeltnes et al. (2019), Scholz et al.

(2017), Lom and Nilsen (2003),

Fig ueras et al. (1992), Scholz et al.

(2018a), Estevez et al. (1992)

Other microsporidia X - X Loma sp. and Desmozoon lepeoptheirii (syn.

Paranucleospora theridion) reported from

wrasse. The parasites have also been

reported from salmon. Cross-infection

between fish are unknown. Direct

transmission has been shown for Loma

salmonis. Sea lice are considered vector for

D. lepeoptherii.

Hjeltnes et al. (2019), Scholz et al.

(2018a), Mitchell and Rodger

(2011), Ramsay et al. (2002), Nylund

et al. (2010), Kent et al. (1989),

Steigen et al. (2018), Lom and Nilsen

(2003)

Ichthyophonus sp. X X X I. hoferi-like organisms reported from both

wrasse and lumpfish. Can potentially infect

‘all’ fish. Opportunistic generalist.

Transmission directly through water or

potentially from salmon consuming infected

fish, such as cleaner fish, or zooplankton.

Hjeltnes et al. (2019), Mo and Poppe

(2018), Hansen and Nilsen (2018),

Gozlan et al. (2014), Zubchenko and

Karaseva (2002), Teffer et al. (2020),

Rahimian (1998), Kochan (2019)

Trichodina sp. X X X Two species identified on lumpfish,

T. cyclopteri and T. galaye. Commonly

found on cleaner fish. Considered host-

specific. Makes transmission between

cleaner fish and salmon less likely. Usually

not associated with severe pathology. Might

be present among other gill pathogens.

Hjeltnes et al. (2019), Johansen et al.

(2016), Karlsbakk et al. (2014), VKM

et al. (2017), VKM et al. (2019b),

Treasurer (1997), Steigen et al.

(2018)

Scuticociliates X X X Widespread in the marine environment. Free-

living organisms, considered secondary

pathogens. Organisms occasionally reported

from lumpfish, resembling Uronema

marinum. Reported from several fish.

Scuticocilates also reported from wrasse

and salmon. Not considered a significant

problem for healthy salmon.

Scholz et al. (2018a), Østevik et al.

(2018), McMurtrie et al. (2019),

Erkinharju et al. (2019),

Bermingham and Mulcahy (2007),

Ferguson et al. (1987), Dykov�a et al.

(2010), Piazzon et al. (2013), Colorni

and Burgess (1997)

Ichthyobodo sp.

(also known as Costia)

X X X The flagellates, I. salmonis and I. necator

have been identified in salmon. Considered

species-specific. Lumpfish and wrasse most

likely have their own, novel species. Not

Hjeltnes et al. (2019), Karlsbakk et al.

(2014), Isaksen et al. (2011),

Johansen et al. (2016), Mitchell and

Rodger (2011), VKM et al. (2019b),
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Table 3 (continued)

Parasitic agents Wrasse Lumpfish Salmon Comments References

considered a severe pathogen. Often found

on wrasse.

Scholz et al. (2018a), Steigen et al.

(2018), Treasurer (1997)

Cryptobia dahli - X - Specific species for fish. Salmon has the well-

known hemoflagellate Cryptobia

(Trypanoplasma) salmositica. Considered

harmless for the lumpfish host, due to lack

of apparent damage to the gastric tissue.

Commensals. Spironucleus sp. also reported

from intestinal canal of lumpfish.

Karlsbakk et al. (2014), Erkinharju

et al. (2019), Freeman and

Kristmundsson (2018), Treasurer

(1997), VKM et al. (2019b), Woo

(2003)

Cycloptericola marina - X - Similar to C. dahli, considered harmless for

the lumpfish host. May cover parts of the

gastric tissue.

Karlsbakk et al. (2014), Erkinharju

et al. (2019)

Coccidea (resembling

Eimeria sp.)

X X X Eimeria-like coccidians reported from both

lumpfish and wrasse recently. Coccidian

parasites have been reported from the

gastro-intestinal tract of wild-caught salmon

fry at Trøndelag county. Eimeria sp. in fish

show very high host specificity. Obligate

parasites with a direct life cycle. Highly

prevalent in wild cleaner fish. Common

parasite within the fish intestine. Usually

minimal severe pathology described from

marine fish. Might affect the cleaner fish

appetite, thus affecting grazing of sea lice.

Hjeltnes et al. (2019), Kristmundsson

et al. (2018), VKM et al. (2019b),

McMurtrie et al. (2019), Erkinharju

et al. (2019),�Akesson et al. (2020),

Sweco (2017), Molnar et al. (2012),

Xavier et al. (2018), Gjerde (2011b)

Kudoa islandica - X - Isolated from both lumpfish and wolffish.

Kudoa thyrsites occur in Atlantic salmon.

Kudoa-like myxozoa are incidental findings

in wrasse. Typically, low or no mortality.

Kudoa is not strictly host-specific; possibility

for transmission might exist.

Hjeltnes et al. (2019), Kristmundsson

and Freeman (2014), Alarcon et al.

(2016b), Lom and Dykov�a (2006),

Henning et al. (2013), Karlsbakk

et al. (2014), St-Hilaire et al. (1997),

Johansen et al. (2016), Swearer and

Robertson (1999), Scholz et al.

(2018a)

Myxobolus aeglefini - X X Intermediate hosts often required for

myxozoan parasites, such as tubifex worms.

Benthic organisms found on the sea

bottom. Most are considered host-specific.

Salmon could potentially be infected from

cod kept in the same cage. Resemble

Myxobolus cerebralis infection. M. aeglefini

has not been reported from lumpfish in

Norway.

Cavin et al. (2012), Karlsbakk et al.

(2014), Scholz et al. (2018a), Mo

et al. (1992,) Gilbert and Granath

(2001), Erkinharju et al. (2019),

Blazer et al. (2004)

Gyrodactulys sp. X X X Specific host species. Could potentially cause

problems, not fully surveyed.

Karlsbakk et al. (2014), Johansen

et al. (2016), Hjeltnes et al. (2019),

VKM et al. (2019b), Alarcon et al.

(2016b), Pietrak and Rosser (2020),

VKM et al. (2017), Erkinharju et al.

(2019)

Nematodes X X X Some species, such as Hysterothylacium

aduncum, has a wide range of hosts.

Several are zoonotic. Low to no prevalence

in surveys of farms. H. aduncum, Anisakis

simplex, Contracecum oscalatum and

Pseudoterranova sp. have all been reported

from lumpfish. H. aduncum, A. simplex,

Pseudoterranova sp. and Contracecum

oscalatum found in wrasse. H. aduncum,

Rolbiecki and Rockiki (2008),

Karlsbakk et al. (2014), McMurtrie

et al. (2019), Hjeltnes et al. (2019),

VKM et al. (2019b), Mo and Poppe

(2018), Deardoff and Kent (1989),

Lunestad, 2003, Mo et al. (2010),

Levsen and Maage (2016), Adams

et al. (1997), Johansen et al. (2016),

Treasurer (1997)
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2016a; Scholz et al., 2018a). P. perurans has been identified

from lumpfish in both Scotland and Norway (Karlsbakk,

2015; Oldham et al., 2016), and AGD are occasionally

reported in lumpfish (Fig. 16), both in land-based facilities

and at sea together with salmon (Hjeltnes et al., 2019).

Infected lumpfish can develop similar gill lesions as other

fish species, but they appear to be more resistant, as pro-

gression is slower, mortality lower and fewer fish affected,

Table 3 (continued)

Parasitic agents Wrasse Lumpfish Salmon Comments References

A. simplex and Pseudoterranova sp. found

in salmon. Salmon usually eat feed pellets,

but might eat cleaner fish. If the cleaner fish

is infected, it could potentially transmit to

salmon.

Flukes X X X Microcotyle donavini, Macvicaria alacris and

Gaevskayatrema perezi are special concerns

regarding import of wrasse. Cryptocotyle

lingua found on lumpfish and wrasse.

Considered relatively harmless and also

found in salmon and cod.

(Karlsbakk et al. (2014), Treasurer

(1997), Erkinharju et al. (2019),

VKM et al. (2019b), Alarcon et al.

(2016b), McMurtrie et al. (2019),

Heuch et al. (2011)

Cestodes X X X Eubothrium sp. been reported from both

salmon and lumpfish. Cestodes also occur in

wrasse. Might use copepods as

intermediate hosts. Cestode larvae may be

found in the intestine of lumpfish.

McMurtrie et al. (2019), Hjeltnes

et al. (2019), Rolbiecki and Rokicki

(2008), Karlsbakk et al. (2014),

Johansen et al. (2016)

Caligus elongatus X X X Lumpfish important host for genotype I.

Commonly observed on wild fish.

Generalist.

Hjeltnes et al. (2019), Treasurer

(1997), VKM et al. (2019b),

Johansen et al. (2016), Davenport

(1985), Karlsbakk et al. (2014),

Powell et al. (2018), Øines et al.

(2006), VKM et al. (2017), Todd

(2006)

Other copepods X X X C. centrodonti and Hatschekia sp. reported

from wrasse. Lumpfish is intermediate host

for Lernaeocera branchialis, while cod is end

host. L. salmonis has not been observed in

cleaner fish.

Treasurer (1997), McMurtrie et al.

(2019), Steigen et al. (2018),

Karlsbakk et al. (2014), Khan et al.

(1990), Powell et al. (2018), Brooker

et al. (2007), Davenport (1985)

Figure 16 Amoeba-like organism (thick arrow) found among cellular

debris located in-between gill filaments of lumpfish affected by amoebic

gill disease (AGD). HE stain. Scalebar 10 µm. Photograph: Toni Erkin-

harju.

Figure 17 Kidney from lumpfish with suspicion of infection with

microsporidian parasites. Several cells display intranuclear oval-shaped

structures (some indicated by black circles). PAS stain. Scalebar 10 µm.

Photograph: Toni Erkinharju.
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when compared to infection in Atlantic salmon (Haugland

et al., 2017). P. perurans is currently the only pathogen

shown experimentally to be transmitted from lumpfish to

cohabitated salmon, indicating that the lumpfish could

function as a reservoir for the amoeba, unless it is success-

fully removed from both species (Johansen et al., 2016a;

Haugland et al., 2017; VKM et al., 2017).

Nucleospora cyclopteri is a microsporidian parasite only

reported from lumpfish. It was initially described from cap-

tive lumpfish in eastern Canada in the middle of the 1990s

(Mullins et al., 1994) but was first characterised from Ice-

landic lumpfish in 2013 (Freeman et al., 2013; Freeman &

Kristmundsson, 2013). Recently, the parasite has also been

reported in both wild and farmed lumpfish in Norway

(Karlsbakk et al., 2014; Alarcon et al., 2016b), and in

broodfish from the UK (Scholz et al., 2018a). It is closely

related to N. salmonis (Freeman et al., 2013), which is

known to cause high mortality in salmonids (El Alaoui

et al., 2006; Cain & Polinski, 2014). It is uncertain whether

the parasite in lumpfish use intermediate hosts/vectors as

part of its life cycle (Scholz et al., 2018a), but direct trans-

mission has been shown for certain microsporidian para-

sites in fish, such as N. salmonis (Lom & Nilsen, 2003).

N. cyclopteri has been proven a significant lumpfish patho-

gen, infecting the nucleus of the fish’s leucocytes, mainly

lymphocytes and lymphocyte precursor cells (Fig. 17).

Pathology and mortality can be severe in affected fish. The

most prominent clinical signs are in the kidneys, which can

be presented as several white nodules on the surface, or as

swollen, enlarged and pale organs due to extensive prolifer-

ation of parasite-infested leucocytes within the tissue (Free-

man et al., 2013; Karlsbakk et al., 2014; Alarcon et al.,

2016b). The parasite has also been detected in high densi-

ties in the spleen, heart, gills and other organs, suggesting

that the infection may be systemic (Freeman et al., 2013;

Warland, ; Hansen et al., 2019). It is also possible that the

parasitic infection of leucocytes will lead to impairment of

the fish’s immune system (Scholz et al., 2018a). Definitive

diagnosis is made on histological observation of the

microsporidian in the nuclei of lymphocytes (usually as

oval-shaped spores), supported by special staining tech-

niques (such as Gram-Twort, Calco-Fluor-White or in situ

hybridisation), and by PCR analysis (Freeman et al., 2013;

Hansen et al., 2019).

Another microsporidian parasite is Tetramicra brevifilum

that has been reported causing disease in farmed turbot in

southern Europe (Figueras et al., 1992; Estevez et al., 1992).

It was recently isolated from lumpfish brood stock in Ireland

(Scholz et al., 2017). Infected fish presented severe bloating,

exophthalmos, white corneal patches and numerous blister-

like nodules on the body surface. Internally, numerous cysts

and white nodules were noted on all organs, and a mucoid-

like fluid were observed in the abdominal cavity. The livers

were the most heavily affected organ, some pale yellow and

mottled with cysts on the surface. Xenomas (‘xenoparasitic

complexes’) are located inside the cysts, which may form

multiple large space occupying complexes within affected

organs. Inflammation is usually not observed, unless the

xenomas rupture and free microsporidians enter the sur-

rounding tissue (Scholz et al., 2017). A presumptive diagno-

sis is made on clinical history and pathological findings.

Confirmation of the species through molecular analysis is

advised (Scholz et al., 2018a). T. brevifilum is often found in

lumpfish at sea on the coast of Ireland (Scholz et al., 2018a).

It has not been reported from lumpfish in Norwegian aqua-

culture (Hjeltnes et al., 2019).

Other reported microsporidian parasites are Loma-like

parasites (species unknown) and Desmozoon lepeoptheirii

(syn. Paranucleospora theridion) from gills of wrasse with

minimal or no associated pathology (Steigen et al., 2018;

Scholz et al., 2018a). D. lepeoptheirii and Loma salmonis are

significant gill pathogens for salmonid fish (Kent et al.,

1989; Ramsay et al., 2002; NYLUND et al., 2010; Mitchell &

Rodger, 2011). Atlantic salmon appear relatively resistant

to infection with L. salmonis (Mitchell & Rodger, 2011),

while both Atlantic salmon and salmon louse (Lepeoph-

theirus salmonis) may function as natural reservoirs for

D. lepeoptheirii (NYLUND et al., 2010; Mitchell & Rodger,

2011). It is unknown whether wrasse could potentially

transmit such microsporidian parasites to cohabitated sal-

mon (Steigen et al., 2018). Direct transmission has been

demonstrated for L. salmonis (Lom & Nilsen, 2003).

The protist Ichthyophonus hoferi is a fungal-like parasite

that can potentially affect all species of fish and cause severe

mortality (Jansson & Vennerstr€om, 2014). Infected fish are

typically emaciated with numerous cysts located beneath

Figure 18 Several budding spores in the spleen of lumpfish systemi-

cally infected by Ichthyophonus sp. HE stain. Scalebar 20 µm. Pho-

tograph: Toni Erkinharju.

Reviews in Aquaculture, 1–49

© 2020 The Authors. Reviews in Aquaculture published by John Wiley & Sons Australia, Ltd 19

Cleaner fish diseases and vaccination



the skin. Some may also display central nervous symptoms

if the parasite has spread to the brain. Internally, several

white nodules formed by granulomatous inflammation can

be observed in the heart, liver, kidney, spleen and in the

intestinal wall (Rahimian, 1998; Roberts, 2012). The disease

is diagnosed by histologically observing granulomas with

large club-shaped spores, surrounded by a thick double

contoured wall (Fig. 18) (Rahimian, 1998; Bruno et al.,

2006). The spores also stain positive with periodic acid-

Schiff (PAS) stain, which can aid in reaching a diagnosis.

I. hoferi-like organisms have previously been reported in

infected lumpfish in Norway, causing high mortality and

characteristic lesions (Hansen & Nilsen, 2018; Hjeltnes

et al., 2019). It is often detected in heart and skeletal muscle

tissue, due to a preference for active musculature (Kocan

et al., 2006; Hansen & Nilsen, 2018). There is a concern that

infected lumpfish could potentially transmit the parasite to

cohabitated salmon at sea (Mo & Poppe, 2018). It has

recently been reported from ballan wrasse suffering from

increased mortality (Hjeltnes et al., 2019).

Trichodinids are mobile ciliates that can be found on the

skin and gills of several species of fish (Khan, 1991; Gaze &

Wootten, 1998; Lio-Po & Lim, 2014). Two species of Tri-

chodina, T. cyclopteri and T. galaye, are host-specific and

commonly found on the gills of lumpfish (Fig. 19a) (Karls-

bakk et al., 2014; Johansen et al., 2016a). Trichodinids are

usually a problem for juvenile fish in stressful and over-

crowded habitats, where massive infestations can cause sev-

ere damage to the epidermal tissue and gills, resulting in

respiratory distress and mortality. They are easily observed

microscopically in gill and skin samples (Roberts, 2012;

Lio-Po & Lim, 2014; Scholz et al., 2018a). Heavy infesta-

tions of juvenile lumpfish with Trichodina sp. have been

reported (Powell et al., 2018; Scholz et al., 2018a). The par-

asites are a commonly reported finding in Norwegian aqua-

culture, but are not usually related to major health

problems (Johansen et al., 2016a; Hjeltnes et al., 2019). Tri-

chodinids have also been found in varying abundance on

the gills of wild-caught wrasse, usually without any associ-

ated pathology (Steigen et al., 2018; Scholz et al., 2018a).

Scuticociliates are free-living, fast-moving marine para-

sites widely distributed in the oceans (Roberts, 2012; Piaz-

zon et al., 2013). They are considered secondary pathogens

of lumpfish and are often observed associated with skin

lesions of affected fish in Ireland. It was very recently

reported from Norwegian farmed lumpfish (Østevik et al.,

2018; Scholz et al., 2018a). Infected fish usually present

deep, white ulcers on the skin (Fig. 19b); however, the par-

asite can also infest the gills, and sometimes the infection

progresses systemically, which can cause necrosis of the

brain tissue. The parasite can be observed microscopically,

sometimes filled with phagocytised red blood cells

(Roberts, 2012; Østevik et al., 2018; Scholz et al., 2018a).

The species has of yet not been identified, but have been

reported to resemble Uronema marinum, which have been

observed in several marine fish species (Piazzon et al., 2013;

Scholz et al., 2018a). Other ciliates have been reported from

the gills of wrasse without any apparent damage to the tis-

sue, such as the scuticociliate Pseudocohnilembus persalinus,

and Cryptocaryon-like ciliates (McMurtrie et al., 2019). The

(a)

(b)

Figure 19 Ciliates infesting lumpfish. (a) Trichodina sp. (arrow) on gills

of lumpfish. HE stain. Scalebar 10 µm. (b) Scuticociliatosis of lumpfish

skin. Multiple scuticociliates (arrows) can be seen infesting the underly-

ing skin tissue. HE stain. Scalebar 20 µm. Photograph: Toni Erkinharju.

Figure 20 Skin section from lumpfish with several Ichtyobodo sp.

(‘Costia’) parasites (arrows) located on the surface of epidermis. Giemsa

stain. Scalebar 10 µm. Photograph: Toni Erkinharju.
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species C. irritans is known as the cause of ‘white spot’ dis-

ease in marine fish (Colorni & Burgess, 1997). Similarly,

protozoan ciliates have been found on Atlantic salmon

(Ferguson et al., 1987; Bermingham & Mulcahy 2007;

Dykov�a et al., 2010), but scuticociliates have not been

observed causing disease in healthy salmon (Scholz et al.,

2018a).

Ichthyobodo (formerly Costia) are flagellates that infect

gill or skin tissue of both freshwater and marine fish (Isak-

sen et al., 2011; Mitchell & Rodger, 2011; Cain & Polinski,

2014). It consists of a number of species, two of which have

been identified from farmed salmonids. I. salmonis is

described as eurohaline, and usually found on sea-based

salmon, while I. necator appears to be specific for freshwa-

ter (Mitchell & Rodger, 2011; Cain & Polinski, 2014). Both

species can cause ichtyobodosis, potentially leading to mor-

tality if infections become severe. Typical clinical signs are

greyish coating on the body surface, caused by epithelial

hyperplasia in the skin, and ‘flashing’ behaviour (fish trying

to scratch itself by rubbing against objects or the bottom)

(Roberts, 2012; Scholz et al., 2018a). Ichtyobodo parasites

are easily identified microscopically on affected skin or gills

(Isaksen et al., 2011; Cain & Polinski, 2014). Ichtyobodo

spp. have been found on skin and gills of lumpfish (Fig. 20)

and gills of wrasse, and appear both to be novel species

(Karlsbakk et al., 2014; Steigen et al., 2018). They are not

considered to be a severe pathogens in lumpfish and wrasse

(Johansen et al., 2016a; Scholz et al., 2018a).

Some organisms are commensals rather than true para-

sites. For example, Cryptobia dahli is a flagellate commonly

found within the stomach of wild-caught lumpfish (Karls-

bakk et al., 2014). It is regarded as harmless for the lump-

fish, since it does not cause any apparent damage to the

gastric tissue, even when present in extremely high num-

bers. As such, it is not considered to become a problem for

lumpfish aquaculture in the future (Freeman & Krist-

mundsson, 2018). On the other hand, the hemoflagellate

Cryptobia (Trypanoplasma) salmositica is well known for

causing disease in salmonids (Woo, 2003). Uncharacterised

Cryptobia sp. organisms have been observed in some spe-

cies of wrasse (VKM et al., 2019a). C. dahli is often spotted

together with Cycloptericola marina, a fungal-like organism

sometimes covering parts of the stomach mucosal wall

(Fig. 21), which is also considered harmless for the lump-

fish host (Karlsbakk et al., 2014; Erkinharju et al., 2019).

Finally, a flagellate described as Spironucleus sp. has been

observed within the intestinal tract of lumpfish (Karlsbakk

et al., 2014).

Piscine apicomplexans are obligate parasites affecting

both marine and freshwater fish, where the majority belong

to the taxonomic class Coccidea (Colorni & Diamant,

2014; Xavier et al., 2018). They infest a wide range of differ-

ent organs, including the intestine, swim bladder, liver,

spleen, testes, kidney, gills, blood cells. Fish coccidian infec-

tions have been the cause of large losses in freshwater aqua-

culture (Roberts, 2012; Colorni & Diamant, 2014).

However, little is known of the impact this group pose on

marine aquaculture, and subclinical infections might go

unnoticed. In addition, most of the reported disease out-

breaks are in different species of warm water fish (Colorni

& Diamant, 2014). Diagnosis is usually made on micro-

scopical identification of different coccidian life stages

(Roberts, 2012). An eimerid apicomplexan has recently

been reported from infected lumpfish juveniles in Norway

and wild-caught broodfish in Iceland. Affected fish dis-

played a period of high mortality, but few clinical signs,

except for thinning of parts of the intestinal tract, were

Figure 21 Cryptobia sp. (arrows) and Cycloptericola sp. (arrowhead)

on the mucosa surface of stomach from lumpfish. HE stain. Scalebar

10 µm. Photograph: Toni Erkinharju.

Figure 22 Parts of the intestine of lumpfish with developing coccidian

parasites inside hypertrophic epithelial cells. Numerous macrogamonts

(some indicated by black circles) and several microgamonts (black

arrows) are noticeable. HE stain. Scalebar 20 µm. Photograph: Toni Erk-

inharju.
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observed. Parasites were found inside hypertrophic epithe-

lial cells in the anterior part of the intestines and in the

pyloric caeca on histology (Fig. 22). Large parts of the

intestine epithelial layer were sloughed off, caused by burst-

ing of the parasite infected cells (Kristmundsson et al.,

2018). Intestinal coccidian infestations (Eimeria sp.) in

varying abundance are sporadically reported from lumpfish

in Norwegian aquaculture (Hjeltnes et al., 2019) and are

highly prevalent in wild-caught lumpfish. Eimeria-like

intestinal coccidians have also recently been reported from

wrasse in Norway and the UK (McMurtrie et al., 2019;
�Akesson et al., 2020). Coccidian parasites are also found in

salmonids, such as in wild-caught juvenile fry in inland

waters of Norway (Sweco, 2017). Although Eimeria sp. is

commonly found in many fish species, it displays a high

degree of host specificity and is as such not considered a

significant pathogen, regarding cohabitated cleaner fish and

salmon (Moln�ar et al., 2012; �Akesson et al., 2020). Coccid-

iosis in terrestrial animals might cause reduced intestinal

function, which then may lead to reduced growth and

appetite (Gjerde, 2011b). As such, it has been suggested

that severe coccidian infections might negatively affect the

cleaner fish’s appetite, thus affecting its efficiency as lice

eaters (Erkinharju et al., 2019).

Kudoa are a group of myxozoan parasites comprising

numerous species (Eiras et al., 2014). Most species infect

the skeletal muscle of fish, and some cause post-mortem

histolysis (known as ‘soft flesh disease’) where the muscula-

ture become very soft and liquefied (Roberts, 2012; Hen-

ning et al., 2013). For example, Kudoa thyrsites has been

reported from muscle tissues of Atlantic salmon (St-Hilaire

et al., 1997; Jansson & Vennerstr€om, 2014). The muscle fil-

let becomes unsuitable for human consumption (Henning

et al., 2013; Scholz et al., 2018a). In recent years, some spe-

cies, mainly K. septempunctata and K. hexapunctata, have

been suggested as possible causes of food poisoning after

ingestion of raw fish products (Kawai et al., 2012; Suzuki

et al., 2015). The parasite is easily identified by microscopi-

cally observing its characteristic spores (with four polar

capsules) within infected muscle tissue (Fig. 23) (Roberts,

2012; Jansson & Vennerstr€om, 2014). Kudoa islandica has

been reported from wild-caught lumpfish and two species

of wolffish in Iceland, where numerous parasite plasmodia

(white, tubular structures) had substituted considerable

parts of the muscle fibres and heavily infected fish showed

extensive liquefactive necrosis of muscle tissue (Krist-

mundsson & Freeman, 2014). The parasite has also been

recently observed in farmed lumpfish in Norway (Alarcon

et al., 2016b), is prevalent in wild-caught lumpfish and is

sporadically detected in skin/muscle samples submitted for

histology (Hjeltnes et al., 2019). No species have been

described from wrasse used as cleaner fish, but Kudoa-like

myxozoan organisms are observed regularly within the

skeletal musculature (Scholz et al., 2018a). Kudoa ovivora

n. sp. has been found in the ovaries of wild-caught Carib-

bean labroid fish (Swearer & Robertson, 1999). Among the

known Kudoa species, the host specificity can range from

rather strict to more wide (Lom & Dykov�a, 2006). As K. is-

landica is capable of infecting other fish than lumpfish, it

may be able to infect cohabitated salmon in sea cages

(Kristmundsson & Freeman, 2014; Scholz et al., 2018a).

Myxobolus aeglefini (synonym M. albi) is a myxozoan

parasite known to infect cartilaginous tissue of fish. The

parasite has a wide host species preference (Yokoyama &

Wakabayashi, 2000; Molnar et al., 2008; Karlsbakk et al.,

2017). It has been observed in wild-caught lumpfish in

Maine, the USA (Cavin et al., 2012). The most common

clinical signs were uni- or bilateral exophthalmos and white

to tan coloured nodules in the sclera of the eye. The para-

sites were also observed in cartilaginous tissue other places

in the body, such as in the skull, tongue, gill arches, verte-

brae, fins and pectoral girdle. Large and coalescing myxo-

zoan cysts were formed within the cartilage resulting in

degeneration and necrosis of cartilage, extending into adja-

cent bone and surrounding tissue (Cavin et al., 2012).

Some of the external symptoms also resemble the typical

clinical signs associated with M. cerebralis infection, the

cause of whirling disease in salmonids (Blazer et al., 2004;

Roberts, 2012; Cain & Polinski, 2014; Powell et al., 2018). It

is speculated that this lumpfish disease is underdiagnosed,

as subclinical infections might occur and go unnoticed

(Scholz et al., 2018a). It has not been reported from lump-

fish in Norway (Erkinharju et al., 2019). Myxobolus species

has not been reported from wrasse. M. aeglefini has been

Figure 23 Necrosis of infected muscle fibre (star) and plasmodium

with myxozoan spores (Kudoa sp.) (arrow) within skeletal musculature

of lumpfish. Insert shows parasite spores with their characteristic four

polar capsules visible. HE stain and Giemsa stain (insert). Scalebar

10 µm. Photograph: Toni Erkinharju.
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reported from Atlantic salmon kept in close proximity to

infected Atlantic cod (Gadus morhua) in sea cages; how-

ever, it was not discovered how the salmon had become

infected with the parasite (Mo et al., 1992). Myxozoan par-

asites typically has a two-host life cycle, such as M. cere-

bralis alternating between the invertebrate Tubifex tubifex

and numerous salmonid species (Gilbert & Granath, 2001).

However, tubifex worms are benthic organisms found on

the sea bed, typically far below the depth of sea cages,

making it unlikely that salmon would become infected

from consuming these (Mo et al., 1992).

Gyrodactylus are well-known monogenean ectoparasites

(flatworms) of many fish species (Cain & Polinski, 2014).

Especially, G. salaris is a major challenge, as it causes high

mortality in both wild and farmed salmonids and can easily

be transmitted to new areas (Bakke et al., 1992). The parasite

has made huge impacts on Atlantic salmon in Norway, deci-

mating the natural populations by nearly 90% in many river

areas (Johnsen et al., 1999; Cain & Polinski, 2014). In lump-

fish, large numbers of G. cyclopteri can be found attached to

the gills and skin (Fig. 24) (Karlsbakk et al., 2014; Alarcon

et al., 2016b; Pietrak & Rosser, 2020). This parasite could

potentially cause problems in aquaculture. However, the

occurrence of Gyrodactylus and associated gill lesions in Nor-

wegian lumpfish has not been fully surveyed (Johansen et al.,

2016a; Hjeltnes et al., 2019; Erkinharju et al., 2019). Gyro-

dactylus sp. has been observed onwrasse (VKM et al., 2019a).

Known parasitic helminths of fish are different species of

nematodes (roundworms), flukes and cestodes (tapeworms)

(e.g. see Bristow (1993), Jyrwa et al. (2016), Eiras (2016), Rau-

que et al. (2018)). These are larger internal parasites, of which

several can be observed with the naked eye in infected fish

(Jansson & Vennerstr€om, 2014). They are relatively common

in wild-caught fish and several different species have been

observed in cleaner fish (Fig. 25). For example, both Euboth-

rium crassum, a cestode, and Cryptocotyle sp., a trematode,

have been reported from lumpfish (Rolbiecki & Rokicki,

Figure 24 Monogenean parasite (Gyrodactylus sp.) located between

two filaments (arrow) in lumpfish gills. HE stain. Scalebar 20 µm. Pho-

tograph: Toni Erkinharju.

(a) (b)

(c)

Figure 25 Helminths in lumpfish. (a) Two digenean trematodes (arrows) of unknown species within the lumen of pyloric caeca in lumpfish. Sur-

rounding tissue is heavily autolysed. (b) Nematode (arrow) (unknown species) in abdominal cavity, longitudinal section. (c) Nematode (arrow) (un-

known species) in abdominal cavity, cross section. HE stain. Scalebar 50 µm (a, b) and 20 µm (c). Photograph: Toni Erkinharju.
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2008; Alarcon et al., 2016b). Cestodes might be found within

the intestinal tract of lumpfish and wrasse, but do not appear

to be major health concerns (Karlsbakk et al., 2014; McMur-

trie et al., 2019). In recent years, there has been a reported

increase on the occurrence of cestodes, Eubothrium sp., within

the intestine of Atlantic salmon kept in sea cages in Norway

(Hjeltnes et al., 2019). Cryptocotyle lingua, which is not con-

sidered a particularly problematic parasite in regards to fish

health, can be found on wrasse and other fish, such as cod and

salmon (Treasurer, 1997; Heuch et al., 2011; VKM et al.,

2019a). On the other hand, three selected species,Microcotyle

donavini,Macvicaria alacris andGaevskayatrema perezi, are of

special concerns regarding import of wrasse to Norway

(VKM et al., 2019a).

Two species of nematodes in particular, Hysterothylacium

aduncum and Anisakis simplex, are considered common in

wild-caught lumpfish, and encapsulated larvae can be

found within internal organs of affected fish (Rolbiecki &

Rokicki, 2008; Karlsbakk et al., 2014; Mo & Poppe, 2018;

Scholz et al., 2018a). Other known species include Con-

tracecum oscalatum and Pseudoterranova sp. (Rolbiecki &

Rokicki, 2008; Karlsbakk et al., 2014). Same species has also

been reported from wrasse and salmon (Treasurer, 1997;

Mo et al., 2010; Johansen et al., 2016b; Scholz et al., 2018a;

VKM et al., 2019a). A. simplex is a zoonotic pathogen; it is

one of two species frequently associated with human

anisakiasis, which can result from ingestion of raw or

undercooked fish meat (Adams et al., 1997; Roberts, 2012;

Jansson & Vennerstr€om, 2014). This has raised some con-

cern, as predation of cleaner fish by cohabitated salmon

have been observed, which indicate that cleaner fish

infected with A. simplex could potentially transmit the par-

asite to salmon meant for human consumption (Mo &

Poppe, 2018). However, exactly how common this nema-

tode is in farmed Norwegian cleaner fish, in addition to

other helminths, is still unknown (Karlsbakk et al., 2014;

Mo & Poppe, 2018). For farmed Atlantic salmon, the

amounts of different nematodes have ranged from none-

to-low in previous reports (Deardorff & Kent, 1989; Lunes-

tad, 2003; Mo et al., 2014).

Sea lice are marine and brackish water crustaceans com-

monly found on farmed fish. The copepods Lepeophtheirus

salmonis and different species of Caligus are widely known as

the most important parasites in salmonid aquaculture (Box-

aspen, 2006; Jansson & Vennerstr€om, 2014). The parasite

attaches to the fish body surface and causes severe skin ero-

sions in heavily infested individuals (Costello, 2006; Roberts,

2012). Eroded skin lesions make the fish susceptible to sec-

ondary infections and causes osmoregulatory difficulties,

which may ultimately result in death. Diagnosis is normally

made by observing the parasite on infected fish. (Jansson &

Vennerstr€om, 2014). Wild-caught lumpfish appear to regu-

larly suffer from infestation by Caligus elongatus (Fig. 26),

often with several parasites attached around the bony tuber-

cles (Davenport, 1985; Heuch et al., 2007; Karlsbakk et al.,

2014; Powell et al., 2018). The crustacean is also considered a

problem for farmed lumpfish on several sites in Troms and

Finnmark county in northern Norway (Johansen et al., 2016a;

Hjeltnes et al., 2019). C. elongatus consists of two genotypic

variants, genotype 1 and genotype 2, where lumpfish appear

to be the main reservoir of genotype 1 (genotype 2 is mostly

associated with farmed salmon) (Oines et al., 2006; Oines &

Heuch, 2007). As C. elongatus is considered a generalist and

show low host specificity, infected lumpfish could potentially

transmit the parasite to other fish species (Powell et al., 2018;

Hjeltnes et al., 2019). The copepod has also been found on

different species of wrasse (Treasurer, 1997; VKM et al.,

2019a) and Atlantic salmon (Todd, 2006). Other parasitic

copepods have also been observed in lumpfish, such as Ler-

naeocera branchialis, a sea louse sometimes found in Atlantic

cod, whose early life stages can cause quite severe infections in

the gills of affected lumpfish (Karlsbakk et al., 2014). Lump-

fish is an intermediate host for this parasite (Khan et al., 1990;

Brooker et al., 2007). There are no known records of

L. salmonis infections in lumpfish (Powell et al., 2018). Other

species, such as Caligus centrodonti and Hatschekia sp., have

been reported fromwild-caught wrasse (Treasurer, 1997; Stei-

gen et al., 2018;McMurtrie et al., 2019; VKM et al., 2019a).

Viruses

Viral infections can cause major disease outbreaks in aqua-

culture settings. Very few viral diseases have been reported

from lumpfish or wrasse, and novel viruses are usually

identified through investigation of diseased fish (Treasurer,

2012; Karlsbakk et al., 2014; Scholz et al., 2018a). Some are

considered to be specific for the cleaner fish, while others

Figure 26 Skin section of lumpfish with suspected cuticle-like rem-

nants from a parasitic copepod (arrows). HE stain. Scalebar 20 µm. Pho-

tograph: Toni Erkinharju.
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Table 4 Summary of viral pathogens reported from wrasse (Labridae), lumpfish (C. lumpus) and Atlantic salmon (S. salar) with relevant references

Viral agent Wrasse Lumpfish Salmon Comments References

Viral haemorrhagic

septicaemia virus (VHSV)

X X X Lumpfish isolate novel subgroup in genotype

IV. Wrasse isolates is of genotype III.

Rainbow trout is susceptible to genotype III,

Atlantic salmon appears less susceptible.

Virus is present in wild marine fish. Low

virulent strains might mutate into highly

virulent strains. Special concerns regarding

import of cleaner fish.

Guðmundsd�ottir et al. (2019), Garver

et al. (2013), King et al. (2001),

Munro et al. (2015), Matejusova

et al. (2016), Sandlund et al. (2014),

Dale et al. (2009), Hjeltnes et al.

(2019), Wallace et al. (2015), VKM

et al. (2017), Johansen et al. (2016),

Ito et al. (2016), VKM et al. (2019b)

Ranavirus (proposed

European North Atlantic

Ranavirus)

- X - Closely related to EHNV. EHNV appear to be

less pathogenic to salmon. Viral agent of

special concern regarding import of

lumpfish. Ranaviruses are common in many

poikilothermic animals. Does not appear to

be a primary pathogen for lumpfish.

Scholz et al. (2018a), Ariel et al.

(2016), Whittington et al. (2010),

Stagg et al. (2020)

Cyclopterus lumpus virus

(CLuV)/Lumpfish flavivirus

(LFV)

- X - Initial trial failed to transmit virus from

lumpfish to salmon, but still uncertain

whether transmission is possible. Several

reported cases of disease in lumpfish

recently, at all stages of production.

Skoge et al. (2018), Vestvik et al.

(2017), Hjeltnes et al. (2019), VKM

et al. (2017)

Nodavirus (Nervous necrosis

virus – NNV)

X X X Wide range of marine fish species affected.

Found in wild fish. Nodavirus-like particles

detected in Atlantic salmon with CMS.

Experimental injection of salmon has shown

pathology. Special concern regarding

import of wrasse. Lumpfish have recently

shown susceptibility to nodavirus.

Toffan et al. (2019), Korsnes et al.

(2017), Grotmol et al. (1997),

Munday et al. (2002), VKM et al.

(2017), Korsnes et al. (2005), VKM

et al. (2019b)

Cyclopterus lumpus

Coronavirus (CLuCV)

- X - Only reported from lumpfish as of date. Little

is known about the virus. Coronavirus are

known for causing diarrhoea. Pathogen

tests are needed for lumpfish. Closely

related to viruses from other fish (such as

Atlantic/Chinook salmon bafini virus)

NFO (2019), Johansen et al. (2019),

Cyclopterus lumpus Totivirus

(CLuTV)

- X - Only reported from lumpfish as of date. Little

is known about the virus. Appear closely

related to PMCV, causing disease in salmon.

Need pathogen tests.

NFO (2019), Johansen et al. (2019)

Infectious pancreatic necrosis

virus (IPNV)

X X X Not detected in Norwegian cleaner fish

aquaculture. Lumpfish have shown

experimental susceptibility, and could

potentially be a reservoir. The virus has a

broad host range and reported from several

fish species. Use of IPN-resistant salmon and

trout might reduce the viral threat.

Hjeltnes et al. (2019), Breiland et al.

(2015), Scholz et al. (2018a),

Johansen et al. (2016), VKM et al.

(2017), Gomez-Casado et al. (2011),

Roberts and Pearson (2005),

Treasurer (2012)

Salmonid alphavirus (SAV) X - X Not reported from lumpfish. Reported from

wrasse (SAV subtype 6). Wrasse have not

shown disease signs. No evidence of viral

transfer to salmon. Vector/vehicle

transmission considered possible. Horizontal

transmission important for spread.

Moderate if wrasse originate from SAV-

endemic zone, low if outside of SAV-

endemic zones. Disease from SAV is specific

to salmon and trout. Considered special

concern regarding import of wrasse.

Hjeltnes et al. (2019), Gomez-Casado

et al. (2011), McLoughlin and

Graham (2007), Ruane et al. (2018),

Treasurer (2012), Røsaæg et al.

(2017), Olsen et al. (2011),

Kristoffersen et al. (2009), VKM

et al. (2017), Johansen et al. (2016),

Scholz et al. (2018a), VKM et al.

(2019b), McCleary et al. (2014),

Snow et al. (2010), Deperasi�nska

et al. (2018)
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are also found in different teleosts, such as salmonids.

Regarding salmonid viruses, it is not fully known, whether

such viruses could be transmitted from cleaner fish to

cohabitated salmon, and vice versa (Karlsbakk et al., 2014;

Scholz et al., 2018a). Reported viruses from cleaner fish

studies include viral haemorrhagic septicaemia virus

(VHSV), an unspecified ranavirus, cyclopterus lumpus

virus (CLuV) or lumpfish flavivirus (LFV), lymphocystis

virus, nervous necrosis virus (NNV), a new totivirus, a new

coronavirus, infectious pancreatic necrosis virus (IPNV),

salmonid alphavirus (SAV), infectious salmon anaemia

virus (ISAV), piscine myocarditis virus (PMCV), and pis-

cine orthoreovirus (PRV) (Table 4) (Treasurer, 2012;

Johansen et al., 2016a; Brooker et al., 2018; Scholz et al.,

2018a; Hjeltnes et al., 2019; 2019).

Viral haemorrhagic septicaemia (VHS) is a severe rhab-

dovirus disease reported from at least 80 different fish spe-

cies in several parts of the world. It is classified as a

notifiable disease by the World Organisation for Animal

health (OIE) (Skall et al., 2005; Scholz et al., 2018a). The

virus has been grouped in four genotypes (GI-IV) with

extended subgroups for genotype I and IV (Skall et al.,

2005; Cain & Polinski, 2014). Mortality can be quite severe,

and characteristic clinical signs are widespread haemor-

rhaging on body surfaces, within the eyes, in internal

organs and occasionally in the musculature. In severe cases,

Table 4 (continued)

Viral agent Wrasse Lumpfish Salmon Comments References

Isolated from wrasse in locality with

diseased salmon. Sample contamination

could not be excluded. Been detected in

wild fish close to salmon farms.

Infectious salmon anaemia

virus (ISAV)

X - X Reported from salmon cage with wrasse,

although wrasse showed no pathology and

no connection could be established. Cross-

contamination possible. Reported from wild

fish. Avirulent variant (ISAV-HPR0) is present

in Norwegian wild salmon.

Hjeltnes et al. (2019), Treasurer

(2012), Gomez-Casado et al. (2011),

VKM et al. (2017), Nylund et al.

(2002), Rimstad and Mjaaland

(2002), Plarre et al. (2005), Madhun

et al. (2019)

Piscine myocarditis

virus (PMCV)

X - X Reported causing disease in wrasse. Could

potentially transmit virus to salmon.

Contamination considered highly unlikely.

CMS has been increasing in Atlantic salmon

in Norway lately.

Scholz et al. (2018c), Hjeltnes et al.

(2019), VKM et al. (2017), Garseth

et al. (2018a), Rodger et al. (2014)

Piscine orthoreovirus (PRV) X - X Prevalent in wild fish. Described from wrasse

without pathology. Cross-contamination

from diseased salmon could not be

excluded.

Hjeltnes et al. (2019), Wiik-Nielsen

et al. (2012), Palacios et al. (2010),

Wessel et al. (2017), Johansen et al.

(2016), VKM et al. (2017)

Lymphocystis disease X - - Wide host range, reported from at least 140

fish species. Considered benevolent disease,

causing skin lesions. Reported from ballan

wrasse and also from bluestreak cleaner

wrasse Labroides dimidatus. Not known

whether salmon could become affected.

Schonheit et al. (2017), Scholz et al.

(2018a), Essbauer and Ahne (2001),

VKM et al. (2017), VKM et al.

(2019b), Whittington et al. (2010,

Borrego et al. (2017)

Piscine orthoreovirus

Oncorhynchus mykiss

(PRVom; formerly ‘Virus Y’)

- - X Isolated from rainbow trout (genotype PRV-

3). Can cause experimental disease in

Atlantic salmon. Not reported from cleaner

fish.

Johansen et al. (2016), Hjeltnes et al.

(2019), Vendramin et al. (2019),

Olsen et al. (2015), Hauge et al.

(2017)

Salmon gill pox virus (SGPV) - - X Isolated from gills of diseased salmon. Not

reported from cleaner fish. Present in wild

salmonids.

Johansen et al. (2016), Hjeltnes et al.

(2019), Gjessing et al. (2015),

Gjessing et al. (2017), Garseth et al.

(2018b)

Infectious hematopoietic

necrosis virus (IHNV)

- - X Not detected in Norway. Never reported

from cleaner fish.

Johansen et al. (2016), Saksida

(2006), Hjeltnes et al. (2019), Dixon

et al. (2016)
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the fish also appears anaemic. Occasionally, the central ner-

vous system might also be affected, leading to abnormal

fish behaviour (Al-Hussinee et al., 2011; Roberts, 2012).

Isolation of the virus with cell culture and identification by

immunological or molecular analysis is recommended for

diagnosis (Cain & Polinski, 2014; Office International des

Epizooties, 2019). Recently, a novel VHS virus in genotype

IV was found in wild-caught lumpfish meant for broodfish

stock in Iceland. Intraperitoneal challenge with this virus

isolate resulted in high mortality of lumpfish (3–10% sur-

vival) and by cohabitation with viral shedders (43–50%
survival). However, the relative per cent survival after

immersion challenge was at average 90% (performed in

triplicate tanks) (Guðmundsd�ottir et al., 2019). By compar-

ison, cohabitation of na€ıve Atlantic salmon with lumpfish

shedders resulted in some mortality (80–92% survival), but

the virus was not detected or re-isolated in any samples

from the salmon (Guðmundsd�ottir et al., 2019). Viral iso-

lates of VHSV genotype III have been reported from multi-

ple wrasse species in Scotland (Munro et al., 2015). Wild

marine fish has been suggested as a possible origin of the

viral outbreak (Wallace et al., 2015). VHSV has so far not

been detected in Norwegian cleaner fish (Karlsbakk et al.,

2014; Hjeltnes et al., 2019).

As for other viruses, a novel ranavirus (genus iridovirus;

proposed European North Atlantic Ranavirus) has been

detected in lumpfish from the Faroes, Iceland, Scotland

and Ireland. It is closely related to the epizootic hematopoi-

etic necrosis virus (EHNV), but does not appear to be a pri-

mary pathogen in lumpfish (Scholz et al., 2018a; Stagg

et al., 2020). Ranaviruses have also been reported from

other marine fish, such as turbot and Atlantic cod,

although their virulence remains unclear (Ariel et al.,

2016). Lumpfish flavivirus (LFV/CLuV) is another virus,

discovered in 2015 from aquaculture facilities all over Nor-

way and in Scotland. The virus is present in lumpfish at all

stages of production; broodfish, hatchery, grow-out phase

and when put to sea with the salmon. Infection has been

associated with high mortality, but the virus has also been

found in lumpfish without any clinical signs of disease.

Pathologic changes are primarily observed in the liver

(Fig. 27), which presents as necrosis and inflammation of

the hepatic tissue during acute infection, which then turns

more fibrotic as the infection progresses to chronic stages.

Diagnosis is made by combining histological evaluation

with molecular analysis, as the virus has proven incapable

of isolation by cell culture (Vestvik et al., 2017; Skoge et al.,

2018). CLuV has been frequently reported from farmed fish

recently, especially in Hordaland, Troms and Finnmark

county (Hjeltnes et al., 2019). Transmission from infected

lumpfish to salmon have been attempted, but not demon-

strated (Vestvik et al., 2017).

Nodavirus is the cause of the disease viral encephalopa-

thy and retinopathy (VER) and viral nervous necrosis

(VNN) in teleost fish (Munday et al., 2002; Jansson & Ven-

nerstr€om, 2014; Yong et al., 2017). The susceptibility of

lumpfish to the disease was recently tested with three differ-

ent nodaviruses, which showed reduced survival, viral repli-

cation in the brain and typical vacuole formations in brain

and retina of infected fish (Toffan et al., 2019). The virus

has been detected in Norwegian lumpfish, but actual preva-

lence has not been reported.

Early 2018 two more additions were added to the list of

possible lumpfish viral pathogens, when two previously

unknown viruses were discovered in material from lump-

fish juveniles experiencing increased mortality. One was

suggestively named Cyclopterus lumpus Totivirus (CLuTV)

and appear to be closely related to PMCV. The virus has

been detected in both dead and moribund lumpfish; how-

ever, its relevance is currently unknown ((NFO), 2019,

Johansen et al., 2019). The other virus was named C. lum-

pus Coronavirus (CLuCV), closely related to coronaviruses

in other fish species, such as Chinook/Atlantic salmon

bafini virus. Coronavirus typically leads to diarrhoea in

mammals, but it is uncertain whether the same is true for

lumpfish infected with CLuCV ((NFO), 2019, Johansen

et al., 2019). Functional pathogen tests are needed in order

to better understand the significance of these novel viruses

in lumpfish (Johansen et al., 2019).

The occurrence and virulence of some common salmo-

nid viruses in wild and farmed cleaner fish has also been

investigated, especially IPNV, SAV, ISAV, PMCV and PRV

(Johansen et al., 2016a; Scholz et al., 2018a). IPNV is the

Figure 27 Necrosis in liver of lumpfish infected with flavivirus (LFV/

CLuV). Multiple liver vacuoles are also present (*). HE stain. Scalebar

20 µm. Photograph: Toni Erkinharju.
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cause of infectious pancreatic necrosis (IPN), a disease cap-

able of high mortalities in young salmonids, especially

hatched fry (Roberts & Pearson, 2005; Gomez-Casado

et al., 2011; Jansson & Vennerstr€om, 2014). The virus pri-

marily affects the intestinal mucosa and pancreas of

infected fish, by causing catarrhal enteritis in the pyloric

caeca and necrosis of exocrine pancreatic cells (Roberts,

2012). It has been isolated from many different fish species

and also from invertebrates (molluscs and crustaceans)

(Roberts, 2012; Jansson & Vennerstr€om, 2014). Recent

experiments have shown lumpfish capable of being a reser-

voir of IPNV, indicating that the virus replicates within the

fish and infected lumpfish can shed the virus into the envi-

ronment (Breiland & Johansen, 2015). Viral susceptibility

has been demonstrated in challenged goldsinny wrasse,

without transmission to cohabitated salmon (Treasurer,

2012). IPNV has not been detected in cleaner fish used in

Norwegian aquaculture (Hjeltnes et al., 2019).

SAV, ISAV, PMCV and PRV are the aetiological causes

of the salmonid diseases pancreas disease (PD), infectious

salmon anaemia (ISA), cardiomyopathy syndrome (CMS)

and heart and skeletal inflammation (HSMI), respectively

(Rimstad & Mjaaland, 2002; Palacios et al., 2010; Gomez-

Casado et al., 2011; Jansson & Vennerstr€om, 2014; Rodger

et al., 2014; Wessel et al., 2017; Deperasinska et al., 2018;

Garseth et al., 2018a). The viruses have been isolated from

wrasse stocked together with infected salmon at sea, but it

is still unknown to what degree cleaner fish are susceptible

to development of disease and/or capable of transmitting

the viruses to other fish (Johansen et al., 2016a; Scholz

et al., 2018a; Hjeltnes et al., 2019). The viruses have not

been reported from lumpfish (Johansen et al., 2016a; Hjelt-

nes et al., 2019).

Non-infectious diseases

Diseases of non-infectious nature are a very broad topic,

and only certain issues have been described from cleaner

fish culture (Scholz et al., 2018a). They are considered less

economically devastating than the infectious diseases, but

can potentially lead to a weakened defence system of

affected fish, making them more susceptible to infection by

different pathogens. Common problems of this nature in

aquaculture settings (Table 5) are often related to either

production management, environmental conditions, nutri-

tion, vaccination and treatment, physical factors, hereditary

factors or neoplasia (Schmidt-Posthaus & Marcos-L�opez,

2014).

Nutrition and feeding of cleaner fish during production

have been a challenge for the culturing of wrasse, but not

so much for lumpfish as they are more easily weaned from

live feed on to dry artificial diets (Powell et al., 2018; Scholz

et al., 2018a), possibly due to a well-developed digestive

system shortly after hatching (Marthinsen 2018). However,

eye cataracts have been a common finding among growing

lumpfish and broodfish stock (Bornø et al., 2016; Powell

et al., 2018). The disorder leads to formation of opacities

within the eye lens (Fig. 28), which causes disturbances in

the dispersion of light passing through, resulting in reduced

sight or, ultimately, blindness of affected fish (Paradis et al.,

2019). As lumpfish rely on sight to feed, this condition

could negatively affect their efficiency as sea lice cleaners

Table 5 Summary of non-infectious diseases reported from wrasse (Labridae), lumpfish (C. lumpus) and Atlantic salmon (S. salar) with relevant ref-

erences

Condition Wrasse Lumpfish Salmon Comments References

Cataract X X X Cataract observed on lumpfish on several occasions.

Reported from wrasse under experimental settings.

Also reported from Atlantic salmon.

Powell et al. (2018), Bornø et al. (2016),

Paradis et al. (2019), Jonassen et al.

(2017), Imsland et al. (2019), Espmark

et al. (2019), Bjerk�as et al. (2004)

Deformities X X X Can cause welfare problems. Deformities in tail,

fins, head, operculum, suction disc (for lumpfish)

and spinal region. Cultured wrasse was recently

reported having higher incidences of spinal

deformities than cultured lumpfish.

Espmark et al. (2019), Scholz et al.

(2018a), Brooker et al. (2018), Fjelldal

et al. (2020), Rusyaev et al. (2019),

Fjelldal et al. (2012), Treasurer (1994)

Other X X X Nephrocalcinosis has been reported from all

species. Behaviour problems, such as tail

biting and fin nipping, have been observed

on both lumpfish and wrasse. Swim bladder

over-inflation have occurred in wrasse.

Lumpfish lack swim bladder, although

clinical condition of gas supersaturation has

been reported.

Scholz et al. (2018a), Powell et al. (2018),

Fivelstad et al. (2018), Fivelstad et al.

(2018), Weitkamp and Katz (1980),

Poppe et al. (1997)
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(Scholz et al., 2018a; Paradis et al., 2019). Cataract has been

linked to nutritional deficiencies in other fish species

(Waagbo et al., 2003; Williams, 2006; Schmidt-Posthaus &

Marcos-L�opez, 2014). A recent study concluded that catar-

act formation in farmed lumpfish could be related to dis-

turbed nutrient metabolism or malnutrition influencing

the composition of specific amino acids in the tissue, caus-

ing osmotic imbalances and development of cataract

(Jonassen et al., 2017). Other studies have also found nutri-

tional factors, such as feed composition and feeding fre-

quencies, associated with cataract development in lumpfish

(Imsland et al., 2018b; Imsland et al., 2019b). However,

other factors such as environmental parameters, clinical

conditions and physical injuries, could also be related

(Jonassen et al., 2017; Powell et al., 2018; Imsland et al.,

2018b). Multifactorial causes have also been suggested for

cataractogenesis in eye lenses of Atlantic salmon (Bjerk

et al., 2004). Development of cataract has been observed in

ballan wrasse kept under experimental conditions (Esp-

mark et al., 2019).

Some lumpfish juveniles can develop deformities in the

suction disc, leading to problems for attaching themselves

to substrates during resting. These types of fish are more

easily stressed and exhausted, especially during high current

conditions at sea, and could potentially lead to increased

mortality. The condition appears to be hereditary. The

affected fish are usually found and culled from the produc-

tion cycle and are as such not considered a major problem

in lumpfish culture (Scholz et al., 2018a; Espmark et al.,

2019). Jaw and spinal deformities have also been observed

but not sufficiently documented (Brooker et al., 2018;

Scholz et al., 2018a). A recent study observed high occur-

rences of vertebra deformities in cultured wrasse, while,

surprisingly, the observed deformity rate was lower in cul-

tured lumpfish (Fjelldal et al., 2020). Spinal deformities

have also been reported from farmed Atlantic salmon, with

several environmental and nutritional conditions being

potential risk factors (Fjelldal et al., 2012). Developmental

anomalies of the tail region have been reported from wild-

caught lumpfish (Rusyaev et al., 2019). An abnormal skull

formation, termed ‘pugheadedness’, has been observed in

wild-caught goldsinny wrasse (Treasurer, 1994).

Other non-infectious clinical conditions that have been

reported are gas supersaturation and nephrocalcinosis from

lumpfish (Fig. 29), and nephrocalcinosis and swim bladder

over-inflation in wrasse (Scholz et al., 2018a). Similar con-

ditions have also been described from Atlantic salmon

(Weitkamp & Katz, 1980; Poppe et al., 1997; Fivelstad

et al., 2018). Behavioural problems, such as tail biting and

fin nipping, which are likely related to different farming

conditions, have also been observed on both lumpfish and

wrasse during cultivation (Scholz et al., 2018a; Espmark

et al., 2019). Finally, a persistent challenge is increased mor-

tality and fish welfare issues, especially associated with

‘rough’ handling and non-medicinal lice treatments (warm

water treatment (thermolicer), freshwater bathing (hydro-

licer), high pressure water flushing, brushing), which makes

the cleaner fish easily stressed, more prone to injuries and

(a) (b)

Figure 28 (a) Lumpfish with cataract formation (greyish lens) in the left eye (arrow). (b) Lumpfish with cataract-free left eye for comparison. Pho-

tographs taken at Tromsø Aquaculture Research Station. Photograph: Toni Erkinharju.
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might amplify the severity of pathogen-related issues

(Hjeltnes et al., 2019; Espmark et al., 2019).

Risk of disease transmission from cleaner fish to
salmon

Cohabitation of cleaner fish at sea pens together with sal-

mon poses the risk of possible disease transmission between

the different species (Treasurer, 2012; Brooker et al., 2018;

Scholz et al., 2018a). This is especially a concern when

using wild-caught cleaner fish, as they are more likely to be

carriers of disease agents than cleaner fish farmed in closed

systems (Treasurer, 2012). In addition, lumpfish and wrasse

farmed in production facilities are usually screened and

cleared for possible pathogens before being deployed as

cleaner fish at sea (Brooker et al., 2018). However, wild-

caught lumpfish are widely used as source for brood stock,

as lumpfish production is still at an early age, and more

knowledge on the species’ reproductive biology, markers

for preferred genetic traits and efficient fertilisation tech-

niques under captive conditions are needed in order to

establish fully closed breeding cycles (Davenport, 1985;

Brooker et al., 2018; Powell et al., 2018). Proper quarantine,

pathogen screening and parasite treatments are therefore

important, before the fish is used for production purposes

(Powell et al., 2018). In addition, the demand for cleaner

fish in Norwegian salmon farms has rapidly increased

beyond what is attainable from national fishery and aqua-

culture production, making it necessary to import cleaner

fish from other countries. Such transportation of live ani-

mals also comes with a risk of transferring disease-causing

agents from one geographically distant area to the next

(VKM et al., 2019b). Regarding the possibility of cleaner

fish transmitting disease to cohabitated salmon, the issue

has previously been addressed in two reported risk assess-

ments, one by the research institute Nofima (Johansen

et al., 2016a) and one by the Norwegian Scientific Commit-

tee for Food and Environment (VKM et al., 2017).

Bacteria and fungi

The potential risk of infected lumpfish transmitting bacte-

rial disease to salmon is considered generally low for most

of the known bacterial agents (Johansen et al., 2016a; VKM

et al., 2017; Brooker et al., 2018). Vaccinated salmon have

so far shown protection against typical Aeromonas salmoni-

cida, Vibrio salmonicida and Vibrio anguillarum serotype

O1 and O2a (Johansen et al., 2016a; VKM et al., 2017).

Interestingly, it has been suggested that salmon infected

with typical A. salmonicida could potentially transmit the

bacteria to wrasse, although under normal farming condi-

tions this incidence would probably be rare (Treasurer &

Cox, 1991; Hjeltnes et al., 1995; Treasurer, 2012). The

probability of transmitting atypical A. salmonicida is con-

sidered low, as the furunculosis vaccine might provide

some degree of cross-protection (Johansen et al., 2016a)

and challenged salmon appear less susceptible to the cleaner

fish variants (Frerichs et al., 1992; Laidler et al., 1999;

Scholz et al., 2018a). Several farmed lumpfish are also vac-

cinated against atypical A. salmonicida and V. anguillarum,

which may reduce the number of infected individuals in

the net pens (Brooker et al., 2018; Hjeltnes et al., 2019).

However, there is a possibility of introducing, as of yet,

undescribed strains of A. salmonicida existing in areas rele-

vant for importation of cleaner fish (VKM et al., 2019b).

The probability of disease transmission with V. ordalii is

considered low (Johansen et al., 2016a; VKM et al., 2017).

While V. ordalii infections have caused mortality in cage-

farmed Atlantic salmon in Chile (Colquhoun et al., 2004),

genetic differences between North Atlantic and Pacific

strains have been reported (Steinum et al., 2016; Johansen

et al., 2016b). The pathogenic potential of other species of

Vibrio in cleaner fish is largely unknown, and more infor-

mation is surely needed (Scholz et al., 2018a). Salmon

appear unaffected by V. tapetis and V. splendidus isolates

from wrasse (Treasurer, 2012; Scholz et al., 2018a).

Both Pseudomonas anguilliseptica and Pasteurella sp. have

caused disease in Atlantic salmon (Wiklund & Bylund,

1990; Birkbeck et al., 2002), but the probability of cross-in-

fection from diseased lumpfish is considered low for these

bacteria as well (Johansen et al., 2016a; VKM et al., 2017;

Scholz et al., 2018a). Different fish species display consider-

able variability in susceptibility for P. anguilliseptica infec-

tion (Wiklund & Bylund, 1990), and as such, some degree

of host specificity might be ascertained (Johansen et al.,

2016a). Pasteurella isolates from infected lumpfish and

Figure 29 Lumpfish kidney with nephrocalcinosis. Several tubules

with amorphous, basophilic and calcified material within the lumen can

be noted (arrows). HE stain. Scalebar 10 µm. Photograph: Toni Erkin-

harju.
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salmon have shown to be genetically distinct and appear to

be from separate serotypes (Reid & Birkbeck, 2015; Alarcon

et al., 2016a; VKM et al., 2017). Surprisingly, in 2018, the

same genotype (usually associated with salmon) was identi-

fied from both diseased lumpfish and salmon kept within

the same farming locality in Norway (Hjeltnes et al., 2019).

Pasteurella sp. also occur among lumpfish in the British

Isles, but it is uncertain if they are of the same or of differ-

ent strains than the Norwegian isolates (Scholz et al.,

2018a; VKM et al., 2019b).

The isolate of M. viscosa from lumpfish have shown to

be an atypical variant strain (Grove et al., 2010), different

from the typical strain associated with winter ulcer disease

in salmon (Karlsen et al., 2014; Johansen et al., 2016a).

Atypical strains have caused disease in Atlantic salmon, but

only in a few exceptional cases in Norway (Grove et al.,

2010). Cleaner fish are also used to a far less degree during

wintertime, when the bacteria is most active and causing

disease in salmon (Johansen et al., 2016a). As such, the

probability of disease transmission is considered low for

this bacterial pathogen (Johansen et al., 2016a; VKM et al.,

2017), but could potentially become a problem (Brooker

et al., 2018; Scholz et al., 2018a), especially if lumpfish is

used more frequently throughout the winter season (VKM

et al., 2017). Following this, it has been shown that lump-

fish isolate can be able to cause M. viscosa infection in sal-

mon, as shown by Einarsdottir et al. (2018)

Piscirickettsia salmonis has generated special concern, due

to its potential of being imported with lumpfish from other

geographical regions (VKM et al., 2019b). Even though

P. salmonis has never been identified in Norwegian cleaner

fish (Hjeltnes et al., 2019), it has been considered low prob-

ability of transmission from cleaner fish to salmon (VKM

et al., 2017). P. salmonis can cause severe disease in infected

Atlantic salmon (Rozas-Serri et al., 2017), but there have

appear to be differences in virulence between geographic

regions, with European isolates being less severe than Chi-

lean isolates (House et al., 1999; VKM et al., 2017).

There are several uncertainties regarding Tenacibaculum

spp., due to data indicating that there are probably multiple

different strains involved during ulcerative disease infec-

tions in affected fish (Johansen et al., 2016a; Olsen et al.,

2017). T. maritimum is the most common species observed

in marine fish (VKM et al., 2017) and is capable of causing

disease in Atlantic salmon (Ostland et al., 1999; Frisch

et al., 2018). Several teleost host species exist (Avendano-

Herrera et al., 2006), and cross-species transmission has

been suggested as a possibility in aquatic polyculture

(Habib et al., 2014). However, the species is considered

more severe for juveniles than for adult fish (Toranzo et al.,

2005). The species T. finnmarkense, often found in North-

ern Norwegian salmon farms, is also capable of causing dis-

ease in salmon, although direct fish-to-fish transmission

was poor and possible vectors or reservoirs were not identi-

fied (Sm�age et al., 2018). Isolates from disease outbreaks in

Norwegian salmon farms have also shown similarity to

T. dicentrarchi (Habib et al., 2014), which was recently the

cause of an acute disease outbreak in Atlantic salmon (Kla-

kegg et al., 2019). Tenacibaculum spp. is often isolated in

both mixed and pure culture from affected cleaner fish

(Hjeltnes et al., 2019). The probability of disease transmis-

sion from cleaner fish to salmon has as such been consid-

ered to be of moderate risk (VKM et al., 2017), but there

are several knowledge gaps that needs solving (Johansen

et al., 2016a; Scholz et al., 2018a).

The potential disease transmission risks regarding other

cleaner fish bacterial pathogens are currently not known.

Photobacterium damselae subsp. damselae has been reported

from diseased rainbow trout during warm summer periods

in Denmark (Pedersen et al., 1997), and Atlantic salmon

have demonstrated susceptibility to disease under experi-

mental conditions (Austin et al., 1997). Further work is

needed however, to investigate its potential risks at cooler

northern European climate conditions (McMurtrie et al.,

2019).

Not much is known regarding the potential of lumpfish

fungal diseases transferring to cohabitated salmon (Scholz

et al., 2018a), but there is some concern regarding species

of the genus Exophiala (Johnson et al., 2018; Scholz et al.,

2018b). Animals with moist skin, such as those with sweat

glands or those being waterborne (i.e. fish), are more sus-

ceptible to Exophiala spp. infection (de Hoog et al., 2011),

and black yeast infections have been reported from Atlantic

salmon (Otis et al., 1985; Pedersen & Langvad, 1989). How-

ever, due to lack of available documentation, fungal patho-

gens have not been included in reported risk assessments of

cleaner fish aquaculture (Johansen et al., 2016a; VKM et al.,

2017; VKM et al., 2019b).

Viruses

Our current knowledge of viral diseases in lumpfish are

limited, and new ones are sure to emerge with time (Johan-

sen et al., 2016a). One characteristic feature of viruses is

their capacity to adapt to new host species, the influenza

virus being a well-known example. Rearing cleaner fish

together with salmon in an enclosed space, such as in net

pens at sea, involves several opportunities for direct contact

between the species, often at high population densities.

These are important factors, which could potentially pro-

mote adaptive changes in different viruses, causing them to

switch from one fish species (the ‘original’ host) to another

species (the ‘new’ host) (Parrish et al., 2008).

Both wrasse and lumpfish have shown susceptibility to

infection by the VHS virus (Munro et al., 2015; Matejusova

et al., 2016; Guðmundsd�ottir et al., 2019). In addition,
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VHSV genotype Ib has been detected in several wild marine

fish along the Norwegian coastal line and could potentially

be transferred to farmed fish (Sandlund et al., 2014). As

such, there is a possibility that cleaner fish could be carriers

of VHSV. Atlantic salmon has not demonstrated significant

susceptibility to VHSV (King et al., 2001; Garver et al.,

2013) but Norwegian rainbow trout have developed disease

after infection with VHSV genotype III (Dale et al., 2009),

which was of the same genotype isolated from infected

wrasse in Scotland (Munro et al., 2015). The VHS virus iso-

lated from infected wild-caught lumpfish in Iceland, how-

ever, was of genotype IV and did not transmit to

cohabitated salmon (Guðmundsd�ottir et al., 2019). It has

been shown however, that low virulent viral strains might

mutate into highly virulent strains when provided with the

right opportunities (Ito et al., 2016). Based on this infor-

mation, an introduction of VHSV into a farming facility

stocked with cleaner fish is considered a possible high prob-

ability of transmitting the virus from infected wrasse or

lumpfish to cohabitated salmonids, especially rainbow

trout (Johansen et al., 2016a; VKM et al., 2017). VHSV is

considered a viral pathogen of special concern regarding

importation of both lumpfish and wrasse (VKM et al.,

2019a).

For IPNV, both wrasse and lumpfish have shown infec-

tion in experimental settings and are considered possible

reservoirs for the virus (Gibson et al., 1998; Breiland &

Johansen, 2015). The virus also has a broad host range

(Scholz et al., 2018a). As such, there is a moderate probabil-

ity of transmitting the disease to cohabitated salmon (VKM

et al., 2017). Screening of susceptible stocks is advisable

wherever IPNV is an issue (Scholz et al., 2018a). However,

the virus is already highly prevalent in salmonid aquacul-

ture in Norway, and the production of IPN-resistant sal-

mon through genetic selection, in addition to increased use

in rainbow trout production, indicate that the possible

threats from transmission is probably close to negligible

(Johansen et al., 2016a; VKM et al., 2017).

Wild wrasse populations along the Norwegian and Swed-

ish coast were recently screened for nervous necrosis virus

(NNV) (Betanodaviridae), and an overall presence of 6.7%

was detected in brain tissue from sampled fish (Korsnes

et al., 2017). It is considered a viral pathogen of special con-

cern regarding importation of wrasse to Norway (VKM

et al., 2019a). The overall presence of nodavirus in lumpfish

is currently not known, but the species has shown suscepti-

bility for infection (Toffan et al., 2019). Viral infections

have primarily been described from marine fish (Munday

et al., 2002; Jansson & Vennerstr€om, 2014), including

farmed Atlantic cod (Gadus morhua L.) (Patel et al., 2007),

Atlantic halibut (Hippoglossus hippoglossus L.) (Johansen

et al., 2002) and turbot (Scophthalmus maximus L.) (Johan-

sen et al., 2004) in Norway. Nodavirus-like particles have

been detected in heart tissue of Atlantic salmon affected by

CMS (Grotmol et al., 1997), and the species has developed

pathology from viral challenge with nodavirus under exper-

imental conditions (Korsnes et al., 2005). However, nodavi-

ral infections are not commonly observed in salmonids and

the probability of disease transmission from cohabitated

cleaner fish is therefore regarded as low (Johansen et al.,

2016a; VKM et al., 2017).

Salmonid alphaviruses (SAV) are currently among the

most important pathogens of salmonid aquaculture, being

the cause of pancreas disease (PD) (SAV subtype 1 and 3)

in salmon and rainbow trout, and sleeping disease (SAV

subtype 2) in rainbow trout (McLoughlin & Graham, 2007;

Hjeltnes et al., 2019). The virus has not been detected in

lumpfish. SAV has been reported from both wild-caught

wrasse and wrasse in sea cages during an outbreak of PD in

the cohabitated salmon, but the fish did not show any signs

of pathology associated with the disease (Ruane et al., 2018;

Scholz et al., 2018a; Hjeltnes et al., 2019). Different chal-

lenge experiments have also given similar results, where

challenged wrasse did not develop disease signs (Treasurer,

2012; Røsæg et al., 2017). However, there is a risk that clea-

ner fish might serve as non-affected mechanical vectors/ve-

hicles for transmitting the virus to susceptible species, such

as the salmon (Olsen et al., 2011; VKM et al., 2017). Hori-

zontal transmission, such as fish-to-fish, is regarded as

important for spreading PD to new areas (Kristoffersen

et al., 2009). SAV viruses have also been detected in non-

salmonid wild marine fish species close to salmon farms

(Snow et al., 2010; McCleary et al., 2014). Therefore, clea-

ner fish has been estimated a moderate risk of transmitting

the SAV virus to cohabitated salmon, when using wild-

caught cleaner fish originating from SAV-endemic areas

(VKM et al., 2017). Outside of the endemic zones, however,

the probability is considered low (Johansen et al., 2016a;

VKM et al., 2017). SAV is considered a viral pathogen of

special concern regarding importation of wrasse (VKM

et al., 2019a).

For other salmonid viral diseases, the risk of disease

transmission is generally considered negligible to low, such

as for ISAV, PRV, salmon gill pox virus (SGPV), infectious

hematopoietic necrosis virus (IHNV) and piscine orthore-

ovirus Oncorhynchus mykiss (PRVom, formerly ‘Virus Y’)

(Treasurer, 2012; Johansen et al., 2016a; VKM et al., 2017).

ISAV and PRV have been reported from wrasse and salmon

kept at the same farming localities, but the wrasse displayed

no clinical disease and cross-contamination of samples

could not be excluded (Johansen et al., 2016b; Scholz et al.,

2018a; VKM et al., 2019a). Both ISAV and PRV have been

reported from wild fish carriers, however, suggesting the

possibility of natural viral reservoirs (Nylund et al., 2002;

Plarre et al., 2005; Wiik-Nielsen et al., 2012; Madhun et al.,

2019). PMCV is an exception, however, as the virus has
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been detected in wrasse with heart lesions, which is there-

fore considered a potential disease reservoir for the patho-

gen (Scholz et al., 2018c; VKM et al., 2019a). The

occurrence of CMS has been increasing in Norwegian aqua-

culture (Hjeltnes et al., 2019), and infected cleaner fish

could essentially become a biosecurity risk by transmitting

the virus to salmon (Brooker et al., 2018; Scholz et al.,

2018c). Based on the available information, it is considered

a moderate probability when using cleaner fish (VKM

et al., 2017). PRVom (genotype PRV-3) causes disease in

rainbow trout (Olsen et al., 2015; Vendramin et al., 2019),

and experimental transmission of the virus has been

demonstrated in Atlantic salmon, albeit with slower viral

replication and minor pathology (Hauge et al., 2017).

SGPV is associated with gill disease in farmed Atlantic sal-

mon (Gjessing et al., 2015; Gjessing et al., 2017) and has

also been reported from wild anadromous salmon (Garseth

et al., 2018b). IHNV causes severe disease in salmonids,

including Atlantic salmon and rainbow trout (Saksida,

2006; Dixon et al., 2016), but the virus has never been

detected in fish from Norway (Hjeltnes et al., 2019). None

of these salmonid viruses (PRVom, SGPV or IHNV) has

been reported from lumpfish or wrasse (Johansen et al.,

2016b).

Several new viral diseases of cleaner fish have been

reported, such as LFV/CLuV, CLuTV, CLuCV and

ranavirus for lumpfish (Skoge et al., 2018; NFO (2019)

Stagg et al., 2020), and lymphocystis for wrasse (Schon-

heit et al., 2017). Due to their recent discovery, not

much is known of their ability to infect and cause dis-

ease in cohabitated salmon (Scholz et al., 2018a). How-

ever, some information has been reported regarding

lumpfish ranavirus and lymphocystis in wrasse (both

belonging to Iridoviridae). Experimental challenge of sal-

mon with lumpfish ranavirus did not cause significant

pathology after immersion or injection (Scholz et al.,

2018a). It is considered a viral agent of special concern

regarding importation of lumpfish (VKM et al., 2019a).

Atlantic salmon does not appear to be very susceptible

to infection with the iridovirus EHNV (Whittington

et al., 2010). Regarding lymphocystis disease viruses,

viral detection from more than 140 fish species has

been shown (Essbauer & Ahne, 2001). It has been

reported from wild-caught ballan wrasse in Norway

(Schonheit et al., 2017), and from bluestreak cleaner

wrasse, Labroides dimidatus, located at warmer waters

(VKM et al., 2019a). Lymphocystis is generally consid-

ered a benign, self-limiting disease in fish, causing pri-

marily superficial lesions (Whittington et al., 2010;

Schonheit et al., 2017), and the virus is regarded low

probability of disease transmission in salmonid aquacul-

ture (VKM et al., 2017). However, infected fish could

display lower growth rates and become more susceptible

to secondary infections, which could potentially lead to

economic losses if large parts of the population is

affected (Borrego et al., 2017).

Parasites

Wild-caught cleaner fish usually harbour several different

parasites, as this is a common occurrence in fish under nat-

ural conditions (Scholz et al., 2018a). A great amount of

species have been found in wrasse (Treasurer, 1997; Trea-

surer, 2012; VKM et al., 2019b), and some have been

reported from lumpfish (Rolbiecki & Rokicki, 2008; Karls-

bakk et al., 2014; Erkinharju et al., 2019). Several of these

species show a high degree of host specificity and some

even have complicated life cycles involving different animal

species/types as intermediate hosts and are as such not

directly transmitted from fish-to-fish (Treasurer, 2012;

Karlsbakk et al., 2014; Johansen et al., 2016a; Scholz et al.,

2018a). However, some species are a concern, partly due to

their probability of spreading from infected cleaner fish to

cohabitated salmon, but also from potentially being zoono-

tic pathogens (Mo & Poppe, 2018; Scholz et al., 2018a).

Interestingly, the likelihood of introducing novel parasites

with importation of cleaner fish to Norway is regarded as

lower with lumpfish than for wrasse (VKM et al., 2019a).

Among the currently known parasitical organisms, the

gill amoeba Paramoeba perurans is considered the most sig-

nificant threat in sea cages stocked with cleaner fish and sal-

mon (Karlsbakk et al., 2014; Johansen et al., 2016a). The

parasite demonstrates a low degree of host specificity and

can infect several different fish species (Johansen et al.,

2016a), including salmonids, wrasses and lumpfish (Young

et al., 2007; Young et al., 2008; Steinum et al., 2008; Karls-

bakk et al., 2013; Haugland et al., 2017). In Norway, the

amoeba can be found along the coastline as far north as

Nordland county (Hjeltnes et al., 2019). Experimental

transmission of P. perurans from infected lumpfish to

Atlantic salmon was also recently reported (Haugland et al.,

2017). As such, it is considered a high probability of being

spread from infected cleaner fish to cohabitated salmon

(VKM et al., 2017).

Several helminths are regarded as foodborne pathogen

concerns, especially nematode species in the genera Anisa-

kis, Pseudoterranova, Contracaecum, Phocascaris and Hys-

therothylacium (Family: Anisakidae). Encapsulated larvae of

these nematodes can occur in internal organs and muscula-

ture of marine fish, potentially causing disease in humans

(anisakiasis, commonly known as ‘kveis’ in Norwegian)

ingesting raw or undercooked fish meat possessing these

parasites (Karl et al., 2011; Gjerde, 2011a; Jansson & Ven-

nerstr€om, 2014; Scholz et al., 2018a). Infection with the

species Anisakis simplex is especially a problem, as the inva-

sive parasite can penetrate the gastro-intestinal tissue wall,
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migrate to other parts of the body and potentially lead to

immune hypersensitivity reactions in some individuals

(Audicana & Kennedy, 2008; Jansson & Vennerstr€om,

2014). Anisakiasis is considered an important emerging dis-

ease of global scale (Bao et al., 2017).

For lumpfish, there are records of A. simplex, Pseudoter-

ranova spp., H. aduncum and C. osculatum occurring in

wild-caught fish (Rolbiecki & Rokicki, 2008; Karlsbakk

et al., 2014), and lumpfish kept in open sea cages can

become infected by ingesting intermediate hosts (such as

marine copepods) used by the nematodes (Gjerde, 2011a;

Johansen et al., 2016a). A. simplex, H. aduncum and

C. oscalatum also occur in wild wrasse (Treasurer, 1997;

VKM et al., 2019a). As a result, the cohabitated salmon can

potentially become infected by predating on the cleaner fish

(Johansen et al., 2016a; Mo & Poppe, 2018). In Norwegian

aquaculture, a national survey on the prevalence of Anisakis

in farmed salmon only registered the nematodes in a few

runts and concluded that the probability of the parasites

occurring in fish meant for human consumption is very

low (Levsen & Maage, 2016). Similar observations were also

reported by others (Mo et al., 2014). In addition, due to

Atlantic salmon being fed artificial feed it is argued that

they are unlikely to become infested with parasitic hel-

minths (Levsen & Maage, 2016). However, although the

probability of nematodes spreading from infected cleaner

fish to salmon appear to be negligible, careful consideration

and risk analysis is advised, as such transmission can lead

to dire consequences (Johansen et al., 2016a; Mo & Poppe,

2018).

The sea lice Caligus elongatus are frequently reported

from lumpfish stocked in net pens at sea (Powell et al.,

2018; Hjeltnes et al., 2019) and are commonly observed on

wild-caught lumpfish (Heuch et al., 2007; Karlsbakk et al.,

2014; Scholz et al., 2018a). As motile C. elongatus are able

to move between different fish hosts (Oines et al., 2006;

Jansson & Vennerstr€om, 2014; Brooker et al., 2018) and

lumpfish are regarded as an important host species for

genotype I of the marine copepod (Oines et al., 2006; Oines

& Heuch, 2007), there is a risk of cohabitated salmon

becoming infected with the parasite (Johansen et al.,

2016a). Based on current knowledge, it is considered mod-

erate probability in aquaculture settings, but there are

uncertainties due to only limited information available

(VKM et al., 2017).

Historically, Ichthyophonus hoferi has been reported from

numerous different fish species, including salmonids (Mel-

lergaard & Spanggaard, 1997; Rahimian, 1998; Zubchenko

& Karaseva, 2002; Kocan et al., 2004; Tierney & Farrell,

2004; Jansson & Vennerstr€om, 2014; Gozlan et al., 2014;

Teffer et al., 2020). Fungal and fungal-like pathogens of fish

typically have a generalistic nature and can infect a wide

range of different hosts (Gozlan et al., 2014). For

Ichthyophonus, the main route of transmission is via con-

sumption of infected fish and (possibly) pelagic zooplank-

ton, in addition to waterborne transmission from fish-to-

fish (Jones & Dawe, 2002; Jansson & Vennerstr€om, 2014;

Kocan, 2019). Fungal infections in cultured fish are consid-

ered a secondary phenomenon (Gozlan et al., 2014); disease

outbreaks of I. hoferi are largely controlled by using pro-

cessed and sterilised fish feed (Jansson & Vennerstr€om,

2014), and waterborne infections have only been docu-

mented in a few fish species in the marine environment

(Gregg et al., 2012; Kocan, 2019). However, Ichthyophonus

sp. has been reported from Norwegian cleaner fish (Hansen

& Nilsen, 2018; Hjeltnes et al., 2019), and as such, there is a

risk that salmon can become affected by predating on

cohabitated wrasse or lumpfish infected with the pathogen

(Mo & Poppe, 2018).

The microsporidian parasite Nucleospora cyclopteri is

capable of causing severe disease in infected lumpfish (Free-

man et al., 2013; Karlsbakk et al., 2014; Alarcon et al.,

2016b). It has been observed in wild-caught lumpfish along

the entire Norwegian coast (Karlsbakk et al., 2014), mean-

ing it is very probable that lumpfish used as cleaner fish will

be affected by the parasite when put to sea (Scholz et al.,

2018a). However, most microsporidians in fish are gener-

ally species-specific and this seem to include N. cyclopteri

(Cain & Polinski, 2014; Johansen et al., 2016a; Scholz et al.,

2018a). Therefore, it is considered a low probability for

cross-infection between infected lumpfish and cohabitated

salmon in sea pens with this parasite (Johansen et al.,

2016a; VKM et al., 2017). The possibility of transmitting

other microsporidian parasites, such as T. brevifilum in

lumpfish and Loma sp. in wrasse, is considered equally

unlikely, although it has not been investigated (Scholz

et al., 2017; Steigen et al., 2018).

For other lumpfish parasites, such as flagellates Ichty-

obodo sp., ciliates Trichodina sp., Scuticociliate species, myx-

ozoans Kudoa islandica and Myxobolus aeglefini, and

monogeneans Gyrodactylus sp., any possible disease trans-

mission from cleaner fish to salmon is regarded as either

unlikely, as several species show high degree of host speci-

ficity, or unknown due to lack of available information

(Johansen et al., 2016a; VKM et al., 2017; Scholz et al.,

2018a).

Commercial and experimental vaccines for cleaner
fish

According to recent documentations by the Norwegian

Food Safety Authority (Mattilsynet), there is on average a

cleaner fish mortality above 40% in Norwegian aquacul-

ture. However, there is uncertainty in regards to this num-

ber, since not all of the cleaner fish that are lost are

registered (Mattilsynet, 2020). Others argue that near all of
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the cleaner fish put in sea cages together with salmon die

throughout the production cycle, which account for a daily

mortality of about 150 000 fish within a year (Hjeltnes

et al., 2019; Berghlin, 2019a). Relevant causes include han-

dling, such as non-medicinal lice treatments; also skin

wounds, fin erosions and mechanical injuries (some of

which might be directly or indirectly related to different

handling procedures), in addition to poor fish quality,

environmental conditions, aggression/predation and dis-

ease, especially bacterial infections (Nilsen et al., 2014;

Bornø et al., 2016; Hjeltnes et al., 2019; Mattilsynet, 2020).

There is generally a lack of effective treatment protocols

(Scholz et al., 2018a), although there are some recommen-

dations for medicinal treatment of infectious diseases in

cleaner fish (Gu & Skjelstad, ; Treasurer & Birkbeck, 2018;

Pietrak & Backman, 2018; Powell et al., 2018; Scholz et al.,

2018a; Kverme et al., 2019; Haugland et al., 2019). In addi-

tion, antimicrobial treatment is not necessarily effective

against all types of pathogens, such as P. salmonis in salmo-

nids (Rozas & Enriquez, 2014). Currently, cleaner fish is

the fish category with the largest number of prescribed

antibiotic treatments (91 total for lumpfish in 2018) for

bacterial infections in Norwegian aquaculture (Hjeltnes

et al., 2019). It is preferable to keep the antimicrobial usage

in aquaculture as low as possible, in order to prevent the

formation of antimicrobial-resistant (AMR) bacterial pop-

ulations (Santos & Ramos, 2018). As such, vaccination is

regarded as an essential option for preventing development

of bacterial diseases and improving cleaner fish health and

welfare (Nilsen et al., 2014; Brooker et al., 2018; Scholz

et al., 2018a).

There are a few commercial vaccines developed for clea-

ner fish – mainly targeted to combat A. salmonicida and/or

Vibrio sp. infection (Pharmaq (Zoetis), Elanco, Vaxxinova

Norway Ltd). A few experimental vaccines have been tested

for use in cleaner fish. One of this is Vibrogen-2 (Elanco).

This vaccine containing inactivated V. anguillarum O1 and

O2, plus V. ordalii did not induce protection against V. an-

guillarum (Chakraborty et al., 2019). In another study,

lumpfish were immunised using an oil-in-water emulsion

of two isolates of A. salmonicida (Alpha marine micro 3,

Pharmaq), where the bacteria originally were isolated from

Atlantic cod. The vaccine consisting of a high virulent

strain yielded 73% relative survival (Ronneseth et al.,

2017). The protection induced by two experimental Paster-

uella sp. vaccines (formalin inactivated bacteria in water-

in-oil formulations) was assessed by Ellul et al. (2019a).

This study concluded that there was a slight protection of

immunised lumpfish, followed by bath challenge with

autologous pathogen, over control fish – albeit non-signifi-

cant (Ellul et al., 2019a). The number of vaccine trials con-

ducted in cleaner fish is remarkably low given that

hundreds of millions are being used as lice eaters in

aquaculture. To the best of our knowledge, there are cur-

rently no vaccines available for fungal, viral or parasitic dis-

eases in cleaner fish.

Conclusion

The cleaner fish are susceptible towards a high range of dif-

ferent pathogens that may cause diseases and mortalities.

The animal welfare of cleaner fish, with regard to immune

prophylactic measures, must be taken care of by developing

efficient vaccination strategies. Vaccine development aim-

ing to induce protection against well-known pathogens is

by far lagging behind the current situation of the main

aquacultured species. Whether cleaner fish are host of

pathogens likely to be transmitted to salmon, impacting

animal welfare, must thorough fully be evaluated in future

studies. A better focus on cleaner fish welfare together with

vaccine prophylactic measures would reduce the risk of

transmitting infectious pathogens.
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