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Abstract

Carbapenemases are enzymes able to hydrolyze the last resort [-lactam antibiotics
(carbapenems), which are used for the treatment of infections caused by resistant bacteria.
Carbapenemases are structurally and mechanistically classified into serine-f-lactamases
(SBLs) and metallo-pB-lactamases (MBLs). In order to combat the hydrolytic activity of these
enzymes, combination therapy of B-lactam with B-lactamase inhibitor have been clinically
successful. Nevertheless, clinically approved inhibitors for a number of important
carbapenemases are still missing and resistance against some of the clinically successful
combinations have been already reported.! Therefore, there is an urgent need to find new
effective inhibitors that could potentially reach clinical use. The approach targeted in this thesis
is to design new inhibitors against carbapenemases that could be used in the combination

therapy with a carbapenem antibiotic to restore its effect.

The goal of my work was to develop synthetic methods for the synthesis of inhibitors
targeting two clinically relevant carbapenemases - the serine-fB-lactamase oxacillinase 48
(OXA-48) and the metallo-fB-lactamase Verona integron-encoded metallo-f-lactamase (VIM-
2). For the design and development of inhibitors, a fragment-based approach based on
previously discovered inhibitory fragments and structural data of the fragments in complex with

the target enzymes was choosen.

In this thesis I discuss the developed synthetic strategy towards unsymmetrical 3,5-
disubstituted benzoic acids using selective Suzuki-Miyaura cross-coupling. Applying the
developed method, I synthesized a small extended fragment library of both symmetrical and
unsymmetrical 3,5-disubstituted benzoic acids targeting OXA-48. The aim of synthesizing
these extended fragments was to target two directions in the binding pocket as suggested by

overlaying structural data of smaller fragments in complex with OXA-48.

I also developed a synthetic strategy towards 2-aroylbenzoic acid analogues via
carbonylative Suzuki coupling using CO in a safe fashion. 2-Aroylbenzoic acids were known
to inhibit the carbapenemase VIM-2. Through my investigations about a general synthetic
strategy towards 2-aroylbenzoic acid, I found some limitations about substrates with ionizable

functional groups and sterically hindered substrates. I then extended my investigation to find



better reaction conditions for carbonylative coupling reactions. I also introduced sustainability
to the project by using renewable solvents aiming for better reactivity in palladium-catalyzed

C-C, C-0O, C-N bond forming carbonylative couplings.

In summary, through the presented work a range of carbapenemase (OXA-48 and VIM-
2) inhibitors have been synthesized. Additionally, the developed synthetic strategies are
considered to be a starting point to build a general approach to synthesize a wide range of potent

inhibitors against carbapenemases. The work resulted in three publications (Paper I, 11, III).
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1. Introduction

Antibiotic resistance is among the most challenging threats to the global health in the 21*
century and soon will be one of the top public health challenges unless urgent actions are taken.
Infections such as pneumonia, tuberculosis, gonorrhea and salmonellosis are becoming more
challenging to treat as the bacteria are becoming more resistant to the current antibiotics.?
Antibiotic resistance is mainly caused by their misuse in humans, animals and accelerating
agricultural processes. The world needs urgent actions to find solutions for the spread of
resistant bacteria not only by developing new medicines but also by changing the public

behavior towards antibiotic consumption.?

B-Lactam antibiotics are one of the most widely used antibiotics and they include
penicillins, cephalosporins, monobactams and carbapenems. All members of p-lactam
antibiotics share the B-lactam ring as the common feature in their chemical structure.’* The
continuous evolution of bacteria containing -lactam antibiotic-hydrolyzing enzymes is one of
the main reasons behind the rise of antibiotic resistance. The enzymes hydrolyzing B-lactam
antibiotics are called B-lactamases and they are divided into two main groups based on their
hydrolyzing mechanism: serine-p-lactamases (SBLs) and metallo-B-lactamases (MBLs). The
B-lactamases (BLs) with activity towards carbapenems are called carbapenemases and they are
of high importance as they are threatening the most important groups of p-lactams,
carbapenems, used for the treatment of serious bacterial infections. Carbapenemases can be
serine-B-lactamases (SBLs) or metallo-B-lactamases (MBLs) that are active against the last
resort antibiotics- carbapenems. In addition, carbapenemases not only can hydrolyze

carbapenems but also nearly all groups of B-lactams.>™

There are several approaches to combat the threat of the antibiotic resistance such as the
continuous development of new antibiotic lines against the resistant bacteria or the development
of inhibitors that could suppress or disturb the resistance mechanism of the bacteria. A very
successful approach to overcome bacterial resistance caused by B-lactamases is the combination
therapy using an antibiotic and a B-lactamase inhibitor. The role of the B-lactamase inhibitor is
to block the hydrolyzing enzyme from reaching the antibiotic and thus preserving the

antibiotic’s activity against the bacterial infection.!
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The combination therapy approach has proven to be a successful strategy regarding -
lactamases. Combination therapy using B-lactamase inhibitors such as tazobactam, clavulanic
acid, sulbactam, etc. targeting SBLs that are not active against carbapenems have been available
for clinical use.! There are several inhibitors against serine-B-lactamases, which are active
against carbapenems that have recently been approved for clinical use or are in a late stage of
the drug development process.! However, there are no MBL inhibitors that have reached
clinical use so far. In addition, MBL carrying bacteria are spread globally. Therefore, the lack
of MBL inhibitors can eventually lead to the world standing helpless against common bacterial
infections that are caused by bacteria carrying MBLs. Thus, the global need for carbapenemase

inhibitors restoring the potency of the last-line antibiotics is outstanding.*1%!!

1.1 Aim of the study

The long-term goal of our work is to develop carbapenemase inhibitors that could potentially
block the resistance enzymes and restore the activity of the carbapenem. Our research group is
especially interested in carbapenemases (e.g., VIM-2, NDM-1, GIM-1, TMB-1, KPC and
OXA-48).12°15 Qver time, the group has obtained structural data from crystal structures of these
enzymes in complex with a range of inhibitory fragments (small-sized compounds MW < 300)
and inhibitors. The structural data gives us insight into the binding site and assists us with
generating ideas for further development of active inhibitors by structure-based drug design

(SBDD).

The overarching aim of my PhD work was to develop active inhibitors of two
carbapenemases to restore the carbapenem antibiotic activity. I have mainly focused on two
carbapenemases- the verona integron-encoded metallo-f-lactamase (VIM-2) and the serine-f3-

lactamase oxacillinase-48 (OXA-48).
In order to achieve the overall aim, the work in the thesis had several subgoals:

e Use the structural data from two carbapenemases (VIM-2 & OXA-48) in complex with
inhibitory fragment complexes to develop fragment libraries (Figure 1). The crystal
structures gave us insight into the binding site and helped identify possible interactions

that we could target while designing the fragment library.
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Figure 1. (left) Fragment 1 targeting VIM-2, (right) Fragment PI-2 targeting OXA-48.

e Develop efficient synthetic methods for the synthesis of fragment libraries.

e Synthesize analogues of the initial fragment and evaluate their inhibitory activity.

1.2 Outline

The thesis consists of 9 chapters. The first three chapters introduce the research question, the

background and the existing knowledge. Chapter 4, 5 and 6 present the three papers resulting

from the research described in the thesis. Chapter 7 presents the concluding remarks, while

chapter 8 highlights open research question for future studies. A more detailed presentation of

the content of the chapters follows:

Chapter 1
Chapter 2

Chapter3

Chapter 4

Introduces the aim of the study and places the study in a wider context.
Discusses B-lactamase antibiotics including carbapenems and the antibiotic
resistance assembled in carbapenemases. It also addresses the different
carbapenemase enzymes and their mode of action. Furthermore, it discusses the
combination therapy approach and the evolution of inhibitors used against
carbapenemases. The chapter also includes a short introduction to fragment-
based drug design.

Provides the chemical background for the reactions applied in this thesis. For
each reaction an overview of the reaction mechanism is provided. In addition,
some examples from literature are discussed to provide some knowledge about
the reaction applications. Green solvents.

Introduces the background for the research described in paper L. In addition, it
illustrates the fragment design and important features that should be included in
the structure to target both binding sites R! & R2. The chapter also discusses a
developed general synthetic strategy to synthesize a number of extended
fragments against OXA-48 via the selective Suzuki-Miyaura coupling. Finally,

the chapter addresses results presented in paper 1.
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Chapter 5

Chapter 6

Chapter 7
Chapter 8
Chapter 9

Introduces the background for the research described in paper I1. The chapter
illustrates the different possible synthetic routes to synthesize active fragments
containing the 2-aroylbenzoic acid moiety against VIM-2. I highlight the best
synthetic route in my hands towards the targeted VIM-2 fragments. The chapter
also discusses reaction optimization for carbonylative Suzuki-Miyaura coupling
and our efforts to suppress the competing normal Suzuki-Miyaura coupling
required to synthesize a number of developed fragments against VIM-2. Finally,
it addresses results presented in the paper together with some findings about the
reaction limitations.

Is a continuation of the work conducted in paper II. It discusses the extended
optimization of carbonylative Suzuki-Miyaura coupling to find a better system
and cover the reaction limitation addressed in paper II. In this chapter I
introduce sustainability character to my research by using new renewable
solvents and test them for better reactivity within Pd-catalyzed carbonylation
reactions such as carbonylative Suzuki-Miyaura coupling (C-C),
alkoxycarbonylation (C-O), aminocarbonylation (C-N). The chapter highlights
that changing the common organic solvents to greener alternatives is a positive
step towards sustainability without losing activity in the chemical reactions. A
number of applications is mentioned to address the importance of the studied
solvents in both academia and industry. Finally, it addresses some results
presented in the paper.

Conclusion.

Future direction

Appendix: this chapter includes experimental details and spectral data of

fragments presented in Chapter 5.5, Table 8 (entry 1-7).



2. Relevant background for the thesis

2.1 Antibiotics & antibiotic resistance
An antibiotic is a substance that can kill or cause inhibition of the microbial growth. The name
“antibiotic” was first introduced by Selman Waksman in 1942. Since their discovery, antibiotics

have saved many lives and improved life quality.!%!

There are several classes of antibiotics such as B-lactams, macrolides, sulfonamides,
aminoglycosides, quinolones etc. Each class of antibiotics affect the bacteria in different ways.
For instance, B-lactams interfere with the cell-wall synthesis of the bacteria, thus killing it.
While quinolones inhibit topoisomerases preventing the DNA replication and cause death of

the bacteria.!®

Due to the overuse of antibiotics and the resulting evolutionary pressure, bacteria have
learnt to resist antibiotics. Bacteria identify antibiotics, and thus adapt and build immunity
against them. Furthermore, the rapid generation time of bacteria makes it even quicker for the
bacteria to evolve and build resistance against antibiotics in a short time.!* The uncontrolled
growth of bacterial resistance leads to the suppression of the antibiotics effect. Bacterial
infection and associated diseases that could be treated by antibiotics earlier are becoming harder
to treat.? This is a growing concern threatening the health and welfare of the population

worldwide and thus needs an urgent resolution.

2.2 B-lactam antibiotics

B-Lactams are considered to be among the most used antibiotics, more than 65% of the
antibacterial prescriptions include B-lactam antibiotics.?’ There are several B-lactam antibiotics
on the market. The class of f-lactam antibiotics shares a common core structure, which is a four
membered ring known as the B-lactam ring. The importance of this class of antibiotics lies in
their broad-spectrum antibacterial activity as they are active against both gram-negative and
gram-positive bacteria.’ B-lactams are structurally classified into penicillins, cephalosporins,

carbapenems and monobactams (Figure 2).3#



Carbapenem
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Figure 2. Chemical structure of B-lactam antibiotics with a common [S-lactam ring. The R groups differs in various
antibiotics. The X in the monobactam chemical structure represents a-methyl.

Penicillins: were the first developed B-lactam antibiotics and were used to treat a wide range
of infections caused by bacteria such as streptococcus, staphylococcus. Penicillins have a five
membered ring fused to the B-lactam ring and an amide moiety attached to the f-lactam ring.
There are several penicillins available on market, all of which are -lactam antibiotics and only
differ in the side chain of the penicillin. Ampicillins, oxacillin and amoxicillin are examples of
penicillins.?!2

Cephalosporins: have a six membered ring fused to the B-lactam ring and an amide moiety
attached to the B-lactam ring as in penicillins. Cephalosporins cover a broader spectrum of both
gram-negative and gram-positive bacteria than penicillins.?3-2* Cephalosporins are grouped into
different generations based on the modified structure and the activity spectrum. For instance,
the first generation was similar to the cephalosporine C, which was introduced in 1940s.
Structural modification of the cephalosporine C by adding a methoxy group on the B-lactam
ring resulted in the second generation of cephalosporines e.g. cefoxitin. The methoxy group
added some steric hindrance to the p-lactam ring, which made it harder to hydrolyze by the
BLs. Ceftazidime is an example of the third generation cephalosporines, they are characterized
by the aminothiazole ring added to the side chain of the cephalosporine structure.???* The new

features of the aminothiazole ring made the antibiotics of this generation more active against
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gram-negative bacteria and increased the potency against penicillin-binding proteins (PBPs).
Cefepime belongs to the fourth generation, while ceftobiprole?® and ceftaroline?’ belong to the
fifth generation.?? Cefiderocol is a recently US FDA-approved cephalosporin, which is used for
the treatment of urinary tract infections. Moreover, cefiderocol is currently being tested in phase
IIT against nosocomial pneumonia and infections resulted from carbapenem-resistant gram-
negative bacteria.?8

Monobactams: are the only -lactam antibiotics that have no ring fused to the B-lactam ring.
Monobactams are only active against gram-negative bacteria such as Neisseria and
pseudomonas.’® Tigemonam, nocradicin®’, taboxin and aztreonam are examples of
monobactams.??

Carbapenems: have an unsaturated five membered ring fused to the B-lactam ring, they also
have a chiral center with a hydroxyethyl side chain on the B-lactam ring. An example of a
carbapenem is thienamycin, which has potency against both gram-positive and gram-negative
bacteria but it is unstable for clinical applications.?! Imipenem is also a carbapenem but it is
hydrolyzed by dehydropeptidase (human enzyme). However, a dehydropeptidase inhibitor
(cilastatin) could be used to prevent the human enzyme from hydrolyzing the imipenem and
thus could be used as an antibiotic.?? Meropenem, doripenem and ertapenem are more stable
carbapenems than thienamycin and imipenem due to the bulkier substituents on the five
membered ring. Carbapenems are known for their broad-spectrum activity against gram-
negative bacteria, gram-positive bacteria and anaerobes.?! Carbapenems are also used recently
as last resort antibiotics against antibiotic-resistant bacteria. Tebipenem is one of the latest

approved carbapenems for clinical use, but it is only available in Japan.3!-22



Table 1. Examples of available B-lactam antibiotics.
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2.3 Antibiotic resistance: bacterial resistance modes against 3-
lactam antibiotics

Bacteria adapt to the known antibiotics by developing several mechanisms to gain resistance

against antibiotics (Figure 3).>? Bacteria can as well combine the different mechanisms and

become multidrug resistant, which increases the severity of the problem.!”-33 Bacteria can obtain

resistance to the antibiotic by reducing the permeability of the drug into its cell wall. Bacteria

with no cell walls e.g. mycoplasma-genus are not affected by antibiotics targeting the cell wall

and tend to express their resistance in another way. For instance, some other bacteria contain

efflux pumps that transfer the antibiotics out of the cell directly after their entry before they

reach the target.’* Another resistance mechanism is based on structurally mutating the targeted

enzyme so that the antibiotic is not be able to bind to its target.>> An example of the mutating

bacteria is Staphylococcus aureus, which rapidly gains resistance to linezolid (antibiotic targets
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23S rRNA ribosomal subunit of gram-positive bacteria) via selection of mutated copies of the
gene encoding the targeted subunit.'® Bacteria can use other enzymes to modify the binding site
itself and thus prevent the drug from recognizing it so that the drug would not bind to the active
site and lose its activity. Macrolide erythromycin functions by binding to the bacterial ribosome.
In this case, the bacteria produce an enzyme called erythromycin ribosome methylase, the
enzyme methylates the binding site and prevents the antibiotic from binding. In addition, some
gram-positive and gram-negative bacteria tend to produce specific enzymes to modify or
inactivate the antibiotic itself and make it lose its activity. For instance, BLs enzymatically

hydrolyze B-lactam antibiotics leaving them inactive.36-37-18:32

Decreased uptake
7 by changes in outer

Drugmexsration membrane permeability

by activation of

efflux pumps XY

s

y /

Enzymatic inactivation

; & of drugs
Modificationson )
the drug target = | \

\ \

Figure 3. General presentation of the main bacterial resistance mechanism. Red represents the antibiotic, yellow
represents the different bacterial resistance actions. The picture acquired from Gonzalez-Bello.%?

2.4 B-Lactamases, carbapenemases and their classification

The biological effect of B-lactams depends on their availability to their target and the ability to
inhibit these targets. As mentioned before, bacteria have several resistance mechanisms. The
most common mechanism of resistance towards B-lactam antibiotics in gram-negative bacteria
is to produce specific hydrolytic enzymes that inactivate f-lactam antibiotics by hydrolyzing
the drug core of the B-lactam ring, these hydrolyzing enzymes are known as B-lactamases.?%*°
They were first reported even before the clinical release of penicillin in Escherichia coli (E.
coli) in 1940. So far 4944 B-lactamases have been reported in gram-positive, gram-negative
bacteria and mycobacteria.®#0-4? B-lactamases are of great diversity, they are classified based
on their amino acid sequence and biochemical properties into four classes A, B, C, D; known

as the Ambler classes.>*** Nevertheless, the 4 Ambler classes (Figure 4) can be structurally

grouped into two super families: SBLs, which consist of class A, C and D, all the three classes
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having a serine residue in their active site in a sequence of Ser-X-X-Lys motif, and MBLs,
which consist of class B, they contain Zn atom(s) in the active site, which is very important for
the catalytic activity of MBLs.* Both groups are B-lactam hydrolytic enzymes that use different
hydrolysis mechanisms to inactivate the antibiotic. Among the most important BLs are those
who are active against the last resort antibiotics - carbapenems (e.g. meropenem). These BLs
are called carbapenemases and they belong to both class A and D SBLs (e.g. KPC, OXA-48,
AmpC) and MBLs (e.g. VIM, NDM, GIM) as shown in Figure 4.

PC1, TEM-1, SHV-1, CTX-M-14, Carbapenemases
Class A TEM-30, SHV-10, TEM-50, PSE-4,
RTG-4, SFO-1 KPC-2, SME-1
Serine [3-
lactamases Class C AmpC, CMY-37
(SBLs)
= Carbapenemases
Class D 1,10’11,15 OXA-23, OXA-
B-lactamases 48
VIM, NDM,
GIM, L1, CphA
Metallo B- Class B
lactamases (MBLs) ~  Carbapenemases

Figure 4. Ambler classification of lactamases and examples of BLs. Both metallo and serine carbapenemases are
shown in green.

2.4.1 Serine B-lactamases

Generally, most B-lactamases are serine-B-lactamases; they constitute Ambler classes A, C, D,
which share common active site features including the serine residue (Ser70). Only KPC-2 and
SME-1 of class A and OXA-23 and OXA-48 of class D are described as carbapenemases with
catalytic efficiencies for carbapenem hydrolysis. Among the most common serine
carbapenemases are OXA-48 and KPC-2.46 OXA-48 is the most efficient SBL in class D as it
rapidly transfers high-level antibiotic-resistance genes to human pathogens such as E. coli and
Acinetobacter baumannii (A. baumannii).*’ OXA-48 has a broad activity spectrum not only
against carbapenems but also against penicillins and some cephalosporins (e.g. cefepime,
ceftazidime or cefotaxime). OXA-48 was first reported in Klebsiella pneumoniae isolate in
2008, but it has been recently identified in range of Enterobacteriacea.*>* Serine

carbapenemases including OXA-48 exhibit resistance through a mechanism of action that relies
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on the active serine residue (Ser 70 according to DBL numbering). The carboxylated Lys73
residue is believed to activate the catalytic Ser70 residue.*’

The Ser 70 residue acts as a nucleophile and attacks the carbonyl group in the pB-lactam
ring forming a covalent acyl-enzyme intermediate (Figure 5, Inter I), which then forms an acyl-
enzyme complex by breaking the C-N bond. Lys208 stabilizes the hydroxyl group that attacks
the carbonyl group of the acyl-enzyme complex to form the second tetrahedral intermediate

(Figure 5, Inter IT) leaving the antibiotic inactive.°

Overview of SBLs catalysis; S= substrate, E= enzyme, P= product

i E+S ES El EP E+P
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(OH Base, -H (O_
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Figure 5. Mechanism of action of SBLs against an example of cephalosporin antibiotics. The picture modified
from Brem et al.®

2.4.2 Metallo B-lactamases

MBLs belong to the metallo-hydrolase superfamily.’! All MBLs are described as
carbapenemases (metallo carbapenemases) as they exhibit enzyme activities against
carbapenems. Metallo carbapenemases constitute Ambler class B, which shares common active
site features including either one Zn?" ion or two Zn** ions coordinated by different ligands and
a hydroxyl ion, all of which are essential for the hydrolysis of the B-lactam ring.>>* MBLs are
divided into three subclasses (B1, B2, B3) based on the structure and if they contain one or two
zinc ions. All three classes contain a common four-layer “aff/Ba” motif, with the active site
centered in the groove. The active site is in between the “BB”- sandwich with Zn?* ion(s), and

two a-helices on either side.>3~%171

The mechanism of meropenem hydrolysis by NDM-1 was previously described and

supported by X-ray structure in a published study on NDM-1.3>¢ The hydrolysis mechanism
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includes the activation of the hydroxyl groups of the hydroxyl group bridging the Zn>* ions to
attack the carbonyl group of the B-lactam ring cleaving the C-N bond.’”*®After ring cleavage,
the second Zn?" ion coordinates to the negative charge on the nitrogen atom and stabilizes it. A
proton transfer from the bridging hydroxyl group to Asp120, followed by insertion of a water
molecule into the active site forms complex 2". Water molecules serve as a proton source
throughout the catalytic cycle. The nitrogen will then abstract a proton from the water molecule
in the binding site (Figure 6, complex 3 and 4”), which would eventually lead to the detachment

of the inactive meropenem and restoration of the active site 1 (Figure 6).%¢

H
|
O—H
e
Ji
S
/
N—\_0
oo ﬁ\ y
<— His%éz \/ is DI
His™” L Cys i
His Y ,o
Asp Asp Asp
E+P 4 4 3

Figure 6. NDM-1 hydrolysis mechanism of meropenem. 1 and 2 grey spheres represent Zn+ ions. Figure acquired
with permission from Triphati et al.%®

2.5 Carbapenemase inhibitors

One of the most successful therapy approaches against BLs is combination therapy. The
inhibitors combined with the -lactam antibiotic inactivate the B-lactamase, thus preventing the
hydrolysis of the antibiotic, making it possible for the antibiotic to reach its target. This method
of using B-lactam/ B-lactamase inhibitors has proven to be an effective approach to restore the
efficacy of the f-lactam antibiotic against pathogens producing BLs (e.g
ceftolozan/tazobactam, ceftazidime/avibactam, relebactam/imipenem,
nacubactam/meropenem, vaborbactam/meropenem, ETX2514/sulbactam, VNRX-

5133/cefepime, ANT431/meropenem).! Inhibitors such as clavulanic acid, sulbactam,
12



vaborbactam and tazobactam have reached clinical use but they are only active against SBLs
and inactive against MBLs. Despite the efforts of finding new synthetic or natural compounds

that show in vitro inhibition against MBLs, none of them have reached clinical use.>!

The focus of this work was to develop inhibitors targeting various BL inhibitors including MBL
and SBL inhibitors that especially show activity against carbapenemases VIM-2 (paper 11, I11),
OXA-48(paper 1).

2.5.1 Metallo-B-lactamase inhibitors
There are several compounds that have showed potency against MBLs (Figure 7).!6%-61.1

However, there is still no MBL inhibitor that has reached clinical use until now.

However, recently, a boronic acid-based inhibitor called taniborbactam (Figure 7) has been

262 63,64 Tt

reported as a “pan-spectrum [-lactamase inhibitor”** against gram-negative bacteria.
showed a wider scope of activity than the clinically approved vaborbactam (Figure 8).
Taniborbactam is considered a highly potent inhibitor of all four Ambler classes of B-lactamase
enzymes. It exhibits inhibition activity against both MBLs (e.g. VIM-2) and SBLs (e.g. OXA-
48, KPC-2) in a wide range of gram-negative bacteria. Structurally, taniborbactam is closely
related to vaporbactam as they both possess a cyclic boronate, while taniborbactam is a bicyclic
boronate with N-(2-aminoethyl) cyclohexylamine as the side chain (Figure 8). In vitro,
cefepime/taniborbactam and meropenem/taniborbactam combinations are active against all six

of the NDM-I-producing clinical isolates from E. coli and K  pneumoniae.

Cefepime/taniborbactam also passed phase I of the clinical trials.%

ANT431 is in preclinical trials as MBL inhibitor in combination with meropenem.! As
mentioned before, MBLs express resistance by a different hydrolysis mechanism than SBLs.
MBLs rely on the Zn?" in their active site to activate the hydroxyl group to initiate the hydrolysis
mechanism. Therefore, enzyme activity is affected by the availability of the Zn** ions to
deactivate the antibiotic. As a result, blocking the Zn** ions by using metal chelators would
disturb the hydrolysis mechanism and prevent the antibiotic degradation. EDTA is an example
of a metal chelator inhibitor (Figure 7) that inactivates the active site of MBLs by coordinating
to the Zn** ions and hinders its hydrolysis ability of the p-lactam.> EDTA has not reached
clinical use due to its toxicity. Recently, Samuelsen ef al. reported a metal chelator ZN148 that

has a great potential as a MBL inhibitor. /n vitro analysis demonstrated that ZN148 was able to
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restore the effect of meropenem against NDM-1.% Metal chelator inhibitors show activity

against MBLs including VIM-1, VIM-2, NDM-1 IMP-1,IMP-8, IMP-7, NDM-4,10:67.66

Thiol-based mercaptocarboxylates (Figure 7) exhibit high potency and broad-spectrum
inhibitory activity against MBLs (e.g. IMP-1, VIM-4, VIM-2, NDM-1, CphA, etc). For
instance, 3-(3-mercaptopropionyl-sulfanyl)-propionic acid derivatives were reported as
covalent and irreversible inhibitors of IMP-1 that restore the activity of mereopenem.®®
Captopril is a thiol derivative that has been studied as broad-spectrum inhibitor against MBLs,
it has shown better potency against NDM-1, VIM-2 and IMP-1 rather than other MBL
inhibitors.® It is also used as a standard to compare the inhibition potency of new inhibitors.”%7!
In addition, bisthiazolidine possessing inhibitors especially those containing a free thiol, a
carboxylate group or a tetrahedral nitrogen were found to be effective against most MBLs.
ME1071 is a maleic acid derivative; it showed in vitro activity against carbapenemases with
less toxicity to animals compared to other MBL inhibitors. ME1071 potentiates carbapenems
e.g. biapenem against NDM-1, VIM-2 and IMP-1.72 Natural products and fungus extracts have
also shown activity against MBLs. Aspergillomarasmine A is a fungal natural product that
shows inhibition potency against VIM-2 and NDM-1.7*-"* Biphenyl tetrazoles were described
as potent inhibitors of CcrA and IMP-1. Triazoles such as triazoleylthioacetamide and
arylsulfonyl-NH-1,2,3-triazole were described to have inhibition potentiality against VIM-2.
There are several other inhibitors (e.g. thioesters, trifluoromethyl alcohols and ketones, pyridine
carboxylates, benzohydroxamic acid etc.) that showed inhibition activity against MBLs.
Phthalic acid/derivatives have shown to express inhibition activity against the MBL IMP-1.7°
The group of Prof. Leiros reported phthalic acid derivatives to have potential inhibition activity
in vitro against VIM-2 (chapter 5).
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Figure 7. Examples of inhibitors against MBLs.

2.5.2 Inhibitors of serine-B-lactamases with carbapenemase activity

SBLs rely on the active serine residue (Ser70) to initiate the hydrolysis mechanism of the [3-
lactams. In principle, blocking the active serine residue would inactivate the enzyme and
prevent it from hydrolyzing the drug. Inhibitors accompanied with the B-lactam antibiotic such
as clavulanic acid and derivatives, tazobactam, sulbactam, avibactam, vaborbactam,
relebactam, are shown to be efficient in suppressing the resistance mechanism in many
examples for some SBLs. However, of the aforementioned inhibitors only avibactam,

vaborbactam, relebactam have inhibition activity against carbapenemases.!’’-’8

The combination between ceftazidime/avibactam was approved by the Food and Drug
Administration (FDA) in February 2015 for the combination therapy.”” Ceftazidime/avibactam
combination is active against serine carbapenemases OXA-48 and KPC. However, resistance
towards ceftazidime/avibactam has already been identified in clinical multi-resistant OXA-

48.7

Avibactam is a reversible B-lactamase inhibitor that binds covalently to the active serine

residue and inactivates the enzyme, it poses a broader spectrum of inhibitory activity compared
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to tazobactam, sulbactam, and clavulanic acid. Avibactam exhibits activity against most BLs
of class A and C such as TEM-1, KPC-2 and extended spectrum B-lactamases (ESBLs) such
as CTX-M-15.328 In addition, avibactam inhibits some of class D enzymes such as OXA-48.3
Moreover, combinations of avibactam with aztreonam (monobactam) or -ceftaroline
(cephalosporine) were found to show inhibition activity against OXA-48 and OXA-24.2" The
avibactam/aztreonam combination has reached phase III of the clinical trials, while

avibactam/ceftaroline has reached phase II of clinical trials.”®

Relebactam (MK-7655) is structurally similar to avibactam (Figure 8), it also shares the
same spectrum of activity as in the case of avibactam. Imipenem/cilastatin+ relebactam
combination shows great activity against KPC-2 and restores the efficiency of imipenem.
Moreover, the combination was approved in July 2019 by the FDA and it is used for the

treatment of complicated urinary tract infections and intra-abdominal infections.?!-67:79:81

Vaborbactam (RPX7009) is a novel boronic acid-based inhibitor that shows activity
against SBLs.%? The meropenem/vaborbactam combination was approved by the FDA in
August 2017 for the inhibition of pathogens producing serine carbapenemases KPC-2, KPC-3,
KPC-4.%

Taniborbactam (see also chapter 2.5.1) is a promissing inhibitor of all four Ambler
classes of B-lactamase enzyme including the carbapenemases OXA-48 and KPC-2 in a wide

range of gram-negative bacteria.

Recently, Taylor et al. described the high potentiality of CDD-97 and its derivatives
(Figure 8) against OXA-48.%4
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Figure 8. Examples of SBL inhibitors.
2.5.3 Summary of MBL and SBL inhibitors in different development
stages

As mentioned before using combinations of B-lactam/ B-lactamase inhibitors has proven to be
an effective approach to restore the efficacy of the B-lactam antibiotic against pathogens
producing BLs.! Inhibitors such as clavulanic acid, sulbactam, avibactam, vaborbactam and
tazobactam have reached clinical use but they are only active against SBLs and inactive against
MBLs. However, the avibactam/aztreonam combination has reached phase III of clinical trials
against MBLs.>”! Combinations such as VNRX-5133/Cefepime (phase 1) and
ANT431/Meropenem (preclinical stage) are also active against MBLs (Table 2).!
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Table 2. Summary of BL inhibitors."

Inhibitor B-lactam Stage ESBL | AmpC | KPC | OXA- | MBL
48
Clavulanic Amoxicillin approved yes - - - -
acid Ticarcillin approved yes - - - -
Sulbactam Ampicillin approved yes - - - -
Tazobactam Piperacillin approved yes - - - -
Cefepime approved
Ceftolozane approved
Enmetazobactam Cefipeme Phase I1 yes - - - -
Avibactam Ceftazidime approved yes yes yes yes
Aztreonam Phase III yes yes yes yes yes
Relebactam Imipenem Phase III yes yes yes
Nacubactam Meropenem Phase I yes yes yes
Zidebactam Cefepime Phase I yes yes yes
ETX2514 Sulbactam Phase 11 yes yes yes yes
Vaborbactam Meropenem approved yes yes yes yes
VNRX-5133 Cefepime Phase I yes yes yes yes yes
ANTA431 Meropenem | preclinical - - - - yes

— no useful inhibitory activity shown; DBO, diazabicyclooctanone analogue; ESBL, extended-spectrum
B-lactamase; MBL, metallo-B-lactamase, carbapenemases (green).

2.6 Fragment based drug discovery (FBDD)

In drug discovery campaigns, the identification of lead compounds can be achieved through
one of the two major approaches: high-throughput screening (HTS) or fragment-based drug
discovery (FBDD).%

HTS is based on screening a large collection of drug-like compounds that follow the
Lipinski’s rule of five,%¢47 (i.e. the compounds should have < 5 hydrogen bond donors (N-H
and O-H bonds), < 10 hydrogen bond acceptors (N, O atoms), molecular weight of < 500 Da
and an octanol-water partition coefficient (log P) < 5) against a predefined drug target with the
goal to find potent hits with activity in the low millimolar to nanomolar range. HTS has been
successfully used in identifying novel inhibitors against MBLs.%° One disadvantage of the
HTS approach is that it can result in misleading information concerning inhibition and binding.
In the case of large-sized compounds as the space in the binding site is restricted, they are
prevented from binding efficiently to several different residues. In this way the inhibition might

be acceptable not because of the good binding but rather by occupying the active site.
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In contrast, FBDD®! is based on the screening of a library of smaller compounds -
fragments- that follow the rule of three (i.e. they have molecular weight <300 Da, <3 hydrogen
bond donors/acceptors, and CLogP below 3) in order to find efficient binders with a high
possible binding efficiency.’? Using smaller compounds increases the chance to detect binding
possibilities as the smaller size makes the compound more flexible to the binding pocket when
compared to larger compounds (Figure 9). A well-established value to evaluate the binding
efficiency of fragments is their ligand efficiency (LE), which is a measure of the binding energy
per heavy atom in the fragment. The higher the LE-values the better as it is recommended that
good hits should have LE in the range of 0.3-0.4 kcal/(mol atom).”® The LE can be obtained
from half maximal inhibitory concentrations (ICso) (or the dissociation constant (Kq)) according
to the following formula(s):

AG = -RT In(K q)

LE = AG /N, where N= # of non-hydrogen atoms 3
LE = 1.4 (-log (ICs0))/N %

A Traditional drug design approaches
Free binding site Hit identification Hit-to-lead
B Fragment-based drug design
Free binding site Fragment identification Fragment-to-lead

Figure 9. HTS hit (A) versus FBDD hit (B). Adapted from frontiers in chemistry, in silico strategies to support
fragment to Lead optimization in Drug Discovery, Neto et al. Copyright (2020), open access.%

A challenge in FBDD is that the fragments bind only weakly to the enzymes (ICso in the micro-
or millimolar range), thus each atom of the fragment has to contribute to the overall binding of
the fragment to be detected. Another challenge with fragments is the unspecific binding of
fragments and pan assay interreference compounds (PAINS), which can be solved by using
orthogonal assays, such as the combination of surface plasmon resonance (SPR) and a
biochemical assays to identify false positive results.”6%

Fragments most likely do not have the required potency to be considered as a lead

compound and would need further improvement. To guide the fragment evolution, structural
19



information of the fragment in complex with the targeted enzyme are needed to give insight
into possible interactions in the binding site. This process is called structure-based drug design
(SBDD) and it relies on the available information about the 3D structure of the drug
target.8>297 The 3D structure of the drug target can be mainly obtained through experimental
approaches such as X-ray crystallography or nuclear magnetic resonance spectroscopy
(NMR).?%% With the structural information in hand, it would be possible to predict the
necessary characteristics for binding and use this information to evolve the fragments to drug
candidates of high potentiality to bind to the drug target with higher affinity.®> Fragments
evolution can be achieved by several approaches:®’

Fragment-growing: It employs modification of the fragments by adding more groups
in order to increase the size of the fragments without losing binding efficiency (Figure 10. A).

This approach was the aim of papers II and II1.

Fragment-linking: With the help of the structural information of the inhibitor/enzyme
complex, if several fragments that bind in adjacent binding sites can be identified, those
fragments can be chemically connected to form a new optimized ligand with better binding and

higher potency (Figure 10. B).

Fragment-merging: This approach is very useful if there are two identified binding site
and their ligands are competing for the chemical space or if there are two different fragments
that partially occupy the same site. In either of the cases, overlaying structures of the two
fragments helps bring the dissimilar parts together and design a new potent fragment towards
drug like compounds (Figure 10. C). We applied this approach in paper I to optimize fragments
against OXA-48.

20



A Fragment growing

S, JLCARRAS

B Fragment linking
c Fragment merging

N
Figure 10. Different approaches towards fragment optimization. Adapted from frontiers in chemistry, in silico

strategies to support fragment to Lead optimization in Drug Discovery, Neto et al. Copyright (2020), open
access.%

The advantage of the FBDD approach is that it allows for lead optimization to detect the
chemical space with compounds of high development potentiality within the rule of 5, required
for identifying lead compounds. Moreover, it allows for more hydrophilic hits that can enhance
the affinity via the accessible hydrogen bonding. The fragments identified by FBDD can be
optimized further to acquire drug-like properties such as solubility properties, high potency, LE
and the size of the compound.!®

FBDD was first employed successfully against kinase targets.!?-192 However, it is now
being applied against a diversity of targets. Zelboraf (a drug for the treatment of late-stage
melanoma) was the first FDA approved drug developed by FBDD.!%:1%4 [n addition, FBDD is
proven to be a successful approach to develop drugs against both SBLs and MBLs. Chen ef al.
identified micromolar-range noncovalent inhibitors including thiol derivatives and
dicarboxylates against class A B-lactamases using FBDD approach.!® Moreover, Nicholas et
al. have modified polycarboxylic acids-based fragments that are considered to be a starting

point to target SBLs (class A and D) using FBDD (Table 3. entry 1).10

The group of Prof. Leiros has utilized surface plasmon resonance to identify potent
inhibitory fragments against both serine- and metallo-carbapenemases (chapter 4.1 and 5.1).
Christopeit et al. reported inhibitory fragments targeting the MBLs NDM-1 and VIM-2,!4.107.76

among them a novel inhibitor scaffolds against VIM-2 based on phthalic acid derivatives
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(chapter 5).!3 Lund et al reported 3,5-disubstituted benzoic acid/ derivatives scaffolds against

SBLs (OXA-48) using FBDD. !>

Table 3. Examples inhibitors developed from fragments targeting BLs provided by Nicholas et al."®and by

Leiros 13-15,76,107

ROUe

1 0

Ki= 11 uM
fragment against MBLs (IMP-1)

Ph

[

(@) (e}
0}
NHVOV
Ph” Y07 N0
K;= 20 uM
fragment against SBLs (OXA-10)

//‘NH
N
NN
C)
NH NH
o}
Ki= 89 nM

fragment against SBLs (CTX-M-9)

oyes

O
2 0} OH
|C50= 14 MM
fragment against MBLs (VIM-2)

0]
g ieae
‘/ SH

(IC50= 0.38, 0.31, 1.8 uM)
fragment against MBLs
VIM-2, GIM-2, NDM-1 respectively

COOH

| N | N
N__—~ N
|C50= 18 MM
fragment against SBLs

(OXA-48)

22




3. Relevant reactions

During the course of our research project on the synthesis of fragment libraries towards a new
line of carbapenemase inhibitors (OXA-48 and VIM-2), reliable synthetic methods for

preparing the designed fragment libraries were required.
Reactions relevant to the work presented in this thesis are:

e Suzuki-Miyaura coupling (SMC): used for the preparation of 3,5-disubstituted benzoic
acids and acid derivatives as inhibitor scaffolds against the SBL OXA-48 (chapter 4).

e Carbonylative Suzuki-Miyaura coupling: used for the preparation of 2-aroylbenzoic acids

and acid derivatives as inhibitor scaffolds against the MBL VIM-2 (chapter 5 & 6).
e Reaction for the preparation of 2-aroylbenzoic acids derivative (chapter 5 & 6).

e Aminocarbonylation & Alkoxycarbonylation: used for the preparation of primary and
secondary amides and carboxylic esters as inhibitor scaffolds against MBL VIM-2 (chapter
5&6).

e The aforementioned reactions have been used as reaction models to test a new series of
sustainable solvents aiming to find optimized conditions for the preparation of inhibitor

scaffolds against MBL VIM-2 (chapter 6).

3.1 Palladium catalyzed C-C couplings - Suzuki-Miyaura
reaction (SMC)

Palladium catalyzed couplings are a powerful tool for advanced chemical synthesis of C-C
bonds for both academic and industrial applications. Negishi, Heck and Suzuki-Miyaura
couplings are examples of the most commonly used palladium catalyzed reactions.!”® However,
Suzuki-Miyaura coupling is extensively studied. The used boronic acids are generally nontoxic
and thermally and moisture stable, which is an advantage over other cross-coupling reactions
that include toxic additives and metals. Negishi couplings require the use of air and moisture
sensitive organozinc compounds as the nucleophile, which makes the reaction relatively
intolerant to functional groups in comparison to the Suzuki-Miyaura coupling.!%®!1%° The main
disadvantage of Stille couplings is that they require the use of toxic organotin compound

(Scheme 1).108.110
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Scheme 1. Common palladium catalyzed cross-coupling reactions.

General mechanism of palladium catalyzed C-C cross-couplings

Palladium activation of Ar-X is commonly used for selective and specific formation of new C-
C bonds in Suzuki-Miyaura coupling by coupling with the corresponding nucleophile. The
reaction mechanism is similar to most of the cross-coupling reactions. The main difference is
the choice of the transition metal. Considering the Suzuki-Miyaura coupling as an example of
general palladium cross-coupling, the reaction mechanism proceeds via a three steps catalytic
cycle (Scheme 2). The first step is oxidative addition of the organohalide to the active Pd°
species forms complex A (X-LnPd"-Ar). Electron-rich ligands are favored, as it gives an
electron-rich metal center that facilitates the oxidative addition. The reactivity of organohalides/
pseudo-halides in C-C couplings varies with respect to the bond dissociation energy of the R-
X (I> OTf> Br >CIl > OTs > OAc). The second step in the catalytic cycle is transmetalation
with the nucleophile in presence of a base to from complex B. Different nucleophiles can be
introduced in this step based on the type of couplings e.g; boronic acids and derivatives,
organozinc or -tin reagents, etc. After the two organic groups are coordinated to the Pd"

complex, they undergo trans-cis isomerization to form the correct geometry needed for the
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reductive elimination. This could be assisted by bulky ligands to furnish the coupled product C

and to restore again the active Pd’.

X—R
LnPdO
Oxidative addition
R2
R” ‘R
c Ln-Pd'"’
1
. o A X
Reductive elimination
R2B(OH),
R
Ln—Pd" Transmetallation

|

R? XB(OH),

B

Scheme 2. General reaction mechanism for the Suzuki cross-coupling reaction.

The impact of the reaction components on the reaction rate

The nature of the coupling partners has a significant influence on the reactivity. It is known that
palladium cross-coupling reactions can be selective in favor of less sterically hindered and
electronically more deficient position of the electrophile (Ar-X).!''"!13 Aryl iodides are more
active in oxidative addition to Pd® center than their corresponding bromides and chlorides.
Oxidative addition of iodobenzene with Pd(PPhs)s could occur at room temperature while
heating is required for bromobenzene to undergo oxidative addition. This is the reason for using
additives such as Nal in reactions including aryl bromides to facilitate oxidative addition step
by forming in situ aryl iodides. Electron-rich and bulky ligands such as P(#-Bu);, Buchwald
phosphine-based ligands, carbene ligands are used for couplings of less reactive aryl bromides
and chlorides.'?%121:116 For instance, coupling of 2,6-di-substituted aryl halides and aryl boronic

acid was obtained in 91% yield using Pd»(dba); and a Buchwald ligand X-Phos'?? (Scheme 3).

Me Me Pdy(dba)s (2 mol%) M
X-Phos (8 mol%)
K3PO,
Me Br + (HO),B
Toluene Me
1 Me 2 Mé 110 °C Me 3 Me

91%

Scheme 3. Suzuki couplings of hindered electron-poor aryl bromides.
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The difference in reactivity for example in di-haloaryls can be advantageous as it can lead to
chemo- or regioselectivity in cross-coupling reactions. There is also reactivity difference
between transmetalating agents. For example, electron deficient boronic acids or protected

boronic acids are less reactive than electron rich unprotected boronic acids.

Chemo- and regio-selectivity in Suzuki-Miyaura coupling

Over the last decades many catalysts and ligands have been designed and tested in several
palladium catalyzed cross-couplings. The achievements in this area are related to the design
and development of ligands that not only promote the catalytic transformation but also provide

both regio-, chemo- and enantioselective control over the reaction.!'!*

Regioselectivity of substrates where two of the same halo group are present for coupling
can be achieved by catalyst control.''”>!'® Houpis and coworkers reported the regioselective
coupling reaction of 2,4-dibromobenzoic acid with 4-tolylboronic acid, where the reaction gave
excellent regioselective coupling at the ortho position in 80% yield when using Pdx(dba)s;. On
the other hand, using the bulky bidentate DPEPhos as a ligand together with Pd(OAc) reversed
the selectivity and the 4-tolyl-2-bromobenzoic acid was formed in 68% yield (Scheme 4).!"°

CO,H
CO,H B(OH), Catalyst (0.5-1 mol%) COxH Q Br
Br LiOH (2.2 equiv )
* NMP/H,0 O * O
65 °C, 24h

Br Br
4 5 6 7

catalyst = Pd,(dba); 80%, 6:7=99:1

catalyst = Pd(OAc),, DPEPhos 68%, 6:7= 8:92

Scheme 4. Regioselective Suzuki-Miyaura coupling reaction of 2,4-dibromobenzoic acid with 4-toly-boronic acid.

An example showing the chemoselectivity is the reaction of 4-chlorophenyl triflate with 2-
methylphenyl boronic acid using two different Pd catalysts, while using the same ligand.
Pd(OAc)2 and PCys gave selective coupling at the triflate position and the product was obtained
in 87% yield, while using Pd>(dba); and PCys gave the selective coupling on the chloride

position instead and the product was obtained in 95% yield (Scheme 5).!1°
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Me Me
Pd(OAc), (3 mol%) Me Pd,(dba)s (1.5 mol%)
PCysz (6 mol%) Cl B(OH), PCy; (6 mol%)
O KF ( 3 equiv) /©/ KF (3 equiv) O
+
THF, rit TfO THF, rt
cl ' ’ TfO
8 87% 9 10 95% 1

Scheme 5. Chemoselective cross-coupling of 4-chlorophenyl triflate with 2-methylphenyl boronic acid.

Selective Suzuki-Miyaura coupling on di-haloaryls are also considered challenging due to the
high chances of obtaining mixtures of different coupling products in symmetrical or
unsymmetrical fashion that might be hard to separate. The key in this process is tuning the
reaction condition to allow the coupling of only one of the two halogens and result in
monosubstituted product without affecting the other possible coupling position. For instance,
using less equivalency of the boronic acid, low temperature, less catalyst loading or by changing

the nature of the solvent.

Langer et al. reported chemo and site selective Suzuki-Miyaura coupling on 4-bromo-
2,3,5-trichloro-6-iodopyridine.'!'? Selective coupling on the active C-I on the 6-position
occurred using only 1.5 equivalents of the boronic acid, K3PO4 (1.5 equiv.) and Pd(PPhs)s in a
solvent mixture of toluene, ethanol and water (6:1:1) (Scheme 6). Although a slight drop in
yield in case of electron-poor arylborinc acid, the reaction still showed high degree of
chemoselectivity at position 6. It was also shown that switching the catalyst system to a more
reactive catalyst Pd(OAc), and PCys gave 4,6-biarylated compounds as the main product where
the chemoselectivity on iodide was lost and the reaction occurred on both C-I and C-Br.
Furthermore, increasing the amount of the base and boronic acid in addition to using more
active catalyst (Pd/PCys3) allows the chemoselective diarylation of pyridine on both C-I and C-
Br. Although the less active C-Cl stayed unreacted under these conditions, traces of triarylated
pyridine was observed. This indicated that increasing the amount of the boronic acid and the
base could lead to highly arylated pyridine. Tuning the reaction conditions could allow for high
degree of selectivity, which makes it a very useful tool for the synthesis of unsymmetrically

arylated pyridines.
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ArB(OH), (2.1 equiv) Br

Pd(OAC), (5 mol%) ArB(OH), (1.5 equiv)
PCys (10 mol%)  Cl xS Pd(PPh3), (5 mol%)
K3POy4 (2.1 equiv) | K3PO4 (1.5 equiv)
P —=
toluene:nBuOH:H,O . 177 N (o] toluene:EtOH:H,0
(6:1:1), 100 °C, 19h ~-~ (6:1:1), 100 °C, 22h
35-81% 12 60-86%

Scheme 6. Chemoselective SMC on 4-Bromo-2, 3, 5-trichloro-6-iodopyridine.

In some cases, the choice of the solvent can strongly influence the chemoselectivity of the
reaction. This is illustrated by the selectivity of Suzuki-Miyaura coupling on chloroaryl triflate
with o-tolylboronic acid (Scheme 7). The reaction using Pd>(dba)s and P(zert-Bu)s, as catalytic
system showed reactivity towards the chloride (95%) when using non-polar solvents such as
toluene. In case of polar solvents such as MeCN and DMF the reactivity was opposite and the
coupling occurred on the triflate (C-OTY) instead (74%).!2%11¢ This observation is explained by
the hypothesis that polar solvents stabilizes the charged palladium species. A follow up study
by Sharon et al. demonstrated that the SMC selectivity on the triflates using Pd/P(#-Bu)s; does
not generally follow the claimed trend using polar solvents.!?* Selectivity on C-OTf is only
limited to few coordinating solvents such as NMP, DMF, MeCN, DMSO. On the other hand,
reactivity on the C-Cl was observed with other polar solvents (H.O, MeOH, ‘PrOH, etc.) as
with non-polar (toluene, dioxane, etc.) solvents. This observation is related to solvent role
where it does not only dissolve the reaction component into a homogenous mixture but also

influences the reaction kinetics by stabilizing charged intermediates in the catalytic cycle.

H,O, ROH, MeCN, PhCN,
MeNO,, PC DMF, DMSO
Pdy(dba)z Pd,(dba)s
PtBU3 PtBU3
/@/OTf o-tolB(OH), /©/0Tf o-tolB(OH), /©/Ar
- —_—
THF MeCN
Ar KF, rt cl Khrt  ©
17 95% 15 74% 16

Scheme 7. Solvent effect on the chemoselectivity of arylchloride triflate.

3.2 Palladium catalyzed carbonylative transformation of aryl
halides

Palladium carbonylative couplings covers many closely related reactions that incorporate CO
into a substrate by adding it into an aryl-, benzyl- or vinylpalladium complex in the presence of
various nucleophiles.!'? It is a very important tool for a wide range of synthetic transformations

that allows direct formation of biaryl and hetero-aryl ketones, benzylic aldehydes, benzoic acid
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and acid derivatives, amides, etc (Scheme 8).!2¢ Based on the type of the nucleophile, the
transition metal catalyzed carbonylation can be carbonylative Suzuki-Miyaura cross-coupling,
aminocarbonylation and alkoxycarbonylation (Scheme 8. A, B, C respectively). The reaction
can occur intermolecularly and/or intramolecularly, which allows a wide application of the
reaction. Intramolecular carbonylation enables the synthesis of heterocyles for instance, alkoxy-

or aminocarbonylation of hydroxy or amino-substituted aryl/vinyl halides enables the synthesis

of lactones, lactams, oxazoles, thiazoles, imidazoles, and other heterocycles.!?7:128:125
0
7
P P
----------------- R '
) \ A O :
B o X=1, Br : :
Y MRl T A
L AS | He &7 RNF
R < O b e -
| X=1,Br, N;OAc ! 4, & ! X=1,Br, Cl, OTf '
0 0
X
NH X ArCCH
NN T8 | + CO+Pd —— || N
S F R/ Z / ¥Z Ar
R
X= 1, Br, Cl, OTf, 0SO,C4Fg X= 1, Br, Cl, OTf, N;OAc, CH,
>
c T o T ' SIM93
| AN O/R1 i SIM6‘3
NG E / %
' R !
! X=1,Br,Cl,OTf ! | A x-| Br, Cl, OT, B(OH),
S
R
X=1, Br, Cl

Scheme 8. Examples of palladium catalyzed carbonylation reactions. %%

Palladium catalyzed carbonylation reaction (Scheme 9. cycle B) is mechanistically similar to
the non-carbonylative one (Scheme 9. cycle A) as it consists of the same basic steps; oxidative
addition, transmetalation, and reductive amination. It consists of an extra step, which is the
coordination and the insertion of the CO after the oxidative addition forming the acylpalladium
intermediate (Scheme 9, complex 2). In general, the aromatic halides (ArX) react with an
appropriate nucleophile in the presence of catalytic amounts of a palladium complex in carbon
monoxide atmosphere, where the leaving group X (e.g. I, Br, Cl, OTT, etc.) is replaced by the
nucleophile with incorporation of the CO molecule(s) (Scheme 9, cycle B).'?® The reaction
often take place at 60-140 °C under 5-60 bar of CO, and may also require a stoichiometric

amount of base to regenerate the catalyst.!?>
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Several factors make it challenging to find suitable catalytic systems and reaction conditions
for carbonylative couplings. For instance, in carbonylative Suzuki-Miyaura coupling, it is very
challenging to find a catalytic system and reaction condition to favor the carbonylative reaction
over the competing non carbonylative reaction. The oxidative addition can favor electron-rich
metal center in carbonylative coupling reactions.!3%!2¢ However, the CO insertion favors an
electron-deficient metal center.!?® On the other hand, reductive elimination can be assisted with
bulky ligands, while CO insertion requires less bulky ligands. In addition, elevated
temperatures could be advantageous in favor of oxidative addition, while it could lead to
decarbonylation of the acylpalladium after CO insertion.!?%13%-132 Therefore, the success of the
optimal catalyst/ligands depends most likely on the individual substrates, CO pressure and

reaction conditions.

Ar-R

0
1
Ln—Pd”'C\Ar Reductive elimination
g Reductive elimination LnPd®
Baseltl X 3 X — Ar

Oxidative addition

Transmetallation Ar
B Ar A Ln-Pd"
Ln-Pd" 1
R-M X R
+ Base 0] 1
i
C

Transmetallation
CO insertion

M = BR?, SiR2;, SnRZ;, ZnX
co R-M BaseH X~

+ Base

Scheme 9. General mechanism of non-carbonylative cross-coupling (A) versus carbonylative cross-coupling (B).

The product of the carbonylation reaction is dependent on the rate of the CO insertion, which
should be faster than other processes like transmetalation in order to obtain the carbonylated
product (Ar-CO-Nu) rather than the non-carbonylated by product (Ar-Nu).'*3 This could be
achieved by altering the other reagents by carefully choosing their functionalities or
concentration by slow addition.!** On the other hand, using CO in high pressure might increase
the CO insertion rate and thus favor the carbonylative product rather than other by-products

such as the non-carbonylative product.!** However, if CO gas is used in excess hoping to
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overcome these problems the result might be opposite to the intended one as the palladium
atoms could cluster and agglomerate forming the nonactive palladium black.!** The Pd°
reactivity towards oxidative addition could be negatively influenced by the strong binding
ability of the CO. This is because CO is a good m-acceptor and would receive electrons from

the metal center to form a m-back bond.!3°

All these factors could interrupt the catalytic transformation in one way or another. However,
a possibility to overcome this problem is to use electron-rich ligands. Generally, ligands with
strong ¢ donor ability might prevent the direct coordination between Pd® and the CO.!3° Wide
range of powerful ligands have been developed to accelerate many of the carbonylative
reactions.!3>13¢137 The achievement in this area did not only include the most studied phosphine
ligands (monodentate and bidentate) but also included NHC and other nitrogen and thiourea

ligands (Figure 11).130:136.138

Pr Pr MeO OMe 0
P P
O O Ph” “Ph Ph” “Ph

(PPhj) XPhos ipr SPhos Xantphos
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Figure 11. Selected examples of Pd complexes and commonly used ligands.
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Use of CO gas and potential CO sources

The installation of the carbonyl group can be achieved by using CO gas. Despite the hazard
related to the handling of the toxic, corrosive, and high flammable CO gas, it is widely used as
an available and important C1 building block.!? Synthetic transformations using gaseous
reagents as CO are commonly performed in autoclaves under high pressure or under
atmospheric pressure using a balloon. Safety equipment is necessary to reduce safety concerns
when handling CO. However, it is commonly used in research and industrial process due to its

availability and low cost.

Alternatively, safer sources of CO including transition metal carbonyl complexes (e.g. Cr(CO)gs,
W(CO)e, Co2(CO)s, Mo(CO)6)!3, carbamoylsilane!*°, oxalyl chloride'*!, formats'#?, aldehydes
in addition to in situ decarbonylation protocols have been developed.!**:!* The use of these
carbonyl complexes introduces potential byproducts from the CO surrogate, which interrupt or
get mixed with the desired product and complicate workup and isolation.'*> Moreover, they

could potentially inhibit the possibility of developing novel carbonylative transformations.

Skrydstrup and coworkers have developed a two-chamber system setup for in situ generation
of CO from stable solid CO precursors, 9- methylfluorene-9-carbonyl chloride (COgen), which
releases CO once activated by Pd catalyst or methyldiphenylsilacarboxylic acid (SilaCOgen),
which is activated by adding fluoride (Figure 12).!46 The carbonylation reaction takes place in
one chamber, while the other chamber is used for the CO release. CO releases upon treating the
stable acid chloride (COgen) with tri-fert-butylphosphine ligated Pd catalyst and amine base in
an aprotic solvent. The CO gas release is proven to be almost quantitative as illustrated

throughout the wide synthetic applications using COgen as the carbonylating agent.!4¢

1. MeMgl 1 mBuli, 78 oC ! c 0
2. AcOH, reflux ' ; Pd(dbaj, (5 mol’%)

0.0 3. PdIC, H2 O. > (COC|)2 DMF | . | DIPEA 1.5 aquiv)
dioxane, 80 °C

67% 91°/

COgen

. 0 s T
Ph 1. Li : H ) ,
I .78 0 M v KF (1.1 equiv) ’

Ph—SIi—Me 2.COp, -78°C - F’::SiJJ\OH ' ' quantitative -

' | T )
Cl : Ph : co
23 : 7%

SilaCOgen

..................

Figure 12. Synthesis and decarbonylation of COgen, SilaCOgen and COware.4®
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Despite COgen being an expensive source of CO and requiring the use of two chamber systems,
it gives access to stoichiometric amounts of CO for many low pressure carbonylation reactions
in a safer fashion than other CO sources. In addition, being a stable solid makes it convenient
to handle in the lab. Releasing the CO in another chamber than the carbonylation reaction
chamber prevents problems such as formation of undesired by-product, separation problems
etc. Moreover, this method allows introducing isotopically labelled CO by using labelled
COgen, 146-148

3.2.1 Carbonylative Suzuki-Miyaura coupling

The carbonylative version of the SMC reaction has been investigated using different Pd-based
complexes/catalysts and reaction conditions. However, most of the literature on this particular
cross-coupling requires high CO pressure protocols except few reports applying carbonylation

at atmospheric pressure,!2%-14%:132

Pd (mol%) O
Ligand (mol%)

X BYn base
+ co
1 1

R
18 19 80-150 °C, 8-24h 20

BY, = B(OH), B(OH)3Na, DABO boronate,...
X =1, Br, Cl, OTf, OTs,..

Scheme 10. General presentation of Suzuki-Miyaura coupling.
The common problem with this reaction lies in the formation of biaryl products, which results
from the competing direct SMC coupling without carbon monoxide insertion. Nevertheless, the
reaction conditions including nature of the palladium catalyst precursor, ligand, base, additive
as well as the nature of the substrates (aryl halide and boronic acid), influence the ratio of ketone

to direct coupling product.

Suzuki and coworkers described the palladium carbonylative SMC where they synthesized a
variety of diaryl ketones from aryl iodides and boronic acids in high yields using PdCl>(PPhs)>
and K»>CO; as a base in anisole (Scheme 11).12° The choice of both base and solvent played an
important role to obtain the desired ketone with minimum formation of biaryls as by-product.
A range of bases; KoCO3, Cs2CO3, TICOs3, K3sPO4 were tested in anisole to test reaction
selectivity towards carbonylative coupling reaction versus non carbonylative one. ThCO3 gave

the lowest selectivity towards the carbonylated product and resulted in 38% biaryl ketone and
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24% biaryl by-product. On the other hand, K»COs3 in anisole was very efficient to yield the
desired biaryl ketone in 84% yield, while it gave only 11% of the biaryl by-product.

(6]
PdCly(PPhs), (3 mol%)
I B(OH)2 K,CO3(10 mol%)
. CO (1 bar)
R R2 anisole R R
63-89%

Scheme 11. Carbonylative Suzuki-Miyaura coupling of aryl iodides and boronic acids.

Skrydstrup coworkers tested several carbonylative Suzuki-Miyaura coupling of 1-(4-
iodophenyl)ethan-1-on with phenylboronic acid using low CO pressure and a range of Pd
sources resulted in different ratios between biaryl ketone and biaryl (Table 4, 23, 24,
respectively).!*® The phosphine based Pd(dba), and PdCl> were shown to be favoring the
carbonylative coupling over the direct coupling (Table 4, entry 2, 4 respectively). It is
noteworthy that increasing the catalyst loading to more than 1% increased the chance of
obtaining the undesired biaryl product. The best selectivity towards the desired biaryl ketone
was obtained using ligand free system based on PdCl, and K>CO3 in anisole under CO (1 atm).

A range of substituted biaryl ketones was obtained in moderate to high yield (50-93%).

Table 4. Selected examples of different palladium sources used in carbonylative SMC.

Pd (x mol%) o
base ( 3 equiv)
! B(OH), K2COs O
SO E L 0 O

anisole

o 2 22 80°C 0 23 o 24
Entry Pd cat (mol %) Ratio
23:24

1 Pd(OAc), 1 mol% 69:31

2 Pd(dba), 1 mol% 71:29

3 Pd(TFA)2 1mol% 58:42

4 PdCl; 1mol% 95:5

Bhanage and coworkers reported Pd(tmhd). as a catalyst for carbonylative Suzuki-Miyaura
coupling of aryl iodides with arylboronic acids in anisole under 8 bars of CO. Although the

reaction gave access to a range of biaryl and heteroaryl ketones in moderate to high yields it
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still lacks wider scope with respect to ortho substituted aryls and electron-withdrawing groups

in addition to the required high pressure.'>°

The use of carbene ligands and thiourea based ligands has drawn a keen interest in
carbonylative Suzuki-Miyaura coupling especially with sterically hindered substrates.!>! Keffe
et al. reported the use of NHC palladium complex PEPPSI-iPr in the synthesis of sterically
hindered biaryl ketones in moderate to high yields (Scheme 12).!32

R2 R2 (o]
I N B(OH),  PEPPSI-iPr (3 mol%)
N + | Cs,CO3, chlorobenzene | A | N
[ Z <= LN NS
RS R R* CO (1 bar), 80 °C R3 R R*
25 26 27
33-98%

Scheme 12. Suzuki-Miyaura coupling of ortho-disubstituted aryl iodide with NHC catalyst.

Despite the achievements in this area, coupling of aryl bromides are still challenging especially
in case of ortho substituted aryl bromides, which is noticeable in many of the published reports.
Only few methods were successful for carbonylative coupling of aryl bromides and

chlorides.!?%133

The carbonylative Suzuki-Miyaura coupling of aryl bromides and chlorides
typically requires harsh conditions such as high temperature, high CO pressure and longer
reaction time in comparison to their corresponding aryl iodides. Additives such as Nal, KI
would enhance the reaction rate as it might involve in situ generation of aryl iodides and thus

faster oxidative addition.!%

Coupling of aryl bromides with aryl trihydroxyborates or DABO boronate using
Pd(acac); and the phosphine ligand catacxium A.HI as a ligand in toluene under CO (1 atm)
gave access to a range of substituted biaryl ketones in moderate to high yields (Scheme 13).15
Unfortunately, these conditions also showed several limiting factors, as they gave poor yields
with electron-withdrawing groups and they did not support ortho substituted aryls as they have
low conversion. In addition, an additional step is required for the preparation of the boronic

acid derivatives.!>?

(@)
Br BX Pd(acac), (5 mol%)
n CataCXium A.HI (10 mol%)
" COgen (2.5 equiv)
R 08 R? 29 toluene R 30 R2
°C, 16h
80°C, 16 29-95%

BX,, = B(OH)3Na or DABO boronate

Scheme 13. Suzuki-Miyaura coupling of aryl bromides with organoboran using CataCXium A.HI.
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Another catalytic system was reported by Beller and coworkers using CataCXium A as a ligand
together with Pd(Il)acetate to access a wide range of biaryl and heteroaryl ketones. Although
the reaction showed good tolerance of both electron-rich and electron-deficient aryl halides and
boronic acids, it required high CO pressure in case of aryl bromides with electron-withdrawing

groups (2.5-5 bar).!>?

3.2.2 Aminocarbonylation

Amides are considered to be one of the most important functional groups in chemistry, they are
essential in many biological process and chemicals required for sustaining life. Amides are
normally found in many natural products, linking amino acids in proteins such as enzymes, they
are also found in many medicinal and pharmaceutical products. Different synthetic approaches
towards amides require stoichiometric amounts of amide-coupling reagents, which make it an
expensive and wasteful procedures. On the other hand, palladium-catalyzed

aminocarbonylation of aryl or heteroaryl halides give a direct access to the corresponding

Carboxamides 137,139,157-159
Pd catalyst
base 0
CO
X R
}‘ﬁ/ + NHRR’ "‘ﬁ)k N
R
X=1, Br, Cl, OTf
R,R'=H, C

Scheme 14. General aminocarbonylation reaction.

The use of primary or secondary amines as the nucleophile under catalytic conditions will
provide the desired amide following a similar catalytic cycle as the carbonylative cross-
couplings with differences in the last steps. One possibility for the amine (nucleophile) to
approach the catalytic cycle is that it could coordinate to the palladium followed be reductive
elimination to obtain the amide. Another possibility, which is believed to be the dominant route,

is nucleophilic attack on the acylpalladium carbonyl.!

Since common catalytic systems for aminocarbonylation showed good tolerance to a
wide range of functional groups, it is considered to be a versatile method in organic synthesis
to access amides with a variety of N-substituents. It has been applied for the synthesis of
molecules of medicinal interest such as lotrafiban, itopride, bromopride and butoxycaine.!61-164

For example, the key step in the synthesis of lotrafiban is the aminocarbonylation step of the
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aryl iodide and the amine using PdCl>(PPhs), in anisole for 2.5 h under 1 atm of CO pressure

to furnish the desired amide (Scheme 15).!¢!

PACI,(PPhs), (2 mol%)

| / NH  dicyclohexylamine (2.5 equw)
N CO (1atm) ):
+ |
N—, NI anisole, 100 °C
H %

2.5h MeOZC
MeO,C
31 32
Lotrafiban

Scheme 15. Aminocarbonyation towards synthesis of lotrafiban.

Moreover, aminocarbonylation can be used for the synthesis of ferrocene based chiral ligands
that are used in asymmetric catalysis.!®> For instance, the synthesis of asymmetrically
disubstituted ferrocenbiscarboxamide (Scheme 16) was obtained via aminocarbonylation
between symmetrical ferrocenyl di-iodide with morpholine and diethylamine under high CO

pressure (40 atm) yielding the desired asymmetric ligand in 85%.!6

Pd(OAc), (10 mol%),
PPh3 (20 mol%),

H Et3N (7 equiv),
@\| [Nj ENH co (39.5 atm) @F_C%NHZ @CONE&
+ 2

+ F

F * (2_( CONE
| - 2
@ e} toluene, 100 °C N @
8h \/
34 35 36 ( 37
85% o 9%

Scheme 16. Aminocarbonylation for the synthesis of asymmetrically disubstituted ferrocenebiscarboxamide.

Weinreb amides are also accessible via aminocarbonylation under mild conditions. Buchwald
and coworkers reported the synthesis of Weinreb amides from a wide range of electron-rich
and electron-deficient aryl and alkenyl halides using Pd(OAc) and Xantphos under 1 atm CO

pressure to furnish the desired amide in moderate to excellent yields (Scheme 17).167

Pd (OAc), (2-3 mol%) 0
Xantphos (2-6 mol%) oM
Br base ( 3 equiv) N .OMe
| ~ _OMe CO (1 atm) | ITI
s+ HCIHN > Me
R Me toluene, 80-120 °C, R
(5-22h), 65-97%
38 39 40

Scheme 17. Synthesis of weinreb amides via aminocarbonylation.
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3.2.3 Alkoxycarbonylation

Alkoxycarbonylation is an important method for the synthesis of esters. Different alkyl and aryl
halides were converted into their corresponding carboxylic esters in presence of transition metal
complexes and the corresponding alcohol under CO pressure (Scheme 18). Installing the
carboxylic acid/ester into aryl/alkyl halides is a very attractive tool for late stage

functionalization and C-C bond formation.

Catalyst 0]
X base OR
CcO
+ ROY

Y=H, Na, K, ...
Scheme 18. General transformation of aryl or vinyl halide into their corresponding esters via alkoxycarbonylation.
Alkoxycarbonyltion follows a similar mechanism as aminocarbonylation where the nucleophile
is the alcohol or metal alkoxides instead of the amine to form esters. Alkoxycarbonylation e.g.
methoxycarbonylation are widely described including both inter- and intramolecular
reactions, 168169134170 Intramolecular alkoxycarbonylation of pendant alcohol leads to the

formation of five, six, and seven membered ring lactones.!”>

Buchwald and coworkers reported methoxycarbonylation of a range of aryl bromides
under low CO pressure (1 atm) using 2 mol% Pd(OAc)2, 4 mol% Xantphos and 10 equiv MeOH
at 70 °C for 24 h. The reaction gave access to a range of methyl esters with various function
groups such as aryl nitriles, fluorides, ethyl ether, fert-butyl carbamate, in high yields (80-91%).

However, scope limitations were described due to low reaction temperature.!’

A variety of methods for the transition metal catalyzed alkoxycarbonyltion of aryl
halides, tosylates and triflates has been described.!””"!72 Lou et al. reported the synthesis of N-
hydroxysuccinimido esters from aryl iodide or triflates using Pd(OAc), and Xantphos in DMSO
under 1 atm CO (Scheme 19).!”7 In addition, Angelina et al. reported also the synthesis of N-
hydroxysuccinimido esters together with active esters from pentafluorophenol,
hexafluoroisopropyl alcohol, p-nitrophenol and N-hydroxyphthalimide from aryl bromide in
excellent yields (59-99%) using 3 mol% (Pd(cinnamyl)Cl), , HBF4P(tert-Bu)z (6 mol%) and
Cy2NMe (1.5 equiv) in toluene at 95 °C for 16 h.!17
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Pd(OAc), (2.5 mol%) 0

OH Xanphos (5 mol%) o)
X O / Et3N ( 2 equiv) N
X N CO (1atm) X o~
| * 0 |

o
R/ Z DMSO, 70 °C R
41 42 43
61- 94%
X= 1, OTf

Scheme 19. Synthesis of N-hydroxysuccinimido esters via alkoxycarbonylation.

Palladium catalyzed alkoxycarbonylation has been performed with the inactivate alkyl halides
such as inactivated secondary alkyl bromides and alkyl chlorides, which are challenging
substrates that require harsh conditions, high CO pressure in comparison to more active alkyl
iodide. Alexanian and coworkers, reported esterification of less active alkyl bromides to the
corresponding tert-butyl ester version using Pd(PPh3)Cl; and IMes as a ligand under CO
pressure of only 2 atm at 50 °C in DMSO, which are milder conditions for this type of reactions
(Scheme 20). The reaction was tolerant to a variety of function groups such as silyl protecting
group, esters, five and six membered carbocycles and heterocycles and gave good results with
alkyl possessing both electron-deficient and electron-withdrawing group with yield range of
50-87 %. Using carbene ligand (IMes) in this case shown to facilitate the reaction in
combination with Pd(PPh3)Cl,. Being able to perform this reaction on the stable alkyl bromide

makes it useful as late stage C-C bond formation.!'”

Pd(PPh3),Cly (5 mol%)
IMes (10 mol%)
R Cs,CO3 (2 equiv) 0

1
7/ Br CO (2 atm) R%
R2 heptane : n-BuOH 1:1 e OBu
0,
as 50 °C, 24h 45
50- 87%

Scheme 20. tert-Butyl ester from deactivated alkylbromides.

Alkoxycarbonylation can be also done using metal alkoxide (e.g. EtONa, fert-BuONa, etc)
instead of the direct use of the corresponding alcohol. This approach ensures presence of the
nucleophile in the reaction medium and prevent volatile alcohols (e.g. MeOH, EtOH, etc) from
escaping the reaction mixture.!”!!7® Skrydstrup and coworkers reported alkoxycarbonylation of
aryl bromides into their fert-butyl ester using Pd(dba), and DiPrPF under 1 atm of CO pressure
in THF (Scheme 21). The reaction showed great results with more bulky tertiary alcohols such
as the sodium adamantoloxide and sodium 9-methyl-9-fluorenoxide, which indicates bulky

nucleophiles are more favorable for efficient reductive elimination. While on the other hand
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less bulky alcohols such as sodium methoxide were not successfully used as nucleophiles in

this reaction.!”!

Pd(dba), (5 mol%) O
X D'PrPF (6 mol%)
A X OR
@ + NaOR CO ( 1atm) |
R THF, 70 °C LA
46 16-20h R a7
44-90%

Scheme 21. Alkoxycarbonylation of aryl bromide using bulky sodium alkoxides.

3.3 Reactions for the preparation of 2-aroylbenzoic acid
derivatives

2-Aroylbenzoic acids and derivatives have gained noticeable interest as synthetic intermediates
for accessing bioactive compounds. and they were the aim of the work presented in paper II
Only few reported methods towards formation of 2-aroylbenzoic acids are found in literature,

comprising Friedel-Craft acylation,!>*

Pd-catalyzed ortho-C—H activation of aryl amides
followed by coupling with aryl aldehydes,'>> Pd-catalyzed ortho-C—H activation of benzoic
acids followed by decarboxylative coupling with a-oxocarboxylic acids.!*® The available
methods generally show limitation regarding regiocontrol and/or substrate scope especially

with regard to electron-deficient aryl groups.

Ge and coworkers reported the synthesis of a range of substituted 2-aroylbenzoic acids
in moderate yields through chemoselective decarboxylative cross-coupling of benzoic acids via
C-H bond functionalization with a-oxocarboxylic acid as the coupling partner. The reaction
required the use of harsh conditions including use of an excess of the oxidant (Ag>2CO3), high
catalyst loading (10 mol%), the elevated temperatures (120-150 °C) and extended reaction time
up to 48h (Scheme 22). Moreover, the substrate scope suffered from some limitations especially

with electron withdrawing groups that were not well tolerated under these conditions. !>

OH Pd(TFA), (10 mol%)
Ag,COj3 (3 equiv.)
/ ¥z

dioxane, 120-150 °C
24-48h

50-85%

Scheme 22. Chemoselective decarboxylation cross-coupling of benzoic acids via C-H bond functionalization.

Another method to access 2-aroylbenzoic acids via C-H activation directed by aryl amides that
would undergo ortho acylation followed by ring closing to form amide containing four-member

ring and then ring opening to give the ortho imino carboxylic acid (Scheme 23). The reaction
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then would be submitted to reflux in concentrated aqueous HCI in order to obtain the 2-
aroylbenzoic acids. The reaction had a limited substrate scope, where functional groups like

esters, nitriles, imines, etc. were not tolerant, due to the harsh acidic conditions required to

eventually obtain the ketone form of the imino-aryl.!>
o 1- Pd(OAc), (2 mol%) TBHP (5 equiv.) O
0 BF3.Et,0 (0.4 equiv),
_R! 4 JJ\ DMSO/dioxane (4:1), 130 °C A OH
A N |
| H R "H s = R3
2// H 2- HCl(aq). (10 equiv.), reflux, 6h R2
R® 51 52 53 O
50-80%

Scheme 23. C-H activation of aryl amides to form 2-aroylbenzoic acids.

3.4 Solvent effect and sustainability

The growing awareness of the impact of chemical process, e.g. solvent use on the environment
and their contribution to the climate change, has resulted in an increasing interest in both
research and industry in finding sustainable alternatives.!8! Sustainable alternatives are needed
for media to perform reactions as well as for work-up and purification, catalysts and energy
sources. Sustainability has been previously described as “resources including energy should be
used at a rate at which they can be replaced naturally and the generation of waste cannot be
faster than the rate of their remediation.” '8! This description coincides with the definition by
the world commission on environment and development stating that sustainability is
“development that meets the needs of the present without compromising the ability of future
generations to meet their own needs”.!¥! A noticeable success has been achieved in the synthesis
of new products since 1990s when the twelve principles of “green chemistry” were
formulated.!82!83 These principles are considered to be the guidelines that chemists in both
academia and industry try to follow while carrying out chemical reaction in a sustainable
fashion. Despite the difficulties following all the twelve principle for preparative purposes,
chemists and industries have already made noticeable moves towards sustainability by

considering the key principle of green chemistry.

The solvent may perform a mechanical role in the mechanism, but sometimes it plays
also an essential role of bringing the immiscible reactants together rapidly so that the reaction
could occur. In addition to dissolving reactants, the solvent can participate in several ways to

the reaction itself. The choice of the solvent could influence reactivity, introduce selectivity,
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and produce different products.!”-1¥ It might interact with the reactants individually or get

involved in the transition state.!80:181

Many of the organic solvents that are commonly used in organic synthesis and post
reaction processes are with poisonous and carcinogenic nature such as halogenated
hydrocarbons (DCM, CHCIs, CCly, etc.). This type of solvents has created serious harm to the
environment and human health in general. However, two of the twelve principles of green
chemistry are based on usage of safer solvent and reaction conditions and to prevent waste. One
principle is “Safer Solvents and Auxiliaries” where the use of auxiliary substances such as
solvent and separation agents are not favorable and should be decreased. The other principle is
“use of renewable feedstock” where raw materials or feedstock are attractive renewable
alternatives and should be used whenever possible.'®? As a consequence, the direction of using
less amount of solvents and finding renewable and less toxic solvent alternatives has recently
gained a lot of attention in the area of green chemistry.!%3

One approach is to run reaction in neat conditions without the use of solvent.
Unfortunately, solvent free reactions are not necessarily solvent free as claimed. Even if the
reaction itself took place in a solvent free medium, it would still need an appreciable amount of
solvents for reaction adsorption, elution of products and pre or post handlings of the reaction
mixture. In addition, many extractions, purifications, and cleaning processes also depend on
solvents, with large excesses necessary to achieve sufficient product purity.!®! A brief survey
of academic researchers were conducted in 2010 by Jessop, where a question brought up
“...what class of solvent will be responsible for the greatest reduction in environmental
damage?”.!8% The answers to the raised question were in favor of CO; derived solvents, water
and careful selection of organic solvents. This turn our focus now towards CO> and biomass

derived solvents.

3.4.1 Biomass and CO: derived solvents and their application in Pd
catalyzed C-C couplings

Plant biomass (crops) such as corn, sugar cane, citrus, grasses and agricultural residues are all
considered to be the main feedstock for generating renewable fuels and solvents. Recently,
biomass derived solvents as well as chemicals derived from the reduction of CO> have been
increasingly tested as green medium replacing the common nonrenewable solvents utilized in

organic synthesis. The most studied solvents available from biomass are polar protic solvents;
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ethanol, glycerol and its derivatives, choline chloride based deep eutectic solvents, as polar
aprotic solvents; 2-methyltetrahydrofuran (2-MeTHF), cyrene (Cyr) and y-valerolactone
(GVL), as well as non-polar aprotic solvent; limonene (Lim) and p-cymene (Cym). In case of
CO»-derived chemicals, particular attention has been paid to the use of carbonates and ethers
like methylal (Figure 13). These solvents are shown to be suitable renewable solvent

alternatives for different chemical transformations in classical condensation reactions and

181,183,185,186

transition-metal catalyzed cross-couplings.

Feedstock Intermediate Monomer Solvent

p-Cymene

d-Limonene

a-Pinene

i

Vegetable oils Triglycerides — Glycerol

Corn Starch

e C6 Sugars
“

Cellulose ol S=8 Cyrene

—
biomass N

Hemicellulose C5 Sugars

Sugar cane Organic Acids

o O

Lignin Phenolics

Figure 13. A number of sustainable solvents derived from plant biomass, sugars and oils. lignocellulosic biomass.
Adapted with permission from Clarke et al (2018)."8"

2-MeTHF and GVL are both commercially available solvent obtained from furfural or levulinic
acid, which are produced from lignocellulosic biomass.'8!135 Great attention has been paid to
the use of these solvents as an alternative bio-based medium for several reactions including
cross-couplings. Solvents, such as THF, toluene and highly regulated chlorinated solvents
including dichloromethane and 1,2-dichloroethane can all theoretically be replaced by 2-
MeTHEF, due to its stability to acid and base in addition to its low miscibility with H2O. It can
also be used as a replacement of DCM in biphasic reactions and in work up process. 2-MeTHF
was used as a sustainable media for a variety of organometallic reactions such as Grignard

reactions, hydride reduction of carbonyl groups with LiAlH4, lithiation, cross-coupling
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reactions. 31187188 Few examples of SMC coupling in 2-MeTHF have been reported. Nickel-
catalyzed SMC coupling between arylboronic acids and aryl halides or phenol derivatives in 2-
MeTHF was successfully reported by Garg and coworkers.!? The reaction shown applicability
with a notable substrate scope of 30 coupled products in 33-100% yield using 1-10 mol% of
bis(tricyclohexylphosphine) Nickel(Il)dichloride NiCly(PCys),. The reaction is also
reproducible on 5-gram scale, coupling of 5-bromopyrimidine with 3-furanylboronic acid using
just 0.5 mol% of the nickel catalyst yielded the product in 97% yield (Scheme 24). Nickel
catalyzed amination of aromatic chlorides and O-sulfamates in 2-MeTHF was also reported by
the same group using NiClo(DME); as a pre-catalyst, the reaction showed general applicability

in terms of substrate scope as well.!®

NiClo(PCy3)s (0.5 mol%)
Br 2 3)2 (6]
N . 0 KsPO, B
L | / reflux, 12 h lk
N (HO)B 2-MeTHF N
54 55 56

97%
Scheme 24. Nickel catalyzed amination o f5-bromopyrimidine and 3-furanylboronic acid.
Recently, our group reported the activity of MeTHF and GVL among other solvents on Cu-
catalyzed carboxylation and decarboxylation reactions. Although 2-MeTHF was not universal
for all the tested carboxylation reactions, but it was the best alternative in most cases. Cu-
catalyzed carboxylation of organoboronates with both electron-rich and electron-poor
arylboronic acid pinacol esters showed best results over 16 examples where the yield was 68-
98%. In addition, 2-MeTHF has shown to be a good reaction medium for Cu-catalyzed and Cu-

free hydrocarboxylation of olefins (Scheme 25).!%°

2 2
1) (9-BBN), (0.7-1 equiv) R
R~ 2MeTHF, 70 °C, 24h R
CO,H
R1 2) Cul (5 mol%), IPrHCI (6 mol%) R1
57 NaOtBu (6 mol%), CsF (3 equiv) 58
CO,, 120 °C, 24h 22 example
48-98%

Scheme 25. Cu-Catalyzed and Cu-free hydrocarboxylation of olefins.

Similarly, GVL has lately drawn great attention to it as a green solvent. It has been frequently
used as a food additive and a flavoring agent. It has similar polarity as dipolar aprotic solvents
such as DMF and NMP. Therefore, it has been intensively studied on cross-coupling reactions
since they often rely on the use of dipolar aprotic media.!®® A couple of examples illustrated

the applicability of GVL as suitable bio-based medium for reactions involving C-H activation,
44



arylation and Hiayama couplings.!8” Mizoroki-Heck reaction between iodoarenes and styrenes
or acrylates using 0.1 mol% Pd/C in GVL gave the coupled product after 2.5h (Scheme 26).
The reaction showed general applicability through a substrate scope, over 20 examples in 80-

90% yields.'!

Pd/C (0.1 mol%)

| Et;N X R
©/ . g 150 °C, 1-2.5 h
R! R
60

59 GVL 61

1= 20 examples
R 1 Olle, COMe, NO 80-90% yields
R<= COZMG, COzEt, COzn-BU, COZH, ph, 4-C|-CGH4

2

Scheme 26. Mizoroki-Heck reaction catalysed by Pd/C in GVL.

Glycerol is one of the common green solvents that has shown great applicability in many types
of reactions such as; catalytic hydrogenation of various unsaturated organic compounds and
cross-coupling reactions. In addition, condensation reactions are also compatible in glycerol
due to its hydrogen bonding ability, which might stabilize transition states and intermediates.
For example, catalyst free (e.g. Lewis acid) condensation of phenylenediamine and
acetophenone was performed in glycerol with high yield (Scheme 27. condition A).!%?
Condensation of phenylenediamine with benzaldehyde under solvent free conditions or reflux
in ethanol was not successful. However, replacing the solvent with glycerol yielded 91% of the

benzodiazepine, which support the advantage of using glycerol (Scheme 27. condition B).!?

N
glycerol, glycerol,
66 90 °C, air, 1h . 90 °C, air, 4h 65 O
condition B condition A
91% 97%

Scheme 27. Condensation of o-diaminobenzene in glycerol.

Organic carbonates are considered to be a promising renewable dipolar reaction media, due to
their biodegradability and low toxicity.!”>"1%¢ Cyclic carbonates such as propylene carbonate
(PC), ethylene carbonate (EC) are derived from CO; and bioethene, which make them of a high
potential as bio-based solvents.!”” A previous study showed the successful application of PC
and EC as the reaction solvent in the Mizoroki-Heck reaction between aryl iodides/bromides
and acrylate (Scheme 28). The results in terms of conversion were comparable or even better
to the same reaction performed in NMP as solvent or even better (80-100%). It is worth
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mentioning that bromobenzene showed no reactivity in NMP, while it gave up to 40%

conversion in case of EC of the desired product.!4°

Pd(OAc),
X (0] (0.3 mol%)
AN \)j\ Et;N
I AN
R— + OMe
= ECor, PC
67 68 100°C, 24 h

X=1,Br
R=H, 4-Cl, 3-NO,, 4-COCH3, 2-NO,, 4-CN

(0]

_O N"ome

69

9 examples
85-100% vyields

Scheme 28. Mizoroki-Heck cross-coupling reaction in ethylene carbonate or propylene carbonate.

Palladium catalyzed direct arylation of (hetero) aromatic derivatives has been carried out

successfully in dialkyl carbonate such as dimethoxycarbonate (DMC), diethoxycarbonate

(DEC). Direct arylation of benzoxazole with 4-bromoacetophenone using only 1 mol% of

PACI(C:Hs)(dppb) as the catalyst was reported to provide the coupling product in 85% isolated

yield (Scheme 29). The reaction performed in diethyl carbonate gave the best alternative

compared to common organic solvents such as DMF, DMAc, NMP or dioxane as it gave only

traces of unidentified side-products.'®’

N Br
@[ D . Q/ PACI(CsHs)(dppb) 1%
O oHc

0 Cs,CO3, 17 h, 130 °C
69 70

*5 % catalyst

O
N

71
solvent yield (%)
DEC 85%
PC 78%
DMF* 78%
DMAc 31%
NMP 51%
Dioxane 73%

Scheme 29. Coupling of benzoxazole with 4-bromoacetophenone.
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General discussion of results from the thesis

The numbering system applied in the discussion part is designed to be as follows:
Numbering of compounds introduced in papers is with the name Px-y, where x is the number
of the paper (I, 11, III) and y is the compound number used in the paper. Other compounds that

are not included in the papers are numbered chronologically.

4. Design, synthesis and evaluation of meta-substituted
benzoic acid derivatives as OXA-48 inhibitors (Paper

1)

4.1 Background for the work in paper |

The work presented in paper I is a continuation of previous research conducted by the group of
Prof. Leiros in collaboration with our group with focus on screening and development of
fragments of the carbapenemase OXA-48.!5 Previously, a library of 490 fragments was
screened to identify fragments that showed direct binding to the OXA-48 enzyme using SPR
as the primary assay. The identified fragments from the SPR were examined further in a
secondary biochemical screen via enzymatic assays in order to measure the binding efficiency

of the fragments. Enzyme : inhibitor crystal structures were obtained for 3 fragments.!>

The fragments shared the same core structure of a monosubstituted benzoic acid, and
thus, shared some similar interactions such as hydrophobic interactions with Ser70, Ser118,
Gly210, Tyr211. The carboxylate group showed an ionic interaction with Arg250 residue in the
binding site. The negatively charged carboxylate had a charge induced hydrogen bond with the
side-chain oxygen of Thr209. In addition, the n-system of the benzoic acid might allow for -

7 stacking depending on the fragment conformation.

The crystal structure identified two different binding conformations of fragment PI-1.
The first conformation (Figure 14, 1A) shows the fragment facing out of the active site and has
hydrophobic interactions with Trp105, Thr209, Gly210, Tyr211, and Leu247 — the fragment is
occupying the out-pocket (called R? side in Paper I). In the other conformation (Figure 14, 1B)

the fragment is embedded in the active site and has hydrophobic interactions with Vall20,
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Leul58, and Tyr211 — the fragment is occupying the inn-pocket (called R! side in Paper I). The

carboxylate group in both conformations forms ionic bonding with Arg250.

A, tOXA-48:1 B, tOXA-48:1A  ®W2

Leu2w §

N Aeg250
Fot

ow: Fragment 1

o IC50= 250 uM Trp10s
i Tyant
Leu24. T
Gy210f
Arg250 o Tp105
Q-\ C,tOXA-48:18 ditse
=, Vall;‘ R )
Thr209 N e §
Tyan ® w1 a2
\Vn

¢ mam

Figure 14. Crystal structures of OXA-48 (green) in complex with fragments (magenta). Two conformations are
shown for compound 1 in A-C. Adapted with permission from Lund et al. (2016)."5

As fragment PI-1 tends to bind in two different conformations, it was suggested that structurally
merging both conformations would lead to a better fragment with higher binding affinity
occupying both the inn- and out-pocket. The merging resulted in a more potent inhibitor-

fragment PI-2 - with better Kq of 50 uM and lower ICso of 18 uM (Figure 15).

N\ N“ Z N
~ I ~ ~ I
—
CO,H CO,H
PI-1 PI-2
(ICs0 250 uM) (ICs9 18 uM)

Figure 15. (A and B) Different conformations of fragment PI-1 (light grey) in complex with OXA-48 (dark grey
surface), (C) the merged compound PI-2 (pink) in complex with OXA-48 (dark grey surface) and (D) a schematic
view of the merging approach described in previous work.'®
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4.2 Research hypothesis of paper Il

Based on the findings described in the previous section, the fragment hit PI-1 was envisioned
as the starting point for a library of mono-substituted analogues of fragment PI-1 (Figure 16).
The goal was to find good fragments with affinity for either the inn- or the out-pocket (R! or
R? side) or both. The small size of the fragments makes them more flexible and efficient in
exploring the binding site, which would allow us to identify better fragments for each pocket
with a promising overlap. The best fragments that bind to each pocket would then be optimized
further using a merging approach, which would lead to the synthesis of di-substituted fragments

based on the suggestions from the overlay structures of the best identified fragments (Figure

16, PI-2).

Merged structures based on Fragment PI-1 Fragment PI-1 analogues
Fragment PI-2

Figure 16. Fragment development approach.
4.3 Evaluation of 3-substituted benzoic acid derivatives

In paper I, co-authors were able to synthesize a fragment library of 49 candidates of 3-aryl
benzoic acids and derivatives. The fragments were synthesized via SMC starting from 3-
carboxyphenylboronic acid pinacol ester or 3-bromobenzoic acid, resulting in a wide range of
3-substitutedaryl benzoic acids. The coupling partners included heterocycles and substituted
aryls with polar groups such as amides, phenols, sulphonic acid derivatives, esters and
tetrazoles. The benzoic acid moiety was left unaltered due to the main interaction of the
carboxylate group with the Arg250. Evaluation using a biochemical assay indicates that most
of the tested fragments show a similar inhibition level with ICso values ranging from 200 to
1000 uM and LE values ranging from 0.2 to 0.42 (-logi0oICso/heavy atom). All fragments share
common interactions such as the ionic bond between the carboxylate group and the Arg250.
Five fragments (Table 5, PI-4a, PI-21a, PI-26a, PI-26b, PI-35) show stronger inhibition with
LE values of 0.38, 0.33, 0.3, 0.3, 0.42 uM, respectively.
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Table 5. Selected best 6 fragments from the 49-fragment library.

9 ArB(OR), (1.5 equiv) 0 ArBr (1.5 equiv) 0
Br OH PdCIy(PPh3),(10 mol%)  ar PdCl,(PPh3),(10 mol%) (RO),B
K3PO, (3 equiv) OH KsPO, (3 equiv) OH
dioxane: water (1:1 ; . .
74 AN (1:1) 72 dloxaneéov%a(\;er (1:1) 73
Entry ID (Paperl) Ar ICso (uM) Kp(uM) LE Pocket

1 Pl-4a ©/\OH 50 175 0.38 R2
S

3 Pl-21a o 35 100 0.33 R’
AH 7
4 Pl-26a 60 70 0.3 R?
N’N&
N—NH

5 P1-26b N,N\ 36 70 0.3 R?
1
N~n /_\_/—\ %
H

6 PI-35 X 35 159 0.42  both

Out of the 49 synthesized fragments, 33 fragments were co-crystallized with the enzyme OXA-
48 and analyzed by X-ray crystallography in order to evaluate the binding poses of the
fragments. All fragments formed an ionic bond between the carboxylate group and the Arg250.
Most of the fragments were found to occupy the out-pocket (R?) where they engaged in edge-
to-face nt-w stacking with Tyr211. Fragment PI-4a was shown to be the strongest among the R?
binders with ICso of 50 uM and LE of 0.38 (Table 5, entry 1). Only fragments PI-21a and PI-
26b were found to bind in the inn-pocket (R! side) with ICso of 35 and 36 uM, respectively,
and LE of 0.33 and 0.30, respectively. Both fragments could form a hydrogen bond with the
guanidine group of Arg214, which made them loose the n-n stacking with Tyr211 and direct
them to be oriented towards R! binding site instead of the common R2 Fragment PI-35
occupied both binding sites so it was not classified as R! or R? binder. However, fragment PI-
35 was the best fragment among the tested fragments as it showed the best ligand efficiency

with ICso of 35uM and LE of 0.42 (-logi0ICso/heavy atom) (Table 5, entry 6).
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In order to optimize the fragments into more potent fragments, a merging approach was
initiated by overlaying two crystal structures of the most promising mono-substituted benzoic
acids (Table 5). A structural overlay of fragments PI-21a and PI-26b, which were the only R!
binders with different R? binders (PI-1, PI-28, PI-35) suggests some promising combination
(Figure 17) leading to structures PI-39, PI-40 and PI-41. Therefore, we initiated the synthesis
of a small library including symmetrical and unsymmetrical 3,5-disubstituted benzoic acids

including the suggested combination from the merging approach using SMC.

PI-40 PI-39 PI-41

Figure 17. Overlay structure of the binding poses observed for Pl-21a/28 (A), PI-21a/1 (B) and PI-26b/35 (C)
leading to 3,5-disubstituted benzoic acids PI-40, PI-39 and PI-41.

4.4 Synthesis and evaluation of symmetrically and
unsymmetrically 3,5-disubstituted benzoic acid derivatives

I was responsible for developing a method for the synthesis of unsymmetrically 3,5-
disubstituted benzoic acid derivatives. I also contributed to the synthesis of the symmetrically

3,5-disubstituted benzoic acid derivatives.

Choosing 3,5-dibromobenzoic acid as a starting point allowed us to access symmetric 3,5-
disubstituted benzoic acid. As 3,5-dibromobenzoic acid 75 contains two coupling positions (-
BrAr) of the same activity, so the reaction was not regioselective. Using an excess of the boronic
acid and the base would allow the symmetrical substitution. The synthesis of three fragments
(Scheme 30, Fragments PI-36, PI-38, PI-37) was achieved under the same reaction conditions
as for mono-substituted fragments using Pdx(dba)s (5mol%)/XPhos(5 mol%) or XPhos-Pd G2

(5 mol%) as catalysts, KsPO4 (5 equiv) and 2 equiv. of the corresponding boronic acid at 60 °C.
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Br Br ArB(OR), (2 equiv) Ar Ar
PdCI,(PPh3)2(10 mol%)
K3PO4 (3 equiv)

COOH dioxane: water (1:1) COOH
60 °C
PI 36 (54%) PI-37 (11% P1-38 (65%)

Scheme 30. Synthesis of symmetric 3,5-disubstituted benzoic acid derivatives.

For the synthesis of unsymmetrical 3,5-disubstituted benzoic acids, chemoselectivity was
required in order to introduce different boronic acids to the 3- and the 5- position of the
dihalobenzoic acid. The first approach was based on using 3,5-dibromobenzoic acid and
sequentially adding the two different boronic acids and/or reducing the amount of the boronic
acid under the previously established conditions (Scheme 31. A). This approach was not
successful as it only yielded 15% of the desired product. For example, fragment PI-39 was
obtained from the 3,5-dibromobenzoic acid in a very low yield (11%). In addition, a mixture of
mono-substituted 5-bromobenzoic acid, symmetrical and unsymmetrical 3,5-disubstituted
benzoic acids was always obtained. Moreover, purification of the reaction mixture was found

to be difficult and required several HPLC purifications.

B A
ArB(OR), (1.5 equiv)  y» ; .
X,Ar Ar sz(dba)3CHC|3 (5 mol%) X AFB(OR)Z (1 5 equw) X,Ar Ar

PACly(PPhs), (10 mol%)

Sphos (5 mol%) KsPO, (3 equiv)

K3PO4 (3 equiv)

dioxane: water (1:1) COOH dioxane: water (1:1)
COOH 60 °C 60 °C COOH
76 76
X' =l, X2= Br X'=X?= Br mono-substituted 15 %

Scheme 31. Initial attempts of the preparation of unsymmetrical 3,5-disubstituted benzoic acids.

To introduce a higher degree of selectivity, we changed the starting material to 3-bromo-5-
iodobenzoic acid (Scheme 31. B). As mentioned before (Chapter 3.1), Ar-I is more active than
Ar-Br in SMC reactions, which could allow a faster reaction on C-I than C-Br and limit the
formation of symmetrical compounds. We initiated a chemoselective reaction of 3-iodo-5-
bromobenzoic acid with 6-quinolineboronic acid pinacol ester to form a mono-substituted
product using Pd»(dba)s;. CHCls (5 mol%) and SPhos (5 mol%) in dioxane/water (1:1) at 60 °C.

However, a second coupling on the bromide was always observed.
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We then started reaction optimization to find conditions that would suppress the second
coupling in favor of obtaining only the mono-substituted product after the first coupling. The
model reaction was carried out between 3-bromo-5-iodobenzoic acid with 6-quinolineboronic
acid pinacol ester. The reaction optimization included different catalysts (e.g. RuPhos-Pd G3,
Sphos/Pda(dba);, Xphos/Pdx(dba)s, SPhos-Pd G3, XPhos-Pd G2, Pdx(dppf)Clz), solvents
(toluene/water, anhydrous THF, dioxane/water, fert-butanol), reaction temperature (40—-80 °C)
and time (10—48 h) (Table 6). The crude reaction mixtures were analyzed and the ratios between
the mono- and disubstituted products as well as unreacted starting material were determined by

mass spectrometry (MS).

Table 6. Reaction optimization for the coupling of 3-bromo-5iodobenzoic acid.

COOH
(0]
I Br >?L ! o ot COOH . O
o~ X, K3POy (3 equiv
. \@(j 3POy4 (3 equiv) Br N
~
N solvent i~

COOH N
77 78 N - N Pl-int40
Entry Catalyst (Mol %) T(°C)IT Solvent Ratio Isol. yield
(H) (PI- Int40 (%)
int40:38:80)
1 RuPhos-Pd G3 (10) 60/24 Dioxane/water 8:10: 10 nd
(1:1)
2 RuPhos-Pd G3 (5) 60/24 Dioxane/water 10: 6: 0.3 nd
(1:1)
3 XantPhos-Pd G3 (5) 60/48 Dioxane/water 10: 1: 0 nd
(1:1)
4 XantPhos-Pd G3 (5) 40/24 Dioxane/water 10:1: 3 702
(1:1)
5 Pdz(dppf)Cl2 60/24 Dioxane/water 10:1: 3 802
(1:1)
6 Xphos-Pd G2 (1) 60/24 Dioxane/water 10: 7: 1 nd
(1:1)
7 SPhos-Pd G3 (5) 60/24 Dioxane/water 10: 2: 0 40
(1:1)
8 Pdz(dba)s.CHCIs/SPhos 60/24 Dioxane/water 10: 1: 0.4 55
1:1 (10) (1:1)
9 Pdz(dba)s.CHCI3/SPhos 40/24 n-BuOH 10: 4: 4 nd
1:1 (10)
10 | Pdz(dba)s.CHCIls/SPhos 80/24 Dioxane/water 10: 1: 0.3 55
1:1 (10) (1:1)
11 Pdz(dba)s.CHCIs/SPhos 40/20 Dioxane/water 10: 1: 3 65
1:1 (10) (1:1)
12 | Pdz(dba)s.CHCIs/SPhos 60/10 Dioxane/water 5:4:10 nd
1:1 (10) (1:1)
14 | Pdz(dba)s.CHCIs/SPhos 60/48 Dioxane/water 10: 4: 1 nd
1:1 (10) (1:1)
15 | Pdz(dba)s.CHCIs/SPhos 60/24 Dioxane/water 10: 0.7: 0 40
1:1 (10) (1:1)
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*nd= not determined, a= mixture of PI-int40 and PI-38.

Among the tested catalysts, XantPhos-Pd G3, Pd, (dppf)Cl, and SPhos/Pd, (dba), showed the
best selectivity for the aryl iodide when the reaction was performed with K,PO, as the base in
dioxane/water at 60 °C for 24 h (Table 6, entries 3, 8, 15). The mono-substituted intermediate
PI-int40 was obtained as the main product using SPhos/Pd, (dba),, only small amounts of the
disubstituted by-product (8—10%) were observed. Careful purification to remove any traces of
the disubstituted compound provided PI-int40 in a moderate yield (45%). The mono-
substituted product was then subjected to a second coupling with (3-acetamidophenyl)boronic
acid using XPhos-Pd G2 (5 mol%) as a catalyst to provide the unsymmetrical 3,5-disubstituted
benzoic acid (Table 7, PI-40) in a high yield (90%).

The inhibitory activity of the disubstituted compounds against OXA-48 was evaluated
and compounds PI-36, PI-37 and PI-40 (IC50 (uM)/LE: 2.9/ 0.27, 48/0.21 and 2.9/0.27)
showed better inhibition activity in comparison to their corresponding mono-substituted
fragments PI-21a, PI-21b and PI-28 (IC5¢ (uM)/LE: 35/0.33, 450/0.26, 240/0.3). The best two
fragments were the symmetrical 3,5-disubstituted benzoic acid PI-36 and the unsymmetrical

3,5-disubstituted benzoic acid PI-40 with IC5( values of 2.9 uM and LE of 0.27 (Table 7).

Crystal structures of fragments PI-36 and PI-40 were obtained. They emphasized that the

interactions exhibited by the individual fragments were also preserved in the merged structure.
Table 7. Inhibitory activity of 3,5-disubstituted benzoic acid analogues against OXA-48 (ICso, Kq4, LE).

Ar? Ar'

COOH

ID (Paper I) ICso (M) Kq (pM) LE

Ar! Ar?
PI-36 (0] /@\'/ (@) /@ 2.9 20 0.27
P P
H H
PI-37 /©)\ /@/K 48 70 0.21
(0] (0]
N, N,
H H

PI-38 ﬁJ\@\/j /’\©\/j 110 70 0.19
X AN
N/ N/
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PI-39 V o) 100 70 0.22
\
= N )J\N
H
PI-40 /\ij 0 @\/ 29 49 0.27
& )J\N
N H

4.5 Additional results not included in Paper |

Attempts to synthesis the third fragment suggested from the merging approach compound PI-
41 (Figure 17). The strategy was based on using 3-(pyridin-2-yl)benzoic acid (Scheme 32, PI-
35) and 4'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-3-carboxylic acid (Scheme 32, PI-26b). In order
to synthesize 3-bromo-5-(pyridin-2-yl)benzoic acid (PI-41), two synthetic strategies were
considered. The first strategy was SMC of 3-bromo-5-iodobenzoic acid and pyridin-2-
ylboronic acid followed by a second SMC with (4-cyanophenyl)boronic acid. The resulting
coupled product would then be submitted to a tetrazole formation step (Scheme 33, S1). The
other strategy was to conduct the second coupling and install the tetrazole group first then

submit the product to SMC with 2-pyridinylboronic acid (Scheme 33, S2).

overlay structure
merging approach

H ::

PI-35 PI-26b Pl-41 N-N

Scheme 32. Promising fragment based on overlay structures from paper I.

In both synthetic strategies coupling with 2-pyridinylboronic acid or ester was not accessible.
This might be due to the low reactivity of pyridine boronic acid. It is known that pyridine
boronic acids tend to have a slow transmetalation rate due to the electron-deficiency of the
pyridine ring. Thus, they require higher temperatures and longer reaction times.!*®

The SMC with (4-cyanophenyl)boronic acid resulted in a mixture of mono- and di-
substituted benzoic acids in 60% and 25% yield, respectively. The compounds were submitted
for the tetrazole formation and the symmetrical 3,5-di-(4-1H-tetrazolyl)phenyl benzoic acid

was tested against OXA-48. These compounds were tested in a cell-based assay showing that
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the compounds killed the bacteria at 250 and 500 M concentrations. Therefore, the compounds

were not further evaluated as inhibitors.

1- XPhos Pd G2 (5 mol%)
O.__OH ArCN-B(OH),

o OH Pd,(dba)s (5 mgl%) K3POj4 (3 equiv)
B(OH) SPhos (5 mol%) dioxan:H,0 (1:1)
@( 2 K3POy4 (3 equiv) 18h, 60 °C
+
N dioxan:H,0 (1:1) N Br  2- Dibutyline oxide
Br 18h, 60 °C | (0.2 equiv)
79 80 % 83 TMSA (2 equiv)
0% Q
MW 150 °C, 1h

O._ _OH B(OH), 1~ Pda(dbas (5 mol%)
2

EPF'?SS ‘(2 SOIK,; XPhos Pd G2 (5 mol%)

dioxan‘H oq(1-1) 2-Py-B(OH); (1.5 equiv)
+ 18h., 620 oG . Br K3POy4 (3 equiv) l\{H

. N _
Br 2- Dibutyline oxide dioxan:H,0 (1:1) W
CN (0.2 equiv) 18h, 60 °C
81 82 TMSA (2 equiv) NH 0%
MW 150 °C, 1h ¥
N_ -
N

Scheme 33. Two synthetic strategies to synthesize fragment PI-41.

4.6 Conclusion from paper |

In summary, the Suzuki-Miyaura cross-coupling was a successful approach to access a
fragment library of 49 candidates of 3-substituted boronic acids. The crystal structures of 33
fragments of the fragment library gave a closer insight into the possible interactions in the
binding site R? and the preferred binding site R!. The most efficient binders were selected to
design a small fragment library based on the merging approach. Five fragments of both
symmetrical and unsymmetrical 3,5-disubstituted benzoic acids were synthesized and tested for
their inhibition activity. Selective Suzuki-Miyaura cross-coupling was applied to obtain the
mono-substituted intermediate PI-int40 in a moderate yield of 45%. The best inhibitors with

the lowest ICsq values (2.9 uM) are PI-36 and PI1-40.
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5. Development of carbonylative C-C couplings for the
synthesis of VIM-2 inhibiting fragments (Paper Il)

5.1 Paper Il background

The group of our collaborator Prof. Leiros has previously identified novel fragments inhibiting
the metallo-B-lactamase VIM-2.!3 The study involved an orthogonal screening approach based
on a surface plasmon resonance (SPR) assay combined with an enzyme inhibition assay of a
library of 490 fragments. The identified fragments were submitted for characterization by
determining the Kq, LE, and ICso values. The 1Cso ranged from 14 to 1500 uM and the LE
ranged from 0.48-0.23 kcal/mol per heavy atom.

Fragment 1 (ICso/LE= 14/0.38) shows two important interactions with the residues in
the binding site (Figure 18). The carboxyl group displayed two types of interactions, it interacts
with Zn2 in the binding site and also forms hydrogen bonds with two water molecules (W1 and
W2). The other carbonyl group participated in two interactions, weak chelation with Znl and
hydrogen bond with Asn233. In addition, the phenyl ring on both sides shows parallel n—n
stacking with His263 and a T-shaped n—n stacking with Tyr67. The side chain of Arg228
showed high mobility with different conformations partly forming a hydrogen bond with the

carboxyl group in the fragment.

Tyr67
Trp3;§ 3 Phe6l _ e y
b) m %»m&‘ m‘ C) Phe61
g ® : Arg228
: : : : %Hi5263 Asn233 _ _.
e e e ( (s e’ Y
Zn1 & A 253 ’
3 9027 by -

y -
His263
o .
Trp87 c

.wz Znl Zn2 wi

A ot
’.,’ 2.14)/" 1282 Arg228

€Asn233, W1 ¢
4 Zn2

Figure 18. X-ray structure of fragment 1 bound to the active site of VIM-2. Hydrogen bonds are shown as red
dashed lines, and hydrophobic interactions are indicated by a red arc. Adapted from Tony et al. (2015).73
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Additional hydrophobic interaction of the fluorine substituted phenyl group with Phe61 and
Trp87 stabilize the fragment binding. Furthermore, the carbonyl group favors the coplanar
orientation of the two phenyl groups that enables the hydrophobic interactions with His263,
Tyr67, Phe61, and Trp87. Based on the structural information in hand we used fragment 1 as
the starting point for paper II.

5.2 Initial work and research focus of paper Il

According to the previously reported observation and the information from the crystal
structures, we used fragment 1 as a starting point for a fragment library. The 2-benzoylbenzoic
acid system (Figure 19, B), where both the carbonyl group and the carboxylic acid are adjacent
to each other is necessary for the binding. Phenyl rings could be changed to other heterocycles

or substituted phenyl rings in order to keep the possibility of the n—r stacking.

Zn targeting moities

n-n stacking and other type of bindings

R'2=H, OH, NHR, SH, -COOR, Hetero aromatic ring:
R3= H, -CH

Figure 19. Structure model based on fragment 1 (A) & (B). Red; moieties targeting Zn ions. Blue; substituted
aromatic rings for m—1 stacking and different ionic and hydrophilic interactions.

In order to synthesize a library of these fragments, several synthetic routes were evaluated to
develop a general strategy that would provide a wide range of functionalized 2-aroylbenzoic
acids without increasing the number of reaction steps. Our initial attempts to synthesize 2-
aroylbenzoic acids and derivatives were based on the most common methods such as the
reaction of phthalic anhydride with organometallic reagents!®® (Scheme 34, B) or Friedel-Craft
acylation with aromatic nucleophiles (Scheme 34, C).!>* Although we could obtain a small
library of fragments (Chapter 5.5, Table 8, Fragment 1-7) using these methods, we found that

they have limitations and are not suitable for obtaining a larger library of the desired
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compounds. Many functional groups were not tolerated in these reactions due to the harsh

conditions and the use of excess Lewis acids.

Simpler systems such as biaryl ketones have been synthesized by transition metal-
catalyzed carbonylative cross-couplings of organometallic reagents and aryl electrophiles!'’*, or
by the non-decarbonylative coupling of acyl electrophiles.?*2%2Although there are a number
of reports describing the synthesis of biaryl ketones in general, only a few methods have proven

to be applicable for the formation of 2-aroyl benzoic acid derivatives (Scheme 34. D-F).

COOH B(OH), !
(A) | N Br,l | N
+ H
4 /= !
R! R2 :
carbonylative coupling
(B) (€) o
o Br
Br Pd A | A (o)
X = , co | + _
| i | 0 BulLi N IR~ /.
I~Z I G PXC’O’ R R2
R! R2 ©
0}
organometallic based coupling o o OH Fridel craft acylation
X 2 |
% NN
s o K R Pd
Q 3
(D) .7;\0‘3@% Ag salt (E)
CHO 0,,;\6\ 1-Pd
N | XN 2- HCI N COOH
| « o) O 4]
Y V&% >—< A2
H O R?

(F)
ROOC R? O CHO
P! H
Pd-catalyzed coupling of | N NHR' | A CH-activation followed by decarboxylative cross coupling
2-iodobenzoates with aldehydes Y&~ + ,\’R 3
RZ

aryl-amide directed
C-H activation

Scheme 34. Possible approaches towards 2-aroyl benzoic acid derivatives.

For instance, Pd-catalyzed ortho-C—H activation of benzoic acids followed by decarboxylative
coupling with a-oxocarboxylic acids (Scheme 34, E) showed several limitations regarding
reaction conditions and substrate scope.!>® This reaction was performed under harsh conditions
in DME for 24-48h at 150 °C. In addition, the reaction might provide poor regioselectivity of
the desired ortho position to the carboxylic group as there are several competing reaction sites.
Although the reaction provided the 2-aroyl benzoic acid derivatives, it was not compatible with
a wide range of functional groups, especially electron-withdrawing functional groups such as
nitro groups, nitrile groups, amides, and aldehydes. The scope did not include highly substituted
substrates and the yield range was from low to moderate (40-80%). In addition, it excluded
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heterocyclic substrates as the coupling partner on both the benzoic acid side and/or the a-

oxocarboxylic acids.!'*¢

Pd-catalyzed ortho-C—H activation of aryl amides followed by coupling with aryl
aldehydes (Scheme 34, F) is another possibility to access 2-aroyl benzoic acid derivatives.!>?
The reaction includes directed C—H activation, ortho-acylation of the aryl amide, then ring
closure of the five-membered hydroxyl isoindolone. The five-member ring is then opened to
give the biaryl imino carboxylic acid. The imine is then subjected to concentrated HCI in order
to hydrolyze it to the keto form and eventually obtain the biaryl imino/keto carboxylic acids.!>
Regarding the substrate scope, the reaction shares the same limitations with the Pd-CH

activation and decarboxylative coupling.

Another possible approach is the Pd-catalyzed coupling of 2-iodobenzoates with
aldehydes (Scheme 34, D). The advantages of this method are that it does not require any
directing group assistance or in situ enamine formation and it prevents the use of CO.?%
However, it showed poor tolerance of substituted benzaldehydes with electron-withdrawing
groups such as nitro or nitrile groups. In addition, the yield ranged from low to moderate
throughout the whole substrate scope, while it was unsuccessful with amides and heterocyclic

aldehydes.?®

5.3 Discussion of the results of Paper Il

Based on the analysis above, we decided to develop an alternative route to functionalized 2-
aroylbenzoic acids using palladium-catalysed carbonylative C-C couplings using CO as the
carbonylating agent as key step. In particular we hoped to develop an approach that gave access
to functionalized 2-aroyl benzoic acid derivatives where R> = OH, NHR or other

functionalisable handles.

Based on a literature research, carbonylative C-C couplings the reaction showed
widespread application in the synthesis of biaryl ketones. The vast majority of the studies
reported carbonylative Suzuki-Miyaura couplings using aryl iodides with boronic acids, while
few of them addressed the use of less reactive aryl bromides.!?%153:152204 Only a few reports
discussed the challenging ortho-substituted systems, especially the electron-deficient
substituted substrates on both coupling partners, the aryl bromide and the boronic acid.?’+1%°
Despite the hazard related to the toxic CO gas, we could use it in a safe fashion to avoid the

direct handling of the toxic gas by generating it in situ using COgen as the CO source, #6148
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We addressed two possible routes towards 2-aroylbenzoate esters as illustrated in Scheme 35.
The aim was to identify a route with a high degree of functional group compatibility that could

be used to establish a VIM-2 fragment library of analogues of fragment 1.

Br Br (0]
2 RZ
= ! (RO)B = Ay =z = Az
RET | + | > R3+ | | +ROH  --eee- >
7
85 86 R'O. _O
o 0
2
cl ex situ % = /R
generation of CO RO | |

S0 Ml

COgen (2.5 equiv) o B i 2:R'=R
COware to the left R'O N (ROB_~, co
— | + | - >
I A B
88 R3 86

Scheme 35. Two possible routes towards 2-aroylbenzoate esters.

Route A

The first route (Scheme 35, route A) comprises a carbonylative Suzuki-Miyaura coupling of 2-
bromoiodobenzene with phenyl/hetero-boronic acids via carbonylative Suzuki-Miyaura,
followed by Pd catalyzed hydroxy- or alkoxycarbonylations of the 2-bromo functionalized
biaryl ketones to obtain the 2-aroylbenzoic acids derivatives. The initial attempts of step 1 in
route A indicated the high impact of the competing non-carbonylative SMC reaction on the
results. The product of the competing direct coupling (bi-aryl) was always observed in a
considerable amount together with the desired carbonylated product (bi-arylketone). The
maximum obtained yield under the optimized conditions was 60 % of the carbonylated product.
The competing SMC reaction is a common challenge concerning carbonylative SMC. It is
known that in some cases the increase of the CO pressure, temperature and the catalyst loading
could enhance the reaction in favor of the desired carbonylative SMC.!28:130-132.133 However, in
our hands increasing the temperature and catalyst loading decreased the yield and favored the
direct coupling. High CO pressure would require special equipment and is associated with a
risk of faster formation of the inactive palladium black when compared to reactions closer to

atmospheric CO pressure. 3

Thus, we focused on finding conditions that enhanced the carbonylative SMC. First, we
thought that making the CO available for the reaction before the transmetalation reagent may

provide higher CO pressure before the reaction starts. Thus, the pre-generation of CO was
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attempted as it could help to enhance the rate of the CO insertion. However, having the boronic
acid readily available for the reaction would not allow the CO insertion to occur faster than the
transmetalation and the reductive elimination steps. As already known, the transmetalation and
the reductive elimination steps are faster than the CO insertion.!** Accordingly, slowing down
the transmetalating agent from reaching the metal center might allow the CO insertion step to
occur first. Introducing the boronic acid slowly into the reaction mixture after the complete
release of the CO was an attractive approach to the test. Slow addition of the boronic acids was
envisioned to enhance the reaction rate in favor of the desired carbonylative SMC. By adding
the boronic acid slowly over 2-3h, the yield increased from 60% to 80%. This improvement
encouraged us to proceed with the reaction scope, while applying the slow addition. The
reaction was compatible with both electron-rich and electron-deficient aryl boronic acids giving
moderate to high yields. In addition, electron-rich heterocycles and ortho-substituted boronic
acids were also tolerated under the reaction conditions. However, some heterocyclic boronic
acids (e.g. 2-furanyl boronic acid), hydroxy and N-acyl substituted aryl boronic acids were not

tolerated and favored direct coupling instead of the carbonylative alternative.

To emphasize the effect of the slow addition, selected substrates were tested applying slow
addition and normal addition. The yield of the carbonylative coupling products were higher,
which concludes slow addition can impact the reaction result in favor of the carbonylative
coupling. 13 examples of substituted 2-bromobiaryl ketones were synthesized in low to high

yields (Scheme 36).

O~__OH,R?
I 0 Br o
B B(OH
r (OH) 5
* _— E—
85 R %6 R 87 R 89
13 example 4 examples
30-80% 0-65%

Scheme 36. Route A, 1) PdCl> (1 mol%), C2CO3 (3 equiv), COgen (2 equiv) in anisole. 2) PdCl, (1 mol%),
Xantphos (2 mol%), C2CO3 (3 equiv), COgen (2 equiv) in anisole: n-BuOH (2:1).

The second step of route A (Scheme 36, 2) was hydroxy- or alkoxy-carbonylation of the
obtained 2-bromo functionalized biaryl ketones. Our initial attempts to directly obtain
carboxylic acids by hydroxycarbonylation using SilaCOgen were unsuccessful. This might be
due to steric hindrance at the ortho position of the ketone. However, we intended to try
alkoxycarbonylation on 2-bromo-4-methoxybenzophenones as a test substrate. We tested

different reaction conditions including a range of Pd catalysts and ligands, nucleophiles, bases,
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and solvents. Few reaction conditions gave access to the desired alkyl 2-(4-
methoxybenzoyl)benzoate. The best result was obtained with PdCl> (1 mol%) and Xantphos (2
mol%), n-BuOH, and K;COs in anisole (Scheme 36, 2). The desired butyl 2-(4-
methoxybenzoyl)benzoate was obtained with a 65% yield. Applying these conditions to a
number of 2-bromobenzophenone derivatives from step 1, we found that the reaction is
substrate-dependent. Thus, we concluded that this approach is limited and not suitable for

synthesizing a larger library of 2-aroyl benzoic acid derivatives.

One-pot approach to synthesize 2-aroylbenzoic ester

The two steps of route A seemed to be feasible in one pot. The reagents required for the
alkoxycarbonylation step such as the ligand and the nucleophile can be added later after 18
hours from the first step. In this case no excess of catalyst or COgen is required (Scheme 37).
Unfortunately, our initial attempts of a one-pot synthesis of 2-aroylbenzoic ester were not
successful. Introducing extra fresh catalyst to the second step did not prove to be beneficial.
We obtained several products after the second step including the biaryl ketone 88, the biphenyl
coupled product 93 as a byproduct from the first step, the desired biphenyl keto ester 90 and
the biaryl ketone without the bromide 94 (Scheme 37). Palladium black formation was always
observed in the first step, which could be a reason that hindered the second step and decreased
the activity of the freshly added PdCl.. Despite the addressed limitations of the one-pot
approach, we could still observe some of the biaryl keto esters, which indicated that the reaction
could be further developed to obtain the desired activity. We were therefore interested to study
the reaction from another direction to learn about the sequence influence on the reaction

reactivity, so the second route was evaluated.

B(OH), 1) PdCl, (1 mol%)
C,CO53 (3 equiv)
2) Xantphos (2 mol%)
n-BuOH (500 wl) ?
anisole
90 oMe 80°C

o Br /;) i iOnBu
MeO 91 MeO igz MeO MeO I I

Scheme 37.0ne-pot synthesis of 2-aroyl benzoic ester.
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Route B

In route B, we started from commercially available 2-bromo substituted benzoate esters as
starting material for the carbonylative SMC. 2-Bromobenzoate was submitted to a range of
experimental conditions including different palladium and Ni sources and ligands such as
(Pd(acac),or Pd(OAc),/CataCXium A or A-HI, Pd(OAc), or PdCl,/Xantphos, Ni(COD)/dcype)
and others to find the best conditions for the reaction (Paper II, Table ESI-6). Our observations
mainly concluded the dominance of the undesired non-carbonylative coupling pathway. Only
the Pd(IPr)-based catalytic systems showed promising results as it could accomplish the
carbonylative SMC. In the carbonylative coupling of methyl 2-bromobenzoate with 4-
methoxyboronic acid, PEPPSI-IPr (3 mol%) as catalyst precursor, Cs,CO; as a base in
chlorobenzene or anisole as solvent proved to be the best system, providing the desired product
in 63% yield (paper I1,S 4, 2aa). In order to enhance the yield, we tested the slow addition of
the boronic acid to the reaction mixture over 2-3h. This approach showed great influence on
the SMC in route A, so it was expected to give relatively similar results in route B. The yield
was further increased to 80% by slow addition of the boronic acid. The reaction showed very
good compatibility with different functional groups on both coupling partners including
electron-withdrawing, electron-donating, and heterocyclic boronic acids (Scheme 38). Boronic
acids with electron-donating groups such as -OMe, -SMe, and heterocyclic boronic acids such
as thiophene and benzothiophene gave moderate to high yields. Boronic acids with electron-
withdrawing groups such as -CN, -F, -COOMe gave low to moderate yields. Sterically hindered
ortho-substituted boronic acids were also compatible under the reaction conditions and gave
acceptable yields. Aryl bromides with both electron-withdrawing and electron-donating groups

were tolerated and gave moderate yields (Paper II, Scheme 4, 5).

o PEPPSI-iPr (3 mol%) 0 ~
Cs,CO3 (3 equiv)

B(OH
o~ . ©/( )2 COgen (2.5 equiv)
Br R? anisole

R! 0, i R2 R?
88 86 110 °C, ovenight 89

22 example
32-80%

Scheme 38. Route B, Suzuki-Miyaura coupling of methyl 2-bromobenzoate.

Scope limitations and general findings
The paper aimed to establish a general method to synthesize a wide range of 2-aroylbenzoic

acid derivatives to test against VIM-2. Initially, we designed the fragments to contain functional
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groups on both aryl rings (Scheme 38, R! and R?) with a potential binding ability to the VIM-
2 binding site. Functional groups such as -OH, -NH>, -CONHR, NO> could act as hydrogen
bond donors and/or acceptors in the binding site. In addition, the fragments were also
envisioned to contain functional groups that allow for late-stage functionalization of both aryl
rings. Unfortunately, substituents such as hydroxy, amines, and amides could not be introduced
with the developed method. Moreover, the solubility of the reagents including boronic acids or
acid derivatives in the reaction solvent can impact the success of the reaction. As we developed
the slow addition method, we introduced the boronic acid/anisole solution to the reaction
mixture over 2-3h. Boronic acids with a low solubility in anisole were challenging substrates
and thus were incompatible under reaction conditions. However, the strategy has good potential
for further optimization. Therefore, an extended study to find a better system to overcome the
scope limitations and allow for a wider range of VIM-2 inhibitors is an attractive research point

for the future.

5.4 Conclusion from paper Il

In conclusion, two routes for accessing 2-aroylbenzoate esters have been evaluated. This
evaluation suggests that the second route (B), which employed a carbonylative Suzuki-Miyaura
coupling of 2-bromobenzoate esters, could be a better strategy than route (A). Although the
suggested slow addition of the boronic acids is dependent on the solubility of them in the
reaction solvent, it is considered to be a finding of general value as it allowed us to enhance the
reaction reactivity to favor carbonylative over non-carbonylative processes in Suzuki-Miyaura
couplings. A range of diversely substituted 2-aroylbenzoate esters that share the same structure
core as our targeted structure model (Figure 18, Fragment 1) was prepared and sent for
biological testing at Nordstruct. The fragments were lacking some promising functional groups
such as OH, NO», NHo, etc. These types of substituents on both aryl rings could enhance the
binding of the fragments with the active site via hydrogen bonding, ionic or covalent
interactions. Due to the lacking of such functional groups, further optimization to find better

reaction conditions including the solvent and the catalytic system is suggested in paper III.

5.5 Additional results not included in Paper i
The initial trials of preparing 2-aroylbenzoic acids by reacting phthalic anhydride with
organometallic reagents or by Friedel-Craft acylation of aromatic nucleophiles resulted in a

small library of fragments (Table 8, Fragments F1a-F7). The fragments were evaluated against
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VIM-2 and ICso values were obtained. None of these fragments showed improved inhibition

activity when compared to fragment 1 (ICso/LE= 14/0.38).

Fragments obtained via carbonylative Suzuki-Miyaura coupling were also tested against VIM-

2 and ICso values were obtained (Table 8, Fragments F8-F20). All the tested fragments showed

inhibition in the uM range. Two fragments (Table 8, Fragments F9 and F13) showed inhibition

activity comparable to fragment 1 with LE of 9.96 and 10.77, respectively. Fragment F20

showed the best ligand efficiency with LE of 0.43. The obtained results can be used as a starting

point for further optimization towards better hits against VIM-2.

Fragment no.

F1-a

F2

F3

F4

F5

F6

Table 8. Biological data of tested fragments against VIM-2.
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117.4

111.7
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0.31
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0.25

176.9

OH

F16

OMe

0.26

221.6

OH

F17

0.25

298.9

OH

F18

0.23

564

OH

F19

0.43

2.852

F20
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6. Development of carbonylative C-C, C-N, C-O
couplings using renewable solvents

6.1 Paper lll background

As the method developed in paper 1II still showed limitations with regard to substituents such
as -OH, -NH;, -NHR and -NO», we continued our efforts to improve the carbonylative SMC of
aryl bromides with aryl boronic acids. In paper IIl, an alternative method for carbonylative
SMC in green solvents is described.

Renewable solvents have been described to be suitable medium for several chemical
transformations including classical condensation reactions and transition-metal (TM)-catalyzed

211213 including biphasic reactions such as metal catalyzed carboxylation

cross-couplings.
reactions using CO,.'”° However, carbonylative reactions have not been studied in renewable
solvents. In addition, we extended the study to investigate the efficiency of green solvents in
alkoxycarbonylation that showed carbonylative couplings of aryl bromides with amines and
alcohols, both reactions that were investigated during the work leading to paper II. For the latter
two, we focused on catalytic systems that have already proven to be suitable systems for Pd-

catalyzed carbonylation reactions.!33:176.171

6.2 Paper lll results and discussion

Solvent properties

In general, liquids that are available form biomass and CO; derived chemicals have a great
potential to replace non-renewable solvents that are frequently utilized in organic
synthesis, !88-205:206.187.181 Ty thig study, we examined both known renewable solvents and some

190

recently introduced biomass-derived solvents'”™ as shown in Figure 20.
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Figure 20. Structure of the renewable solvent used in paper Ill.

The polarity of the solvents was estimated based on their dielectric constant. Solvents with
dielectric constant higher than 5 are considered to be polar, while solvents with dielectric
constant below 5 were considered as non-polar (Table 9). Thus, the solvents could roughly be
grouped into non-polar hydrocarbons (a-pinene, y-terpinene, limonene, p-cymene), non-polar
ethers (diethoxymethane (methylal), dimethoxymethane (ethylal), 1,1-diethoxyethane (acetal),
rose oxide, eucalyptol) and carbonates (dimethylcarbonate (DMC), diethylcarbonate (DEC)),
and polar ethers (dimethyl isosorbide, 2-methyltetrahydrofuran (2MeTHF)) comparable to e.g.
THF and highly polar esters and carbonates (y-valerolactone (GVL), propylenecarbonate (PC),
ethylenecarbonate (EC)) comparable to e.g. DMF.
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Table 9. Solvent properties and overview of the solvent performance in the three tested carbonylative reactions.

. . CLC CN cO
Mw Dielectric Compound . .
Solvent Bp (°C) yield yield yield
(g/mol) constant’ class
(%) (%) (%)
non-polar
a-Pinene 136.24 156 2.18 hydrocarbon 50 97 93
y-Terpinene 136.24 174 2.27%°7  hydrocarbon 50 94 93
(+)-Limonene 136.24 178 2.37 hydrocarbon 80 99 56
p-Cymene 134.22 177 2.25%%%  hydrocarbon 75 97
Toluene 92.14 111 2.38 hydrocarbon 90'%% 97176
Diethoxymethane
104.15 87 2.5320° ether 62 64
(ethylal)
Dimethoxymethane
76.10 42 2.64 ether 50 45
(methylal)
Diethoxymethane
104.15 87 2.532° ether 62 64
(ethylal)
Diethylcarbonate
118.13 126 2.82 carbonate 94 45
(DEC)
Dimethylcarbonate
90.08 90 3.13210 carbonate 16 97 93
(DMC)
1,1-Diethoxyethane
118.18 102 3.80 ether 62 55
(acetal)
(+)-Rose oxide 154.25 86/20 mmHg ether 33 78 36
Eucalyptol 154.25 176 4.57 ether 89 82
polar aprotic
94/0.1
Dimethyl isosorbide 174.20 6.202" ether 89 30
mmHg
2-MeTHF 86.13 79 6.97212 ether 30 83 91
Tetrahydrofuran (THF) | 72.11 65 7.52213 ether 881"
y-Valerolactone (GVL) | 100.12 207 36.47 ester 74 64
Propylenecarbonate
102.09 242 66.14 carbonate 80 60
(PC)
Ethylenecarbonate
(EC) 88.06 261 92.8 carbonate 30

! Values obtained from CRC Handbook of Chemistry and Physics (85" ed.) unless mentioned otherwise.

Solvents are organized by increasing dielectric constant.
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Carbonylative SMC (C-C)
The reaction of 3-bromoanisole with m-tolylboronic acid was used as a model reaction for the
screen. The reaction conditions were based on a catalytic system, which is originally developed

in the group of Skrydstrup.!'>?

The catalytic system relied on using Pd(acac), and di(1-
adamantyl)-n-butylphosphine hydroiodide (cataCXium AHI) as a ligand. The original method
relied on using boronic acid derivatives such as diethanolamine-complexed heterocyclic
boronic acids (DABO boronates) or aryl trihydroxyborates in toluene/H,O (10:1) or pure
toluene as a solvent.!> When repeating the original reaction using aryl trihydroxyborates, we
could obtain comparable result and the desired product was achieved in 83% yield (see paper
IIT ESI, Table S1, entry 3). However, we found that the extra step of preparing the aryl
trihydroxyborates was not needed. We were able to simplify the method by generating the aryl
trihydroxyborates in situ by adding 1M NaOH (aq) instead of preparing the organoborates
separately.

We tested a range of renewable solvents using the model reaction of 3-bromoanisole
with m-tolylboronic acid under the developed method. Non-polar ethers, like rose oxide and
methylal, carbonate like DMC and polar ethers, like 2-MeTHF, gave the carbonylated product
in low to moderate yield (16-50%) and favored direct coupling over the carbonylated product.
On the other hand, non-polar hydrocarbons such as limonene, p-cymene, y-terpinene, a-pinene
gave better yields (80%, 75%, 50%, 50%, respectively) in correlation with the use of toluene
in the original conditions. Limonene favored the carbonylative coupling reaction over the direct
coupling and provided the desired biaryl ketone in 80%. Although limonene has a terminal no
side product related to the Heck-type arylation of the solvent was observed under reaction
conditions neither with rose oxide, y-terpinene, a-pinene.

We tested the scope of the reaction to check the generality of the carbonylative SMC in
limonene. We examined a wide range of boronic acids and aryl bromides, which have shown a
good scope. As we are generating the trihydroxyborates in situ, this allowed us to use a wide
range of boronic acids and avoid the limitations associated with isolation of unstable
trihydroxyborate salts. The reaction showed excellent compatibility with electron-rich,
electron-deficient and heterocyclic boronic acids and gave high to excellent yields (71-95%).
Moreover, electron-rich, electron-deficient and heterocyclic aryl bromides were successfully

transformed to the desired products in high to excellent yield (75-91%). It is also noteworthy
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that the reaction still shows limitation regarding sterically hindered, electron-withdrawing
group aryl bromide such as methyl 2-bromobenzoate, which gave the product in moderate yield
(40%). The scope of the reaction allowed for 16 examples of substituted biaryl ketones in
moderate to excellent yields (Scheme 39). We can conclude that the obtained yields were in
correlation with original reports using non-renewable solvents such as toluene. This emphasizes
that limonene is a renewable alternative for carbonylative SMC and can replace the commonly

used non-renewable solvents such as toluene, dioxane, chlorobenzene, DMF.!31,134.137.156,181,155

Pd(acac), (5 mol%)
Br B(OH), CataXCium AHI (10 mol%)
©/ ©/ 1M NaOH (0.5 ml) O O
+
R R2 COgen (2 equiv) R R2
95 88 limonene, 80°C, 18h 96
16 example
R'= -OMe, -Me, -CHO, CN, .. 40-95%

R2=-OMe, -COOMe, -Me, -NMe....
Scheme 39. Carbonylative SMC of aryl boronic acids with boronic acid in limonene.

Aminocarbonylation (C-N)

For aminocarbonylation we used the catalytic system developed by Buchwald and coworkers,
where they used Pd(OAc),, Xantphos and triethylamine as base in toluene. The Pd-catalyzed
aminocarbonylation of 4-bromobenzonitrile and N-methylaniline was used as model reaction
for the solvent screening.!”® The aminocarbonylation reaction in sustainable solvents gave
yields comparable to the result under original conditions in toluene, and even better in some
cases.!”® Non-polar hydrocarbons such as limonene, p-cymene, y-terpinene, a-pinene gave
excellent yields (99, 97, 94, 97%, respectively), which was not surprising given that these
solvents can be expected to have similar properties as toluene.!”® However, the performance of
non-polar carbonates (DMC, DEC) was also excellent and the products were obtained in 97%
and 94% yield, respectively. The performance of polar carbonates (PC, GVL) and polar/non-
polar ethers (2-MeTHF, rose oxide, acetal, etc.) was less good than the other solvents but the
product was also here obtained in moderate to high yields (62-89%). Under the reaction
conditions, no sign of side reaction such as hydroamination or Mizoroki-Heck coupling for
solvents possessing double bonds was observed. As we obtained excellent results in many of
the tested solvents, we performed several experiments in the best 3 solvent candidates
(limonene, DMC, a-pinene) to check their scope tolerance. We found that limonene, DMC gave

comparable results and showed excellent performance in the tested reactions in contrast to a-
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pinene, which showed high substrate dependence (Paper III, Scheme 2). Among other
renewable solvents DMC is described to be less toxic, cheaper and more viable replacement for
toluene.?!6-21% Thus, we tested the reaction scope to check the generality of the reaction in DMC.
The renewable solvent DMC showed excellent performance throughout the tested scope and
showed tolerance for many functional groups on both coupling partners. In general, aryl
bromides with electron-withdrawing groups provided the product in high to quantitative yields
(81-99%). However, electron-rich aryl bromides were obtained from low to moderate yields
(16-64%). Different amines were also tested and both electron-rich or electron-deficient
primary and secondary amines were well tolerated and the desired products were obtained in

high to excellent yields (85-94%). In addition, we could synthesize commercial drugs such as

220,221 222-224

Trimetozine, which is used as a sedative and analogue of Itopride, which is used for

treatment of gastrointestinal symptoms in excellent yields (Paper 11, Scheme 2). The scope of
the reaction allowed for 20 examples of primary and secondary substituted amides (Scheme 40)
and the results were in correlation with reports of aminocarbonylation in non-renewable
solvents. We therefore conclude that renewable solvents such as limonene and DMC can
efficiently replace toluene, THF or dioxane that are usually used in Pd-catalyzed

aminocarbonylation reactions, !3%:158:159.163.166.176

Pd(OAC), (2 mol%) o R3
Br R2HN Xantphos (2 mol%)
1@/ O R3 Et;N (3 equiv) R 'Tl
R + R2

COgen (2 equiv)
95 97 DMC 98
80°C. 18 h 20 examples
R'= CN, OMe, CF3, CHO,.. ’ 16-99% yields
R2=H, Me,..
R3= OMe, CF3, Me,...

Scheme 40. Aminocarbonylation in dimethyl carbonate.

Alkoxycarbonylation (C-O)

Similarly, in case of alkoxycarbonylation, we preliminary tested the renewable solvents on a
model reaction of 2-bromonaphthalene with sodium zert-butoxide and CO using the catalytic
system based on Pd(dba): as catalyst precursor and 1,1'-bis(diisopropylphosphino)ferrocene
(dippf) as ligand in THF that was first developed in the Skrydstrup group.!”! As expected, 2-
MeTHEF gave excellent results (91%). Non-polar ethers like methylal, ethylal, acetal, rose oxide
and eucalyptol and carbonates like DEC showed moderate efficiency and the product was
obtained in 45, 64, 55, 36, 82 and 45% yield. Polar solvents such as PC, EC, GVL and dimethyl

isosorbide were less efficient and the product was obtained in only low to moderate yields (30-
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64%). In case of non-polar carbonate DMC, the alkoxycarbonylation worked well, but we
obtained methyl ester in 93% isolated yield instead of tert-butyl ester. DMC played a dual role
in the reaction where it worked as the reaction medium and as a reagent, which allowed for a
transesterification step on the ferz-butyl ester. However, the non-polar hydrocarbons y-terpinene
and o-pinene gave also excellent yields of 93%.

As several solvents showed good performance in fert-butoxycarbonylation, we tested
the best 3 candidates (2-MeTHF, y-terpinene, a-pinene) with several substrate to check their
scope tolerance. The experiments showed that the performance of the solvent depends on the
substrate. However, a-pinene showed good general tolerance with the tested substrates. Then
we tested the reaction scope to evaluate the generality of zert-butoxycarbonylation in a-pinene.
Electron-rich aryl bromides could be transformed to the corresponding fert-butyl ester in
moderate to excellent yields (80-93%), while electron-deficient aryl bromides were less
reactive and the products were obtained in low to moderate yields (25-51%). The scope resulted
in 10 examples and the yields are comparable original reported results in THF.!”! Therefore,
we suggest that renewable solvents such as 2-MeTHF, a-pinene and y-terpinene can replace
non-renewable solvents (DMSO, THF, TEA, etc.) that are usually used for alkoxycarbonylation

reactions.!70-173

Further studies on the renewable solvent DMC
As mentioned before (Chapter 3.3.1) Pd-catalyzed alkoxycarbonylation of aryl bromides are
mainly based on using bulky alcohols, phenols or corresponding alkoxides.!68:169.134.170.171,172.173
Alcohols containing a-hydrogens were found to be challenging due to the side reactions they
can undergo, such as [-hydride elimination. Moreover, low boiling point alcohols e.g;
methanol could be challenging. Thus, we were encouraged to investigate the scope of the
observed methoxycarbonylation in (Paper III, Scheme 4). Electron-rich aryl bromides gave
excellent yields, while electron-deficient aryl bromides were less reactive and gave only
moderate yields. Traces of tert-butoxycarbonylation product were always observed with the
main methoxycarbonylation product throughout the whole scope.

We intended to perform a set of control experiments to gain closer overview of the
possible products of the reaction and to confirm that obtaining the methyl ester occurs after the

initial installation of the fert-butyl ester resulted from the tert-butoxycarbonylation mechanism

(Paper III, Scheme 5). The tert-butyl-2-naphthoate was transformed to methyl-2-naphthoate
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when treated with NaO7/Bu in DMC. According to the experimental results, the
transesterification happens both with and without the Pd-catalyst (Scheme 41). However, when
testing methoxycarbonylation of 2-bromonaphtalene using MeONa as a nucleophile in DMC,
the corresponding methyl ester resulted in 67% yield (Scheme 42, c¢). While the same reaction

in a-pinene resulted in no product and the starting material was recovered (Scheme 42, d).

0
0 Pd(dba), (5 mol%) 9
dippf (5 mol%)
OMe tBUONa OO OtBu tBUONa O o
DMC, DMC,
100 80°C, 18h 99 80°C, 18h 100
99% a b 99%

Scheme 41. Control experiment on tert-butyl 2-naphthoate.

These results indicate that the observed methoxycarbonylation can be a result of two
simultaneous pathways. In one pathway, the fert-butyl ester is installed on the aryl bromide via
Pd-catalyzed alkoxycarbonlyation followed by a transesterification with sodium methoxide
generated in situ from the reaction of the excess sodium tert-butoxide with DMC. In the other

pathway, in-situ generated sodium methoxide in involved in a Pd-catalyzed

methoxycarbonylation.
0 Pd(dba), (5 mol%) Pd(dba), (5 mol%) o
dippf (5 mol%) B dippf (5 mol%)
oM COgen r COgen
OO ¢ MeONa MeONa OMe
100 DMC, a-pin., 100
67% 80°C, 18h 80°C, 18h oL

c d

Scheme 42. MeONa initiated alkoxycarbonylation in DMC.

6.3 Additional results not included in Paper lii

Column chromatography (C.C) and extraction are important means of purification. Common
organic solvents used in these processes are heptane, DCM, MeOH, EtOAc, and many more.
The amount of solvent needed for each synthesis until obtaining the pure product could reach
couple of liters. Therefore, it is of high importance to find sustainable alternatives for the
common solvents used in the purification process. The success of the renewable solvents as
sustainable reaction medium in the reactions studied in paper III encouraged us to test them as
a purification and isolation medium. Therefore, we attempted to replace the common non-polar
hydrocarbon solvent heptane or pentane, commonly used in C.C and TLC systems, with greener

alternatives.
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Therefore, we tested some non-polar hydrocarbons such as p-cymene (bp = 177 °C),
careen (bp =171 °C) and dipentene (bp = 170-180 °C) as the mobile phase in C.C to each model
reaction of the three transformation - carbonylative SMC, aminocarbonylation and
alkoxycarbonylation. In case of p-cymene as eluent, we faced difficulties with visualizing the
compounds spots on the TLC plate and thus difficult separation. As p-cymene is a UV active
solvent with high boiling point (177 °C), evaporating the TLC plate and detecting the spots was
not successful. In case of carene and dipentene, we saw good separation on TLC. The product
was separated with similar solvent system as for heptane-EtOAc mixtures. However, after
evaporation of the pure fractions, we always noticed some remaining solvent together with the
pure product. The solvent residues could not be removed using rotavap, high vacuum pump or
overnight freeze drying. Thus, with the time available, we were not able to provide a green CC
system. However, among the introduced sustainable solvents and other new candidates there
might be some solvent that could replace common organic solvent in purification processes.
Finding green CC systems is an important goal that should gain research interest. The field of
green chemistry is a wide field and the development of greener methods including finding new
sustainable solvents and testing them for application is interesting and useful environmental

wise.

6.4 Conclusion from Paper lii

The goal of this study was to determine green solvents for Pd-catalyzed carbonylative C-C, C-
N, and C-O bond forming reactions. A sub-goal was to find conditions that could be used in the
synthesis of VIM-2 inhibitory fragments. We have found several renewable solvents, which
can successfully substitute traditional non-renewable solvents for three types of palladium
catalyzed cross-coupling transformations. Our investigation regarding carbonylative coupling
reactions has proven that limonene and its derivatives (y-Terp, a-Pin, Cym) can replace non-
polar petroleum solvents such as toluene, dioxane in both carbonylative SMC,
aminocarbonylations and alkoxycarbonylations.

Another stream of sustainable solvents including new candidates such as acetaldehyde diethyl
acetal - readily available from ethanol; eucalyptol - from Eucalyptus oil; rose oxide - from rose
oil has been introduced. However, they showed weaker performance in comparison to the other
solvent candidates. We also reported the behavior of CO> derived solvents (DMC, DEC, PC)

as the media for Pd-catalyzed cross-coupling reactions. The overall performance of these

77



solvents was found to be good. Especially DMC was an excellent media for aminocarbonylation
and alkoxycarbonylation. In addition, DMC can be used in methoxycarbonylation reaction
instead of using the low boiling point methanol to avoid associating problems such as
evaporation or side reactions as B-hydride elimination. It also could serve as transesterification
agent to obtain methyl ester in late stage optimization.

With regard to the synthesis of VIM-2 inhibitory fragments, more experiments are
needed to evaluate if the procedures described in paper III will give excess to a broader

substitution pattern compared with the method described in paper I1.
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7. Conclusion

The aim of the thesis was to develop methods for the synthesis of carbapenemase inhibitors
targeting OXA-48 and VIM-2 using a fragment based approach based on previous work in our

group'*>~1>197 and to apply the methods to the synthesis of inhibitory fragments or inhibitors.

In chapter 4, a synthesis of a range of symmetrical and unsymmetrical 3,5-disubstituted
benzoic acids using selective Suzuki-Miyaura coupling was developed. The synthesis of 3,5-
disubstituted benzoic acids was according to the merging approach of the promising mono-
substituted benzoic acids targeting OXA-48 reported in paper 1. The synthesized di-substituted
benzoic acid fragments were evaluated and their inhibition activity was found to be better than
the mono-substituted benzoic acids. Crystal structures of the tested fragments were obtained
and provided us with further knowledge about the active site of OXA-48 to be used for further

development.

In chapter 5, I developed a method for the synthesis of 2-aroylbenzoic acids and
derivatives via carbonylative SMC using CO gas in a safe fashion. Challenges found upon
synthesizing 2-aroylbenzoic acids were also discussed together with suggested solutions. In
addition, I discovered the importance of slow addition of the boronic acid to suppress the
competing SMC and to favor the carbonylative SMC. The developed method resulted in a range
of 2-aroylbenzoic acids that were tested and evaluated against the carbapenamase VIM-2. The
tested fragments gave ICso values in the uM range. However, we were not able to expand the
fragment library to include specific groups such as OH, NHz, NHR, etc. Accordingly, an

expanded study to find a better system to include more challenging substrate was carried out.

In chapter 6, I tried to extend our study to find better reaction conditions to cover the
scope limitations in paper II. In addition, I aimed to synthesize a larger fragment library to test
against VIM-2. During the study, we found that sustainable solvents are efficient in Pd-
catalyzed coupling reactions and a wide range of sustainable solvents was tested to evaluate
their impact on Pd-catalyzed couplings. The effect of sustainable solvents in the challenging
carbonylative SMC, alkoxycarbonylation and aminocarbonylation was investigated. The tested
sustainable solvents showed very good results in all the aforementioned reactions. Due to time

limitations the improved conditions were not evaluated in the synthesis of inhibitory fragments.
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The work presented in the thesis could be a starting point towards the synthesis of
inhibitors against VIM-2, OXA-48, and maybe other carbapenemases. The developed synthetic
methods could also be applied in many other research projects where selective SMC and Pd-
catalyzed carbonylation reactions are employed. The sustainability approach that we addressed
in this work is a valuable approach to consider, while running organic chemical reactions. The
promising results obtained with Pd-catalyzed carbonylations using sustainable solvents are very
encouraging to be taken further and to be tested in many other chemical transformations.
Therefore, our research recommends including sustainability considerations as a priority in the
future studies. The addressed research points in paper I, II, III are of high interest for further

development in order to answer the new research questions raised within this work.
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8. Future direction

The ultimate goal of my thesis was to use fragment optimization approaches to improve
previously identified fragments into drug like compounds with better binding affinity against
carbapenemases VIM-2 & OXA-48. This goal is part of a larger goal to discover new inhibitors
that can reach clinical trials and can be used in combination therapy with carbapenem in order

to save the last resort antibiotic class carbapenems.

I focused on developing synthetic strategies to prepare 3,5-symmetrical and
unsymmetrical disubstituted benzoic acids as extended fragments targeting OXA-48. These
types of compounds were designed to reach the two identified binding sites. The future goal of
this project is to further investigate the synthesis of the third fragment suggested by the merging
approach PI-41.

In silico optimization study performed by Sundus Akhter suggested that growing the
fragment in the 2-ortho position might favor binding in the inner binding pocket instead of
pointing out to the solvent. Therefore, we intended to extend the fragments in the 2-ortho
position instead of 3-meta position. I supervised a master student, Harald Magnussen, that was
responsible of preparing a library of 2,5-disubstituted benzoic acids from methyl 2-amino-5-
bromobenzoate. The synthesized fragment (Scheme 43, Fragment 32H) was submitted for
biological testing. The fragment showed comparable 1Cso (3.275 uM) to fragment PI-40.
However, the LE of fragment 32 (0.24 kcal/(mol atom) was slightly lower than fragment PI-40
(0.27 kcal/(mol atom). In the future a crystal structure of fragment/OXA-48 complex is a logical
step in order to identify the binding modes of 2,5-disubstituted fragments assembled in

fragment 32.

O\
starting material Fragment 32H
(1C50 (UM)/LE, 3.2/ 0.24) o

~

Scheme 43. Fragment growing towards a drug like compound. Fragment 32H was synthesized by Harald
Magnussen.
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In paper II, I developed a method to synthesize a range of sterically hindered 2-
aroylbenzoic acid derivatives from simple boronic acids via carbonylative SMC. Applying slow
addition of boronic acid to the reaction is a promising approach to suppress the undesired direct
SMC coupling. This work was continued in Paper I1I and the choice of the renewable solvents
showed great impact on the tested Pd-catalyzed carbonylation reactions. Limonene showed
good performance in carbonylative SMC and it favored the carbonylation product over the
direct coupling product without applying the slow addition. In future work, it would be
interesting to combine the findings of paper II and III - slow addition of boronic acid and the
use of renewable solvent. The future goal regarding this project is to test carbonylative coupling
to synthesize the challenging substrates, which contain functional groups such as phenols,
amides, amines, and strong electron-withdrawing groups such as nitro, nitrile, which can allow

for late stage functionalization.
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9. Appendix

This chapter includes additional experimental procedures and spectral data for compounds not

included in paper Il and presented in Table 8, entry 1-7.

9.1 Experimental

9.1.1 General methods

All purchased chemicals were used as received without further purification. Solvents were dried
according to standard procedures. Automated reverse-phase flash chromatography was
performed using pre-packed C18-modified silica columns. The chemical shifts are reported in
ppm relative to the solvent residual peak. NMR spectra were obtained on a 400 MHz Bruker
Avance III HD equipped with a 5 mm SmartProbe BB/1H (BB = 19F, 31P-15N). Data are
represented as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q =
quartet, m = multiplet), coupling constant (J, Hz) and integration. Chemical shifts (5) are
reported in ppm relative to the residual solvent peak (CDCls: on 7.26 and 6c 77.16; Methanol-
d4: 6n 3.31 and d¢ 49.00; Deuteriumoxide: 6u 4.79; DMSO-ds: 6u 2.51 and 6¢ 39.52). The raw
data was analysed with MestReNova (Version 10.0.2-15465). Positive ion electrospray
ionization mass spectrometry was conducted on a Thermo electron LTQ Orbitrap XL

spectrometer. The data was analysed with Thermo Scientific Xcalibur software.

9.1.2 Experimental details

1- 2-(4-fluorobenzoyl)benzoic acid

Oy _OH
O

JOR®

Anhydrous AICl; (91 mg, 0.68 mmol) was suspended in fluorobenzene (20 ml) before phthalic
anhydride (50 mg, 0.34 mmol) was added in portions to the reaction mixture at 0 °C while
stirring. Upon complete addition of the phthalic anhydride, the reaction mixture was submitted
to reflux for 3h. The reaction was quenched by adding ice-cold HCI (50%, 100 mL). The
reaction mixture was concentrated on a rotavapor. The precipitate was dissolved in sodium

carbonate solution and then filtered. The resulted filtrate was acidified with aqueous HCI and
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the solid product was filtered and submitted for further purification by reverse phase flash
chromatography using 30% acetonitrile: H>O. The pure product was obtained (50 mg, 60%) as
a white powder. "H NMR (400 MHz, CDCl3) 4 10.22 (bs, 1H), 8.09 (d, J=7.6 Hz, 1H), 7.80 —
7.71 (m, 2H), 7.69-7.65 (m, 1H), 7.59-7.55 (m, 1H), 7.36 (d, J = 7.6 Hz, 1H), 7.08 (t, J = 8.6
Hz, 2H). 3C NMR (101 MHz, CDCl3)  195.6, 170.9, 165.9 (d, J = 255.3 Hz), 142.4, 133.6 (d,
J=209Hz), 133.5, 132.1 (d, J=9.4 Hz), 131.1, 129.8, 127.8, 127.7, 115.9, 115.7, 77.5, 77.4,
77.2, 76.8. HRMS (ESI): Caled. for Ci4HoFNaOs; [M+H]" 267.0428; found
C14HoFNaOs 267.0428.

2- 2-(4-methylbenzoyl)benzoic acid?>6->27

(0] OH
o

Anhydrous AICIz (91 mg, 0.68 mmol) was suspended in toluene (20 ml) before phthalic
anhydride (50 mg, 0.34 mmol) was added in portions to the reaction mixture at 0 °C while
stirring. Upon complete addition of the phthalic anhydride, the reaction mixture was submitted
to reflux for 3h-6h. The reaction was quenched by adding ice-cold HCI (50%, 100 mL). The
reaction mixture was concentrated on a rotavapor. The precipitate was dissolved in sodium
carbonate solution and then filtered. The resulted filtrate was acidified with aqueous HCI and
the solid product was filtered and submitted for further purification by reverse phase flash
chromatography. The pure product was obtained (71 mg, 87%) as a white powder. 'H NMR
(400 MHz, CDCI3) 6 8.06 (d, J=7.6 Hz, 1H), 7.66-7.62 (m, 3H), 7.54 (t, /= 7.6 Hz, 1H), 7.35
(d, J=7.6 Hz, 1H), 7.20 (d, J = 7.8 Hz, 2H), 5.86 (bs, 1H), 2.39 (s, 3H). 3*C NMR (101 MHz,
CDCL) o 170.4, 144.2, 142.9, 134.6, 133.1, 130.9, 129.7, 129.5, 129.3, 128.2, 127.7, 21.8.
HRMS (ESI): Calcd. for CisH12NaO3 [M+H]" 263.0679; found Ci5sH12Na0O3263.0680.

3- 2-(3,4-dimethoxybenzoyl)benzoic acid**®

o O._OH
MeO

MeO I O

1,2-dimethoxybenzene (47 mg, 34 mmol) and phthalic anhydride (50 mg, 0.34 mmol) were
added to a suspension of AICI; (91 mg, 0.68 mmol) in DCM (20 ml) at 0 °C. The reaction was

left stirring for 5h at rt. Upon reaction completion the reaction mixture was poured onto ice.
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The organic layer was collected and dried over MgSOa. The organic phase was concentrated
on a rotavapor and the residue was triturated with diethyl ether. The product was submitted to
reverse phase flash chromatography resulting in pure product (44 mg, 45%) as a yellowish
solid. 'TH NMR (400 MHz, DMSO-ds) 6 13.03 (s, 1H), 7.93 (d, J= 7.4 Hz, 1H), 7.72 — 7.54 (m,
2H), 7.35 (d, J = 12.3 Hz, 2H), 6.95 (s, 2H), 3.76 (s, 6H). 1°*C NMR (101 MHz, DMSO-ds) &
204.40, 176.45, 162.56, 158.23, 150.96, 141.65, 139.53, 139.38, 139.17, 139.02, 136.98,
134.22, 120.21, 119.60, 65.26, 64.95. HRMS (ESI): Calcd. for C1sHi4NaOs [M+H]* 309.0739;
found Ci¢H15sNaOs309.0737.

4- 2-benzoylbenzoic acid*?6-2%7

O+_OH
0]

Anhydrous AICl3 (91 mg, 0.68 mmol) was suspended in benzene (20 ml) before phthalic
anhydride (50 mg, 0.34 mmol) was added in portions to the reaction mixture at 0 °C while
stirring. Upon complete addition of the phthalic anhydride, the reaction mixture was submitted
to reflux for 5h. The reaction was quenched by adding ice-cold HCI (50%, 100 mL). The
reaction mixture was concentrated on a rotavapor. The precipitated product was dissolved in
sodium carbonate solution and then filtered. The resulted filtrate was acidified with aqueous
HCI and the solid product was filtered. The pure product was collected without further
purification (69 mg, 90%) as white powder.!H NMR (400 MHz, CDCls) 6 8.08 (d, J = 7.8 Hz,
1H), 7.72 (d, J = 7.6 Hz, 2H), 7.69-7.65 (m, 1H), 7.59-7.52 (m, 2H), 7.45-7.35 (m, 3H), 5.07
(bs, 1H). BCNMR (101 MHz, CDCl3) § 197.5, 170.5, 143.0, 137.4, 133.6, 133.6, 131.3, 123.0,
129.9, 128.9, 128.4, 128.2,77.8,77.7,77.5, 77.2. HRMS (ESI): Calcd. for C14H10NaO3; [M+H]"
249.0522; found Ci4H10NaO3 249.0527.

5- 2-(pyridin-2-ylcarbamoyl)benzoic acid*?’

HO.__O
0]

NH
Z "N
\l
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Phthalic anhydride (500 mg, 3.4 mmol) was added to the pyridine-2-amine (390 mg, 4.1 mmol)
in DCM (20 mL) and the reaction mixture was left stirring for 18h at room temperature. The
product was recrystallized in DCM, the pure product was obtained by vacuum filtration in (710
mg, 85%) yield."H NMR (400 MHz, MeOD) & 8.24-8.20 (m, 1H), 7.93-7.91 (m, 1H), 7.81-7.78
(m, 1H), 7.69-7.65 (m, 1H), 7.62-7.50 (m, 2H), 7.12-7.09 (m, 1H), 6.78 (d, J = 8.7 Hz, 1H),
6.70 (t, J = 6.5 Hz, 1H). *C NMR (101 MHz, MeOD) & 158.6, 154.2, 147.8, 146.6, 144.7,
137.0, 136.2, 135.9, 133.9, 126.2, 121.2, 118.8, 118.0, 54.9, 54.6, 54.4, 54.2, 54.0, 53.7, 53.5.
HRMS (ESI): Calcd. For Ci13H1103N> [M+H]"243.0770; found Ci13H1103N»243.0771.

6- 2-(7-bromo-1H-indole-3-carbonyl)benzoic acid

Anhydrous AICI3 (91 mg, 0.68 mmol) was suspended in DCM (20 ml) before phthalic
anhydride (50 mg, 0.34 mmol) and 7-bromoindole (67 mg, 34 mmol) were added in portions to
the reaction mixture at 0 °C while stirring. Upon complete addition of the phthalic anhydride,
the reaction mixture was submitted to reflux for 6h. The reaction was quenched by adding ice-
cold HCI (50%, 100 mL). The reaction mixture was concentrated on a rotavapor. The
precipitated product was dissolved in sodium carbonate solution and then filtered. The resulted
filtrate was acidified with aqueous HCI and extracted with EtOAc. The organic phase was
collected, dried over Na>xSO4 and concentrated on a rotavapor. The product was submitted for
to reverse phase flash chromatography using 30-50% acetonitrile: H>O. The pure product was
obtained (78 mg, 67%) as a gummy solid. "H NMR (400 MHz, MeOD) § 8.18 (d, J = 7.9 Hz,
1H), 8.05 (d, J=7.7 Hz, 1H), 7.69 (t, J= 7.5 Hz, 1H), 7.62 (t, J=7.5 Hz, 1H), 7.49 (d, /= 7.4
Hz, 1H), 7.44 (d, J = 7.7 Hz, 2H), 7.15 (t, J = 7.8 Hz, 1H). 3C NMR (101 MHz, MeOD) §
194.6, 169.5, 144.1, 137.1,136.9, 133.1, 131.4, 130.6, 128.9, 127.2, 124.5, 122.2, 119.8, 105.9.
HRMS (ESI): Calcd. for Ci¢H10BrNNaO3; [M+H]* 365.9742; found CisHioBrNNaO3 365.9744.
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7-  2-(phenylcarbamoyl)benzoic acid**’

o %

Phthalic anhydride (500 mg, 3.4 mmol) was added to the aniline (380 mg, 4.1 mmol) in
DCM (20 mL) and the reaction mixture was left stirring for 6h at room temperature. The
product was obtained by vacuum filtration. The precipitate was recrystallized in DCM-
heptane mixture. The pure product was obtained (76 mg, 92%) a white solid. 'H NMR (400
MHz, MeOD) ¢ 8.02 (d, J = 7.5 Hz, 1H), 7.65-7.63 (m, 3H), 7.57-7.55 (m, 2H), 7.33 (t, J
= 7.7 Hz, 2H), 7.12 (m, 2H), 6.77-6.70 (m, 2H). 3C NMR (101 MHz, MeOD) & 171.1,
169.3, 140.3, 140.1, 133.2, 131.4, 130.6, 130.1, 129.7, 128.8, 125.4, 121.7, 119.9, 117.1,
49.6, 5.4, 49.2, 49.0, 48.8, 48.6, 48.6. HRMS (ESI): Calcd. for Ci4H;1NNaO; [M+H]*
264.0628; found C14H11NNaO3264.0637.
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9.1.3 Spectral data
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tance. The most prevalent resistance mechanism to B-lactam antibiotics is expression of B-lactamase
enzymes. One way to overcome resistance caused by B-lactamases, is the development of f-lactamase
inhibitors and today several f-lactamase inhibitors e.g. avibactam, are approved in the clinic. Our focus is
the oxacillinase-48 (OXA-48), an enzyme reported to spread rapidly across the world and commonly
identified in Escherichia coli and Klebsiella pneumoniae. To guide inhibitor design, we used diversely

Iég::\t/glr (:i'ructure substituted 3-aryl and 3-heteroaryl benzoic acids to probe the active site of OXA-48 for useful enzyme-
Inhibition properties inhibitor interactions. In the presented study, a focused fragment library containing 49 3-substituted
Benzoic acid derivatives benzoic acid derivatives were synthesised and biochemically characterized. Based on crystallographic
Serine-B-lactamase inhibitors data from 33 fragment-enzyme complexes, the fragments could be classified into R! or R? binders by
Fragments their overall binding conformation in relation to the binding of the R' and R? side groups of imipenem.
Structure-guided drug design Moreover, binding interactions attractive for future inhibitor design were found and their usefulness

explored by the rational design and evaluation of merged inhibitors from orthogonally binding frag-
ments. The best inhibitors among the resulting 3,5-disubstituted benzoic acids showed inhibitory po-
tential in the low micromolar range (ICso = 2.9 uM). For these inhibitors, the complex X-ray structures
revealed non-covalent binding to Arg250, Arg214 and Tyr211 in the active site and the interactions
observed with the mono-substituted fragments were also identified in the merged structures.

© 2018 Elsevier Masson SAS. All rights reserved.

1. Introduction increasing [2] and deaths due to antibiotic resistant infections are

expected to surpass cancer deaths by 2050 [3]. Bacterial resistance

Years of overuse of antibiotics have selected for antibiotic towards clinically important B-lactam antibiotics [4] like penicil-

resistant strains [1], and today medical personnel are frequently lins, cephalosporins and carbapenems originates most often from

forced to administer last-resort antibiotics. However, the number the occurrence of f-lactam-hydrolysing enzymes — the -
of cases where last-resort antibiotics fail in treatment are lactamases.

The B-lactamase enzymes are of ancient origin [5] and today

over 2600 enzymes spanning four classes of B-lactamases are

known [6—8]. B-Lactamases are grouped into two super families

Abbreviations: DMSO, dimethyl sulfoxide; OXA, oxacillinase; ICso, half maximal . .
reviations ey SuToxice oxactnese; so. 147 maxmne based on the enzyme mechanism for B-lactam hydrolysis: the

inhibitory concentration; LE, ligand efficiency; MBL, metallo-B-lactamase; NMR,

nuclear magnetic resonance; SBL, serine-B-lactamase; SPR, surface plasmon serine dependent B-lactamases (SBLs; Amber class A, C, and D) and
resonance. metallo-f-lactamases (MBLs; Amber class B) [7,9]. SBLs are char-
* Corresponding author. acterized by a serine residue in the active site, while MBLs require a

** Corresponding author. -~ , A metal co-factor, usually one or two zinc ions, for enzyme activity.
E-mail addresses: hanna-kirsti.leiros@uit.no (H.-K.S. Leiros), annette.bayer@uit.

no (A. Bayer). This work focuses on the class D SBLs — also called oxacillinases
! These authors have contributed equally to this work. (OXAs) — and in particular on the oxacillinase-48 (OXA-48).
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The class D SBLs are characterized by a hydrophobic environ-
ment in the active site, that facilitates the carboxylation of a lysine
residue. The N-carboxylated lysine plays a critical role in the sub-
strate hydrolysis [10]. Originally, the OXAs were believed to have a
limited substrate profile only hydrolysing penicillins, but with the
emergence of carbapenem-hydrolysing OXA variants, e.g. OXA-23,
OXA-24 and OXA-48, their clinical relevance has increased [11].
0XA-48 was reported for the first time in 2001 and has since then
spread rapidly across the world [11]. It is commonly identified in
Escherichia coli and Klebsiella pneumoniae.

One strategy to circumvent resistance in f-lactamase producing
pathogens is the use of f-lactamases inhibitors [4,12] in combina-
tion with the B-lactam antibiotic. Inhibitors of class A SBLs like
clavulanic acid, sulbactam and tazobactam became clinically
available from the 1980s [13], but only a few class D p-lactamases
are inhibited by these p-lactamase inhibitors e.g. OXA-2 and OXA-
18 [14]. In 2015, a new SBL inhibitor, avibactam, targeting class A,
C and some class D SBLs, including OXA-48, was approved by the
FDA for treatment of complicated urinary tract and intra-
abdominal infections [15]. However, the inhibition level of
different class D f-lactamases by avibactam varies [16,17]. With the
first reports of resistance to avibactam published [18], one can
speculate that it will only be a matter of time before class D B-
lactamases show resistance to avibactam as well.

The development of new OXA inhibitors, either with a different
enzyme-inhibition profile compared to existing inhibitors, or as
alternative when resistance to existing inhibitors arises, is of
importance. We have previously reported a fragment-based
screening approach to identify weak inhibitors of OXA-48 [19].
The most interesting hit was 3-(pyridin-4-yl)benzoic acid 1 with
an ICsp of 250 uM and a ligand efficiency (LE) of 0.32. Crystallo-
graphic data from enzyme-fragment complexes indicated two
overlapping binding conformations of the fragment. Merging of
the two conformations of 1 into one molecule 2 (Fig. 1) gave a 10-
fold increase in binding affinity improving the ICsq from 250 uM to
18 uM [19].

In this study, we describe the use of small mono-substituted
fragments - analogues of fragment 1 - as probes to explore the
OXA-48 binding site. The aim was to identify fragment-enzyme
interactions in the two alternate binding pockets of the active site
of OXA-48, which could be of general interest for the design of OXA-
48 inhibitors. We wanted to exploit the ability of small fragments to
efficiently explore the binding pocket as they are less restricted by
size and more flexible compared to more elaborated inhibitors.
Moreover, the smaller fragments generally have the advantage of
being more easily prepared making the discovery process more
work-efficient. Furthermore, we wanted to translate the knowledge
gained into the rational design of di-substituted inhibitors related
to compound 2 circumventing the laborious preparation of a large
library of elaborated inhibitors.

Towards this goal, we prepared a focused fragment library
containing 3-aryl benzoic acids decorated with a wide range of
polar groups and a number of 3-heteroaryl benzoic acid derivatives.
In total 49 fragments were tested for inhibitory activity against
OXA-48 and the binding conformations of 33 fragment-enzyme
complexes were analyzed by X-ray crystallography. Based on the
structural information, fragments could be classified according to
their preferred binding pocket and useful fragment-enzyme in-
teractions e.g. hydrogen bonds were identified. Moreover, several
new orthogonally binding fragments were found leading to the
design of symmetrically and unsymmetrically di-substituted in-
hibitors with improved ICsq in the low micromolar range. The
structural data from enzyme-inhibitor complexes was compared
with enzyme-fragment complexes.

2. Results and discussion
2.1. Synthesis

2.1.1. Synthesis of 3-substituted benzoic acids

A fragment library containing 49 3-substituted benzoic acid
analogues 3a—35 was prepared (Table 1). The fragments generally
fulfilled the demands of libraries for fragment-based ligand design
(MW < 300, clogP < 3, hydrogen bond acceptor/donors < 3) [20].
For the synthesis, a strategy based on the Suzuki-Miyaura (SM)
cross-coupling reaction to join two sp’>—hybridized carbons was
employed [21]. Two alternate coupling strategies were successful
starting with either 3-bromobenzoic acid (Table 1, strategy A) or 3-
carboxyphenylboronic acid pinacol ester (Table 1, strategy B) as
starting materials allowing for the utilisation of a wide range of aryl
boronic acids or aryl bromides to introduce diversity in the library.

Many of the required aryl boronic acids and bromides were
commercial available, while the aryl bromides used as starting
materials for fragments 17—20, 24, 29 and 30 were prepared ac-
cording to standard acylation and sulphonylation protocols. The
NH-tetrazol-5-yl-substituted arylbromides (starting material for
fragments 26a and 26b) were prepared by a [3 + 2] intermolecular
cycloaddition of 3- or 4-bromobenzonitrile with trimethyl silyl
azide in the presence of dibutyltin oxide in anhydrous 1,4-dioxane.
The reaction mixture was subjected to microwave irradiation in a
tightly sealed vessel for 50 min at 150 °C to afford 3- or 4-
bromobenzotetrazole in 86% and 82% yield, respectively.

In general, couplings under standard aqueous conditions using
PdCl(PPhs); as catalyst (5—10 mol%), K3PO4 as base (5 equiv.) in
dioxane/water gave good yields. The couplings leading to frag-
ments 9, 17—20 and 22—24 were not successful under these stan-
dard conditions. More efficient catalysts (XPhos-Pd G2 or
PdCl,(dppf)) and water-free conditions (anhydrous THF instead of
dioxane/water) were successfully employed to solve reactivity and
solubility problems and to prevent hydrolysis for base sensitive
products (9 and 24). However, for some products (19a, 19b and 20)
the yields were still low (<20%). Generally, the reactions were easily
purified by automated C18 flash chromatography to provide com-
pounds of high purity (>95% as determined by UHPLC). For some
compounds (15, 16, 19, 23, 24, 32 and 34), additional silica flash
chromatography was necessary to provide sufficiently pure
products.

2.1.2. Synthesis of 3,5-disubstituted benzoic acid derivatives

To study inhibitor properties like activity and enzyme in-
teractions of merged fragments, a small series of symmetrical and
unsymmetrical 3,5-disubstituted benzoic acids was designed (vide
infra) and prepared. The synthesis of symmetrical 3,5-disubstituted
compounds 36 and 38 was achieved under the conditions estab-
lished for the coupling of mono-substituted fragments using Pd;
(dba)3/XPhos or XPhos-Pd G2 as catalysts (Scheme 1) [19]. The di-
substituted coupling products 36 and 38 were obtained from 3,5-
dibromobenzoic acid as starting material and an increased
amount of the boronic acid derivative (2 equiv.) in 54% and 65%
yield, respectively. Compound 37 was isolated in 11% yield as by-
product in an attempt to selectively mono-substituted 3,5-
dibromobenzoic acid (vide infra).

For the synthesis of unsymmetrical 3,5-disubstituted benzoic
acids 39, the sequential addition of two different aryl boronic acids
under the previously established conditions gave only 15% isolated
yield (Scheme 2). In addition, the procedure involved tedious HPLC
purifications as the reaction mixture was difficult to purify due to
occurrence of symmetrical by-products with similar properties. To
improve the selectivity of the reaction, we changed the starting
material from 3,5-dibromobenzoic acid to 3-iodo-5-bromobenzoic
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COH
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(ICs0 18 uM)

Fig. 1. The two alternate conformations of fragment 1 (light grey) in complex with OXA-48 (dark grey surface) (A and B), the merged compound 2 (pink) in complex with OXA-48
(dark grey surface) (C), and a schematic view of the merging approach described in previous work (D) [19]. (For interpretation of the references to color in this figure legend, the

reader is referred to the Web version of this article.)

acid in order to take advantage of the faster coupling reaction of
aryl iodides when compared with aryl bromides and thereby to
prevent formation of symmetrical disubstituted by-products
(Scheme 2). Investigation of the chemoselective coupling of 3-
iodo-5-bromobenzoic acid with quinolin-6ylboronic acid pinacol
ester to form mono-substituted int-40 showed that a second, un-
wanted coupling was not easily prevented and a careful fine tuning
of catalyst (RuPhos-Pd G3, XantPhos-Pd G3, Sphos/Pd, (dba)s,
Xphos/Pd, (dba)s, SPhos-Pd G3, XPhos-Pd G2, Pd, (dppf)Cly), sol-
vent (toluene/water, anhydrous THF, dioxane/water, tert-butanol),
reaction temperature (40—80 °C) and time (10—48 h) was initiated
(Table SI1, see Supporting information). The composition of the
crude reaction mixtures with respect to mono- and disubstituted
products as well as unreacted starting material was determined by
mass spectrometry (MS). The most chemoselective catalysts were
XantPhos-Pd G3, Pd; (dppf)Cl, and SPhos/Pd; (dba)s showing good
selectivity for the aryl iodide when the reaction was performed
with K3POy4 as base in dioxane/water at 60 °C for 24 h (Scheme 2). At
this conditions with SPhos/Pd, (dba)s as catalyst, the mono-
substituted intermediate int-40 was obtained as main product
together with small amounts of the disubstituted by-product
(8—10%). Careful purification to remove any traces of the disubsti-
tuted compound provided int-40 in moderate yield (45%). The
mono-substituted int-40 was further subjected to a second
coupling with XPhos-Pd G2 (5 mol%) as catalyst to provide 40 in
good yields (90%).

2.2. Evaluation of 3-substituted benzoic acids

2.2.1. Inhibitor activity of 3-substituted benzoic acids

The mono-substituted fragments 3—35 were initially investi-
gated for their inhibitory activity against OXA-48 in an enzymatic
assay and by SPR. Inhibition and binding data are given in Table 1
along with the associated ligand efficiencies (LE). The original hit
fragment 1 had an IC5g of 250 uM and an LE of 0.32. Most of the
fragments in this study showed inhibition at a similar level with
IC50 > 200 uM and LE < 0.30. Fragments 4a (ICs5o (LM)/LE: 50/0.38),
18 (IC5p (LM)/LE: 60/0.24), 21a (IC50 (WM)/LE: 35/0.33), 26b (IC50
(uM)/LE: 36/0.30) and 35 (IC59 (uM)/LE: 35/0.42) showed an order
of magnitude stronger inhibition and were the most potent frag-
ments. Even though there are some discrepancies between the
inhibition and binding data, the same trends are maintained when
comparing similar compounds, indicating that the compounds
indeed bind specifically to one site of the enzyme.

2.2.2. Structural analysis of 3-substituted benzoic acids

To evaluate the binding poses of our fragments, enzyme-
fragment complexes for x-ray crystallographic analysis were pre-
pared. Rewardingly, 33 out of 49 fragments were successfully
soaked with OXA-48 and yielded crystal structures with resolution

high enough to warrant placement of the inhibitor in the electron
density (Table 1). In addition, a crystal structure of OXA-48 in
complex with the substrate imipenem was obtained to better un-
derstand substrate binding and to compare substrate and fragment
binding interactions.

The crystal structure of the acyl-enzyme complex of OXA-48
with imipenem (Fig. 2A) revealed a conformation close to previ-
ously observed conformations with OXA-13 (PDB-ID: 1h5x). In the
complex the ring-opened imipenem was bound to OXA-48 cova-
lently with continuous electron density from the hydroxyl group of
Ser70. There was an ionic bond from the carboxylate group of
imipenem to the guanidine group of Arg250. The carbonyl-group of
the now ring-opened B-lactam ring was positioned in the
oxyanion-hole forming hydrogen bonds to the main chain amides
of Tyr211 and Ser70. The 6a-hydroxyethyl group (R!) of imipenem
was positioned towards the hydrophobic residues Trp105, Val120
and Leul58 and in the following discussion this region will be
called the R! site. The amidine group (R%) was situated in the cleft
defined by Ille102, Tyr211, Leu247 and Thr213 and this region will be
called the R? site. The R! and R? side chains of imipenem (Fig. 2A)
had the same overall directions as the pyridinyl substituents in the
two overlapping binding conformations observed with our initial
hit 3-pyridin-4-ylbenzoic acid 1 [19].

In all our structures of OXA-48 in complex with fragments, an
ionic bond between the carboxylate group of the fragments and the
guanidine group of Arg250 was observed, which resembled the
interaction of the carboxylate group of imipenem or the sulfamate
group of avibactam with Arg250 [17,22]. In some cases, the
carboxylate group was oriented in such a way that also Thr209
(fragments 9b, 28, 35), Lys208 (fragment 34) or both (fragment
26a) participated in binding.

Another common feature found in almost all crystal structures,
except for fragments 21a and 26b, was a - stacking interaction of
the 3-aryl substituents attached to the benzoic acid scaffold with
Tyr211. This is consistent with the binding of imipenem, where the
R, side chain was oriented towards Tyr211 (Fig. 2C). The importance
of Tyr211 as a non-polar patch that contributes in binding substrate
side-chains has been recognised before [23]. We also observed this
interaction with our unsubstituted pyridyl benzoic acids previously
[19].

The weaker binding fragments (3a, 3b, 4a—c, 5, 6a—c, 8a—c, 9b,
11b, 12a, 13, 14, 17, 24) all bound in nearly the same conformation
with the ionic bond of the benzoic acid and Arg250 and the w-7
stacking interaction with Tyr211 as major interactions. In these
structures, the 3-aryl substituent on the benzoic acid was directed
towards the R, pocket (Fig. 2C). Only minor conformational dif-
ferences were observed as described in the following. To help the
reader in the following discussion, we will describe the fragments
by the identity of the Ar groups (Table 1), as the structural differ-
ences of the fragments relate to this group ie. 3-(2-methyl)
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Table 1
Preparation strategy and inhibitor activities of a library of 3-substituted benzoic acids analogues against 0XA-48 (ICsq, K4 and LE).
Ar-B(OR),, Ar—Br, o
PACI,(PPhg)s, KaPOs, o, PACI,(PPhy),, KgPO4 ,
OH dloxane/HZO OH dloxane/H20 (RO).B OH
Strategy A Strategy B
Comp.ID Ar= Strateg. Yield ICso (uM)  Kp (uM)  LE¢ Comp.ID Ar= Strateg. Yield ICs0 (LM) Kp (uM) LE¢
3a* (I B 78% 90 170 0.35 11b* 0 % A97% 180 350 0.29
H N :
3b* B 67% 170 300 0.33 12a* 0 A 82% 120 150 0.29
/©?¢ o8 s
S J
4 OH A 94% 50 175 0.38 12b | % A 90% 380 361 0.25
0=s -
C O
4b* /©\r{ A 98% 110 110 0.35 13* HoN B 35% 330 330 0.29
HO \©f\
4c* HO@% A 39% 470 170 0.29 14* | A 95% 390 220 0.27
_ /N\©}f
5* A 84% 900 230 0.25 15a HoN B 36% 600 800 0.27
w0 1, o
6a* @Ef\ A 98% 250 123 0.30 15b HZNm B 86% 1400 550 0.23
6b* A 98% 360 226 0.28 16a HoN B 15% 110 300 0.31
6c* O©§ A 86% 150 250 0.31 16b HoN B 67% 1000 970 0.23
} \/\©\;\
7 _S A91% 400 1000 0.28 17* o “ B* €41% 370 100 0.24
\©>< A @
o
8a* F A 68% 130 170 0.34 18 o) H B* € 65% 60 210 0.24
\\S,
g Cro T,
8b* /@\; A 98% 130 240 0.34 19a Y B* € 26% 110 110 0.26
S<
: S
8c* A 78% 360 312 0.30 19b o B* € 10% 450 240 0.22
F@% —$-NH :
O
9a o] A* €57% 210 200 0.27 20 o, H B*€11% 370 200 0.22
L™ o
9b* A 54% 260 144 0.26 21a* o A 98% 35 100 0.33
/Opﬁ )J\NJ@}{
o H
10 0, A 98% 380 280 0.27 21b* H A 98% 450 290 0.25
M g tj
o]
11a NH, A 98% 260 220 0.28 22 o B> b 87% 130 130 0.27
0 )*N«©><
H
23a H B* € 46% 230 170 0.24 29 HaN N B 36% 170 130 0.33
|
I \/\©}<
23b B* € 34% 520 190 0.22 30 B 45% 800 900 0.29

(continued on next page)
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Table 1 (continued )

S. Akhter et al. / European Journal of Medicinal Chemistry 145 (2018) 634—648

Comp.ID Ar= Strateg. Yield ICs0 (M) Kp (uM) LE¢ Comp.ID Ar= Strateg. Yield  ICso (uM)  Kp (uM) LE¢
24* )OJ\ AP 349 250 140 0.25 31 N/\f B 67% 350 113 0.28
I
O/\@}q HZN)\N/
25 N B 15% 1300 >1000 0.20 32 s A 6% 500 590 0.31
Nf\Ng« }E /) N
<" = -
26a* B 98% 60 70 0.30 33 rS B 24% 800 900 0.31
2, o+
N
N-N
26b H B 98% 36 70 0.30 34 H B 20% 310 400 0.27
N
Lo O+ I,
27* &; B 67% 110 400 0.30 35* = ‘ A 98% 35 159 0.42
SN
28* B 87% 240 160 0.27

T
\N

*X-ray structure of fragment-enzyme complex available. ? Reaction in anhydrous THF instead of dioxane:water as solvent; b XPhos-Pd G2 as catalyst instead of PdCly(PPhs),; ©
PdCl,(dppf) as catalyst instead of PdCly(PPhs),. ¢ LE = (—1.4 * logICs50) /HeavyAtomCount, with units kcal/(mol per heavy atom).

o Ar-B(OR),, O
Br Pd catalyst, KsPOy,, Ar
OH solvent OH
R =H or pin
Br H Ar
L0 T, OO
)’LN ;)\ O ;A\ \N
H
36 (54 %) 37 (11 %) 38 (65 %)

Scheme 1. Preparation of symmetrical 3,5-disubstituted benzoic acids. Reagents and
conditions: 36: 3-acetamidophenylboronic acid (1.5 equiv.), Pd; (dba)3eCHCl5 (5 mol%),
XPhos (5 mol%), dioxane:water (1:1), 60 °C, 54%; 37: 4-acetamidophenylboronic acid
(0.75 equiv.), PdCl,(PPhs), (10 mol%), dioxane:water (1:1), 95 °C, 11%; 38: quinolin-6-
ylboronic acid pinacol ester (2.0 equiv.), XPhos-Pd G2 (5 mol%), tert-butanol, 60 °C,
65%.

phenylbenzoic acid 3a will be described as 2-methylphenyl
substituted fragment.

The methylphenyl substituted fragments 3a (ICsg (WM)/LE: 90/
0.35) and 3b (IC5¢ (uWM)/LE: 170/0.33) had similar conformations,
however, the 2-methyl group in 3a was facing towards the hydro-
phobic P of Ser244 explaining the more favourable binding.

o Ar'-B(OR),,
X oH catalyst, KOy, Ar!
solvent
Br Br
“= L0 CO)F v
N A

int-39 (not isolated) int-40 (45%)

Fragments 4a—c (IC5p (uM)/LE: 50/0.38, 110/0.35 and 470/0.29,
respectively) also had very similar conformations, but again we saw
that more favourable van der Waals interactions gave higher af-
finity for the 2-hydroxyphenyl substituted 4a. The 4-hydroxy iso-
mer 4¢ had an unfavourable solvent exposure of the hydroxyl
group. Adding a methylene bridge  yielding  3-
hydroxymethylphenyl 5 (ICs59 (WM)/LE: 900/0.25) did not lead to
any favourable interactions. The methoxyphenyl fragments 6a—c
(ICsp (WM)/LE: 250/0.30, 360/0.28 and 150/0.31) shared the ca-
nonical R? binding pose. The methoxy group of the 2-substituted 6a
appeared more shielded from solvent exposure than in 6b and 6c,
yet the methoxy group did not seem to make any strong contacts.
The weak inhibition seen with methyl thioether 7 (IC5¢ (uM)/LE:
400/0.28) corresponded to the results observed with the methoxy
ethers 6. The fluorophenyl substituted 8a—c (ICs9 (WM)/LE: 130/
0.34, 130/0.34 and 360/0.30) had nearly identical binding poses.
The 4-substituted 8c gave the highest IC5g value, most likely due to
the solvent exposed fluorine. The 2-substituted 8a seemed more
favourable based on the decreased solvent exposure of the fluorine
atom, however, the difference to 8b was negligible only observed
by SPR.

The methoxyacetylphenyl esters 9a and 9b (ICsp (1M)/LE: 210/
0.27 and 260/0.26) showed no clear additional interactions in the
complex structures with OXA-48, and the methyl group appeared
to be unfavourably exposed to the solvent. The corresponding 4-

0 Ar2-B(OR),, o)
OH catalyst, KsPOy, Arl
solvent

O iNQf\

J
H

39 (11%) 40 (90%)

Scheme 2. Preparation of unsymmetrical 3,5-disubstituted benzoic acids. Reagents and conditions: 39: i. X = Br, 3-acetamidophenylboronic acid (0.75 equiv.), PdCl,(PPhs); (10 mol
%), dioxane:water (1:1), 60 °C; ii. pyridin-4-ylboronic acid (1.2 equiv.), PdCly(PPhs), (10 mol%), dioxane:water (1:1), 60 °C; int-40: X = I, quinolin-6-ylboronic acid pinacol ester (2.0
equiv.), Pd; (dba)s;-CHCl; (5 mol%), SPhos (5 mol%), dioxane:water (1:1), 60 °C; 40: 3-acetamidophenylboronic acid (1.5 equiv.), XPhos-Pd G2 (5 mol%), tert-BuOH, 60 °C.
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Fig. 2. The crystal structure of imipenem in complex with OXA-48 (A) shows that the two side chains of imipenem extends in separate directions. The carbapenem substrates of
OXA-48 have small R side chains. We were however able to fit larger groups in the R! site like the N-acetamide substituted phenyl ring in compound 21a (B). Yet, most of the tested
3-substituted benzoic acids bind towards the larger R? site, like the quinolin-7-yl substituted compound 28 (C).

acetylphenyl substituted 10 (ICso (uWM)/LE: 380/0.27) and carba-
moylphenyl substituted 11a and 11b (ICs¢ (utM)/LE: 260/0.28 and
180/0.29) gave generally weak inhibition indicating that a carbonyl
group attached to the aromatic ring was not contributing to bind-
ing. No complex structures are available for 10 and 11a, but the
complex structure of 4-carbamoylphenyl 11b was similar in
conformation to the esters 9a and 9b. Slightly tighter binding was
observed with the meta-substituted sulfone 12a (ICs (uWM)/LE: 120/
0.29), which also shares the same overall conformation.

The 4-aminophenyl substituent of 13 (IC5¢ (LM)/LE: 330/0.30)
did not appear to make any interaction with the enzyme, and the
inhibition was weak. The complex structure of the corresponding
N,N-dimethyl-4-aminophenyl substituted 14 (ICso (uM)/LE: 390/
0.27) showed that the two methyl groups are solvent exposed, and
this is reflected in the poor inhibition by this compound. Similar to
the complex structure of 14, the methyl 4-sulfonamidophenyl
group of 17 (ICsg (WM)/LE: 370/0.24) was seemingly pushed out of
the active site and appears completely exposed to the solvent. The
larger phenyl 4-sulfonamidophenyl substituted fragment 18 (ICsq
(WM)/LE: 60/0.24) showed lower ICsg values probably driven by the
increase in hydrophobicity, and no complex structure was obtained.

The corresponding 4-acetamidophenyl 21b (ICso (1tM)/LE: 450/
0.25) showed weak inhibition, likely due to the solvent exposure of
the hydrophobic methyl group. The 3-acetamidophenyl containing
fragment 21a (Fig, 3), however, showed a 10-fold increased inhi-
bition (IC5¢ (uWM)/LE: 35/0.33). The complex structure of OXA-48
with fragment 21a revealed that the carbonyl of the acetyl
formed a hydrogen bond to the guanidine group of Arg214, which
directs the 3-acetamidophenyl substituent to the R! site (Fig. 2B)
and lead to a T-shaped m-m-stacking interaction of the 3-
acetamidophenyl substituent with Trp105. The m-m stacking of
the 3-acetamidophenyl substituent to Tyr211 normally observed
with these fragments was not observed; instead Tyr211 interacted
with the benzoic acid by T-shaped m-m-stacking. The interaction of
an acetamide with Arg214 has been described previously for the
avibactam analogue FPI-1523 in complex with OXA-48 (PDB-ID:
5fas) [22].

Encouraged by the results for fragment 21a, we designed a se-
ries of fragments incorporating a hydrocarbon linker between the
phenyl ring and the amino, sulfonamido or acetamido groups of 13,
18 and 21. The amines 15 and 16, the sulfonamides 19 and 20, the

amides 22, 23a, 23b and the acetate 24 are more flexible, thus,
increasing the potential of hydrogen bonding. However, none of
these fragments showed substantially improved binding (ICsq:
110—1000; LE: 0.19—0.30). Moreover, the crystal structures of the
amides 22, 23a, 23b and the acetate 24 (ICso (WM)/LE: 230/0.24,
520/0.22 and 250/0.25) did not show any specific interactions for
the functional groups.

In fragments 26a and 26b NH-tetrazole substituted phenyl rings
were investigated as Ar substituents. Introducing the weakly acidic
tetrazol-5-ylphenyl substituent in either 3-position 26a (ICsq (WM)/
LE: 60/0.30) or 4-position 26b (ICso (tM)/LE: 36/0.30) yielded good
binding for both fragments. However, the binding poses for the two
compounds were very different. The 3-tetrazol-5-ylphenyl
substituted 26a bound in two alternate positions. The m-m-stack-
ing with Tyr211 was maintained for both conformations, but the
tetrazoles appeared completely solvent exposed with no in-
teractions with the enzyme. The 4-tetrazol-5-ylphenyl substituted
26b formed a hydrogen bond with the guanidine group of Arg214
(Fig. 4), interrupting the m-m-stacking with Tyr211. Fragment 26b
occupied the R! site rather than the more common R? site.

A number of heterocyclic aryl substituents were also evaluated
(fragments 25, 28—35). With some exceptions of the pyridinyls 29
and 35 (ICso (uM)/LE: 170/0.33 and 35/0.42) most of these frag-
ments showed only weak inhibition. The quinolin-7-yl substituted
fragment 28 (ICso (uM)/LE: 240/0.30) did maintain the overall
conformation of the previous R? binding fragments (Fig. 5), and so
did the corresponding naphtalen-2-yl substituted fragment 27 (ICsq
(uM)/LE: 110/0.29). In the same manner the indol-5-yl substituted
fragment 34 (ICs5o (WM)/LE: 310/0.27) did show acceptable binding,
yet no specific interaction except for the m-stacking with Tyr211. In
our previous paper, we investigated pyridin-4-yl and pyridin-3-yl
substituted fragments [19], and both inhibited OXA-48 with the
same potency (ICsp (uM)/LE: 250/0.32). The pyridin-2-yl
substituted fragments 35 (ICso (uWM)/LE: 35/0.41) showed a 10-
fold improvement in binding (Fig. 6A and B). In the crystal struc-
ture, two alternative conformations were observed (Fig. 6C). One
conformation was the canonical with m-stacking of the pyridinyl
ring with Tyr211 occupying the R? site (Fig. 6E), but in the other
conformation the pyridinyl ring was orientated to the R! site. The
second conformation showed a hydrogen bond from the proton-
ated N atom in the pyridine ring to the backbone carbonyl of Tyr117,



640

A . : : . :
120 - g
100 g
~ 80| .
2
2
2 60 8
g
<
40 - 1
20 B
0
-6 -5.5 5 4.5 -4 35 3 25
log [Compound) (M)

ARG-Z:);, ;

S. Akhter et al. / European Journal of Medicinal Chemistry 145 (2018) 634—648

70 70
60 5 60 -
50 . 50 -
Eﬁ 40 :’g 40 -
s :
g 30— 4 § 30r °
& % il
& — & ’//'
20 | 8 0F 8
10 10 if
0 0
-10 H— -10 L
0 20 40 60 80 100 120 0,0E+00 3,0E-04 6,0E-04
Time (s) Concentration (M)
D LEU
158
VAL
120
.2 NH ILE
AR?

TSTYR
211

LEU
247

THR AR
209

Fig. 3. Compound 21a was one of the most potent 3-substituted benzoic acid derivatives we found. The ICso-value (A) was determined to be 35 M, while the K4 was found to be
100 uM (B). The crystal structure of the complex OXA-48:21a with an omit-type polder-map (2.5¢) (C) and its 2D-representation (D) shows that the carbonyl of the acetamido-group
forms a hydrogen bond with the guanidine of Arg214. The interaction with Arg214 causes the B-ring to move away from Tyr211, introducing a new interaction with Trp105.

which represents a unique interaction for the fragments in the li-
brary (Fig. 6D). Only the protonated pyridinyl-nitrogen would be
able to form hydrogen bonds to the Tyr117 mainchain, which may
explain the slower on/off-rates observed for fragment 35 in the
SPR-experiments (Fig. 6B).

In the discussion above most fragments were identified as R?
binders with fragment 4a (ICso (WM)/LE: 50/0.38) being the stron-
gest binder among them. For R? binders, the edge-to-face m-7-
stacking with Tyr211 appears to be an important interaction in
accordance with previous analyses [23]. Fragment 35 showed the
best ligand efficiency (ICso (WM)/LE: 35/0.42), but could not be
classified as a R! or R? binder as both binding pockets showed
useful interactions (Fig. 6C—E). Only two R! binders — fragments
21a and 26b - were identified, both showing hydrogen bonds with
Arg214 as cause for the fragments orientation towards the R! site.

2.2.3. NMR studies

In order to evaluate the fragment-enzyme binding in solution, a
13C NMR experiment for OXA-48 was developed based on previous
studies [24,25]. OXA enzymes can be selectively carbamylated with
bicarbonate at an active site lysine to provide the corresponding
carbamic acid [24,26,27]. For OXA-48 the carbamylated residue is
Lys73, which is situated in the R! site (Fig. 2B). By using >C-labeled
sodium bicarbonate (NaH'3C03), a'>C atom was introduced in the
R! site of OXA-48, which can be used as a reporter probe for frag-
ment binding in C NMR studies.

Fragments binding in the R' site were expected to change the
local environment of the '3C labeled Lys73, which results in a
change of the 13C chemical shift of Lys—NH—'2CO,H, while ligands
binding in the R? site are further than ~9 A away from the Lys73
carbamic acid, and are therefore not expected to directly affect the

13¢C chemical shift.

NMR experiments were performed by equilibrating OXA-48
with 3C-labeled sodium bicarbonate followed by the addition of
inhibitor 2 and selected fragments 21a, 28 and 35 with known
binding modes from X-ray analysis. The results are shown in Fig. 7.
The 3C NMR spectrum of OXA-48 after equilibration with
NaH!3CO3 showed the carbamate resonance at 163.95 ppm as a
broad signal (Fig. 7E), which is in good agreement with the reported
chemical shift for carbamylated OXA-48 [28]. In addition, two
unassigned signals were observed at 164.04 ppm similar to the
results reported for carbamylation of OXA-58 [27]. Here the authors
speculated that the unassigned signal may be related to a second
carbamylation site [27].

On addition of R! binding fragment 21a and inhibitor 2, the 13C
chemical shifts of the carbamate signal were consistently deshiel-
ded in both experiments (6 = 164.25, A3 = 0.28 ppm, Fig. 7E and F).
These findings support that the compounds bind competitively in
the active site. Moreover, the observed chemical shift perturbation
indicates that the compounds occupy the R! site as found in the
crystal structures. The R? binding fragment 28 showed a similar
deshielding of the carbamate signal though at a smaller amplitude
(0 =164.13, A5 =0.16 ppm, Fig. 7D) supporting that the fragment
binds in the active site, while fragment 35, which was identified as
R' or R? binder, only slightly affected the chemical shift (6 = 164.00,
AJ = 0.04 ppm, Fig. 7C). The observed chemical shift perturbations
for fragments 28 and 35 may indicate that fragment 28 has an effect
on carbamylated Lys73, while fragment 35 do not interact with the
R! site, which is not consistent with the X-ray structures. However,
a more detailed study of the NMR conformations would be needed
to be conclusive about the binding poses in solution.

The small amplitudes of the observed chemical shift
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perturbations indicated that the effect is not caused by direct
hydrogen bonding of the carbamic carbonyl, for which a A3 of
several ppm would be expected, even for a pM binder [29]. This was
supported by the crystal structures of OXA-48 indicating that the
Lys73 carbamic acid was preoccupied in hydrogen bonding to
Trp157 and was not affected by ligand binding. The observed
consistent, but rather subtle, deshielding of the Lys73 carbamic acid
(0 =164.25, A5 = 0.28 ppm, Fig. 7E and F) for our R! binding frag-
ments can possibly be explained by an anisotropic magnetic
deshielding by the edge of the aromatic rings of these fragments,
which were positioned roughly 5 A away from the reporter carbon
for R! binding fragments. Moreover, amplitude of the chemical shift
perturbation observed with R! binding fragments 21a and inhibitor
2 (Fig. 7E and F) were in line with the reported changes observed
for OXA enzymes on coordination with inhibitors like B-hydrox-
yisopropylpenicillanates [24], cyclic boronates [25] and avibactam
[28].

2.3. Inhibitor activity and structural analysis of 3,5-disubstituted
benzoic acids

In an attempted to design more potent inhibitors from our
fragments, the mono-substituted benzoic acids were evaluated for
a merging approach (Fig. 8). By overlaying X-ray structures,
promising combinations showing orthogonal binding poses were
identified and some of the combined structures were prepared and
evaluated with good results.

An overlay of fragment 21a as well as 26b with several R?
binders identified the combinations of fragments 21a/28, 21a/1 and
26b/35 as interesting partners (Fig. 9). The combination 21a/1 and
21a/28 were synthetically feasible and gave compounds 39 and 40
(Scheme 2), respectively. In addition, the symmetrical 3,5-
disubstituted benzoic acids 36—38 representing the symmetrical
combinations of fragments 21a, 21b and 28 were included in this
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Fig. 7. '*C NMR of the buffer alone including '>C labeled bicarbonate (A); OXA-48
without '3C labeled bicarbonate (B), OXA-48 with 'C labeled bicarbonate and frag-
ment 35 (C); OXA-48 with C labeled bicarbonate and fragment 28 (D); OXA-48 with
13C labeled bicarbonate and fragment 21a (E); OXA-48 with '3C labeled bicarbonate
and 3,5-di (4-pyridinyl)benzoic acid 2 (F) and OXA-48 with '3C labeled bicarbonate and
no fragment (G). Two unassigned signals were observed at 164.1 ppm, and are believed
to originate in a second carboxylated site of OXA-48.
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study (Scheme 1).

The 3,5-disubstituted compounds 36—40 were evaluated for
their inhibitory activity against OXA-48 as measured by their ICsp,
K4 and LE and complex structures with OXA-48 and compounds 36,
38 and 40 were obtained (Table 2). The merged compounds 37, 38
and 39 (ICsp (uM)/LE: 110/0.19, 48/0.21, 100/0.22) failed to
adequately maintain the binding interactions as the ICsq values
were at a similar level as the corresponding mono-substituted
fragments 28, 1 and 21a (ICs9 (uM)/LE: 240/0.33, 250/0.32 and
35/0.33). When comparing the IC5q values of compounds 36, 37 and
40 (IC50 (WM)/LE: 2.9/0.27, 48/0.21 and 2.9/0.27) with the corre-
sponding fragments 21a, 21b and 28 (IC5o (uM)/LE: 35/0.33, 450/
0.26, 240/0.3), a 10-fold decrease of the ICs¢ value was observed.
Nevertheless, the improved binding was associated with a decrease
in LE showing that the fragment-enzyme interactions are less
efficient with the merged compounds. The reduction in LE probably
relates to the rigid structure of the merged compounds allowing for
little conformational freedom. Overall, the strongest inhibitors in
this study are compounds 36 and 40 with ICsg values of 2.9 pM and
LE of 0.27.

The structural analysis of the OXA-48 complexes with 36, 38 and
40 showed that the interaction of the carboxylic acid with Arg214 is
maintained. For compound 36, a near perfect overlay was obtained
with the complex structure of fragment 21a showing that all in-
teractions seen with the fragments were preserved in the larger
compound (Fig. 10). The second 3-N-acetamidophenyl group forms
a not previously observed hydrogen bond with Ser244. In the SPR
sensorgrams some concentration dependent aggregation was
observed [30].

Interestingly, the conformation of compound 38 in complex
with OXA-48 was changed compared with the mono-substituted
fragment 28. In the OXA-48:38 complex, one quinolinyl group
bound in the R! site similar to fragment 21a. The other quinolinyl
group positions itself in a conformation similar to the alternative
conformation observed with fragment 35 (Fig. 6). No specific in-
teractions were observed, but this conformation shielded the hy-
drophobic quinoline ring from solvent exposure by burying the
compound deep in the hydrophobic cleft.

The complex structure of the unsymmetrical compound 40
(Fig. 11) that was composed of the quinoline ring of fragment 28
and the 3-N-acetamidophenyl substituent of fragment 13a shared
the key interactions of both mono-substituted fragments validating
our approach, with an ICsg of 2.9 pM.

3. Conclusion

A targeted fragment library consisting of 49 diversely 3-
substituted benzoic acid derivatives was prepared and biochemi-
cally analyzed for their inhibitory activity against OXA-48. Enzyme-
fragment complexes for crystallographic studies were obtained for
33 fragments. By systematically changing the substituent-groups of
the benzoic acid derivatives we were able to identify inhibitory
fragments with ICs5g < 40 pM (21a, 26b, 35). Based on the structural

Ar  merge based Arl Ar2
on structural
information
—
COH CO,H

Ar = substituted phenyl
or heterocyclic groups

Fig. 8. Strategy for substitution of the Ar' and Ar? groups in the focused fragment
library of 3-substituted benzoic acids analogues.

Fig. 9. Superimpositions of the binding poses observed for 21a/28 (A), 21a/1 (B, 1:
PDB-ID:5dva) and 26b/35 (C) showing some of the possible combinations for 3,5-
disubstituted benzoic acids.

Table 2
Inhibitor activities of 3,5-disubstituted benzoic acids analogues against OXA-48
(ICSO' KD and LE)

o
1
Ar \©)‘\OH
Ar2
Arl

r Ar? ID ICs0 (uM) Kp LE*
(uM)
o /@){ o /©>< 36 29 20 0.27
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H H
H H 37 48 70 0.21
o \©\£ (o] @

_ _ _ ’—i 38 110 70 0.19
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H
= e fo) @ 40 2.9 49 027
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*X-ray structure of fragment-enzyme complex available.
¢ LE = (—1.4 x log¢ICsp) /HeavyAtomCount, with units kcal/(mol heavy atom).

3

information, fragments could be classified according to their
preferred binding pocket. Most fragments were orientated towards
the R? site induced by a m-m-stacking with Tyr221. Unfortunately,
no further interactions in the R? site could be identified from our
library. The strongest binding fragments 21a and 26b were binding
in the R! site due to a hydrogen bond to Arg214 and for fragment 35
a hydrogen bond to the carbonyl backbone of Tyr117 was observed.
By overlaying the complex crystal structures of fragments 1, 21a,
26b, 28 and 35, the design of five new 3,5-disubstituted inhibitors
evolved. The strongest 3,5-disubstituted inhibitors 36 and 40
showed ICsg values as low as 2.9 pM, thus have improved inhibitory
potential. The complex crystal structures of 36 and 40 revealed that
the interactions of the individual fragments were mainly retained
in the merged structures. In addition, for inhibitor 36 a previously
not observed hydrogen bond from the 3-N-acetamidophenyl group
in the R? site to Ser244 was found, which is interesting as we
otherwise found few interactions in this region. Future work will
focus on the evaluation of fragments with increased flexibility e.g.
by introducing a CH; or heteroatom linker bridging the aromatic
ring systems to further explore the active site.
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4. Experimental
4.1. Synthesis

4.1.1. Synthesis of 3-substituted benzoic acids (complete data for all
procedures and compounds is found in the Supporting information)
4.1.1.1. General procedure A — aqueous conditions. The halo aryl (1.0
equiv) was dissolved in a mixture of water:dioxane (1:1). The
boronic acid or ester (1.5 equiv) and potassium phosphate (5.0
equiv) were added. The solution was degassed by vacuum/Argon
cycles (10 times) before addition of PdCly(PPhs), (10 mol%) and
further degassed (5 times). The resulting mixture was stirred at
95 °C under argon atmosphere for 16—20 h. The reaction mixture
was filtered through Celite and diluted with water (approx. 30 mL)
before washing with chloroform (3 x 30 mL). If not stated other-
wise, the aqueous phase was concentrated under reduced pressure
and applied to a C18 precolumn before purificationona 10gor60 g
C18 column with a gradient of acetonitrile in water (10—100%) to
yield the desired product.

4.1.1.2. General procedure B — anhydrous conditions. The halo aryl
(1.0 equiv) was dissolved in anhydrous THF. The aryl boronic acid or
aryl boronic ester (1.5 equiv) and inorganic base (5.0 equiv) were
added. The solution was degassed by vacuum/Argon cycles (10
times), before addition of a palladium catalyst (10 mol%) and
further degassed (5 times). The resulting mixture was stirred at
75—90°C under an inert atmosphere for 16—20 h. The reaction
mixture was filtered through Celite and diluted with water (approx.
30 mL) before washing with ethyl acetate (3 x 30 mL). If not stated
otherwise, the aqueous phase was concentrated under reduced
pressure and applied to a C18 precolumn before purification on a
10g or 60g C18 column with a gradient of acetonitrile in water
(10—80%) to yield the desired molecule.

4.1.2. Screening of catalysts (for results see Table SI1)

4.1.2.1. General procedure. 3-Bromo-5-iodobenzoic acid
(0.03—0.06 mmol, 1.0 equiv.) was dissolved in the indicated solvent
(0.5—1 mL/0.01 mmol substrate). The boronic acid or ester (1.5
equiv.) and base (5.0 equiv.) were added. The solution was degassed
by vacuum/Ar cycles (10 times) before addition of the palladium
catalyst and further degassed (5 times). The resulting mixture was
stirred at the indicated temperature under an inert atmosphere for
the indicated reaction time. The crude reaction mixture was
analyzed by HRMS to determine the ratio of int-39: disubstituted
38: starting material. The reaction mixture was filtered through
Celite bed and diluted with water (approx. 30 mL) before washing
with chloroform (3 x 30 mL). The aqueous phase was concentrated
under reduced pressure and applied to a C18 precolumn before
purification on a 60 g C18 column with a gradient of acetonitrile in
water (0—5% over 15 min) to yield the product.

4.1.3. Synthesis of symmetrical 3,5-disubstituted benzoic acid
derivatives

4.1.3.1. 3,5-Di(3-acetamidophenyl)benzoic acid 36.
3-Bromo-5-iodobenzoic acid (0.30 mmol, 100 mg, 1.0 equiv), 3-
acetamidophenylboronic acid (0.45 mmol, 816 mg, 1.5 equiv), po-
tassium phosphate (1.5 mmol, 324 mg, 5.0 equiv) were dissolved in
a mixture of water/dioxane (1:1). The solution was degassed by
vacuum/Ar cycles (10 times) before addition of Pdy(dba);eCHCl3
(15 mg, 5 mol%), and XPhos (7.2 mg, 5 mol%) and further degassed
(5 times). The resulting mixture was stirred at 60 °C for 20—24 h.
The reaction mixture was filtered through Celite bed and diluted
with water (approx. 30mL) before washing with chloroform
(3 x 30mL). The aqueous phase was concentrated under reduced
pressure and applied to a C18 precolumn before purification on a

60 g C18 column with a gradient of acetonitrile in water (0—5% over
15min) to provide 36 (60 mg, 54%) as white powder. 'H NMR
(400 MHz, methanol-dy) 6 8.21 (s, 2H), 7.90 (t,] = 1.7 Hz, 1H), 7.81 (t,
J=1.7Hz, 2H), 7.68 (d, | = 8 Hz, 2H), 7.43 (s, 1H), 7.49—7.46 (m, 2H),
7.43—7.39 (m, 2H), 2.16 (s, 6H). *C NMR (101 MHz, methanol-d4)
0 175.0, 171.8, 142.9, 142.3, 140.5, 132.2, 1304, 128.2, 128.1, 123.9,
120.3, 119.7, 24.0. HRMS (ES])I Calcd. for C23H19N204 [M—H]i
387.1350; found 387.1342. UPLC: purity = 97.5%

4.1.3.2. 3,5-di(4-acetamidophenyl)benzoic acid 37.
3,5-Dibromobenzoic acid (1.01 mmol, 300mg, 1.0 equiv), 3-
acetamidophenylboronic acid (0.81 mmol, 178 mg, 0.75 equiv),
potassium phosphate (3.76 mmol, 0.80g, 3.5 equiv) and
PdCl,(PPhs); (0.11 mmol, 77 mg, 10 mol%) were stirred in a mixture
of water/dioxane (1:1) for 24 h at 95°C under argon atmosphere.
The crude reaction mixture was filtered through Celite and diluted
with water (approx. 30mL) before washing with chloroform
(3 x 30 mL). The aqueous phase was concentrated under reduced
pressure and applied to a C18 precolumn before purification on a
60 g C18 column with a gradient of acetonitrile in water (0—100%
over 12 min). The fractions were analyzed by MS and fractions
containing 37 were combined. The product was purified by reverse-
phase automated flash chromatography before being subjected to
purification by HPLC, to yield 37 (0.09 mmol, 34 mg, 11%) as a white
solid. 'TH NMR (400 MHz, methanol-ds) ¢ 8.24 (s, 2H), 7.98 (d,
J=7.8Hz, 2H), 7.85 (d, J= 7.9 Hz, 2H), 7.68—7.66 (m, 2H), 7.63—7.60
(m, 2H), 7.57—7.53 (m, 1H), 2.16 (s, 6H). 1>*C NMR (101 MHz, meth-
anol-dy) 6 175.2,171.7, 142.0, 140.2, 139.4, 137.9, 131.7, 128.4, 128.2,
127.6, 1274, 123.3, 1214, 116.2, 23.9. HRMS (ESI): Calcd. for
C23H19N204 [M-H] 387.1350; found 387.1340. UPLC: purity >99.5%

4.1.3.3. 3,5-Diquinolin-6-ylbenzoic acid 38.
3,5-Dibromobenzoic acid (0.11 mmol, 33mg, 10 equiv), 6-
quinolinylboronic acid pinacol ester (0.23 mmol, 60mg, 2.0
equiv), potassium phosphate (0.58 mmol, 125 mg, 5.0 equiv) were
dissolved in tert-butanol. The solution was degassed by vacuum/Ar
cycles (10 times) before addition of XPhos-Pd G2 (5 mol%, 5 mg)
and further degassed (5 times). The resulting mixture was stirred at
60 °C for 20—24 h. The reaction mixture was filtered through Celite
bed and diluted with water (approx. 30 mL) before washing with
chloroform (3 x 30 mL). The aqueous phase was concentrated un-
der reduced pressure and applied to a C18 precolumn before pu-
rification by C18 RP flash chromatography with a gradient of
acetonitrile in water (0—5% over 15 min) to yield 38 (0.08 mmol,
29 mg, 65%) as white powder. 'H NMR (400 MHz, methanol-dy)
0 8.87—8.86 (m, 2H), 8.52 (s, 1H), 8.50 (s, 1H), 8.46 (m, 2H), 8.38 (m,
2H), 8.29—-8.26 (m, 3H), 8.18 (s, 1H), 8.16 (s, 1H), 7.61-7.58 (dd,
J=8.3, 42 Hz, 2H). >C NMR (101 MHz, methanol-d4) 6 174.4, 151.1,
148.0, 141.5, 140.5, 138.6, 130.6, 130.1, 129.5, 128.7, 126.9, 122.8.
HRMS (ESI): Calcd. for CysHi5sN,0 [M-H|™ 375.1139; found
375.1133. UPLC: purity =99.1%

4.14. Synthesis of unsymmetrical 3,5-disubstituted benzoic acid
derivatives

4.1.4.1. 3-(3'-Acetamidophenyl)-5-pyridin-4-ylbenzoic  acid  39:
attempted synthesis from 3,5-dibromobenzoic acid.
3,5-Dibromobenzoic acid (1.01 mmol, 300mg, 1.0 equiv), 3-
acetamidophenylboronic acid (0.81 mmol, 178 mg, 0.75 equiv),
potassium phosphate (3.76 mmol, 0.80g, 3.5 equiv) and
PdCl,(PPhs); (0.11 mmol, 77 mg, 10 mol%) were stirred in a mixture
of water/dioxane (1:1) for 24 h at 95°C under argon atmosphere.
The crude reaction mixture was filtered through Celite and diluted
with water (approx. 30 mL) before washing with chloroform
(3 x 30 mL). The aqueous phase was concentrated under reduced
pressure and applied to a C18 precolumn before purification by C18
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RP flash chromatography with a gradient of acetonitrile in water
(10—100% over 12 min). The fractions were analyzed by MS and
fractions containing int-39 were combined and reacted with pyr-
idin-4-ylboronic acid (0.97 mmol, 119 mg, 1.2 equiv), potassium
phosphate (4.05mmol, 0.86g, 5.0 equiv) and PdCly(PPhs);
(0.08 mmol, 56 mg, 10 mol%). The product was purified by reverse-
phase automated flash chromatography before being subjected to
purification by HPLC, to yield 39 (0.12 mmol, 39 mg, 15%) as a white
solid. "TH NMR (400 MHz, methanol-ds) ¢ 8.22 (s, 1H), 7.92 (d,
J=7.6Hz, 1H), 7.76 (s, 2H), 7.68—7.60 (m, 3H), 7.46—7.33 (m, 4H),
2.14 (s, 3H). 13C NMR (101 MHz, methanol-d4) 6 175.3, 171.7, 143.0,
141.5, 140.4, 139.8, 130.3, 129.7, 129.3, 129.3, 128.9, 123.7, 120.1,
119.6, 23.9. UPLC: purity = 97.9%

4.14.2. 3-Bromo-5-(quinolin-6-yl) benzoic acid int-40.
3-Bromo-5-iodobenzoic acid (0.15mmol, 50 mg, 1.0 equiv), 6-
quinolinylboronic acid pinacol ester (0.22 mmol, 58 mg, 1.5 equiv)
and potassium phosphate (0.76 mmol, 162 mg, 5.0 equiv) were
dissolved in a mixture of water/dioxane (1:1). The solution was
degassed by vacuum/Ar cycles (10 times) before addition of
Pdy(dba)s;.CHCl3 (5 mol%, 7.5 mg), and SPhos (5 mol%, 3.1 mg) and
further degassed (5 times). The resulting mixture was stirred at
60°C for 20—24 h. The reaction mixture was filtered through a
Celite bed and diluted with water (approx. 30 mL) before washing
with chloroform (3 x 30 mL). The aqueous phase was concentrated
under reduced pressure and applied to a C18 precolumn before
purification on a 60 g C18 column with a gradient of acetonitrile in
water (0—5% over 20 min). Product int-40 (0.07 mmol, 23 mg, 45%)
was obtained as a white powder. '"H NMR (400 MHz, methanol-d,)
08.92—8.91 (m,1H), 8.49—8.46 (m, 1H), 8.35 (s, 1H), 8.28 (s, 2H), 8.10
(s, 2H), 8.02—8.01 (m, 1H), 7.97—7.96 (m,1H), 7.59—7.56 (dd, ] = 8.3,
4.2Hz, 1H). 3C NMR (101 MHz, DMSO-ds) ¢ 166.6, 150.8, 147.2,
143.6, 140.6, 136.8, 136.5, 131.7, 131.1, 129.6, 128.5, 128.2, 1274,
126.5, 125.8, 121.9, 121.7; HRMS (ESI): Calcd. for C1gH3°BrNO; [M-
H]|™ 325.9822; found 325.9822.

4.1.4.3. 3-(3'-Acetamidophenyl)-5-quinolin-6-ylbenzoic acid 40.
3-Bromo-5-(quinolin-6-yl) benzoic acid int-40 (0.039 mmol, 13 mg,
1.0 equiv), 3-acetamidophenylboronic acid (0.55 mmol, 10 mg, 1.5
equiv) and potassium phosphate (0.20 mmol, 0.42 g, 5.0 equiv)
were dissolved in tert-butanol. The solution was degassed by vac-
uum/Ar cycles (10 times) before addition of Xphos-Pd G2 (5 mol%,
1.5 mg) and further degassed (5 times). The resulting mixture was
stirred at 60°C for 20—24 h. The reaction mixture was filtered
through Celite bed and diluted with water (approx. 30 mL) before
washing with chloroform (3 x 30 mL). The aqueous phase was
concentrated under reduced pressure and applied to a C18 pre-
column before purification on a 60 g C18 column with a gradient of
acetonitrile in water (0—5% over 20 min). Product 40 (0.023 mmol,
9mg, 90%) was obtained as white powder. 'H NMR (400 MHz,
methanol-dy) 6 8.87—8.83 (m, 1H), 8.56—8.45 (m, 1H), 8.41-8.39
(m, 1H), 8.35—8.20 (m, 3H), 8.18—8.11 (m, 1H), 8.08 (t, J= 1.8 Hz,
1H), 7.87—7.86 (m, 1H), 7.72—7.68 (m, 1H), 7.62—7.56 (m, 1H),
7.56—7.49 (m, 1H), 7.46—7.42 (m, 1H), 217 (s, 3H). 3C NMR
(101 MHz, DMSO-dg) 6 174.7,171.8, 151.2, 148.2, 142.8, 142.5, 141.4,
140.8, 140.7, 140.5, 138.8, 130.8, 130.4, 130.3, 129.7, 128.6, 128.5,
128.5, 127.0, 123.9, 123.0, 120.3, 119.7, 23.9. HRMS (ESI): Calcd. for
Cy4H1gN»03 [M-H]™ 381.1245; found 381.1243.UPLC: purity = 96.4%

4.2. Protein production

For the biochemical assay OXA-48 was expressed with the
native signal-peptide and purified from the periplasm as described
earlier [31]. For surface plasmon resonance assays, nuclear mag-
netic resonance and crystallization a His-tagged construct was used

[19].
4.3. Biochemical assay

All experiments were performed using a Spectramax M2e at
25°C in 100 mM sodium phosphate (pH 7.0) supplemented with
50 mM NaHCOs3 and 0.2 mg/mL bovine serum albumin (BSA). Ve-
locities from the linear range were determined in the SoftMax Pro
software (Molecular Devices). All experiments were done with a
sample volume of 100 puL. ICs9 values were determined for all
compounds in competition with 25 pM of the chromogenic sub-
strate nitrocefin. The logig of the inhibitor concentrations to the
response with bottom and top constant based on controls were
fitted nonlinearly in GraphPad Prism 6 (GraphPad Software) to
determine the ICsqg value.

4.4. Surface plasmon resonance

All SPR experiments were performed on a Biacore T200 at 25 °C.
The data were analyzed using Biacore T200 Evaluation Software 2.0
(GE Healthcare). The sensorgrams were double reference sub-
tracted using a reference surface and blank injections. The final
running buffer included 50 mM HEPES pH 7.0, 50 mM K,S04, 0.5%
Tween-20, 50 mM NaHCOs3, and 2.5% DMSO. The enzyme, OXA-48,
was diluted to 25 pg/mL in 10 mM MES pH 5.5. The enzyme was
immobilized to a level of around 5000 RU on a CM5 chip using
standard amine coupling.

Compounds were tested with 10 dilutions from 400 pM to
10.5 uM, with 30 s injection and 60 s dissociation time. Compounds
exhibiting kinetic behavior had the dissociation time extended to
300s. Seven startup cycles with buffer were performed. Solvent
correction was performed every 48th cycle and a positive control
was included every 24th cycle with 3.5-Di (4-pyridinyl)benzoic acid
as the control [19]. Affinities were calculated from the steady-state
affinity model with a constant Ryax adjusted by the control and the
molecular weight of the compound.

4.5. BC nuclear magnetic resonance

A solution of NaH>CO3 in D,0O (50 mM) was prepared. The
NaH'3C03/D,0-mixture was added to 1 mM OXA-48 in 50 mM so-
dium phosphate and 50 mM sodium bicarbonate pH 6.5 ina 1: 9
ratio of bicarbonate to enzyme. Compounds were diluted from a
150 mM stock solution in 100% DMSO to a final concentration of
3.75mM (2.5% DMSO). Sample volumes of 500 uL were used. We
performed the experiment at 37 °C with a Bruker Avance IIl HD
with an inverse detected TCI probe with cryogenic enhancement
for 'H, 3C and 2H, operating at 599.90 MHz for protons and
150.86 MHz for carbon. 10 000 scans at 30° pulse angle with 2s
relaxation delay were collected using 1D'>C NMR with power-
gated decoupling of protons (zgpg30 using waltz16).

4.6. Crystallization and data processing

Crystals of OXA-48 was grown from hanging drops containing
0.1 M HEPES pH 7.5, 8—11% PEG 8000 and 4—8% 1-butanol as pre-
viously described [17]. Compounds were diluted to 3.75 mM in the
cryo solution with 0.1 M HEPES pH 7.5, 10% PEG 8000, 5% 1-butanol,
and 25% ethanediol, usually overnight. The exception was the
crystal soaked in imipenem. Imipenem was added to saturation in
the cryosolution, and the crystal was just given a quick soak.

Crystals were flash cooled in liquid nitrogen. X-ray diffraction
data were collected at BL 14.1 and BL14.2 at BESSY (Berlin, Ger-
many) [32], and at ID23-1, ID23-2 and ID30B at ESRF (Grenoble,
France). In most cases the structures were solved by refining
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against the protein-atoms of previous structures (P21212; PDB ID:
5DVA and P2 PDB ID: 5DTK), but in cases where the unit cells were
to different PHASER was used with chain A from PDB ID: 5dtk as the
search model for molecular replacement. In most cases images
were autoprocessed using the tools at the beamlines [33—37], but
in some cases we found it useful to reprocess using DIALS or XDS
together with AIMLESS [38—40].

The compounds were built into difference density maps after
initial refinement in phenix.refine [41], with waters deleted from
the active site. Restraints for the compounds were prepared using
the GRADE Web Server [42]. Omit maps were calculated using the
phenix.polder-tool which excludes bulk-solvent from the volume
surrounding the ligand [43]. Figures were made using PyMOL [44].
Ligand-interaction diagrams were prepared using the Maestro-
suite from Schrodinger Release 2016-3 (Schrodinger, LLC, New
York).
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1 Synthesis

1.1 Material and methods

All reagents and solvents were purchased from commercial sources and used as supplied, unless
otherwise stated. Solvent mixtures are given in (v|v). The water used for reactions, was purified on a
Millipore RiOs™ device. The aqueous phase was concentrated under reduced pressure and Purification
of compounds was carried out by automated RP flash chromatography with preloading to a C18
Samplet® cartridge (Biotage) before purification on a C18 RP column (Biotage) or by flash
chromatography using silica gel from Merck (Silica gel 60, 0.040—0.063 mm). For thin layer
chromatography TLC-PET sheets precoated with silica gel (60 F254) were used. Visualization was
accomplished with either UV light or by immersion in potassium permanganate, phosphomolybdic acid
(PMA) or ninhydrin followed by light heating with a heating gun. Purity analysis was carried out on
Waters Acquity UHPLC® BEH C18 (1.7 um, 2.1 x 100 mm) column on a Waters Acquity I-class UHPLC
with a photodiode array setector. NMR spectra were recorded on a 400 MHz Bruker Avance Ill HD
equipped with a 5 mm SmartProbe BB/1H (BB = *°F, *'P, °N). Data are represented as follows: chemical
shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dt = double triplet, m = multiplet),
coupling constant (J, Hz) and integration. Chemical shifts (8) are reported in ppm relative to the
residual solvent peak (CDCls : 6y 7.26 and é¢ 77.16; methanol-d, : 6y 3.31 and 8¢ 49.00, deuterium
oxide: &4 4.79 and &¢ 49.00; DMSO-dg 6y 2.51 and 6¢ 39.52). The raw data was analysed with
MestReNova (Version 10.0.2-15465). Electrospray ionization mass spectrometry was conducted on a
Thermo electron LTQ Orbitrap XL spectrometer. The data was analyzed with Thermo Scientific Xcalibur
software. Melting points were determined on a Biichi 535 device or a ThermoFischer Scientific IA9100
Digital Melting Point apparatus.

1.2 Synthesis of 3-substituted benzoic acids

General procedure A — Aqueous conditions:

The halo aryl (1.0 equiv) was dissolved in a mixture of water:dioxane (1:1). The boronic acid or ester
(1.5 equiv) and potassium phosphate (5.0 equiv) were added. The solution was degassed by
vacuum/argon cycles (10 times) before addition of PdCl,(PPhs), (10 mol%) and further degassed (5
times). The resulting mixture was stirred at 95 °C under argon atmosphere for 16-20 hours. The
reaction mixture was filtered through Celite and diluted with water (approx. 30 mL) before washing
with chloroform (3 x 30 mL). If not stated otherwise, the aqueous phase was concentrated under
reduced pressure and applied to a C18 precolumn before purification on a 10g or 60 g C18 column with
a gradient of acetonitrile in water (10-100%) to yield the desired product.

General procedure B — Anhydrous conditions:

The halo aryl (1.0 equiv) was dissolved in anhydrous THF. The aryl boronic acid or aryl boronic ester
(1.5 equiv) and inorganic base (5.0 equiv) were added. The solution was degassed by vacuum/Argon
cycles (10 times), before addition of a palladium catalyst (10 mol%) and further degassed (5 times).
The resulting mixture was stirred at 75—90 °C under an inert atmosphere for 16-20 hours. The reaction
mixture was filtered through Celite and diluted with water (approx. 30 mL) before washing with ethyl
acetate (3 x 30 mL). If not stated otherwise, the aqueous phase was concentrated under reduced
pressure and applied to a C18 precolumn before purification on a 10 g or 60 g C18 column with a
gradient of acetonitrile in water (10-80%) to yield the desired molecule.

2'-methylbiphenyl-3-carboxylic acid, 3a:
According to procedure A, 3-carboxyphenylboronic acid pinacol ester (1.32 mmol, 326 mg, 1.5 equiv),

2-bromotoluene (0.88mmol, 150 mg, 1 equiv), potassium phosphate (4.39 mmol, 929 mg, 5 equiv) and
PdCIl,(PPh3), (0.088 mmol, 62 mg, 10 mol%) gave 3a (0.64 mmol, 136 mg, 78 %) as white solid. T, =



288-289°C. 'H NMR (400 MHz, methanol-ds) 6 7.90-7.79 (m, 2H), 7.33-7.29 (m, 1H), 7.24 (dt, J = 7.6,
1.6 Hz, 1H), 7.18-7.07 (m, 4H), 2.14 (s, 3H). °C NMR (101 MHz, methanol-d,) 6 175.4, 143.2, 142.9,
139.1, 136.4, 131.9, 131.3, 131.1, 130.7, 128.7, 128.5, 128.3, 126.8, 20.6. HRMS (ESI): Calcd. for
C14H100;, [M-H] 211.0765; found 211.0766. UHPLC: purity = 97.5 %

3'-methylbiphenyl-3-carboxylic acid, 3b:

According to procedure A, 3-carboxyphenylboronic acid pinacol ester (1.32 mmol, 326 mg, 1.5 equiv),
3-bromotoluene (0.88 mmol, 150 mg, 1.0 equiv), potassium phosphate (4.39 mmol, 929 mg, 5.0 equiv)
and PdCl,(PPh3), (0.088 mmol, 62 mg, 10 mol%) gave 3b (0.59 mmol, 124 mg, 67 %) as white solid. T,
= 257-258°C. "H NMR (400 MHz, methanol-d,) 6 8.12 (s, 1H), 7.81 (d, J = 7.7 Hz, 1H), 7.55 (d, J = 7.8 Hz,
1H), 7.40-7.28 (m, 3H), 7.21 (t, J = 7.6 Hz, 1H), 7.05 (d, J = 7.5 Hz, 1H), 2.31 (s, 3H).">*C NMR (101 MHz,
methanol-d,) 6§ 175.4,142.3,142.1,139.6,139.5,129.7,129.7,129.2,129.1,128.9,128.9, 128.7,125.1,
21.6. HRMS (ESI): Calcd. for C14H100; [M-H] 211.0765; found 211.0768. UHPLC: purity = 95.5 %

2'-hydroxybiphenyl-3-carboxylic acid, 4a:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-
hydroxyphenylboronic acid (1.86 mmol, 256 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32 g,
5.0 equiv) and PdCl,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 4a (1.17 mmol, 250 mg, 94 %) as white
solid. T, = 290-291°C. *H NMR (400 MHz, DMSO-d¢) 6 8.09 (s, 1H), 7.79 (d, J = 7.7 Hz, 1H), 7.47 (d, J =
7.7 Hz, 1H), 7.27 (t,J = 7.6 Hz, 1H), 7.21 (dd, J = 7.6, 1.6 Hz, 1H), 7.14-6.99 (m, 2H), 6.82 (td, J= 7.2, 1.6
Hz, 1H). B¢ NMR (101 MHz, DMSO-dg) 6 169.9, 155.6, 141.0, 138.2, 130.6, 130.4, 129.7, 128.7, 128.5,
127.7, 127.0, 119.2, 116.7. HRMS (ESI): Calcd. for C;3H903 [M-H] 213.0557 found 213.0561. UHPLC:
purity > 99.5%

3'-hydroxybiphenyl-3-carboxylic acid, 4b:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-hydroxyphenyl
boronic acid (1.86 mmol, 256 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32 g, 5.0 equiv) and
PdCl,(PPh3), (0.124 mmol, 87 mg, 10 mol%) gave, 4b(1.21 mmol, 260 mg, 98 %) as white solid. T, =
279-280°C. *H NMR (400 MHz, DMSO-d) 6 8.19 (s, 1H), 7.82 (d, J = 7.5 Hz, 1H), 7.53 (d, J = 7.7 Hz, 1H),
7.32 (t, J = 7.6 Hz, 1H), 7.23-7.17 (m, 2H), 7.01 (s, 1H), 6.73 (d, J = 7.9 Hz, 1H). *C NMR (101 MHz,
DMSO-dq) & 169.5, 159.4, 142.2, 141.8, 139.7, 130.1, 128.4, 128.0, 127.6, 127.1, 116.8, 114.9, 114.1.
HRMS (ESI): Calcd. for C13Hg03 [M-H] 213.0557; found 213.0565. UHPLC: purity = 96.0 %

4'-hydroxybiphenyl-3-carboxylic acid, 4c:

According to general procedure A, 3-bromobenzoic acid (0.75 mmol, 150 mg, 1.0 equiv), (4-
hydroxyphenyl)boronic acid (1.12 mmol, 154 mg, 1.5 equiv), potassium phosphate (3.73 mmol, 792
mg, 5.0 equiv) and PdCl,(PPhs), (0.07 mmol, 52 mg, 10 mol%) were stirred at 95°C. The aqueous phase
was washed with a mixture of hexane/ethyl acetate (1:1, v/v, 3 x 30 mL) instead of chloroform. After
purification the title compound, 4c (0.29 mmol, 63 mg, 39%) was obtained as a dark brown solid. T, =
257-259°C."H NMR (400 MHz, methanol-d,) 6 8.13 (t, J = 1.8 Hz, 1H), 7.83 (dt, J = 7.7, 1.4 Hz, 1H), 7.62
(dt, J=7.8, 1.4 Hz, 1H), 7.55-7.49 (m, 2H), 7.43 (t,J = 7.7 Hz, 1H), 6.95-6.88 (m, 2H). *C NMR (101 MHz,
methanol-d,) 6 175.7, 157.5, 141.5, 138.8, 133.5, 129.4, 129.3, 129.0, 128.3, 128.0, 116.8. HRMS (ESI):
Calcd. for C13Hg03 [M-H] 213.0557; found 213.0577. UHPLC: purity =97.8 %

3'-(hydroxymethyl)biphenyl-3-carboxylic acid, 5:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-
(Hydroxymethyl)phenylboronic acid (1.86 mmol, 282 mg, 1.5 equiv), potassium phosphate (6.20
mmol, 1.32 g, 5.0 equiv) and PdCl,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 5, (1.04 mmol, 239 mg,



84 %) as white solid. T, = 241-242°C. '"H NMR (400 MHz, DMSO-dg) & 8.14 (s, 1H), 7.87 (d, J = 7.9 Hz,
1H), 7.81 (d, J = 8.0 Hz, 1H), 7.68 (d, J = 13.8 Hz, 2H), 7.58-7.52 (m, 2H), 7.42 (d, J = 8.0 Hz, 1H), 4.72 (s,
2H). °C NMR (101 MHz, DMSO-dg) & 169.1, 143.7, 142.6, 141.1, 139.4, 129.1, 128.5, 128.1, 127.8,
126.9, 125.7, 125.3, 125.1, 63.4. HRMS (ESI): Calcd. for Ci4H1:03 [M-H] 227.0714; found 227.0716.
UHPLC: purity =95.1%

2'-methoxybiphenyl-3-carboxylic acid, 6a:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-
methoxyphenylboronic acid (1.86 mmol, 282 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32 g,
5.0 equiv) and PdCI,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 6a (0.89 mmol, 205 mg, 73 %) as white
solid. T, = 88-89°C. "H NMR (400 MHz, DMSO-dg) 6 7.93 (s, 1H), 7.79 (d, J = 7.6 Hz, 1H), 7.38-7.22 (m,
4H), 7.10 (d, J = 8.2 Hz, 1H), 7.02 (t, J = 7.4 Hz, 1H), 3.75 (s, 3H). >*C NMR (101 MHz, DMSO-d¢) § 169.2,
156.7, 141.9, 137.3, 131.1, 130.9, 130.4, 129.5, 128.9, 127.9, 126.9, 121.1, 112.1, 55.9. HRMS (ESI):
Calcd. for C14H1,03 [M-H] 227.0714; found 227.0712. UHPLC: purity = 98.0 %

3'-methoxybiphenyl-3-carboxylic acid, 6b:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-
methoxyphenylboronic acid (1.86 mmol, 282 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32 g,
5.0 equiv) and PdCI,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 6b (1.04 mmol, 237 mg, 84 %) as white
solid. T, = 149-150°C. "H NMR (400 MHz, DMSO-d) 6 8.12 (s, 1H), 7.84 (d, J = 7.0 Hz, 1H), 7.55 (d, J =
7.7 Hz, 1H), 7.35 (dt, J = 18.7, 7.7 Hz, 2H), 7.21 (d, J = 7.6 Hz, 1H), 7.15 (s, 1H), 6.92 (dd, J = 8.2, 2.5 Hz,
1H), 3.83 (s, 3H). >*C NMR (101 MHz, DMSO-d) & 168.3, 159.7, 142.5,138.7, 129.9, 128.3,127.5, 127.3,
126.5,118.9,112.7,111.9,99.5, 55.1. HRMS (ESI): Calcd. for C14H1,03 [M-H] 227.0714; found 227.0711.
UHPLC: purity >99.5 %

4'-methoxybiphenyl-3-carboxylic acid, 6¢:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 4-methoxyphenyl
boronic acid (1.86 mmol, 282 mg, 1.5 equiv), potassium phosphate (7.44 mmol, 1.58 g, 6.0 equiv) and
PdCl,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 6¢ (1.07 mmol, 244 mg, 86 %) as white solid. "H NMR
(400 MHz, methanol-d,) 6 8.19 (s, 1H), 7.87 (d, J = 7.5 Hz, 1H), 7.75-7.51 (m, 3H), 7.40 (t, J = 7.7 Hz,
1H), 7.00 (d, J = 8.0 Hz, 2H), 3.83 (s, 3H).">C NMR (101 MHz, methanol-d,) & 175.3, 160.6,141.5, 139.4,
134.7,129.2,129.1, 128.9, 128.4, 128.3, 115.2, 55.6. HRMS (ESI): Calcd. for C14H1,;03 [M-H]227.0708;
found 227.0724. UHPLC: purity = 98.8 %

4'-methylthiobiphenyl-3-carboxylic acid, 7:

According to general procedure B, 3-bromobenzoic acid (0.75 mmol, 150 mg, 1.0 equiv), 4-
(methylthio)phenyl boronic acid (1.12 mmol, 188 mg, 1.5 equiv), Na,CO; (3.73 mmol, 395 mg, 5.0
equiv), PdCl,(dppf) (0.07 mmol, 55 mg, 10 mol%) in anhydrous THF (8 mL) was stirred at 75°C for 18h.
After purification the title compound, 7 (0.68 mmol, 167 mg, 91%) was obtained as a brownish solid.
Tm = 228°C. "H NMR (400 MHz, methanol-d,) 6 7.93-7.85 (m, 1H), 7.69-7.62 (m, 1H), 7.63-7.58 (m, 2H),
7.45 (t,J=7.9 Hz, 1H), 7.37-7.30 (m, 2H). *C NMR (101 MHz, methanol-d,) § 175.4, 141.0, 139.2, 138.9,
138.7,129.5, 129.5, 129.0, 128.3, 127.8, 15.7. HRMS (ESI): Calcd. for C14H1;0,S [M-H] 243.0485; found
243.0483. UHPLC: purity =98.4 %

2'-fluorobiphenyl-3-carboxylic acid, 8a:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 2-
flourophenylboronic acid (1.86 mmol, 256 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32 g,
5.0 equiv) and PdCI,(PPh3), (0.124 mmol, 87 mg, 10 mol%) gave 8a (0.84 mmol, 181 mg, 68 %) as white



solid. T, = 260-261°C. "H NMR (400 MHz, methanol-d,) 6 8.04 (s, 1H), 7.86 (d, J = 7.6 Hz, 1H), 7.49 (d, J
=7.7 Hz, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.37-7.20 (m, 1H), 7.15 (t, J = 7.5 Hz, 1H), 7.12-7.02 (m, 1H). *C
NMR (101 MHz, methanol-ds) § 175.1, 161.1 (d, J = 246.5 Hz), 139.5, 136.6, 131.9 (d, J = 3.4 Hz), 131.8
(d, J=3.5Hz), 130.9 (d, J = 2.4 Hz), 130.3 (d, J = 8.4 Hz), 129.6, 128.8, 125.6 (d, J = 3.8 Hz), 116.9 (d, J =
22.9 Hz). HRMS (ESI): Calcd. for Cy3HgFO, [M-H] 215.0514; found 215.0511. UHPLC: purity > 99.5%

3'-fluorobiphenyl-3-carboxylic acid, 8b:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-
flourophenylboronic acid (1.86 mmol, 256 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32 g,
5.0 equiv) and PdCI,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 8b (1.03 mmol, 222 mg, 83 %) as white
solid. T, = 239-241°C. "H NMR (400 MHz, methanol-d,) §8.13 (s, 1H), 7.85 (d, J = 7.6 Hz, 1H), 7.58 (d, J
= 7.7 Hz, 1H), 7.49-7.20 (m, 4H), 6.97 (t, J = 8.6 Hz, 1H). >C NMR (101 MHz, methanol-d,) 6 175.05,
164.71 (d, J = 244.0 Hz), 144.83, 140.56, 139.90, 131.53, 129.78, 129.68, 129.44, 128.89, 123.87,
123.84,114.74 (dd, J = 25.9, 21.8 Hz). HRMS (ESI): Calcd. for C13HgFO, [M-H] 215.0514; found 215.0511.
UHPLC: purity =98.7%

4'-fluorobiphenyl-3-carboxylic acid, 8c:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 4-
flourophenylboronic acid (1.86 mmol, 256 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32 g,
5.0 equiv) and PdCl,(PPh3), (0.124 mmol, 87 mg, 10 mol%) gave 8c (0.97 mmol, 169 mg, 78 %) as white
solid. Ty = 298-299°C. 'H NMR (400 MHz, DMSO-dg) & 8.10 (s, 1H), 7.83 (d, J = 7.5 Hz, 1H), 7.75-7.58
(m, 2H), 7.52 (d, J = 7.8 Hz, 1H), 7.42-7.19 (m, 3H). *C NMR (101 MHz, DMSO-dg) 6 168.9, 162.1 (d, J =
243.6 Hz), 142.8,138.27,137.8,137.81, 128.9, 128.9, 128.6, 128.1, 127.7,126.8, 116.1 (d, J = 21.2 Hz).
HRMS (ESI): Calcd. for C13HgFO, [M-H] 215.0514; found 215.0511. UHPLC: purity > 99.5%

2'-(methoxycarbonyl)biphenyl-3-carboxylic acid, 9a:

According to general procedure B, 3-bromobenzoic acid (0.75 mmol, 150 mg, 1.0 equiv), (2-
(methoxycarbonyl)phenyl)boronic acid (1.12 mmol, 201 mg, 1.5 equiv), Na,COs (3.73 mmol, 395 mg,
5.0 equiv) and PdCl,(dppf) (0.07 mmol, 55 mg, 10 mol%) in anhydrous THF (8 mL) was stirred at 90 °C
for 20h. After purification the title compound, 9a (0.43 mmol, 109 mg, 57%) was obtained as a brown
solid. T,, = 206-208°C."H NMR (400 MHz, methanol-d,;) 6 7.97-7.92 (m, 2H), 7.77 (dd, J = 8.0, 1.5 Hz,
1H), 7.61-7.53 (m, 1H), 7.47-7.36 (m, 3H), 7.31 (dt, J = 7.7, 1.5 Hz, 1H), 3.60 (s, 3H). °C NMR (101 MHz,
methanol-d,;) 6§ 175.1,171.0, 143.6, 142.1,139.2,132.5,132.4,131.8, 131.2,130.6, 130.3, 129.2, 128.5,
128.3, 52.4. HRMS (ESI): Calcd. for Cy5sH4,04 [M-H] 255.0663; found 255.0660. UHPLC: purity > 99.5%

3'-(methoxycarbonyl)biphenyl-3-carboxylic acid, 9b:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-
Methoxycarbonylphenylboronic acid (1.86 mmol, 335 mg, 1.5 equiv), potassium phosphate (6.20
mmol, 1.32 g, 5.0 equiv) and PdCl,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 9b (0.68 mmol, 174 mg,
54 %) as white solid. Ty, = 163-164°C. *H NMR (400 MHz, DMSO-dg) 6 8.21 (s, 1H), 8.18 (s, 1H), 7.97-
7.94 (m, 2H), 7.88 (d, J = 7.6 Hz, 1H), 7.63 (t, J = 8.0 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 3.91 (s, 3H).">*C NMR
(101 MHz, DMSO-d¢) & 168.6, 166.7, 142.9, 141.7, 138.1, 131.8, 130.7, 129.9, 129.1, 128.3, 128.2,
127.7, 127.4, 126.9, 52.7. HRMS (ESI): Calcd. for CysH4;,04 [M-H] 255.0663; found 255.0660. UHPLC:
purity =97.8 %

4'-acetylbiphenyl-3-carboxylic acid, 10:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 4-acetylphenylboronic
acid (1.86 mmol, 305 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32 g, 5.0 equiv) and



PdCl,(PPh3), (0.124 mmol, 87 mg, 10 mol%) gave 10 (0.68 mmol, 174 mg, 54 %) as white solid. T, =
287-289°C. *H NMR (400 MHz, DMSO-ds) & 8.23 (s, 1H), 8.06 (d, J = 8.2 Hz, 2H), 7.91 (d, J = 7.6 Hz, 1H),
7.82 (d, J = 8.1 Hz, 2H), 7.66 (d, J = 7.9 Hz, 1H), 7.40 (t, J = 7.6 Hz, 1H), 2.63 (s, 3H). °C NMR (101 MHz,
DMSO-dg) & 197.9, 168.7, 145.7, 142.9, 138.0, 135.8, 129.5, 129.4, 128.3, 127.9, 127.2, 127.2, 27.2.
HRMS (ESI): Calcd. for C15H11,03 [M-H] 239.0714; found 239.0709. UHPLC: purity = 95.4 %

3'-carbamoylbiphenyl-3-carboxylic acid, 11a:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-
aminocarbonylphenylboronic acid (1.86 mmol, 307 mg, 1.5 equiv), potassium phosphate (6.20 mmol,
1.32 g, 5.0 equiv) and PdCI,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 11a (1.59 mmol, 383 mg, 85 %)
as white solid. T, = 235-237°C. *H NMR (400 MHz, DMSO-d¢) & 8.25 (s, 1H), 8.23 (s, 2H), 7.93-7.90 (m,
2H), 7.85 (d, J = 7.8 Hz, 1H), 7.67 (d, J = 7.5 Hz, 1H), 7.59 (t, J = 7.7 Hz, 1H), 7.46-7.40 (m, 2H). *C NMR
(101 MHz, DMSO-d¢) & 168.8, 168.4, 142.9, 141.3, 138.7, 135.4, 129.8, 129.3, 128.9, 128.1, 127.9,
126.9, 126.7, 126.1. HRMS (ESI): Calcd. for C14H10NO3 [M-H] 240.0666; found 240.0662. UHPLC: purity
=96.7%

4'-carbamoylbiphenyl-3-carboxylic acid, 11b:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 4-
aminocarbonylphenylboronic acid (1.86 mmol, 307 mg, 1.5 equiv), potassium phosphate (6.20 mmol,
1.32 g, 5.0 equiv) and PdCl,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 11b (1.20 mmol, 290 mg, 97 %)
as white solid. T, = 262-263°C. '"H NMR (400 MHz, methanol-ds) 6 8.19 (s, 1H), 7.92-7.83 (m, 3H), 7.71-
7.59 (m, 3H), 7.37 (t, J = 7.7 Hz, 1H). >C NMR (101 MHz, methanol-d,) § 175.0, 172.1, 145.8, 140.7,
139.9, 133.6, 130.7, 129.9, 129.8, 129.5, 129.3, 129.0, 128.0, 116.5. HRMS (ESI): Calcd. for C;4H1oNO3
[M-H] 240.0666; found 240.0671. UHPLC: purity =97.5 %

3'-(methylsulfonyl)biphenyl-3-carboxylic acid, 12a:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 3-
methanesufonylphenyl boronic acid (1.24 mmol, 248 mg, 1 equiv), potassium phosphate (3.72 mmol,
789 mg, 3 equiv) and PdCl,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 21a (1.02 mmol, 283 mg, 82 %)
as white solid. T, = 96-98°C. "H NMR (400 MHz, methanol-d,) & 8.20 (s, 1H), 8.15 (s, 1H), 7.95-7.88 (m,
2H), 7.84 (d, J = 7.8 Hz, 1H), 7.67-7.61 (m, 2H), 7.40 (t, J = 7.7 Hz, 1H), 3.09 (s, 3H)."*C NMR (101 MHz,
methanol-d,;) 6 174.8,143.9, 142.8,140.2,139.9, 133.3,131.1, 130.2, 129.8, 129.7, 129.0, 126.9, 126.6,
44.4. HRMS (ESI): Calcd. for C14H1,0,4S [M-H] 275.0384; found 275.0389. UHPLC: purity =95.4 %

4'-(methylsulfonyl)biphenyl-3-carboxylic acid, 12b:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 4-
methanesufonylphenyl boronic acid (1.24 mmol, 248 mg, 1.0 equiv), potassium phosphate (3.72 mmol,
789 mg, 3.0 equiv) and PdCl,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 21b (1.12 mmol, 309 mg, 90
%) as white solid. T, = 127-129°C. "H NMR (400 MHz, DMSO-dg) & 8.23 (s, 1H), 8.05-7.86 (m, 5H), 7.66
(d, J = 7.6 Hz, 1H), 7.41 (t, J = 7.6 Hz, 1H), 3.26 (s, 3H). *C NMR (101 MHz, DMSO-ds) 6 168.7, 146.2,
142.9, 139.7, 137.6, 129.8, 128.4, 128.10, 127.9, 127.4, 44.1. HRMS (ESI): Calcd. for C14H110,4S [M-H]
275.0384; found 275.0380. UHPLC: purity =96.2 %

4'-aminobiphenyl-3-carboxylic acid, 13:

According to general procedure A, 4-bromoaniline (1.45 mmol, 250 mg, 1.0 equiv), 3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (2.18 mmol, 541 mg, 1.5 equiv) potassium
phosphate (7.27 mmol, 1.54 g, 5.0 equiv) and PdCl,(PPhs), (0.15 mmol, 102 mg, 10 mol%), gave 13
(0.51 mmol, 109 mg, 35%) as a white solid. T, = 195°C."H NMR (400 MHz, methanol-d,) 6 8.13 (t, J =



1.8 Hz, 1H), 7.85-7.77 (m, 1H), 7.65-7.57 (m, 2H), 7.41 (t, J = 7.7 Hz, 1H), 6.90-6.84 (m, 2H). *C NMR
(101 MHz, methanol-d,) 6 169.0, 148.0, 141.9, 139.3, 128.2, 127.3, 127.0, 126.5, 126.1, 125.2, 114.2.
HRMS (ESI): Calcd. for C13H100,N [M-H] 212.0717; found 212.0712. HPLC, purity = 98.3 %

4'-dimethylaminobiphenyl-3-carboxylic acid, 14:

According to general procedure A, 3-bromobenzoic acid (0.75 mmol, 150 mg, 1.0 equiv), 3-
dimethylaminophenyl) boronic acid (1.12 mmol, 185 mg, 1.5 equiv), potassium phosphate (3.73 mmol,
792 mg, 5.0 equiv) and PdCl,(PPh3), (0.07 mmol, 52 mg, 10 mol%) gave 14 (0.71 mmol, 172 mg, 95%)
as red solid. T, = 192-194°C. 'H NMR (400 MHz, deuterium oxide) & 8.09 (t, J = 1.7 Hz, 1H), 7.89-7.80
(m, 1H), 7.68-7.60 (m, 1H), 7.47 (t, J = 7.7 Hz, 1H), 7.32 (t, J = 7.9 Hz, 1H), 7.12 (t, J = 2.0 Hz, 1H), 7.11-
7.04 (m, 1H), 6.96-6.88 (m, 1H), 2.80 (s, 6H). >C NMR (101 MHz, deuterium oxide) § 175.3, 151.8,
141.2,140.7,136.8,129.9, 129.6, 128.8,127.9,127.4,118.1, 114.9, 113.8, 41.1. HRMS (ESI): Calcd. for
C15H14NO, [M-H] 240.1030; found 240.1029. HPLC purity =95.1 %

3'-(aminomethyl)biphenyl]-3-carboxylic acid, 15a:

According to general procedure A, 3-bromobenzylamin hydrochloride (250 mg, 1.12 mmol, 1.0 equiv),
3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoic acid (1.69 mmol, 418 mg, 1.5 equiv),
potassium phosphate (5.62 mmol, 1.19 g, 5.0 equiv), PdCl,(PPhs), (0.11 mmol, 79 mg, 10 mol%), after
purification by flash chromatography on silica gel using a mixture of an acidic stock solution (acetic
acid/H,0/MeOH/ethyl acetate, 3:2:3:3) and ethyl acetate (1:9), then acidic stock solution/ethyl
acetate (1:2) as eluent, gave 15a (0.40 mmol, 91 mg, 36%) as a slightly yellow solid. T,, = 346°C
(decomposes)."H NMR (400 MHz, deuterium oxide) & 8.06 (d, J = 1.8 Hz, 1H), 7.80-7.77 (m, 1H), 7.66-
7.63 (m, 1H), 7.52-7.42 (m, 3H), 7.38 (t, J = 7.6 Hz, 1H), 7.25 (d, J = 7.5 Hz, 1H), 3.71 (s, 2H). °C NMR
(101 MHz, deuterium oxide) 6 176.1, 144.2, 141.5, 141.4, 138.1, 130.4, 130.3, 129.8, 128.9, 128.3,
127.6, 126.7, 126.4, 45.8. HRMS (ESI): Calcd. for C;4H1,NO, [M-H] 226.0874; found 226.0872. UHPLC:
purity =95.2 %

4'-(aminomethyl)biphenyl-3-carboxylic acid, 15b:

According to general procedure A, 4-bromobenzylamin hydrochloride (250 mg, 1.12 mmol, 1.0 equiv),
3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoic acid (1.69 mmol, 418 mg, 1.5 equiv),
potassium phosphate (5.62 mmol, 1.19 g, 5.0 equiv), PdCl,(PPhs), (0.11 mmol, 79 mg, 10 mol%), after
purification by flash chromatography on silica gel using a mixture of an acidic stock solution (acetic
acid/H,0/MeOH/ethyl acetate, 3:2:3:3) and ethyl acetate (1:9), then acidic stock solution/ethyl
acetate (1:2) as eluent, gave 15b (0.96 mmol, 220 mg, 86%) as a slightly yellow solid. T,, = 213-215°C.
'H NMR (400 MHz, deuterium oxide) & 8.00 (s, 1H), 7.74 (d, J = 7.7 Hz, 1H), 7.64 (d, J = 8.2 Hz, 1H), 7.54
(d, J = 8.0 Hz, 2H), 7.42 (t, J = 7.7 Hz, 1H), 7.31 (d, J = 8.0 Hz, 1H), 3.67 (s, 2H). *C NMR (101 MHz,
deuterium oxide) & 175.3, 141.9, 140.1, 138.5, 136.9, 129.4, 128.9, 127.9, 127.8, 127.1, 127.0, 44.3.
HRMS (ESI): Calcd. for C14H1,NO, [M-H] 226.0874; found 226.0872. UHPLC: purity = 83.2 %

3'-(2-aminoethyl)biphenyl-3-carboxylic acid, 16a:

According to general procedure A, 3-bromobenzylamin hydrochloride (250 mg, 1.25 mmol, 1.0 equiv),
3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoic acid (1.87 mmol, 465 mg, 1.5 equiv),
potassium phosphate (1.33 mmol, 1.33 g, 5.0 equiv), PdCl,(PPhs), (0.12 mmol, 88 mg, 10 mol%), after
purification by flash chromatography on silica gel using a mixture of an acidic stock solution (acetic
acid/H,0/MeOH/ethyl acetate, 3:2:3:3) and ethyl acetate (1:9), then acidic stock solution/ethyl
acetate (1:2) as eluent, gave 16a (0.19 mmol, 45 mg, 15%) as a slightly yellow solid. T,, = 232-235°C. 'H
NMR (400 MHz, methanol-d,) 6 8.23 (s, 1H), 7.93-7.91 (m, 1H), 7.65-7.63 (m, 1H), 7.52-7.48 (m, 2H),
7.43-7.31 (m, 2H), 7.20-7.18 (m, 1H), 2.97 (t, J = 7.1 Hz, 2H), 2.85 (t, J = 7.1 Hz, 2H). >C NMR (101 MHz,



methanol-d,) 6 173.8, 141.1, 140.2, 139.4, 138.0, 128.5, 128.1, 127.7, 127.6, 127.4, 127.2, 127.0, 124.6,
42.3, 38.1. HRMS (ESI): Calcd. for C14H1,0,N [M-H] 240.1030; found 240.1028. UHPLC: purity = 95.5 %

4'-(2-aminoethyl)biphenyl-3-carboxylic acid, 16b:

The compound was prepared according to general procedure A. 4-Bromophenethylamine (1.25 mmol,
250 mg, 1.0 equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (1.87 mmol, 465 mg,
1.5 equiv), potassium phosphate (6.25 mmol, 1.33 g, 5.0 equiv) and PdCI,(PPhs), (0.12 mmol, 88 mg,
10 mol%), after purification by flash chromatography on silica gel with a mixture of an acidic stock
solution (acetic acid/H,0/MeOH/ethyl acetate, 3:2:3:3) and ethyl acetate (1:9), then acidic stock
solution/ethyl acetate (1:2) as eluent, gave 16b (0.84 mmol, 201 mg, 67%) as a slightly brownish solid.
Tm = 312°C (decomposes). "H NMR (400 MHz, deuterium oxide) & 8.06 (s, 1H), 7.79 (d, J = 7.7 Hz, 1H),
7.67 (d, J = 8.2 Hz, 1H), 7.55 (d, J = 7.9 Hz, 4H), 7.46 (t, J = 7.7 Hz, 2H), 7.27 (d, J = 7.9 Hz, 5H), 2.79 (t, J
= 7.0 Hz, 4H), 2.69 (t, J = 6.9 Hz, 4H).">C NMR (101 MHz, methanol-d,) 6 176.2, 141.2, 140.7, 139.0,
138.0, 130.5, 130.3, 129.9, 128.7, 128.0, 127.9, 43.1, 38.8. HRMS (ESI): Calcd. for C;5H14NO, [M-H]
240.1030; found 240.1029. UHPLC: purity =95.8 %

4'-(methylsulfonamido)biphenyl-3-carboxylic acid, 17:
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Synthesis of N-(4-bromobenzyl)methanesulfonamide: To a solution of methanesulfonyl chloride (1.60
mmol, 0.12 mL, 1.0 equiv) in ethanol (5 mL) 4-bromoaniline (3.20 mmol, 550 mg, 2.0 equiv) was added
and the mixture was stirred at room temperature. The reaction was monitored by TLC until
completion. After 2 h, the solvent was removed under reduced pressure and the remaining solid
dissolved in a small amount of water. The remaining solid was dissolved in a small amount of water
and applied to a C18 precolumn before purification on a 60 g C18 column with a gradient of acetonitrile
in water (10-80%) to yield the sulfonamide (0.93 mmol, 232 mg, 93%) as a white solid. "H NMR (400
MHz, methanol-d,): 6 7.27 (2H, dd, J = 8.8 Hz, ] = 2.0 Hz), 7.02 (2H, dd, J = 9.0 Hz, J= 2.1 Hz), 2.84 (3H,
s). °C NMR (101 MHz, methanol-d,): & 146.5, 132.6, 123.8, 113.5, 39.0. HRMS (ESI): Calcd. for
C,H;0,NBrS [M+H]" 247.9386; found 247.9389.

Synthesis of 4'-(methylsulfonamido)biphenyl-3-carboxylic acid, 17: The compound was prepared
according to general procedure B. N-(4-bromobenzyl)methanesulfonamide, (0.72 mmol, 180 mg, 1.5
equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (0.48 mmol, 119 mg, 1.0 equiv),
Na,CO3 (2.40 mmol, 254 mg, 5.0 equiv) and PdCl,(dppf) (0.05 mmol, 35 mg, 10 mol%) in anhydrous
THF (6 mL) was stirred at 80 °C for 20h. After purification the title compound, 17 (0.20 mmol, 58 mg,
41%) was obtained as a yellowish solid. T, = 280°C. *H NMR (400 MHz, methanol-d,) § 8.20 (t, J = 1.8
Hz, 1H), 7.84 (dt, J = 7.7, 1.4 Hz, 1H), 7.66-7.58 (m, 1H), 7.55-7.49 (m, 2H), 7.38 (t, J = 7.7 Hz, 1H), 7.23-
7.16 (m, 2H), 2.88 (s, 3H). >C NMR (101 MHz, methanol-d,) & 175.7, 147.0, 142.0, 139.5, 134.1, 129.1,
129.0, 128.3, 128.2, 122.5, 39.0, 25.0. HRMS (ESI): Calcd. for CisH1,NO,S [M-H] 290.0493 found
290.0485. UHPLC: purity > 99.5%

4'-(phenylsulfonamido)biphenyl-3-carboxylic acid, 18:
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Synthesis of N-(4-bromophenyl)benzenesulfonamide: To a solution of benzenesulfonyl chloride (1.28
mmol, 0.16 mL, 1.0 equiv) in ethanol (5 mL) 4-bromoaniline (2.56 mmol, 441 mg, 2.0 equiv) was added
and the mixture stirred at rt. The reaction was monitored by TLC until completion. After 2 h the solvent
was removed and the remaining solid dissolved in ethyl acetate. The solution was submitted to a silica
precolumn and purified on a silica column with a gradient of ethyl acetate in heptane (10-35%) and
then a constant value of 35% ethyl acetate in heptane. The title compound (300 mg, 75%) was obtained
as a yellowish solid. "H NMR (400 MHz, CDCls): & 7.78-7.74 (m, 2H), 7.82-7.76 (m, 2H), 7.55 (m, 1H),
7.49-7.43 (m, 2H), 7.37-7.32 (m, 2H), 7.00-6.95 (m, 2H). *C NMR (101 MHz, CDCls): § 138.7, 135.6,
133.4, 132.5, 129.3, 127.3, 123.4, 118.9. HRMS (ESI): Calcd. for C;,Hs0,BrNS [M+H]*309.9543; found
309.9537.

Synthesis of 4'-(phenylsulfonamido)biphenyl-3-carboxylic acid, 18: The compound was prepared
according to general procedure B. N-(4-bromophenyl)benzenesulfonamide (0.48 mmol, 150 mg, 1.0
equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (0.72 mmol, 180 mg, 1.5 equiv),
potassium phosphate (1.92 mmol, 408 mg, 4.0 equiv) and XPhos-Pd G2 (4.8x10”° mmol, 3.8 mg, 1
mol%) in anhydrous THF (4 mL) was stirred at 84 °C for 16 h. The aqueous phase was washed with
hexane (3 x 30 mL). After purification 18 (0.31 mmol, 110 mg, 65%) was obtained as beige solid. T,, =
303°C. 'H NMR (400 MHz, methanol-d,) & 8.09 (s, 1H), 7.94-7.83 (m, 2H), 7.75 (d, J = 9.2 Hz, 1H), 7.51
(d, J=9.5 Hz, 1H), 7.41-7.24 (m, 6H), 6.98 (d, J = 8.5 Hz, 2H). *C NMR (101 MHz, methanol-d,) § 175.8,
148.9, 146.6, 142.2,139.3, 132.8, 131.3, 129.3, 129.0, 128.9, 128.0, 127.9, 127.9, 127.8, 123.0. HRMS
(ESI): Calcd. for C19H14NO,4S [M-H] 352.0649; found, 352.0642. UHPLC: purity =95.6 %

3'-(methylsulfonamidomethyl)biphenyl-3-carboxylic acid, 19a:
|

B/©\/NH HH,CF CH3SO,CI N—>/©\/ \/, — ‘\‘/COOH

Synthesis of N-(3-bromobenzyl)methanesulfonamide: A solution of 3-bromobenzylamine
hydrochloride (1.51 mmol, 337 mg, 1.0 equiv) and triethylamine (3.18 mmol, 0.44 mL, 2.1 equiv) in
CH,CI; (5.5 mL) was cooled to 0 °C. Methanesulfonyl chloride (1.52 mmol, 0.12 mL, 1.01 equiv) was
added dropwise and the reaction mixture was allowed to warm to room temperature with stirring. The
reaction was monitored by TLC until completion. After 1h 45 minutes the reaction was stopped and
the mixture was washed with water (3 x 10 mL). The organic layer was dried over MgSQ,, filtrated and
the solvent removed under reduced pressure. The title compound (1.34 mmol, 349 mg, 88%) was
obtained as a offwhite solid and used in the next step without further purification. *H NMR (400 MHz,
methanol-d,): 6 7.51 (t, J=1.9 Hz, 1H), 7.45 (dt, J. = 7.6 Hz, J, = 1.6 Hz, 1H), 7.29 (m, 1H), 7.24 (t,J=7.6
Hz, 1H), 4.81 (s, 1H), 4.30 (s, 2H), 2.90 (s, 3H). *C NMR (101 MHz, methanol-d,): § 139.2, 131.3, 131.0,
130.6, 126.6, 123.0, 46.6, 41.3. HRMS (ESI): Calcd. for CgH100,NBrNaS [M+Na]® 285.9508; found
285.9503.

Synthesis of 3'-(methylsulfonamidomethyl)biphenyl-3-carboxylic acid, 19a: The compound was
synthesized according to general procedure B. N-(3-bromobenzyl) methanesulfonamide, (0.57 mmol,
150 mg, 1.0 equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoic acid (0.85 mmol, 211 mg,
1.5 equiv), Na,CO; (2.84 mmol, 301 mg, 5.0 equiv) and PdCl,(dppf) (0.06 mmol, 42 mg, 10 mol%) in
anhydrous THF (8 mL), was stirred at 84 °C for 20 h. Additional purification was carried out by flash



chromatography on silica gel with hexane/ethyl acetate/acetic acid (1:1:1%). To the resulting solid was
added heptane (10 mL x 3) and removed under reduced pressure to remove residual acetic acid. The
title compound, 19a (0.15 mmol, 45 mg, 26%) was obtained as a slightly yellow solid. T, = 175-177°C.
'H NMR (400 MHz, methanol-d,) 8) 6 8.28 (s, 1H), 8.01 (d, J = 7.7 Hz, 1H), 7.86 (d, J = 7.9 Hz, 1H), 7.68
(s, 1H), 7.60-7.54 (m, 4H), 7.47 (t,J = 7.6 Hz, 2H), 7.41 (d, J = 7.7 Hz, 2H). *C NMR (101 MHz, methanol-
ds) 6 169.9, 142.4, 141.9, 140.2, 132.9, 132.4, 130.4, 130.1, 129.7, 129.1, 128.4, 127.6, 127.3, 47.7,
40.6. HRMS (ESI): Calcd. for C15H14NO,4S [M-H] 304.0649; found 304.0647. UHPLC: purity = 95.0 %

4'-(methylsulfonamidomethyl)biphenyl-3-carboxylic acid, 19b:

0
N
%" ~NH
0
Br Br
NHs H
NH, HCl+CH,S0,C1 —— Nigm — COOH
N
C

Synthesis of N-(4-bromobenzyl)methanesulfonamide: The compound was prepared according to the
procedure described for N-(3-bromobenzyl)methanesulfonamide. The title compound (1.45 mmol,
380 mg, 95%) was obtained as a beige solid. "H NMR (400 MHz, chloroform-d): & 7.49 (m, 2H), 7.23 (m,
2H), 4.80 (s, 1H), 4.27 (d, J = 4.5 Hz, 2H), 2.88 (s, 3H). *C NMR (101 MHz, CDCl5): § 135.9, 132.2 (2C),
129.7 (2C), 122.2, 46.7, 41.4. HRMS (ESI): Calcd. for CgH100,NBrCIS [M+Cl]* 285.9508; found, 299.2368.

Synthesis of 4'-(methylsulfonamidomethyl)biphenyl-3-carboxylic acid, 19b. The compound was
prepared according to general procedure B. N-(4-bromobenzyl)methanesulfonamide (0.57 mmol, 150
mg, 1.0 equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (0.85 mmol, 211 mg, 1.5
equiv), Na,CO; (2.84 mmol, 301 mg, 5.0 equiv) and PdCl,(dppf) (0.06 mmol, 42 mg, 10 mol%) in
anhydrous THF (8 mL) was stirred at 84 °C for 20 h. Additional purification was carried out by flash
chromatography on silica gel with hexane/ethyl acetate/acetic acid (10:10:0.1) as eluent. To the
resulting solid was added heptane (10 mL) and removed under reduced pressure (3 times) to remove
residual acetic acid. The title compound, 19b (0.06 mmol, 17 mg, 10%) was obtained as a white solid.
Tm = 216-220°C. '*H NMR (400 MHz, methanol-d,) & 8.16 (s, 1H), 7.90 (d, J = 7.7 Hz, 1H), 7.75 (d, /= 7.8
Hz, 1H), 7.56 (d, J = 8.1 Hz, 2H), 7.49-7.36 (m, 3H), 4.21 (s, 2H), 2.78 (s, 3H). *C NMR (101 MHz,
methanol-d,) § 170.1, 142.2, 140.8, 139.0, 133.1, 132.2, 130.1, 129.6, 129.6, 129.0, 128.2, 47.4, 40.6.
HRMS (ESI): Calcd. for C15H1404NS[M-H] 304.0649; found 304.0646. UHPLC: purity = 96.4 %

3'-(2-methylsulfonamidoethyl)biphenyl-3-carboxylic acid, 20:

I
0=5=0
HN
Br NH, + CH3S0,Cl NE—“»()/, N Br ————» O COOH

H

Synthesis of N-(3-bromophenethyl)methanesulfonamide: To a solution of methanesulfonyl chloride
(1.60 mmol, 0.12 mL, 1.0 equiv) in ethanol (3 mL), 2-(3-bromophenyl)ethan-1-amine (3.20 mmol, 639
mg, 2.0 equiv) was added and the mixture was stirred at room temperature. The reaction was
monitored by TLC. After completion the solvent was removed under reduced pressure and the
remaining solid dissolved in a small amount of water. The solution was applied to a C18 precolumn
before purification on a 60 g C18 column with a gradient of acetonitrile in water (10—-80%). The title
compound (1.07 mmol, 295 mg, 66%) was obtained as a white solid. "H NMR (400 MHz, CDCl;): § 7.41-
7.36 (m, 2H), 7.19 (t, J = 7.6 Hz 1H), 7.15 (m, 1H), 3.38 (t, J = 6.9 Hz, 2H), 2.86 (s, 3H), 2.85 (t, J = 7.6 Hz,
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2H). >C NMR (101 MHz, CDCl5): § 140.3, 132.0, 130.5, 130.2, 127.7, 123.0, 44.2, 40.6, 36.3. HRMS (ESI):
Calcd. for CoH130,NBrS [M+H]" 277.9850; found 277.9674.

Synthesis of 3'-(2-methylsulfonamidoethyl)biphenyl-3-carboxylic acid, 20: The compound was
prepared according to general procedure B. N-(3-bromophenethyl)methanesulfonamide (0.72 mmol,
200 mg, 1.5 equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (0.48 mmol, 119 mg,
1.0 equiv), Na,CO; (2.40 mmol, 254 mg, 5.0 equiv) and PdCl,(dppf) (0.05 mmol, 35 mg, 10 mol%) in
anhydrous THF (8 mL) was stirred at 85 °C for 20h. The aqueous mixture was washed with hexane (3 x
30 mL) instead of ethyl acetate. After purification the title compound, 20 (0.11 mmol, 35 mg, 11%) was
obtained as a white solid). T, = 130°C. *H NMR (400 MHz, methanol-d,) 6 8.24 (t, J = 1.8 Hz, 1H), 7.93
(dt, J = 7.7, 1.4 Hz, 1H), 7.67 (s, 1H), 7.57 (s, 1H), 7.53 (d, J = 7.8 Hz, 1H), 7.41 (m, 2H), 7.24 (d, J = 7.7
Hz, 1H), 3.40-3.34 (m, 2H), 2.92 (t, J = 7.4 Hz, 2H), 2.82 (s, 3H). °C NMR (101 MHz, methanol-d,) &
175.3, 142.6, 141.8, 140.8, 139.7, 130.1, 129.7, 129.3, 129.2, 129.0, 128.9, 128.7, 126.2, 45.7, 39.9,
37.8. HRMS (ESI): Calcd. C1¢H1604NS [M-H] 318.0806; found 318.0797. UHPLC: purity = 99.0 %

3'-acetamidobiphenyl-3-carboxylic acid, 21a:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1 equiv), 3-
acetamidophenylboronic acid (1.86 mmol, 333 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32
g, 5 equiv) and PdCI,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 21a (1.21 mmol, 310 mg, 98 %) as
white solid. T, = 294°C."H NMR (400 MHz, DMSO-dg) 6 10.30 (s, 1H), 8.15 (t, J = 1.7 Hz, 1H), 7.91 (t, J
=1.9 Hz, 1H), 7.84 (dt, J = 7.6, 1.3 Hz, 1H), 7.64 (d, J = 9.0 Hz, 1H), 7.52-4.49 (m, 1H), 7.40-7.27 (m, 3H),
2.08 (s, 3H). *C NMR (101 MHz, DMSO-dg) & 169.0168.9, 142.6, 141.7, 140.4, 139.2, 129.6, 128.7,
128.1,127.7,126.8,121.6,118.1, 117.7, 24.5. HRMS (ESI): Calcd. for C;5H1,NO3 [M-H] 254.0823; found
254.0828. UHPLC: purity =97.4 %

4'-acetamidobiphenyl-3-carboxylic acid, 21b:

According to procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 4-
acetamidophenylboronic acid (1.86 mmol, 307 mg, 1.5 equiv), potassium phosphate (6.20 mmol, 1.32
g, 5.0 equiv) and PdCl,(PPhs), (0.124 mmol, 87 mg, 10 mol%) gave 21b (1.20 mmol, 290 mg, 97 %) as
white solid. Tr, = 295-296°C. "H NMR (400 MHz, DMSO-dg) & 10.29 (s, 1H), 8.13 (s, 1H), 7.80 (d, J = 7.4
Hz, 1H), 7.71 (d, J = 8.3 Hz, 2H), 7.58 (d, J = 8.3 Hz, 2H), 7.53 (d, J = 7.6 Hz, 1H), 7.31 (t, J = 7.5 Hz, 1H),
2.08 (s, 3H). >C NMR (101 MHz, DMSO-ds) & 168.9, 168.9, 142.7, 139.1, 138.9, 135.8, 128.1, 128.0,
127.3,127.1, 126.4, 119.8, 24.50. HRMS (ESI): Calcd. for C;5H1,NO3 [M-H] 254.0823; found 254.0818.
UHPLC: purity =99.1 %

3'-(acetamidomethyl)biphenyl-3-carboxylic acid, 22:

g

HN
Br
NEt H
5 NH. HCI +CH;COCl ————> Oj,N - COOH
| (J

Synthesis of N-(3-bromobenzyl)acetamide: A solution of 3-bromobenzylamine hydrochloride (1.75
mmol, 389 mg, 1.0 equiv) and EtsN (17.5 mmol, 2.44 mL, 10.0 equiv) in CH,Cl, (3.5 mL) was cooled to
0 °C. Acetyl chloride (2.28 mmol, 0.16 mL, 1.3 equiv) was added and the mixture was stirred for 3 h at
30 °C. The solvent was removed under reduced pressure and the resulting solid dissolved in CH,Cl, (40
mL). The organic phase was washed with 1N HCI (1 x) and water (3 x 30 mL). It was dried over Na,SO,,
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filtered and the solvent removed under reduced pressure. The title compound (373 mg, 93%) was
obtained as a yellowish solid and used without further purification for the next step. '"H NMR (400
MHz, CDCl3): & 7.43-7.38 (m, 2H), 7.22-7.18 (m, 2H), 4.41 (m,2H), 2.03 (s, 3H). *C NMR (101 MHz,
CDCl3): 6 170.1, 140.8, 130.8, 130.7, 130.4, 126.5, 122.8, 43.2, 23.4. HRMS (ESI): Calcd. for CoH;;ONBr
[M+H]" 228.0019; found, 228.0018; [M + Na]*, calcd for CsH,0ONBrNa, 249.9838; found, 249.9837.

Synthesis of 3'-(acetamidomethyl)biphenyl-3-carboxylic acid, 22: According to general procedure B, N-
(3-bromobenzyl)acetamide (0.66 mmol, 150 mg, 1.0 equiv), 3-(4,4,55-tetramethyl-1,3,2-
dioxaborolan-2-yl)benzoic acid (0.99 mmol, 245 mg, 1.5 equiv), potassium phosphate (2.63 mmol, 558
mg, 4.0 equiv) and XPhos-Pd G2 (6.6x10” mmol, 5.2 mg, 1 mol%) in anhydrous THF (4 mL) was stirred
at 85 °C for 16.5 h. The aqueous mixture was washed with hexane (3 x 30 mL). After purification the
title compound, 22 (0.57 mmol, 155 mg, 87%) was obtained as a white solid. T, = 129°C. ‘*H NMR (400
MHz, methanol-d,) & 8.23 (s, 1H), 7.93 (d, J = 9.0 Hz, 1H), 7.66 (d, J = 6.2 Hz, 1H), 7.62-7.51 (m, 2H),
7.38-7.45 (m, 2H), 7.27 (d, J = 7.5 Hz, 1H), 4.43 (s, 2H), 2.01 (s, 3H). >°C NMR (101 MHz, methanol-d,) &
175.3,173.1, 142.7, 141.7, 140.5, 139.8, 130.1, 129.7, 129.3, 129.3, 128.9, 127.6, 127.3, 126.9, 44.3,
25.0. HRMS (ESI): Calcd. for CiH1sNO3 [M-H]™ 268.0979; found 268.0977. UHPLC: purity = 82.6 %

3'-(2-acetamidoethyl)biphenyl-3-carboxylic acid, 23a:

O

)J\NH
Br
IoUNS S U o
Br NH, + )J\o)]\ — N —_—
)\ l COOH

(0]

Synthesis of N-(3-bromophenethyl)acetamide: To a solution of 2-(3-bromophenyl)ethan-1-amine (1.65
mmol, 0.24 mL, 1.0 equiv) in CH,Cl, (3.5 mL), EtsN (1.82 mmol, 0.25 mL, 1.1 equiv) and acetic anhydride
(1.98 mmol, 0.19 mL, 1.2 equiv) were added. The reaction mixture was stirred at rt and monitored by
TLC. After 1.5 h the solvent was removed under reduced pressure and the resulting yellow oil diluted
with CH,Cl,. The organic phase was washed with water (3 x 20 mL), dried over Na,SO,, filtered and the
solvent removed under reduced pressure. The title compound (400 mg, 100%) was obtained as a
yellowish oil. *H NMR (400 MHz, CDCls): 6 7.38-7.32 (m, 2H), 7.17 (m, 1H), 7.11 (m, 1H), 5.64 (1H, s),
3.48 (m, 2H), 2.78 (t, J = 7.0 Hz, 2H), 1.94 (3H, s). >°C NMR (101 MHz, CDCl5): § 170.3, 141.4, 131.9,
130.3,129.8, 127.5, 122.8, 40.6, 35.4, 23.4. HRMS (ESI): Calcd. for C10H130NBr [M+H]" 242.0175; found
242.0174.

Synthesis of 3'-(2-acetamidoethyl)biphenyl-3-carboxylic acid, 23a: The compound was prepared
according to general procedure B. N-(3-bromophenethyl)acetamide (0.62 mmol, 150 mg, 1.0 equiv),
3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (0.93 mmol, 231 mg, 1.5 equiv), Na,CO;
(3.10, 328 mg, 5.0 equiv) and PdCl,(dppf) (0.06 mmol, 45 mg, 10 mol%) in anhydrous THF (8 mL) was
stirred at 85 °C for 19 h. After RP chromatography, the compound was further purified by flash
chromatography on silica gel using a mixture of an acidic stock solution (acetic acid/H,0/MeOH/ethyl
acetate, 3:2:3:3) and ethyl acetate (1:25) as eluent. To the resulting solid heptane (10 mL x 3) was
added and removed under reduced pressure to remove residual acetic acid. Compound 23a (0.29
mmol, 80 mg, 46%) was obtained as a slightly yellow solid. T, = 54-56°C. *H NMR (400 MHz, methanol-
ds) 6 8.25 (s, 1H), 7.99 (d, J = 7.7 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.57 — 7.45 (m, 3H), 7.38 (t, J = 7.6 Hz,
1H), 7.23 (d, J = 7.5 Hz, 1H), 3.44 (t, J = 7.3 Hz, 2H), 2.87 (t, J = 7.3 Hz, 2H), 1.92 (s, 3H). *C NMR (101
MHz, methanol-d,) 6 174.7,171.9, 144.0, 143.1, 142.7, 133.5, 131.5, 131.3, 130.8, 130.6, 130.5, 129.9,
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127.5, 43.4, 37.9, 23.9. HRMS (ESI): Calcd. for C;7;HgNO3 [M-H]™ 282.1136; found 282.1129. UHPLC:
purity =97.9 %

4'-(2-acetamidoethyl)biphenyl-3-carboxylic acid, 23b:

Yo
HN

Br Br
NEt /
5§ S O
NH, )J\OJ\ O,,S\N COOH
H

Synthesis of N-(3'-bromobiphenyl-3-yl)methylacetamide: The compound was prepared according to
the procedure described for starting material of 23a. The title compound (399 mg, 100%) was obtained
as a white solid. "H NMR (400 MHz, CDCls): § 7.42 (m, 2H), 7.06 (m, 2H), 5.54 (s, 1H), 3.47 (m, 2H), 2.77
(t, J = 7.0 Hz, 2H), 1.93 (s, 3H). **C NMR (101 MHz, CDCl5): & 170.2, 138.0, 131.8, 130.6, 120.5, 40.6,
35.2, 23.4. HRMS (ESI): Calcd. for C1oH130NBr [M+H]" 242.0175; found 242.0177.

Synthesis of 4'-(2-acetamidoethyl)biphenyl-3-carboxylic acid, 23b. The compound was prepared
according to general procedure B. N-(3'-bromobiphenyl-3-yl)methylacetamide (0.62 mmol, 150 mg,
1.0 equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (0.93 mmol, 231 mg, 1.5
equiv), Na,CO; (3.10 mmol, 328 mg, 5.0 equiv) and PdCl,(dppf) (0.06 mmol, 45 mg, 10 mol%) in
anhydrous THF (8 mL) was stirred at 85 °C for 18.5 h. After RP chromatography, the compound was
further purified by flash chromatography on silica gel using a mixture of an acidic stock solution (acetic
acid/H,0/MeOH/ethyl acetate, 3:2:3:3) and ethyl acetate (1:59) and then acidic stock solution/ethyl
acetate (1:9) as eluent. To the resulting solid heptane (10 mL x 3) was added and removed under
reduced pressure to remove residual acetic acid. Compound 23b (0.21 mmol, 60 mg, 34%) was
obtained as a white solid. T,, = 204-205°C. "H NMR (400 MHz, methanol-d,) § 8.24 (s, 1H), 7.98 (d, J =
7.7 Hz, 1H), 7.82 (d, J = 7.7 Hz, 1H), 7.62-7.47 (m, 3H), 7.32 (d, J = 8.2 Hz, 2H), 3.43 (t, J = 7.3 Hz, 2H),
2.84 (t, J = 7.3 Hz, 2H), 1.92 (s, 3H). *C NMR (101 MHz, methanol-d,) & 211.4, 174.7, 171.3, 143.9,
141.7,140.9,134.0, 133.7, 131.9, 131.4, 130.8, 130.3, 129.5, 129.4, 43.4, 37.5, 23.9. HRMS (ESI): Calcd.
for C17H1gNO; [M-H] 282.1136; found 282.1129. UHPLC: purity = 99.2%

3'-acetoxymethylbiphenyl-3-carboxylic acid, 24:

(l)H
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Synthesis of 3-(acetoxymethylphenyl)boronic acid: To a stirred mixture of (3-(hydroxymethylphenyl)
boronic acid (1.03 mmol, 157 mg, 1.0 equiv), DMAP (0.11 mmol, 14 mg, 11 mol%) and Et3N (3.09 mmol,
0.43 mL, 3.0 equiv) in CH,Cl,/anhydrous THF (7.2 mL, 5:1) and acetic anhydride (3.09 mmol, 0.29 mL,
3.0 equiv) was added. The solution was stirred at rt and monitored by TLC. After 5h the reaction
mixture was washed with 1N HCI (3 x 20 mL) and NaHCOj; solution (3 x 20 mL). The organic phase was
dried over Na,SQ,, filtered and the solvent removed under reduced pressure. The crude product was
purified with flash chromatography on silica gel with 5% MeOH in CH,Cl, as eluent. The title compound
(0.86 mmol, 166 mg, 86%) was obtained as a white solid. *H NMR (400 MHz, methanol-d): § 7.73-7.44
(m, 2H), 7.37-7.20 (m, 2H), 5.03 (2H, s), 2.00 (s, 3H). *C NMR (101 MHz, methanol-d,): 6 172.7, 134.7,
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134.4, 131.1, 130.6, 128.7, 67.5, 20.8. HRMS (ESI): Calcd. for CgH1004B [M-H]" 193.0678; found
193.0680.

Synthesis of 3'-acetoxymethyl-biphenyl-3-carboxylic acid 24: According general procedure B, 3-
(acetoxymethyl)phenyl)boronic acid, 7 (0.39 mmol, 75 mg, 1.5 equiv), potassium phosphate (1.03
mmol, 219 mg, 4.0 equiv), XPhos Pd G2 (2.58x10™ mmol, 2.0 mg, 1 mol%), in anhydrous THF (6 mL)
was stirred at 88 °C for 20 h. The crude product was purified by flash chromatography on silica gel with
hexane/ethyl acetate/acetic acid (9:1:1%) as eluent gave 24 (0.13 mmol, 35 mg, 34%) as a brownish
solid. T, = 80°C. 'H NMR (400 MHz, methanol-d,) 6 8.26 (s, 1H), 8.01 (d, J=7.7 Hz, 1H), 7.85 (d, J = 7.7
Hz, 1H), 7.68-7.51 (m, 3H), 7.47 (t, J = 7.6 Hz, 1H), 7.38 (d, J = 7.7 Hz, 1H), 5.18 (s, 2H), 2.10 (s, 3H). **C
NMR (101 MHz, Methanol-d,) 6 172.7, 169.8, 142.4, 141.8, 138.5, 132.7, 132.5, 130.3, 130.1, 129.7,
129.1, 128.6, 127.9, 67.2, 20.8. HRMS (ESI): Calcd. for Ci;H1304 [M-H] 269.0819; found 269.0817.
UHPLC: purity =95.7%

3-(2-(1H-imidazol-1-yl)pyrimidin-5-yl)benzoic acid, 25:

According to general procedure A, 5-bromo-2-(1H-imidazol-1-yl)pyrimidine (0.39 mmol, 100 mg, 1.0
equiv), 3-carboxyphenylboronic acid pinacol ester (0.39 mmol, 97 mg, 1.0 equiv), potassium phosphate
(1.95 mmol, 413 mg, 5.0 equiv) and PdCl,(PPh3), (0.04 mmol, 27 mg, 10 mol%) after purification gave
25 (0.28 mmol, 75 mg, 72%) was obtained as a white solid. T, = 297°C. *H NMR (400 MHz, deuterium
oxide) & 8.78 (s, 2H), 8.37 (s, 1H), 7.95 (s, 1H), 7.82-7.72 (m, 1H), 7.68 (s, 1H), 7.56 (d, J = 7.6 Hz, 1H),
7.46-7.35(m, 1H), 7.11 (s, 1H), 7.04 (s, 1H). *C NMR (101 MHz, deuterium oxide) & 174.2, 156.4, 152.3,
137.2, 136.2, 131.9, 131.3, 129.4, 129.3, 129.2, 128.6, 126.6, 121.7, 117.0. HRMS (ESI): Calcd. for
C14HgN4O, [M-H] 265.0731; found 265.0731. UHPLC: purity = 95.2%

3'-(1H-tetrazol-5-yl)-biphenyl-3-carboxylic acid, 26a:

leutyltm TMSN, “ I O COOH
1 ,4-dioxane \ \N O
N=p

Synthesis of 5-(3-bromophenyl)-1H-tetrazole: Dibutyltin oxide (0.33 mmol, 82 mg, 0.2 equiv), and
trimethylsilyl azide (3.33 mmol, 383 mg, 2 equiv) were added to a solution of 3-bromobenzonitrile (300
mg, 1.67 mmol, 1 equiv) in anhydrous 1,4-dioxane (2 mL/mmol). The reaction mixture was subjected
to microwave irradiation in a tightly sealed microwave vessel for 50 min at 150 °C, then cooled to room
temperature. The solvent was removed under reduced pressure. The residue was dissolved in diethyl
ether (10 mL and extracted with 2 M ag. NaOH (3 x 10 mL). The aqueous layer was acidified with 4 M
ag. HCl to pH 1 and extracted with ethyl acetate (4 x 10 mL). The organic extract was washed with
brine (10 mL), dried over MgS04, and evaporated under reduced pressure to give the intermediate
tetrazole(1.45 mmol, 326 mg, 86%) as a white solid. "H NMR (400 MHz, methanol-d,) & 8.22-8.21 (m,
1H), 8.01 (d,J = 7.9 Hz, 1H), 7.74 (d, ) = 7.9 Hz, 1H), 7.50 (t, J = 7.9 Hz, 1H). >C NMR (101 MHz, methanol-
d,s) 6 157.3,135.3,132.3, 131.0, 128.0, 126.9, 124.2.

According to general procedure A, 5-(3-bromophenyl)-1H-tetrazole (0.73 mmol, 163 mg, 1.2 equiv), 3-
carboxyphenylboronic acid pinacol ester (0.60 mmol, 150 mg, 1.0 equiv), potassium phosphate (3.00
mmol, 636 mg, 5.0 equiv) and PdCl,(PPhs), (0.06 mmol, 42 mg, 10 mol%) after purification gave 26a
(0.58 mmol, 159 mg, 99%) as a white solid. T, = 295-297°C. 'H NMR (400 MHz, methanol-d,) 6 8.41 (s,
1H), 8.35 (s, 1H), 8.04 (d, /= 8.1 Hz, 1H), 7.98 (d, J = 8.1 Hz, 1H), 7.82 (d, /= 8.0 Hz, 1H), 7.74 (d, /= 7.9
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Hz, 1H), 7.56 (t, J = 7.8 Hz, 1H), 7.50 (t, J = 7.6 Hz, 1H). *C NMR (101 MHz, methanol-d,) § 175.3, 162.9,
142.8, 141.6, 139.8, 131.9, 130.2, 129.8, 129.3, 128.9, 126.6, 126.3, 128.3. HRMS (ESI): Calcd.
C14HsN4O, [M-H] 265.0731; found 265.0728. UHPLC: purity = 96.7%

4'-(1H-Tetrazol-5-yl)biphenyl-3-carboxylic acid, 26b:

NN
HN-N, N

Br N /N N
Dibutyltin, TMSN; N H
T adionme — COOH
,4-dioxane
¥ Br O

Synthesis of 5-(4-bromophenyl)-1H-tetrazole: Dibutyltin oxide (0.33 mmol, 82 mg, 0.2 equiv), and
trimethylsilyl azide (3.33 mmol, 383 mg, 2 equiv) were added to a solution of 4-bromobenzonitrile (300
mg, 1.67 mmol, 1 equiv) in anhydrous 1,4-dioxane (2 mL/mmol). The reaction mixture was subjected
to microwave irradiation in a tightly sealed vessel for 50 min at 150 0C, then cooled to room
temperature. The solvent was removed under reduced pressure. The residue was dissolved in diethyl
ether (10 mL and extracted with 2 M ag. NaOH (3 x 10 mL). The aqueous layer was acidified with 4 M
ag. HCl to pH 1 and extracted with ethyl acetate (4 x 10 mL). The organic extract was washed with
brine (10 mL), dried over MgS04, and evaporated under reduced pressure to give the intermediate
tetrazole (1.36 mmol, 307 mg, 82%) as a white solid. "H NMR (400 MHz, DMSO-d) & 8.07-7.92 (m, 2H),
7.91-7.76 (m, 2H). **C NMR (101 MHz, DMSO-ds) & 155.6, 132.9, 129.3, 125.0, 124.3.

N

According to general procedure A, 5-(4-bromophenyl)-1H-tetrazole (0.58 mmol, 130 mg, 1.2 equiv), 3-
carboxyphenylboronic acid pinacol ester (0.48 mmol, 120 mg, 1.0 equiv), potassium phosphate (2.93
mmol, 614 mg, 5.0 equiv) and PdCI,(PPhs), (0.05 mmol, 34 mg, 10 mol%) after purification gave the
title compound, 26b (0.44 mmol, 119 mg, 93%) as a white solid. T,, = 301°C. '"H NMR (400 MHz,
methanol-d,) 6 8.32 (s, 1H), 8.15 (d, J = 8.3 Hz, 2H), 7.97 (d, J = 7.6 Hz, 1H), 7.83-7.72 (m, 3H), 7.48 (t, J
=7.7 Hz, 1H). >C NMR (101 MHz, methanol-d,) § 175.2, 162.7, 142.6, 141.4, 139.8, 130.4, 129.7, 129.4,
128.8, 128.3, 128.2. HRMS (ESI): Calcd. for C14HgN;O;, [M-H] 265.0731; found 265.0722. UHPLC: purity
=98.3%

3-(Naphthalen-2-yl)benzoic acid, 27:

According to general procedure A, 2-bromonaphthalene (1.20 mmol, 250 mg, 1.0 equiv), 3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (1.81 mmol, 448 mg, 1.5 equiv), potassium
phosphate (6.02 mmol, 1.28 g, 5.0 equiv) and PdCl,(PPhs), (0.124 mmol, 85 mg, 10 mol%) after
purification gave 27 (0.81 mmol, 200 mg, 67%) was obtained as a white solid. T, = 263-266 °C. *H NMR
(400 MHz, deuterium oxide) 6 8.04 (t, /= 1.8 Hz, 1H), 7.74 (m, 1H), 7.35 (s, OH), 7.23-7.08 (m, 4H), 7.03
(t,J=7.7 Hz, 1H), 6.99-6.87 (m, 2H).">C NMR (101 MHz, deuterium oxide) & 175.0, 139.8, 136.9, 136.7,
132.9, 132.0, 129.3, 128.6, 128.2, 127.8, 127.8, 127.4, 127.2, 126.0, 125.7, 125.0, 124.7. HRMS (ESI):
Calcd. for C17H1,0, [M-H] 247.0765; found 247.0759. UHPLC: purity = 98.6%

3-(Quinolin-7-yl)benzoic acid, 28:

The compound was prepared according to general procedure A. 6-Bromoquinoline (1.20 mmol, 250
mg, 1.0 equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoic acid (1.80 mmol, 447 mg, 1.5
equiv), potassium phosphate (6.00 mmol, 1.28 g, 5.0 equiv) and PdCl,(PPh3), (0.12 mmol, 84 mg, 10
mol%) gave 28 (1.04 mmol, 260 mg, 87%) as a white solid. T = 295-298 °C. 'H NMR (400 MHz,
methanol-d,) 6 'H NMR (400 MHz,) 6 8.86 (dd, J=4.4, 1.7 Hz, 1H), 8.47 (dd, /= 8.3, 1.7 Hz, 1H), 8.43 (t,
J=1.8 Hz, 1H), 8.25 (d, J = 1.9 Hz, 1H), 8.20-8.10 (m, 2H), 8.03 (d, J = 7.7 Hz, 1H), 7.87 (dt, /= 7.8, 1.5
Hz, 1H), 7.63-7.42 (m, 2H). *C NMR (101 MHz, ethanol-d,) 6 175.0, 151.1, 148.1, 140.9, 140.6, 140.0,
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138.7,130.7, 130.2, 130.1, 129.8, 129.6, 129.6, 129.3, 126.7, 122.9. HRMS (ESI): Calcd. for C;¢H1oNO,
[M-H] 248.0717; found 248.0714. UHPLC: purity = 96.2 %

3-(6-Aminopyridin-3-yl)benzoic acid, 29:

According to general procedure A, 5-bromopyridin-2-amine (0.87 mmol, 150 mg, 1.0 equiv), 3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (1.30 mmol, 323 mg, 1.5 equiv), potassium
phosphate (4.34 mmol, 920 mg, 5.0 equiv) and PdCl,;(PPhs), (0.09 mmol, 61 mg, 10 mol%) gave 29 (0.26
mmol, 56 mg, 36%) as an orange solid. Tr, = 277°C. 'H NMR (400 MHz, methanol-d,) § 8.21 (s, 1H), 8.14
(t,J= 1.8 Hz, 1H), 7.88 (dt, J = 7.7, 1.4 Hz, 1H), 7.80 (dd, J = 8.7, 2.5 Hz, 1H), 7.60-7.50 (m, 1H), 7.41 (t,
J=7.7 Hz, 1H), 6.82-6.55 (m, 1H). "*C NMR (101 MHz, methanol-d,) § 175.3, 160.1, 145.9, 139.8, 138.9,
138.0, 129.4, 128.7, 128.6, 127.8, 127.4, 110.3. HRMS (ESI): Calcd. for C;,HgN,O, [M-H] 213.0670;
found 213.0669. UHPLC: purity =96.3 %

3-(Pyrimidin-5-yl)benzoic acid, 30:

According to general procedure A, 5-bromopyrimidine (1.57 mmol, 250 mg, 1.0 equiv), 3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (2.36 mmol, 585 mg, 1.5 equiv), potassium
phosphate (7.86 mmol, 1.67 g, 5.0 equiv), PdCl,(PPhs), (0.16 mmol, 110 mg, 10 mol%), gave 30 (0.70
mmol, 140 mg, 45%) as a light brown solid. T, = Tm = 289°C decomposes. ‘*H NMR (400 MHz, deuterium
oxide) § 9.00 (s, 1H), 8.88 (s, 2H), 7.99 (t, J = 1.8 Hz, 1H), 7.86 (m, 1H), 7.67-7.61 (m, 1H), 7.50 (t, J = 7.7
Hz, 1H). *C NMR (101 MHz, deuterium oxide) 6 174.5, 155.7, 154.6, 137.3, 133.7, 132.8, 129.5, 129.3,
129.2, 127.0. HRMS (ESI): Calcd. for C;1H;N,0, [M-H] 199.0513 found 199.0511. UHPLC: purity = 99.4
%

3-(2-Aminopyrimidin-4-yl)benzoic acid, 31:

According to general procedure A, 5-bromo-4-methylpyrimidin-2-amine (0.80 mmol, 150 mg, 1.0
equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoic acid (1.20 mmol, 298 mg, 1.5 equiv),
potassium phosphate (4.01 mmol, 851 mg, 5.0 equiv) and PdCI,(PPhs), (0.08 mmol, 56 mg, 10 mol%)
gave 31 (0.53 mmol, 122 mg, 67%) as a yellow solid. T, = 330°C (decomposes).'"H NMR (400 MHz,
methanol-d,) & 8.12 (s, 1H), 8.03-7.92 (m, 1H), 7.89 (s, 1H), 7.50 (t, J = 7.7 Hz, 1H), 7.44-7.33 (m, 1H).
3C NMR (101 MHz, methanol-d,) 6 175.0, 167.4, 162.8, 158.7, 139.1, 136.9, 132.2, 131.0, 129.4, 129.3,
126.0, 22.6. HRMS (ESI): Calcd. for C1,H19N30, [M-H] 228.0778; found 228.0776. UHPLC: purity = 99.0
%

3-(1-Methyl-1H-pyrrol-2-yl)benzoic acid, 32:

The compound was prepared according to general procedure A. 3-bromobenzoic acid (1.24 mmol, 250
mg, 1.0 equiv), 1-methyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1H-pyrrole (1.87 mmol, 386
mg, 1.5 equiv), potassium phosphate (6.22 mmol, 1.32 g, 5.0 equiv) and PdCl,(PPhs), (0.12 mmol, 81
mg, 10 mol%) after purification by flash chromatography on silica gel using 2% methanol in CH,Cl, as
eluent afforded 32 (0.03 mmol, 15 mg, 6%) as a white solid. T, = 162-165 °C. '"H NMR (400 MHz,
methanol-d,;) 6 7.94 (s, 1H), 7.83 (d, /= 7.7 Hz, 1H), 7.52 (d, / = 6.2 Hz, 1H), 7.39 (t, / = 7.8 Hz, 2H), 6.65
(s, 1H), 6.18-5.82 (m, 5H), 3.56 (s, 3H). °C NMR (101 MHz, methanol-d.) 6 169.8, 135.3, 134.5, 133.7,
132.2,130.3,129.6,128.7,125.5,110.0, 108.8, 35.3. HRMS (ESI): Calcd. for C;,H,(NO, [M-H] 200.0717;
found 200.0715. UHPLC: purity = 95.5 %

3-(Thiazol-5-yl)benzoic acid, 33:

The compound was prepared according to general procedure A. 5-bromothiazole (1.52 mmol, 250 mg,
1.0 equiv), 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (2.29 mmol, 567 mg, 1.5
equiv), potassium phosphate (7.62 mmol, 1.62 g, 5.0 equiv) and PdCI,(PPhs), (0.15 mmol, 107 mg, 10
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mol%), gave 33 (0.37 mmol, 76 mg, 24%) as a brownish solid. T, = 208°C (decomposes)."H NMR (400
MHz, deuterium oxide) 6 8.21 (t, J = 1.8 Hz, 1H), 7.93-7.83 (m, 2H), 7.77 (d, J = 3.3 Hz, 1H), 7.52 (d, J =
3.3 Hz, 1H), 7.47 (t, J = 7.7 Hz, 1H). *C NMR (101 MHz, deuterium oxide) & 174.5, 168.9, 142.8, 137.2,
132.4, 130.6, 129.2, 128.7, 126.8, 120.6. HRMS (ESI): Calcd. for C;gHgO,NS [M-H] 204.0125; found
204.0120. UHPLC: purity =96.0 %

3-(1H-Indol-5-yl)benzoic acid, 34:

According to general procedure A, 5-bromo-1H-indole (1.28 mmol, 250 mg, 1 equiv), 3-(4,4,5,5-
tetramethyl-1,3,2-dioxaborolan-2-yl)benzoic acid (1.91 mmol, 475 mg, 1.5 equiv), potassium
phosphate (6.38 mmol, 1.35 g, 5.0 equiv) and PdCl,(PPhs), (0.13 mmol, 90 mg, 10 mol%) after
purification by flash chromatography on silica gel using hexane/ethyl acetate/acetic acid (9:1:0.01) as
eluent gave 34 (0.25 mmol, 60 mg, 20 %) as a yellowish solid. T, = 190-192 °C 'H NMR (400 MHz,
methanol-d,) & 8.30 (s, 1H), 7.94 (d, J = 7.7 Hz, 1H), 7.87 (d, J = 7.8 Hz, 1H), 7.82 (s, 1H), 7.57-7.35 (m,
3H), 7.27 (d, J = 3.1 Hz, 1H), 6.52 (d, J = 3.3 Hz, 1H). **C NMR (101 MHz, methanol-d,) & 170.2, 144.5,
137.5, 132.6, 132.6, 132.3, 130.1, 129.8, 129.2, 128.3, 126.5, 121.7, 119.7, 112.6, 102.9. HRMS (ESI):
Calcd. for C15H100;,N [M-H] 236.0717; found 236.0716. UHPLC: purity =95.8 %

3-(Pyridin-2-yl)benzoic acid, 35:

According to general procedure A, 3-bromobenzoic acid (1.24 mmol, 250 mg, 1.0 equiv), 2-
Pyridineboronic acid N-phenyldiethanolamine ester (1.86 mmol, 499 mg, 1.5 equiv), potassium
phosphate (6.20 mmol, 1.31 g, 5.0 equiv) and PdCl,(PPhs),(0.12 mmol, 87 mg, 10 mol%) gave 35 (1.13
mmol, 224 mg, 91%) as white solid. T, = 101-103°C. '"H NMR (400 MHz, methanol-d,) 6 8.64 (d, J = 5.0
Hz, 1H), 8.56 (s, 1H), 8.08 (t, J = 7.6 Hz, 2H), 8.03-7.89 (m, 2H), 7.57-7.50 (m, 1H), 7.47-7.30 (m, 2H). ©°C
NMR (101 MHz, methanol-d,) 6 173.6, 158.7, 150.3, 140.2, 138.9, 138.2, 132.1, 131.1, 130.5, 129.5,
129.1, 128.9, 123.8, 122.6. HRMS (ESI): Calcd. for C;,HgO,N [M-H] 198.0561; found 198.0552. UHPLC:
purity =98.6 %

1.3 Screening of catalysts

General procedure:

3-Bromo-5-iodobenzoic acid (0.03—0.06 mmol, 1.0 equiv.) was dissolved in the indicated solvent (0.5—
1 mL/0.01 mmol substrate). The boronic acid or ester (1.5 equiv.) and base (5.0 equiv.) were added.
The solution was degassed by vacuum/Ar cycles (10 times) before addition of the palladium catalyst
and further degassed (5 times). The resulting mixture was stirred at the indicated temperature under
aninert atmosphere for the indicated reaction time. The crude reaction mixture was analysed by HRMS
to determine the ratio of int-39 : disubstituted 38 : starting material. The reaction mixture was filtered
through Celite bed and diluted with water (approx. 30 mL) before washing with chloroform (3 x 30
mL). The aqueous phase was concentrated under reduced pressure and applied to a C18 precolumn
before purification on a 60 g C18 column with a gradient of acetonitrile in water (0-5% over 15 min)
to yield the product.
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Table SI1: Screening of reaction conditions for the coupling of 3-bromo-5-iodobenzoic
acid

Entry Catalyst [mol% in Pd] Base Temp Solvent Ratio Isol.

[°’cy/ (int-39:38:sm)  Yield

Time [h] [%]

1 RuPhos-Pd G3 (10) K3POg4 60/24 dioxane/water (1:1) 8:10:10 nd
2 RuPhos-Pd G3 (5) K3POg4 60/24 toluene/water (1:1) 10:6:0.3 nd
3 XantPhos-Pd G3 (5) K3POg4 40/48 dioxane/water (1:1) 10:1:0 nd
4 XantPhos-Pd G3 (5) K3POg4 40/ 24 toluene/water (1:1) 10:1:3 70
5 Pd(dppf)Cl2 (5) K3POg4 60/24 dioxane/water (1:1) 10:1:3 80
6 XPhos-Pd G2 (1) K3PO4 60/24 dioxane/water (1:1) 10:7:1 nd
7 SPhos-Pd G3 (5) K3POg4 60/24 dioxane/water (1:1) 10:2:0 40
8 Pdx(dba)sz*CHCI3/SPhos 1:1 (10)  K3POg4 60/24 dioxane/water (1:1) 10:1:04 55
9 Pdx(dba)sz*CHCI3/SPhos 1:1 (10)  K3POg4 80/24 dioxane/water (1:1) 10:1:0.3 55
8 Pdz(dba)s*CHCI3/SPhos 1:1 (10)  K3POa4 40/24 tert-BuOH 10:4:4 nd
9 Pdy(dba)s;*CHCI3/SPhos 1:1 (10)  K3POg4 40/20 toluene/water (1:1) 10:1:3 65
10 Pdx(dba)s;*CHCI3/SPhos 1:1 (10)  K3POg4 60/10 dioxane:water (1:1) 5:4:10 nd
11 Pdx(dba)sz*CHCI3/SPhos 1:1 (10)  K3POg4 60/48 dioxane:water (1:1) 10:4:1 nd
12 Pd,(dba)z*CHCI3/SPhos 1:2 (5) K3POg4 60/24 dioxane/water (1:1) 10:0.7:0 40

1.4 Synthesis of symmetrical 3,5-disubstituted benzoic acid derivatives
3,5-Di(3-acetamidophenyl)benzoic acid 36:

3-Bromo-5-iodobenzoic acid (0.30 mmol, 100 mg, 1.0 equiv), 3-acetamidophenylboronic acid (0.45
mmol, 816 mg, 1.5 equiv), potassium phosphate (1.5 mmol, 324 mg, 5.0 equiv) were dissolved in a
mixture of water/dioxane (1:1). The solution was degassed by vacuum/Ar cycles (10 times) before
addition of Pd,(dba);*CHCIl; (15 mg, 5 mol%), and XPhos (7.2 mg, 5 mol%) and further degassed (5
times). The resulting mixture was stirred at 60 °C for 20-24 hours. The reaction mixture was filtered
through Celite bed and diluted with water (approx. 30 mL) before washing with chloroform (3 x 30
mL). The aqueous phase was concentrated under reduced pressure and applied to a C18 precolumn
before purification on a 60 g C18 column with a gradient of acetonitrile in water (0-5% over 15 min)
to provide 36 (60 mg, 54%) as white powder. Ty, = 211-212°C. "H NMR (400 MHz, methanol-d,) § 8.21
(s, 1H), 7.90 (t, J = 1.7 Hz, 1H), 7.81 (t, J = 1.7 Hz, 2H), 7.68 (d, J = 8 Hz, 2H), 7.43 (s, 1H), 7.49-7.46 (m,
2H), 7.43-7.39 (m, 2H), 2.16 (s, 6H). °C NMR (101 MHz, methanol-d,) § 175.0, 171.8, 142.9, 142.3,
140.5, 132.2, 130.4, 128.2, 128.1, 123.9, 120.3, 119.7, 24.0. HRMS (ESI): Calcd. for Cy3H19N,04 [M-H]
387.1350; found 387.1342. UHPLC: purity =97.5%

3,5-di(4-acetamidophenyl)benzoic acid 37:

3,5-Dibromobenzoic acid (1.01 mmol, 300 mg, 1.0 equiv), 3-acetamidophenylboronic acid (0.81 mmol,
178 mg, 0.75 equiv), potassium phosphate (3.76 mmol, 0.80 g, 3.5 equiv) and PdCl,(PPhs), (0.11 mmol,
77 mg, 10 mol%) were stirred in a mixture of water/dioxane (1:1) for 24 hours at 95 °C under argon
atmosphere. The crude reaction mixture was filtered through Celite and diluted with water (approx.
30 mL) before washing with chloroform (3 x 30 mL). The aqueous phase was concentrated under
reduced pressure and applied to a C18 precolumn before purification on a 60 g C18 column with a
gradient of acetonitrile in water (0-100 % over 12 minutes). The fractions were analysed by MS and
fractions containing 37 were combined. The product was purified by reverse-phase automated flash
chromatography before being subjected to purification by HPLC, to yield 37 (0.09 mmol, 34 mg, 11%)
as a white solid. T, = 245-247°C. *H NMR (400 MHz, methanol-d,) & 8.24 (s, 2H), 7.98 (d, J = 7.8 Hz, 2H),
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7.85 (d, J = 7.9 Hz, 2H), 7.68-7.66 (m, 2H), 7.63-7.60 (m, 2H), 7.57-7.53 (m, 1H), 2.16 (s, 6H). *C NMR
(101 MHz, methanol-d,) 6 175.2, 171.7, 142.0, 140.2, 139.4, 137.9, 131.7, 128.4, 128.2, 127.6, 127.4,
123.3,121.4, 116.2, 23.9. HRMS (ESI): Calcd. for C,3H1sN,04 [M-H] 387.1350; found 387.1340. UHPLC:
purity = 100 %

3,5-diquinolin-6-ylbenzoic acid 38:

3,5-Dibromobenzoic acid (0.11 mmol, 33 mg, 1.0 equiv), 6-quinolinylboronic acid pinacol ester (0.23
mmol, 60 mg, 2.0 equiv ), potassium phosphate (0.58 mmol, 125 mg, 5.0 equiv) were dissolved in tert-
butanol. The solution was degassed by vacuum/Ar cycles (10 times) before addition of XPhos-Pd G2 (5
mol%, 5 mg) and further degassed (5 times). The resulting mixture was stirred at 60 °C for 20—24 hours.
The reaction mixture was filtered through Celite bed and diluted with water (approx. 30 mL) before
washing with chloroform (3 x 30 mL). The aqueous phase was concentrated under reduced pressure
and applied to a C18 precolumn before purification by C18 RP flash chromatography with a gradient
of acetonitrile in water (0—5% over 15 min) to yield 38 (0.08 mmol, 29 mg, 65%) as white powder. T,
= 291-292°C. *H NMR (400 MHz, methanol-d,) & 8.87-8.86 (m, 2H), 8.52-8.50 (m, 2H), 8.46 (m, 2H),
8.38 (m, 2H), 8.29-8.26 (m, 3H), 8.18 (s, 1H), 8.16 (s, 1H), 7.61-7.58 (dd, J = 8.3, 4.2 Hz, 2H). *C NMR
(101 MHz, methanol-d,) & 174.4, 151.1, 148.0, 141.5, 140.5, 138.6, 130.6, 130.1, 129.5, 128.7, 126.9,
122.8. HRMS (ESI): Calcd. for CysH15N,0, [M-H]™ 375.1139; found 375.1133. UHPLC: purity =99.1 %

1.5 Synthesis of unsymmetrical 3,5-disubstituted benzoic acid derivatives
3-(3'-Acetamidophenyl)-5-pyridin-4-ylbenzoic acid 39: attempted synthesis from 3,5-
dibromobenzoic acid

3,5-Dibromobenzoic acid (1.01 mmol, 300 mg, 1.0 equiv), 3-acetamidophenylboronic acid (0.81 mmol,
178 mg, 0.75 equiv), potassium phosphate (3.76 mmol, 0.80 g, 3.5 equiv) and PdCl,(PPh3),(0.11 mmol,
77 mg, 10 mol%) were stirred in a mixture of water/dioxane (1:1) for 24 hours at 95 °C under argon
atmosphere. The crude reaction mixture was filtered through Celite and diluted with water (approx.
30 mL) before washing with chloroform (3 x 30 mL). The aqueous phase was concentrated under
reduced pressure and applied to a C18 precolumn before purification by C18 RP flash chromatography
with a gradient of acetonitrile in water (10—-100 % over 12 minutes). The fractions were analysed by
MS and fractions containing int-39 were combined and reacted with pyridin-4-ylboronic acid (0.97
mmol, 119 mg, 1.2 equiv), potassium phosphate (4.05 mmol, 0.86 g, 5.0 equiv) and PdCI,(PPhs), (0.08
mmol, 56 mg, 10 mol%). The product was purified by reverse-phase automated flash chromatography
before being subjected to purification by HPLC, to yield 39 (0.12 mmol, 39 mg, 15%) as a white solid.
Tm = 244°C. *H NMR (400 MHz, methanol-ds) 6 8.22 (s, 1H), 7.92 (d, J = 7.6 Hz, 1H), 7.76 (s, 2H), 7.68-
7.60 (m, 3H), 7.46-7.33 (m, 4H), 2.14 (s, 3H). >C NMR (101 MHz, methanol-d,) & 175.3, 171.7, 143.0,
141.5,140.4,139.8, 130.3,129.7,129.3, 129.3,128.9, 123.7, 120.1, 119.6, 23.9. UHPLC: purity =97.9%

3-Bromo-5-(quinolin-6-yl) benzoic acid int-40:

3-Bromo-5-iodobenzoic acid (0.15 mmol, 50 mg, 1.0 equiv), 6-quinolinylboronic acid pinacol ester
(0.22 mmol, 58 mg, 1.5 equiv) and potassium phosphate (0.76 mmol, 162 mg, 5.0 equiv) were dissolved
in a mixture of water/dioxane (1:1). The solution was degassed by vacuum/Ar cycles (10 times) before
addition of Pd,(dba);*CHCI; (5 mol%, 7.5 mg), and SPhos (5 mol%, 3.1 mg) and further degassed (5
times). The resulting mixture was stirred at 60 °C for 20-24 hours. The reaction mixture was filtered
through a Celite bed and diluted with water (approx. 30 mL) before washing with chloroform (3 x 30
mL). The aqueous phase was concentrated under reduced pressure and applied to a C18 precolumn
before purification on a 60 g C18 column with a gradient of acetonitrile in water (0-5% over 20 min).
Product int-40 (0.07 mmol, 23 mg, 45%) was obtained as a white powder. T,, = 288°C. '"H NMR (400
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MHz, methanol-d,) 6 8.92-8.91 (m, 1H), 8.49-8.46 (m, 1H), 8.35 (s, 1H), 8.28 (s, 2H), 8.10 (s, 2H), 8.02-
8.01 (m, 1H), 7.97-7.96 (m,1H), 7.59-7.56 (dd, J = 8.3, 4.2 Hz, 1H). *C NMR (101 MHz, DMSO-ds) &
166.6, 150.8, 147.2, 143.6, 140.6, 136.8, 136.5, 131.7, 131.1, 129.6, 128.5, 128.2, 127.4, 126.5, 125.8,
121.9, 121.7; HRMS (ESI): Calcd. for Ci¢Hs’°BrNO, [M-H]™ 325.9822; found 325.9822.

3-(3'-Acetamidophenyl)-5-quinolin-6-ylbenzoic acid 40:

3-Bromo-5-(quinolin-6-yl) benzoic acid int-40 (0.039 mmol, 13 mg, 1.0 equiv), 3-
acetamidophenylboronic acid (0.55 mmol, 10 mg, 1.5 equiv) and potassium phosphate (0.20 mmol,
0.42 g, 5.0 equiv) were dissolved in tert-butanol. The solution was degassed by vacuum/Ar cycles (10
times) before addition of Xphos-Pd G2 (5 mol%, 1.5 mg) and further degassed (5 times). The resulting
mixture was stirred at 60 °C for 20—24 hours. The reaction mixture was filtered through Celite bed and
diluted with water (approx. 30 mL) before washing with chloroform (3 x 30 mL). The aqueous phase
was concentrated under reduced pressure and applied to a C18 precolumn before purification on a 60
g C18 column with a gradient of acetonitrile in water (0-5% over 20 min). Product 40 (0.023 mmol, 9
mg, 90%) was obtained as white powder. T, = 261-264°C. *H NMR (400 MHz, methanol-d,) & 8.87-8.83
(m, 1H), 8.56-8.45 (m, 1H), 8.41-8.39 (m, 1H), 8.35-8.20 (m, 3H), 8.18-8.11 (m, 1H), 8.08 (t, J = 1.8 Hz,
1H), 7.87-7.86 (m, 1H), 7.72-7.68 (m, 1H), 7.62-7.56 (m, 1H), 7.56-7.49 (m, 1H), 7.46-7.42 (m, 1H), 2.17
(s, 3H). *C NMR (101 MHz, DMSO-ds) 6 174.7, 171.8, 151.2, 148.2, 142.8, 142.5, 141.4, 140.8, 140.7,
140.5, 138.8, 130.8, 130.4, 130.3, 129.7, 128.6, 128.5, 128.5, 127.0, 123.9, 123.0, 120.3, 119.7, 23.9.
HRMS (ESI): Calcd. for Cy3H1sN,05 [M-H] 381.1245; found 381.1243. UHPLC: purity = 96.4 %.
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2 NMR spectra of compounds 3—-40:
2.1 2'-methylbiphenyl-3-carboxylic acid, 3a:

'H NMR of 3a
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2.2 3'-methylbiphenyl-3-carboxylic acid, 3b:

'H NMR of 3b
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2.3 2'-hydroxybiphenyl-3-carboxylic acid 4a:

'H NMR of 4a
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2.4 3'-hydroxybiphenyl-3-carboxylic acid, 4b:

'H NMR of 4b
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2.5 4'-hydroxybiphenyl-3-carboxylic acid, 4c:

H NMR of 4c
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2.7 2'-methoxybiphenyl-3-carboxylic acid, 6a:

'H NMR of 6a
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2.8 3'-methoxybiphenyl-3-carboxylic acid, 6b:

'H NMR of 6b

2.8.1

OSWa €£'2

OSWa 15°¢
OSWa 1s°¢
oswazsc
OSIa 89°C

OSIWa 052 /
oswa om.m/

OQH 8€'€ —

£€8°€

169
169
£6'9
£6'9
ST'L
0z'L
we
€L
€€,
se'L
9L
8€'L
ov'L—
YS'L—7
o5/
[2: VAN
sgL”

a8 —

ABSA-3-13

OH

— Regs
0’1
10T
0T
J10T
Foo't

Foo't

4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5
f1 (ppm)

5.5 5.0

6.0

8.0 7.5 7.0 6.5
13C NMR of 6b:

2.8.2

OSWA 68'8€
OSWA 0T°6€
OSWa TE'6€
OSWA ZS5'6€
OSWA £5°6€

SROEEoT
OSWA 8/'6€
OSWA ¥6'6€
OSWA 66'6€
OSWA ST'0t
OSwWa 0z'ot
80°SS —

7566 —

06'TTT ~
[ 711

S6'8TT —
8v'9Z1

0€°L2T V
1s'er
Vag:iad \

68°6CT

TL8ET —
LY'THT —

89°65T —

£€'89T —

10

50

60

80

T
100

110

T
160

f1 (ppm)

28



2.9 4'-methoxybiphenyl-3-carboxylic acid 6c:
2.9.1 'HNMR of 6¢
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2.10 4'-methylthiobiphenyl]-3-carboxylic acid, 7:
2.10.1 *HNMR of 7
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2.11 2'-fluorobiphenyl-3-carboxylic acid, 8a:

2.11.1 'H NMR of 8a
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2.12 3'-fluorobiphenyl-3-carboxylic acid 8b:

2.12.1 'H NMR of 8b
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2.13 4'-fluorobiphenyl-3-carboxylic acid, 8c:

2.13.1 'H NMR of 8¢
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2.14 2'-(methoxycarbonyl)biphenyl-3-carboxylic acid, 9a:

2.14.1 'H NMR of 9a
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2.15 3'-(methoxycarbonyl)biphenyl-3-carboxylic acid, 9b:

2.15.1 'H NMR of 9b
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2.16 4'-acetylbiphenyl-3-carboxylic acid 10:

2.16.1 1H NMR of 10
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2.17 3'-carbamoylbiphenyl-3-carboxylic acid, 11a:

2.17.1 'HNMR of 11a
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2.18 4'-carbamoylbiphenyl-3-carboxylic acid, 11b:

2.18.1 'HNMR of 11b
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2.19 3'-(methylsulfonyl)biphenyl-3-carboxylic acid, 12a:

2.19.1 'H NMR of 12a
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2.20 4'-(methylsulfonyl)biphenyl-3-carboxylic acid, 12b:

2.20.1 'HNMR of 12b
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2.21 4'-aminobiphenyl-3-carboxylic acid, 13:

2.21.1 'HNMR of 13
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2.22 4'-dimethylaminobiphenyl-3-carboxylic acid, 14:
2.22.1 *H NMR of 14
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2.23 3'-aminomethylbiphenyl-3-carboxylic acid, 15a:
2.23.1 'H NMR of 15a
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2.24 4'-(aminomethyl)biphenyl-3-carboxylic acid, 15b:

2.24.1 'HNMR of 15b
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2.25 3'-(2-aminoethyl)biphenyl-3-carboxylic acid, 16a:

2.25.1 1H NMR of 16a
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2.26 4'-(2-aminoethyl)biphenyl-3-carboxylic acid, 16b:

2.26.1 1H NMR of 16b
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2.27 4'-(methylsulfonamido)biphenyl-3-carboxylic acid, 17:
2.27.1 *HNMR of 17
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2.28 4'-(phenylsulfonamido)biphenyl-3-carboxylic acid, 18:

2.28.1 'HNMR of 18
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2.29 3'-(methylsulfonamidomethyl)biphenyl-3-carboxylic acid, 19a:
2.29.1 'H NMR of 19a

° 88888
E 22222
£ 2 2E227 8
20
O
0
NH
N O OH
P
0
T T T T T T
= T T = T \ﬂ \'\: \': ':\
80 79 78 17 76 15 74
f1 (ppm)
i ‘ \““ k
. NN
AR M N o T
T T T T T T T T T T T T T T T T T T T
10 8.5 8.0 75 70 6.5 6.0 55 5.0 45 35 3.0 25 20 15 10 0.5 0.0
f1 (ppm)
13
2.29.2 *C NMR of 19a
caa
[exeN=]
. 222
a3 3I9R
(i
0
\\/Nll
) OH
A0
0
T ; ; T T T T T T T T T T ; ; T T T
170 160 150 140 130 120 110 100 90 80 70 60 50 4 30 20 10 0

f1 (ppm)

49



2.30 4'-(methylsulfonamidomethyl)biphenyl-3-carboxylic acid, 19b:

2.30.1 'HNMR of 19b
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2.31 3'-(2-methylsulfonamidoethyl)biphenyl-3-carboxylic acid, 20:

2.31.1 'H NMR of 20
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2.32 3'-acetamidobiphenyl-3-carboxylic acid, 21a:
2.32.1 'H NMR of 21a
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2.33 4'acetamidobiphenyl-3-carboxylic acid, 21b:

2.33.1 'H NMR of 21b
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2.34 3'-(acetamidomethyl)biphenyl]-3-carboxylic acid, 22:

2.34.1 'H NMR of 22
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2.35 3'-(2-acetamidoethyl)biphenyl]-3-carboxylic acid, 23a:

2.35.1 'H NMR of 23a
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2.36 4'-(2-acetamidoethyl)biphenyl]-3-carboxylic acid, 23b:

2.36.1 'H NMR of 23b
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2.37 3'-acetoxymethylbiphenyl-3-carboxylic acid, 24:

2.37.1 'H NMR of 24
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2.38 4'-(1H-imidazol-1-yl)biphenyl-3-carboxylic acid, 25:

2.38.1 'H NMR of 25
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2.39 3'-(1H-tetrazol-5-yl)biphenyl-3-carboxylic acid, 26a:
2.39.1 'H NMR of 26a
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2.40 4'-(1H-tetrazol-5-yl)biphenyl-3-carboxylic acid, 26b:

2.40.1 'H NMR of 26b
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2.41 3-(naphthalen-2-yl)benzoic acid, 27:
2.41.1 'H NMR of 27
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2.42 3-(quinolin-7-yl)benzoic acid, 28:
2.42.1 'HNMR of 28
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2.43 3-(6-aminopyridin-3-yl)benzoic acid, 29:

2.43.1 'H NMR of 29
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2.44 3-(pyrimidin-5-yl)benzoic acid, 30:

2.44.1 'H NMR of 30
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2.45 3-(2-aminopyrimidin-4-yl)benzoic acid, 31:

2.45.1 H NMR of 31
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2.46 3-(1-methyl-1H-pyrrol-2-yl)benzoic acid, 32:
2.46.1 'H NMR of 32
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2.47 3-(thiazol-5-yl)benzoic acid, 33:
2.47.1 'HNMR of 33
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2.48 3-(1H-indol-5-yl)benzoic acid, 34:
2.48.1 'HNMR of 34
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2.49 3-(pyridin-2-yl)benzoic acid, 35:

2.49.1 1H NMR of 35
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2.50 symmetrical 3,5-disubstituted benzoic acid derivatives

2.51 3,5-Di(3-acetamidophenyl)benzoic acid 36:

2.51.1 1H NMR of 36
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2.52 3,5-di(4-acetamidophenyl)benzoic acid 37:

2.52.1 1H NMR of 37
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2.53 3,5-diquinolin-6-ylbenzoic acid 38:

2.53.1 1H NMR of 38
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2.54 unsymmetrical 3,5-disubstituted benzoic acid derivatives
2.55 3-(3'-Acetamidophenyl)-5-pyridin-4-ylbenzoic acid 39:

2.55.1 1H NMR of 39
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2.56 3-Bromo-5-(quinolin-6-yl) benzoic acid int-40:

2.56.1 1H NMR of int-40

abai-44

9P-OSWQA 0S'C
om.Nv

Lre—

954
15°L
85/ 1
6521
96°L
164
16 1
€0'8
€0'8

€0'8
01°8
01°8
678
0£'8
om.wJW
SE'8Y
ww.m?
o8\
8b'8
mv.wN.

16'8
16'8
26’8

6’8

COOH

501

/<60
101
00z
2960
2ot

ano.ﬁ

=00'T

4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

4.5
f1 (ppm)

8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0

9.0

2.56.2 13C NMR of int-40

ABAI-44

OSWA T€'6€
OSWA T5'6€

OSWA 06'8€
oswa oﬂ.mmM
OSWA €£°6€ ¢
OSWA v6'6€
OSWA 66'6€
OSWA ST'0t
0OSWdad 0z'ot

[ 78234
Nm.zﬁk
18'521

5071 %
11821~
1b°821 \
65°621 \
€TIET

Lb°9€T \
8/°9€T

soop1 7
€9ept 7
YT b1 —
08°05T ~.

£58°99T —

COOH

30

T T T T
100 90 80 70 60 50
f1 (ppm)

110

T
160

T
170

74



2.57 3-(3'-Acetamidophenyl)-5-quinolin-6-ylbenzoic acid 40:

2.57.1 1H NMR of 40
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Paper I

Carbonylative Suzuki—Miyaura couplings of sterically hindered aryl
halides: synthesis of 2-aroylbenzoate derivatives

Aya Ismael, Troels Skrydstrup, and Annette Bayer.
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We have developed a carbonylative approach to the synthesis of diversely substituted 2-aroylbenzoate
esters featuring a new protocol for the carbonylative coupling of aryl bromides with boronic acids and a
new strategy to favour carbonylative over non-carbonylative reactions. Two different synthetic pathways
— (i) the alkoxycarbonylation of 2-bromo benzophenones and (ii) the carbonylative Suzuki—Miyaura coup-
ling of 2-bromobenzoate esters — were evaluated. The latter approach provided a broader substrate toler-
ance, and thus was the preferred pathway. We observed that 2-substituted aryl bromides were challenging
substrates for carbonylative chemistry favouring the non-carbonylative pathway. However, we found that
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Introduction

Through our program on fragment-based design of metallo-
f-lactamase inhibitors, we became interested in the develop-
ment of efficient strategies for the synthesis of functionalized
2-aroylbenzoic acids 1 (Scheme 1).! Among other, 2-aroylben-
zoic acids have gained keen interest as synthetic intermediates
for accessing bioactive compounds,”” as subunits of natural
products and pharmaceuticals e.g. (—)-balanol® and pitfenone,
and as fragment-sized inhibitors of the human aldo-keto
reductase AKR1C3 ° and the hepatitis C virus NS3 protease.”
Most commonly, 2-aroylbenzoic acids are prepared from
phthalic anhydride by treatment with organometallic
reagents>”"™" or by a Friedel-Crafts acylation®>'* with aro-
matic nucleophiles. However, these methods are incompatible
with many functional groups, requiring excess Lewis acid and
harsh reaction conditions, and often provide poor regio-
selective control. On the other hand, the biaryl ketone sub-
scaffold of 2-aroylbenzoic acids has been synthesized by tran-
sition metal-catalyzed carbonylative cross-couplings of organo-
metallic reagents and aryl electrophiles,"* ™™ or the non-decar-

“Department of Chemistry, Faculty of Science and Technology,

UiT The Arctic University of Norway, N-9037 Tromso, Norway.

E-mail: annette. bayer@uit.no

bCarbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center
(iNANO) and Department of Chemistry, Aarhus University, Gustav Wieds Vej 14,
8000 Aarhus C, Denmark

tElectronic supplementary information (ESI) available. See DOI: 10.1039/
d0ob00044b

1754 | Org. Biomol. Chem., 2020, 18, 1754-1759

sing the unwanted direct Suzuki coupling and, thus increasing the yield of the carbonylative reaction.

bonylative coupling of acyl electrophiles, e.g. carboxylic
acids,'®"® esters'®' or amides."®** Despite the advances in
the synthesis of biaryl ketones, only few methods have been
demonstrated to be applicable for the formation of 2-aroyl
benzoic acid derivatives. Such methods comprise of the
Pd-catalyzed ortho-C-H activation of benzoic acids followed by
decarboxylative coupling with a-oxocarboxylic acids,>® Pd-cata-
lyzed ortho-C-H activation of aryl amides followed by coupling
with aryl aldehydes,** and the Pd-catalyzed coupling of 2-iodo-
benzoates with aldehydes.>®> However, the available protocols
have limited regiocontrol and/or substrate scope especially
with regard to electron-deficient aryl groups.

In this study, we investigated two alternative routes towards
2-aroylbenzoate esters 2 featuring carbonylative couplings
using safe and easy to handle ex situ generated CO as a key
step (Scheme 1). In the first approach (route A), we examined
the Pd-catalyzed alkoxycarbonylation of 2-bromo functiona-
lized biaryl ketones, which in turn could be prepared by carbo-
nylative Suzuki-Miyaura couplings of 2-bromoiodobenzene. In
the second approach (route B), we investigated the carbonyla-
tive Suzuki-Miyaura coupling of 2-bromo substituted benzoate
esters. A new protocol for the carbonylative coupling of aryl bro-
mides and simple boronic acids preventing the use of iodide
salts as additives or high-pressure CO gas was developed.
Moreover, we demonstrate that slow addition of the nucleophilic
coupling reagent is an uninvestigated strategy to enhance for-
mation of the carbonylative product over the non-carbonylative
side-product. The latter discovery was essential for sterically-
demanding ortho-substituted aryl bromides in order to provide
useful yields of the carbonylative coupling products.

This journal is © The Royal Society of Chemistry 2020
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Scheme 1 Routes towards 2-aroylbenzoic acid derivatives explored in this work.

Results and discussion
Carbonylative Suzuki-Miyaura of 2-bromoiodobenzene (step A,)

Initially, we focused on the Pd-catalyzed carbonylative Suzuki-
Miyaura coupling of 2-bromoiodobenzene 3 with aryl boronic
acids 4 in order to prepare substituted 2-bromobenzophenone
derivatives 5 as starting materials for further alkoxycarbonyla-
tion reactions (Scheme 2). A range of catalysts derived from a
variety of Pd sources including Pd(OAc),,>® Pd(dba),,>” Pd
(PPh;),Cl,,*® PdCl,, PEPPSI-IPr*® were evaluated for the carbo-
nylative coupling of the aryl iodide in presence of a bromide
using 2-bromoiodobenzene 3 and 4-methoxyphenyl boronic
acid 4a (Table ESI-17). The yields varied from 10% to 65% of
the furnished benzophenone (Table ESI-1,1 entries 1-5), and

PdCl, (1 mol%) O Br
| K>COj3 (3 equiv)
@( . Ar/B(OH)z CO (from COgen) (2.5 equiv) Ar
Br anisole, 80 °C,
3 4a-m overnight 5
Ar=
5a, 80% (60%)2  5b, 65% (35%)? 5¢, 60% 5d, 55%
o _0._0
e O~
\_N. N
Boc Boc
5e, 70% 5f, 76% 59, 40% 5h, 58%
F
NC F
5i, 30% (0%)2 5j, 65% (30%)2 5k, 30% 51, 76% 5m, 80%

Scheme 2 Carbonylative Suzuki—Miyaura coupling of 2-bromoiodo-
benzene with boronic acids. Reaction conditions: Chamber A: 3
(0.18 mmol), PdCl, (1 mol%) and K>COz (0.55 mmol) in anisole (3 ml).
Chamber B: COgen (0.45 mmol), Pd(dba), (5 mol%) and TTBP-HBF,
(5 mol%) in anisole (3 ml). DIPEA (3 equiv.) was added to chamber B to
start CO formation, before 4 (1.2 equiv.) in anisole (3 ml) was added
slowly to chamber A (general procedure A, ESIT).? Yield obtained when 4
(1.2 equiv.) was added to chamber A before CO release (general pro-
cedure B, ESIT).
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competitive formation of the direct coupling product (biphe-
nyl) was a major limitation. The most promising catalytic
system identified from the screening used PdCl, as catalyst
precursor, K,COj; as base, and anisole as solvent (Table ESI-1,T
entry 5).

<7 "R : o
LD & ok
R
o Q‘F’Rz dcype (R = cyclohexyl)
PPh, PPh, )
dppf (R = Ph) R
Xantphos dippf (R = iPr)

R2

RCI/?\@\RZ

Qdon &
H
g\nBu iPr Y .
©
PEPPSI—IPr(F!1 |Pr R2 H)
CataCXium A-HI Pd-IPr-aIIyI-CI PEPPSI-IMes (R' = R? = Me)

In addition, several methods for the ex situ generation of
carbon monoxide from formic acid,®>® oxalyl chloride,*
COgen,*” and electrochemical reduction of CO, to CO** were
screened to prevent the risk of handling toxic carbon monox-
ide from a cylinder (Table ESI-21). The most promising and
convenient CO source turned out to be 9-methylfluorene-9-car-
bonyl chloride (COgen) (Table ESI-2,T entry 3). Oxalyl chloride
as CO source provided comparable results if the CO gas was
generated outside the reaction chamber making the handling
more inconvenient (Table ESI-2,T entry 5), while both formic
acid and electrochemical reduction of CO, resulted in substan-
tially reduced yields (Table ESI-2,} entries 1 and 7).

The catalytic system employing PdCl, as precatalyst was
further optimized with regard to different reaction times,
temperatures, and slow addition of the boronic acid. Yields up
to 65% of the carbonylated product were obtained with PdCl,
(3 mol%) at 80 °C for 20 h (Table ESI-1,} entry 5). Reduction of
the catalyst loading to 1 mol% led to a slight decrease in yield
to 60% (Table ESI-1,} entry 6) and 1 mol% of precatalyst was
used in the following reactions. A lower reaction temperature
led to incomplete conversion and lower yields (Table ESI-1,T
entries 7 and 8). Addition of KI to favour carbonylative over
direct coupling®® did not improve the yield (Table ESI-1,}
entry 11). However, when the aryl boronic acid was added
slowly over 2 h, direct coupling was suppressed and the yield
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improved up to 80% (Table ESI-1,} entry 13). Similarly, the
yield of the carbonylated product was improved from 30% to
60% by slow addition of the aryl boronic acid for reactions
with PEPPSI-IPr as the precatalyst (Table ESI-1,7 entries 4
and 15).

Then, we explored the scope of the Pd-catalyzed reaction
using PdCl, with respect to different aryl and heteroaromatic
boronic acids 4 (Scheme 2). In all cases, slow addition of the
aryl boronic acid increased the yield by 20-35 percentage
points. Both electron-rich and electron-deficient aryl boronic
acids (4a-c, e, f, j, 1, m) gave moderate to high yields (60-80%)
of the products. However, some electron-deficient boronic
acids 4g, i and k provided lower yields in the range of 30-40%.
ortho-Substituents on the boronic acid (4¢, h and m) and some
electron-rich heterocycles (4e and f) were well tolerated to the
reaction conditions. However, hydroxy and N-acyl substituted
aryl boronic acids and 2-furanyl boronic acid only provided
products from the direct coupling instead of carbonylative
coupling.

Hydroxy- or alkoxycarbonylation of 2-bromo-substituted biaryl
ketones (step A,)

With a set of 2-bromobenzophenone derivatives 5a-m in hand,
we investigated the Pd-catalyzed hydroxy- and alkoxycarbonyla-
tion to transform the aryl bromide into the carboxylic acid or
ester, respectively.’* Previous reports on Pd-catalyzed
hydroxycarbonylation®**?*¢ or alkoxycarbonylation®®3*37-3
have had little focus on ortho-substituted aryl bromides.
Unfortunately, all attempts to transform 2-bromo-4-methoxy-
benzophenone 5a directly to 2-(4-methoxybenzoyl)benzoic acid
via a hydroxycarboxylation using MePh,SiCO,H* were unsuc-
cessful (Table ESI-37).

Next, we turned our attention to the alkoxycarbonylation of
2-bromobenzophenones 5 (Scheme 3).>” Using 5a as the test
substrate, a range of precatalysts and ligands (Pd(OAc),, PdCl,
or Pd(dba), with Xantphos, dippf or PPhj;, Pd(PPh;),Cl,/
IMes,* dppf(PdCl,), PEPPSI-IPr or PEPPSIIMes), nucleophiles
(MeOH, iPrOH, n-BuOH, -BuONa, EtONa), bases and solvents

PdCl, (1 mol%) O _OnBu
o Br Xantphos (2 mol%) o
Ar)b KoCOg, CO (from COgen) Ar
anisole: n-BuOH (2:1),
5 80 °C, overnight 2
Ar= E
'771/ /O '2%/ /@ - @ -
\O/: : [ j E
2a, 65% 2b, 60% 2c, 63% 2d, 50%

Scheme 3 Palladium-catalyzed alkoxycarbonylation of 2-bromo biaryl
ketones. Reaction conditions: Chamber A: 5 (1.0 equiv., 0.18 mmol),
PdCl, (2 mol%), Xantphos (3 mol%) K,COsz (3 equiv., 0.55 mmol) in
anisole : n-BuOH (2:1, 3 ml). Chamber B: COgen (107 mg, 2.5 equiv.,
0.45 mmol), Pd(dba), (12 mg, 5 mol%) and TTBP-HBF,4 (6.3 mg, 5 mol%)
in anisole (3 ml). DIPEA (240 mg, 3 equiv.) was added to chamber B to
start CO release.
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were screened (Table ESI-4f). Only few systems were able to
provide the corresponding alkyl 2-(4-methoxybenzoyl)benzoate
2. Comparison of the catalyst performance for 2-bromo-substi-
tuted 5a and the corresponding 4-bromo-substituted analog
showed that the yields were highly influenced by the substi-
tution pattern. For example, for catalyst systems based on dppf
(PdCl,) or Pd(OAc),/Xantphos, the yields dropped from >95%
for the 4-bromo-substituted analog to an 11% yield for
2-bromo-substituted 5a under otherwise identical conditions
(Table ESI-5%). The best results for the latter were obtained
with PdCl, and Xantphos as catalytic system, n-butanol as the
nucleophile, K,CO; as the base and anisole as solvent furnish-
ing the ester 2a in acceptable yield (65%) (Table ESI-4,} entry
12). We applied these conditions to our library of 2-bromoben-
zophenone derivatives 5a-m (Scheme 2). While the substrates
5a, b, k and m gave alkoxycarbonylation products 2a-d in
acceptable yields (65%, 60%, 63% and 55%, respectively), com-
pounds 5c-h and 51 gave low yields to no product. Over all, we
conclude that while the carbonylative Suzuki-Miyaura coup-
ling was tolerant to a variety of aryl boronic acids, the alkoxy-
carbonylation of 2-bromo-biaryl ketones displayed a high
dependence on the substrate structure rendering the approach
unsuitable for the synthesis of a larger library of compounds.

Carbonylative Suzuki-Miyaura coupling with
2-bromobenzoates (route B,)

Due to the limited substrate scope of the alkoxycarbonylation
of 2-bromobenzophenone derivatives, we decided to study the
carbonylative Suzuki-Miyaura coupling of methyl 2-bromo-
benzoates 6 (Table 1). Few examples of carbonylative couplings
with aryl bromides®®*°~** have been reported and those rely on
the use of iodide salts as additives (3 equiv.),?® high pressure
of CO gas (5 bar)*'™* or the use of less accessible boronate
esters’® like DABO boronates** or aryl trihydroxyborates*’
instead of boronic acids. Only two examples of successful

Table 1 Boronate derivatives in carbonylative Suzuki—Miyaura

couplings
MeO.__O _~ COgen MeO.__O
ligand, catalyst, (0]
Br boronic acid derivative
(4a, 7a or 8) O O
OMe
6a 2aa
Boronic acid derivatives Catalyst system Yield
Of\ NH Pd(acac),/cataXCium A-HI 67%
b )
o
MeO 7a
/©/ B(OH)sNa Pd(acac),/cataXCium A-HI 65%
MeO 8
B(OH), Pd(acac),/CataXCium A-HI 30%
/©/ PEPPSI-IPr 63%
MeO 4a PEPPSI-IPr/slow addition of 4a 80%
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couplings with ortho-substituted substrates were reported.*!
While carbonylative couplings of sterically hindered, electron-
rich aryl iodides have been achieved with PEPPSI-IPr as the
precatalyst,”® electron-poor aryl bromides like 6 have been
shown to be challenging substrates favouring non-carbonyla-
tive direct couplings providing biaryl derivatives.>®*' In this
perspective, general methods for carbonylative Suzuki-Miyaura
couplings of aryl bromides with boronic acids are still needed.

With methyl 2-bromobenzoate 6a as the test substrate, the
protocol reported by Skrydstrup and Molander®® using
Pd(acac),/CataCXium A-HI (5/10 mol%) afforded acceptable
yields of 2aa with 65-67% when the DABO boronate®* 7a or
aryl trihydroxyborate®® 8 were used as the nucleophilic coup-
ling reagent (Table 1). However, the yield decreased to 30%
with the boronic acid 4a. Attempts to increase the yield by slow
addition of the DABO boronate 6 or the trihydroxyborate 7
were not successful due to low solubility of these boronic acid
derivatives in the reaction medium (toluene/water). The use of
other solvent systems dramatically reduced the yields
(Table ESI-6,} entries 4-8).

Therefore, we proceeded to identify reaction conditions for
the coupling of 2-bromobenzoate 6a with aryl boronic acids 4a
using COgen as the carbon monoxide source. A range of
experimental conditions including different palladium sources
and ligands (Pd(acac), or Pd(OAc),/CataCXium A or A-HI,*

MeO___O PEPPSI-IPr (3 mol%) MeO.__O o
HO-__OH Cs,CO;3 (5 equiv)
Br . “B” CO (from COgen) (2.5 equiv) Ar
Ar -
anisole,
110 °C, overnight
6a 4a-d,g-o 2aa-ao
Ar= o]
o K o JOF
~o s
2aa 2ab, 55% 2ac, 75% (26%)?2 2ad, 76%
80% (63%)2 67%"
o _0_0O
\OJ\©‘1{ -7,{ /@E{ NC 31/
NC
2ag, 47% 2ah, 74% 2ai, 32% (16%)2  2aj, 40% (24%)?
F
. F . 7
oF O O g
F \_s
2ak 2al 2am 2an 2ao
37%, 25% 58% (43%)%  65% (42%)2 35%° 0%, 50%°  75%°

Scheme 4 Suzuki—Miyaura coupling of methyl 2-bromobenzoate 6a
with boronic acids 4. Reaction conditions: Chamber A: 6a (1.0 equiv.,
0.47 mmol), PEPPSI-IPr (3 mol%) and Cs,COsz (3 equiv., 1.4 mmol) in
anisole (3 ml). Chamber B: COgen (282 mg, 2.5 equiv., 1.2 mmol), Pd
(dba), (30 mg, 5 mol%) and TTBP-HBF,4 (10 mg, 5 mol%) in anisole (3 ml).
DIPEA (450 mg, 3 equiv.) was added to chamber B, before 4 (1.5 equiv.)
was added slowly to chamber A (general procedure C, ESI{).?Yield
obtained when 4 (1.5 equiv.) was added to chamber A before CO release
(general procedure D, ESIt). ® Yield obtained by reaction with DABO bor-
onate 7 (1.5 equiv.) using Pd(acac),/2 CataCXium A-HI (5 mol%) as cata-
lyst (general procedure E, ESI¥).
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Pd(OAc), or PdCl,/Xantphos, Xantphos-G2, PEPPSI-IPr, [Pd
(1Pr)(allyl)Cl], Pd(PPh;),Cl,**** and Ni(COD)/dcype) and sol-
vents were screened (Table ESI-6,1 entries 9-20). In most of the
systems, the undesired non-carbonylative coupling was the
dominant reaction pathway (Table ESI-6,T entries 9-15). Only
the Pd(IPr)-based catalytic systems were able to accomplish the
carbonylative Suzuki-Miyaura coupling (Table ESI-6,T entries
16-19). The best system using PEPPSI-IPr (3 mol%) as catalyst
precursor, Cs,CO; as base in chlorobenzene or anisole as
solvent provided the product 2aa in 63% yield (Table 1 and
Table ESI-6,7 entry 16). The yield could be further increased to
80% by slow addition of the boronic acid (Table 1 and
Table ESI-6,T entry 17).

A range of aryl boronic acids 4 were tested to examine the
scope of the reaction as depicted in Scheme 4. Most of the
electron rich boronic acids (4a, ¢ and d) provided good yields
(2aa: 80%; 2ac: 75%; 2ad: 76%), while electron-deficient
boronic acids (4g, i, j, k and 1) generally led to lower yields
(2ag: 47%; 2ai: 32%; 2aj: 40%; 2ak: 37%; 2al: 58%). Yields
obtained with slow addition of the aryl boronic acid were con-
sistently higher (2aa: 80%; 2ac: 75%; 2ai: 32%; 2aj: 40%; 2al:

MeO. o M
o HO~-OH PEPPSI-IPr (3 mol%) 0.0 0]
Br Cs,CO3 (3 equiv)
= | | ") CO (from COgen) (2.5 equiv) * | =z |
+ >
\\R /\Rz anisole, \\R \\Rz
110 °C, overnight
6b-i 4a,c,h,p 2
_0._0 o _0._0 o _0._0 o
2ba, 72% F 2ca, 50% 2da, 50%
_0._0 o _0._0 o _0._0 o
A, ; g% ; %
Cl
2ea, 65% 2fa, 71% 2ga, 68%
_0._0 o _0._0 o
(o] (o]
<" 2ha, 77% < 2ia, 73%
_0O OO o~ _O OOO oL _o 0o
2bc, 66% 2bh, 40% -0 2hp, 61%

Scheme 5 Substrate scope of carbonylative Suzuki—Miyaura coupling
of methyl 2-bromobenzoate derivatives 6 with boronic acids 4. Reaction
conditions: Chamber A: 6 (1.0 equiv., 0.47 mmol), PEPPSI-IPr (3 mol%)
and Cs,COs (3 equiv., 1.4 mmol) in anisole (3 ml). Chamber B: COgen
(282 mg, 2.5 equiv., 1.2 mmol), Pd(dba), (30 mg, 5 mol%) and TTBP-HBF,
(10 mg, 5 mol%) in anisole (3 ml). DIPEA (450 mg, 3 equiv.) was added to
chamber B, before 4 (1.5 equiv.) was added slowly to chamber A
(general procedure C, ESI¥).
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58%; 2am: 65%), when compared with yields obtained by
instantaneous addition (2aa: 63%; 2ac: 26%; 2ai: 16%; 2aj:
24%; 2al: 43%; 2am: 42%). Slow addition of the boronic acid
under reaction conditions seems to favour the CO insertion
step by slowing down the faster transmetallation®®*' due to
limited access to the organometallic nucleophile.

Aryl boronic acids containing acidic protons and the hetero-
aromatic boronic acid 4n only underwent direct coupling
instead of carbonylative coupling using PEPPSI-IPr. Couplings
with heteroaromatic organometallic reagents could be achieved
using the corresponding DABO boronates providing 2an and
2a0 with Pd(acac),/CataCXium A-HI as the catalytic system.

We further investigated the scope of the reaction with
regard to a range of substituted methyl 2-bromobenzoates 6b-i
(Scheme 5). Aryl bromide 6 with both electron-withdrawing
6b-e and donating substituents 6f-i gave acceptable yields
(50-72%). Surprisingly, also the coupling of ortho di-
substituted 6g provided good yields (2ga: 68%). The lowest
yield (2bh: 40%) was obtained for the coupling of the electron-
deficient 6b with the electron-deficient boronic acid 4p.

Conclusions

In summary, two routes for accessing 2-aroylbenzoate esters
have been evaluated. In the first strategy, the key step was the
alkoxycarbonylation of 2-bromo-diarylketones, which unfortu-
nately appeared sensitive to the substitution pattern of the aryl
bromide. The second strategy employed a carbonylative
Suzuki-Miyaura coupling of 2-bromobenzoate esters, which
was more robust with regard to the structure of aryl bromide
and the aryl boronic acid. The latter approach was exploited to
prepare a range of diversely substituted 2-aroylbenzoate esters.

Moreover, we found that slow addition of the boronic acid
is a strategy to favour carbonylative over non-carbonylative pro-
cesses in Suzuki-Miyaura couplings - a finding that should be
of general value.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

1 Experimental procedures
1.1 General

Unless otherwise noted, purchased chemicals were used as received without further purification. Solvents
were dried according to standard procedures on molecular sieves 4A.! MePh,SiCO.H (silaCOgen) was
prepared as reported previously.? DABO boronates 7a and sodium trihydroxy(4-methoxyphenyl)borate
8a were prepared according to the previously reported protocol.® Flash chromatography was carried out
on silica gel 60 (230—400 mesh). NMR spectra were obtained on a 400 MHz NMR spectrometer. The
chemical shifts are reported in ppm relative to the solvent residual peak. Data are represented as follows:
chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dt = double triplet, m =
multiplet), coupling constant (J, Hz) and integration. Chemical shifts (5) are reported in ppm relative to
the residual solvent peak (CDCls: 6H 7.26 and 6C 77.16; Methanol-d4: 6H 3.31 and 6C 49.00; deuterium
oxide: 0H 4.79; DMSO-ds 6H 2.51 and 8C 39.52). Positive ion electrospray ionization mass spectrometry
was conducted on a Thermo Electron LTQ Orbitrap XL spectrometer. The reactions were performed in
the previously reported two-chamber system? under an argon atmosphere, and a glovebox was employed
for weighing out the reagents.

1.2 General procedures

General procedure A: Carbonylative Suzuki Miyaura coupling of 2-bromoiodobenzene 3 with slow
addition.

Chamber A: 2-Bromoiodobenzene 3 (50 mg, 1.0 equiv, 0.18 mmol), PdCl; (0.3 mg, 1 mol%), K.COs
(70 mg, 3 equiv, 0.55 mmol) were dissolved in anisole (1 ml). Chamber B: COgen (107 mg, 2.5 equiv,
0.45 mmol), Pd(dba): (12 mg, 5 mol%), tri-tert-butylphosphonium tetrafluoroborate (TTBP*HBF4) (6.3
mg, 5 mol%) and DIPEA (240 mg, 3 equiv) were dissolved in anisole (3 ml). Chamber B was stirred and
heated to 80 °C to release CO until gas evolution stops. After release of the CO, both chambers were
stirred and heated to 80 °C and a solution of aryl boronic acid 4 (1.2 equiv) in anisole (2 ml) was added
slowly (1-2 h) to the reaction mixture in chamber A. The two-chamber system was then placed in an oil
bath and stirred at 80 °C for 20 hours. The reaction mixture was filtered through celite and concentrated
on a rotavapor. The crude was purified by column chromatography with pentane: EtOAc (8:2) as eluent.

General procedure B: Carbonylative Suzuki Miuara coupling of 2-bromoiodobenzene 3 with
instantaneous addition.

Chamber A: 2-Bromoiodobenzene 3 (50 mg, 1.0 equiv, 0.18 mmol), PdCl, (0.3 mg, 1 mol%), K.COs
(70 mg, 3 equiv, 0.55 mmol) and aryl boronic acid 4 (1.2 equiv) were dissolved in anisole (3 ml).
Chamber B: COgen (107 mg, 2.5 equiv, 0.45 mmol), Pd(dba): (12 mg, 5 mol%), TTBP*HBF4 (6.3 mg,
5 mol%) were added together and dissolved in anisole (3 ml) before DIPEA (240 mg, 3 equiv) was added.
Both chambers were stirred and heated at 80°C under tightly closed system for 20 hours. The reaction
mixture was filtered through celite and concentrated on a rotavapor. The crude was purified by column
chromatography with pentane: EtOAc (8:2) as eluent.

General procedure C: Carbonylative Suzuki-Miyaura coupling of methyl 2-bromobenzoate 6 with
slow addition.

Chamber A: Methyl 2-bromobenzoate 6 (100 mg, 1.0 equiv, 0.47 mmol), PEPPSI-IPr (9.4 mg, 3 mol%),
Cs2COs3 (450 mg, 3 equiv, 1.4 mmol) were dissolved in anisole (1 ml). Chamber B: COgen (282 mg, 2.5
equiv, 1.2 mmol), Pd(dba), (30 mg, 5 mol%), TTBP*HBF4 (10 mg, 5 mol%) and DIPEA (240 mg, 3
equiv) were dissolved in anisole (3 ml). The reaction mixture in Chamber B was stirred and heated to 80
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°C to release CO until gas evolution stops. After release of the CO, both chambers were stirred and heated
to 110 °C and a solution of aryl boronic acid 4 (1.5 equiv) in anisole (2 ml) was added slowly (1-2 h) to
the reaction mixture in chamber A. The two-chamber system was then placed in an oil bath and stirred
at 110 °C for 20 hours. The reaction mixture was filtered through celite and concentrated on a rotavapor.
The crude was purified by column chromatography with pentane: EtOAc (7:3) as eluent.

General procedure D: Carbonylative Suzuki-Miyaura coupling of methyl 2-bromobenzoate 6.

Chamber A: Methyl 2-bromobenzoate 6 (1.0 equiv, 0.47 mmol), aryl boronic acid 4 (1.5 equiv), PEPPSI-
IPr (3 mol%), Cs2COs (3 equiv, 1.4 mmol) were dissolved in anisole (3 ml). Chamber B: COgen (282
mg, 2.5 equiv, 1.2 mmol), Pd(dba): (30 mg, 5 mol%), TTBP*HBF4 (10 mg, 5 mol%) were dissolved in
anisole (3 ml) before DIPEA (450 mg, 3 equiv) was added. The two-chamber system was then placed in
an oil bath and stirred at 110 °C for 20 hours. The reaction mixture was filtered through celite and
concentrated on a rotavapor. The crude was purified by column chromatography with pentane:EtOAc
(7:3) as eluent.

General procedure E: Carbonylative Suzuki Miuara coupling of methyl 2-bromobenzoate with
DABO boronates or sodium borate salt.

Chamber A: Methyl 2-bromobenzoate 6 (50 mg, 1.0 equiv, 0.23 mmol), Pd(acac), (3.5 mg, 5 mol%),
CataCXium A<HI (11 mg, 10 mol%), and the DABO boronate 7 or sodium borate salt 8 (1.5 equiv) were
dissolved in toluene: H>O (1:1; 3 ml). Chamber B: COgen (140 mg, 2.5 equiv, 0.58 mmol), Pd(dba), (26
mg, 5 mol%), TTBP*HBF4 (13 mg, 5 mol%) were dissolved in anisole (3 ml) before DIPEA (241 mg, 3
equiv) was added. The two-chamber system was then placed in an oil bath and stirred at 110 °C for 20
hours. The reaction mixture was filtered through celite and concentrated on a rotavapor. The crude was
purified by column chromatography with pentane:EtOAc (7:3) as eluent.

General procedure F: Alkoxy carbonylation of 2-bromobenzophenone derivatives 5 with n-BuOH.

Chamber A: 2-bromobenzophenone 5 (1 equiv), PdCI> (2 mol%), Xantphos (4 mol%), KoCOs (3 equiv)
were dissolved in anisole: n-BuOH (1:1; 3 ml). Chamber B: COgen (2.5 equiv), Pd(dba), (5 mol%),
TTBP<HBF; (5 mg, 5 mol%) were dissolved in anisole (3 ml) before DIPEA (3 equiv) was added. The
two-chamber system was then placed in an oil bath and stirred under heating for 20 hours. The reaction
mixture was filtered through celite and concentrated on a rotavapor. The crude was purified by column
chromatography with pentane: EtOAc (7:3).

1.3 Preparation and characterization of 2-bromobenzophenone derivatives 5.

2-Bromophenyl 4-methoxyphenyl methanone (5a). 2-Bromoiodobenzene 3 (50 mg) was reacted with 4-
methoxyphenyl boronic acid 4a (35 mg, 0.21 mmol, 1.2 equiv). Reactions were performed both by the
general procedure A or B to provide 5a (procedure A: 41 mg, 80%; procedure B: 31 mg, 60%) as a
colourless solid. Mp 91-93 °C. NMR: 6H (400 MHz; CDCl3) 7.79 (2H, d, J 8.8), 7.64 (1H, d, J 7.9), 7.40
(1H, d, J 7.9), 7.33 (2H, t, J 7.5), 6.94 (2H, d, J 8.8), 3.88 (3H, s). 6C (101 MHz, CDCIl3) 194.9, 164.6,
141.6, 133.5, 133.1, 131.3, 129.6, 129.2, 127.6, 119.9, 114.4, 56.0. HRMS (ESI): Calcd. for
C14H1102”BrNa [M+H]" 312.9840; found 312.9827. The spectroscopic data is corresponding to the
previously reported in literature.*

2-Bromophenyl 3-methoxyphenyl methanone (5b). 2-Bromoiodobenzene 3 (50 mg) was reacted with 3-
methoxyphenyl boronic acid 4b (35 mg, 0.21 mmol, 1.2 equiv). Reactions were performed both by the
general procedure A or B to provide 5b (procedure A: 35 mg, 65%; procedure B: 18 mg, 35%) as a white
solid. Mp 85-87 °C. NMR: 6H (400 MHz, CDCls) 7.56 (1H, d, J 7.7), 7.36 (1H, s), 7.32 (1H, d, J 7.7),
7.26 (3H, t, J 7.6), 7.21-7.15 (1H, m), 7.08-7.05 (1H, m), 3.77 (3H, s). 6C (101 MHz, CDCIl3) 195.8,
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160.0, 140.8, 137.6, 133.3, 131.3, 129.7, 129.0, 127.3, 123.6, 120.6, 119.6, 113.8, 55.6. HRMS (ESI):
Calcd. for C14H110,”BrNa [M+H]* 312.9840; found 312.9827. The spectroscopic data is corresponding
to the previously reported in literature.’

2-Bromophenyl 2-methoxyphenyl methanone (5¢). 2-Bromoiodobenzene 3 (50 mg) was reacted with (2-
methoxyphenyl) boronic acid (35 mg, 0.21 mmol, 1.2 equiv) according to the general procedure A to
provide 5¢ (31 mg, 60%) as a white solid. Mp 66.3-68 °C. NMR: 6H (400 MHz, CDCl3) 7.56-7.52 (1H,
m), 7.48-7.44 (1H, m), 7.39 (1H, t, J 7.6), 7.27-7.23 (2H, m), 7.19-7.12 (1H, m), 6.91 (1H, t, J 7.6), 6.82-
6.80 (1H, m), 3.53 (s, 3H). 6C (101 MHz, CDCls) 195.3, 159.5, 142.8, 134.5, 133.1, 131.9, 131.0, 129.4,
127.3, 127.1, 120.8, 119.6, 112.1, 55.9. HRMS (ESI): Calcd. for Ci14H;;0,”BrNa [M+H]* 312.9840;
found 312.9827. The spectroscopic data is corresponding to the previously reported in literature.’

2-Bromophenyl 4-(methylthio)phenyl methanone (5d). 2-Bromoiodobenzene 3 (50 mg) was reacted with
(4-(methylthio) phenyl) boronic acid (45 mg, 0.27mmol, 1.5 equiv) according to the general procedure
A to provide 5d (30 mg, 55%) as a white solid. NMR: 6H (400 MHz, CDCl3) 7.70 (2H, d, J 8.4), 7.63
(1H, d, J 7.6), 7.40 (1H, d, J 7.6), 7.37-7.27 (2H, m), 7.27-7.20 (2H, m), 2.51 (3H, s). 3C (101 MHz,
CDCl3) 195.0, 147.3, 140.9, 140.5, 133.3, 132.5, 131.2, 130.7, 129.0, 128.2, 127.4, 125.0, 119.6, 14.8.
HRMS (ESI): Calcd. for Ci4H;13'BrOS [M+H]+ 308.9727; found 308.9756

tert-Butyl 2-(2-bromobenzoyl)-1H-pyrrole-1-carboxylate (5e). 2-Bromoiodobenzene 3 (50 mg) was
reacted with (1-(tert-butoxycarbonyl)-1H-pyrrol-2-yl)boronic acid 4e (45 mg, 0.21 mmol, 1.2 equiv)
according to the general procedure A to provide 5e (43 mg, 70%) as a yellow oil. NMR: 6H (400 MHz,
CDClz) 7.63 (1H, d, J 7.7), 7.48-7.46 (2H, m), 7.38 (2H, t, J 7.5), 7.33 (2H, t, J 7.5), 6.53-6.52 (1H, m),
6.18 (1H, t, J 3.3), 1.56 (9H, s). 6C (101 MHz, CDCls) 184.6, 149.2, 140.9, 134.0, 133.7, 132.1, 130.6,
129.6, 127.5, 125.3, 121.0, 110.9, 85.6, 77.8, 77.7, 77.5, 77.2, 28.0. HRMS (ESI): Calcd. for CisHis
8IBrNNaO; [M+H]+ 374.0278; found 374.0177.

tert-Butyl 2-(2-bromobenzoyl)-1H-indole-1-carboxylate (5f). 2-Bromoiodobenzene 3 (50 mg) was
reacted with (1-(tert-butoxycarbonyl)-1H-indol-2-yl)boronic acid 4f (55 mg, 0.21 mmol, 1.5 equiv)
according to the general procedure A to provide 5f (53 mg, 76%) as a yellow oil. NMR: 6H (400 MHz,
CDCl3) 8.14 (1H, d, J9.2), 7.69-7.67 (1H, m), 7.58-7.56 (2H, m), 7.49-7.45 (1H, m), 7.44-7.36 (2H, m),
7.28 — 7.24 (1H, m), 6.84 (1H, s), 1.58 (9H, s). 3C NMR (101 MHz, CDCl3) 186.0, 149.5, 139.7, 139.2,
137.8, 134.0, 132.4, 131.0, 127.9, 127.4, 127.3, 123.5, 122.9, 121.1, 118.7, 115.0, 84.9, 27.9. HRMS
(ESI): Calcd. for C2oHis”BrNNaO; [M+H]+ 422.0368; found 422.0353.

Methyl 3-(2-bromobenzoyl)benzoate (5g). 2-Bromoiodobenzene 3 (50 mg) was reacted with 3-
(methoxycarbonyl)phenyl boronic acid 4g (38 mg, 0.21 mmol, 1.2 equiv) according to the general
procedure A to provide 5g (22 mg, 40 %) as a colorless oil. NMR: 6H (400 MHz, CDCls) 8.43 (1H, s),
8.27 (1H, d, J 7.8), 8.01 (1H, d, J 7.8), 7.67 (1H, d, J 7.8), 7.57(1H, t, J 7.8), 7.47-7.43 (1H, m), 7.41 —
7.36 (2H, m), 3.93 (3H, s). 6C (101 MHz, CDCls) 195.2, 166.3, 140.2, 136.7, 134.5, 134.3, 133.5, 131.7,
131.3, 131.0, 129.3, 129.1, 127.6, 119.7, 52.7. HRMS (ESI): Calcd. for CisH103"°BrNa [M+H]+;
340.9789 found 340.9757.

Methyl 2-(2-bromobenzoyl)benzoate (5h). 2-Bromoiodobenzene 3 (50 mg) was reacted with 2-
(methoxycarbonyl) phenyl boronic acid 4h (35 mg, 0.21 mmol, 1.2 equiv) according to the general
procedure A to provide 5h (33 mg, 58%) as a viscous colourless oil. NMR: 6H (400 MHz, CDCl3) 7.88-
7.86 (1H, m), 7.70-7.68 (1H, m), 7.60-7.57 (2H, m), 7.50-7.48 (1H, m), 7.39-7.36 (1H, m), 7.33-7.31
(2H, m), 3.69 (3H, s). 6C (101 MHz, CDCl3) 195.49, 167.58, 140.09, 138.43, 134.68, 132.64, 131.78,
131.27, 131.15, 129.94, 129.57, 127.16, 121.55, 77.48, 77.16, 76.84, 52.72. HRMS (ESI): Calcd. for
CisH11058BrNa [M+H]+; 342.9769 found 342.9757. The spectroscopic data is corresponding to the
previously reported in literature.®

4-(2-Bromobenzoyl)benzonitrile (5i). 2-Bromoiodobenzene 3 (50 mg) was reacted with (4-cyanophenyl)
boronic acid 4i (31 mg, 0.21 mmol, 1.2 equiv). Reactions were performed both by the general procedure
A or B to provide Si (procedure A: 15 mg, 30%; procedure B: 0 mg, 0%) as a white solid. Mp 113-115
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°C. NMR: 8H (400 MHz, CDCl3) 7.90 (2H, d, J 8.2), 7.77 (2H, d, J 8.2), 7.67 (1H, d, J 7.8), 87.49 — 7.39
(1H, m), 7.38-7.36 (1H, m). 6C (101 MHz, CDCl3) 194.6, 139.6, 139.4, 133.6, 132.6, 132.1, 130.5, 129.4,
127.7, 119.7, 118.0, 116.9. HRMS (ESI): Calcd. for CisHs BrNNaO [M+H]+ 307.9687; found
307.9672. The spectroscopic data is corresponding to the previously reported in literature.’

3-(2-Bromobenzoyl)benzonitrile (5j). 2-Bromoiodobenzene 3 (50 mg) was reacted with (3-cyanophenyl)
boronic acid 4j (31 mg, 0.21 mmol, 1.2 equiv). Reactions were performed following the general
procedure A or B to provide 5j (procedure A: 33 mg, 65%; procedure B: 15 mg, 30%) as a colorless oil.
NMR: 8H (400 MHz, CDCls) 8.06 (1H, d, J 8.2), 8.03 (1H, s), 7.87 (1H, d, J 7.7), 7.68 (1H, d, J 7.7),
7.62 (1H, t, J 7.8), 7.49-7.40 (2H, m), 7.37-7.35 (1H, m). 6C (101 MHz, CDCls) 194.0, 139.4, 137.2,
136.6, 133.9, 133.8, 133.6, 132.1, 129.9, 129.3, 127.8, 119.6, 117.9, 113.4. HRMS (ESI): Calcd. for
C14Hsg 3 BrNNaO [M+H]+ 309.9666; found 309.9653.

2-Bromophenyl 4-fluorophenyl methanone (5k). 2-Bromoiodobenzene 3 (50 mg) was reacted with (4-
fluorophenyl) boronic acid 4k (30 mg, 0.13mmol, 1.2 equiv), according to the general procedure A to
provide 5k (15 mg, 30%) as a white solid. Mp 51-53 °C. NMR: 6H (400 MHz, CDCls) 7.84 (2H, m),
7.65 (1H, d, J 7.8), 7.45-7.41 (1H, m), 7.40-7.30 (2H, m), 7.14 (2H, t, J 8.5). 6C (101 MHz, CDCls)
194.5, 166.3 (d, J 256.5), 140.6, 133.4, 133.0 (d, J 10.1), 132.7 (d, J 2.9), 131.4, 129.0, 127.5, 119.6,
116.0 (d, J 22.2). HRMS (ESI): Calcd. for Ci3Hg” BrFNaO [M+H]* 300.9640; found 300.9630. The
spectroscopic data is corresponding to the previously reported in literature.®

2-Bromophenyl 3-fluorophenyl methanone (51). 2-Bromoiodobenzene 3 (50 mg) was reacted with 3-
fluorophenyl boronic acid 41 (30 mg, 0.13 mmol, 1.2 equiv), according to the general procedure A to
provide 51 (37 mg, 76%) as a white solid. NMR: 6H (400 MHz, CDCIls3) 7.66 (1H, d, J 7.8), 7.54 (2H, t,
J 9.7), 7.47-7.42 (2H, m), 7.40-7.34 (2H, m), 7.33-7.28 (1H, m). 3C (101 MHz, CDCl3) 194.7, 162.9 (d,
J 249.5), 140.2, 138.4 (d, J 6.1), 133.5, 131.6, 130.5 (d, J 8.1), 129.1, 127.5, 126.3 (d, J 3.0), 120.9 (d, J
22.2), 119.6, 116.7 (d, J 22.2). HRMS (ESI): Caled. for Ci3Hg ”BrFNaO [M+H]" 300.9640; found
300.9630.

2-Bromophenyl 2-fluorophenyl methanone (5m). 2-Bromoiodobenzene 3 (50 mg) was reacted with 2-
fluorophenyl boronic acid 4m (30 mg, 0.13 mmol, 1.2 equiv) according to the general procedure A to
provide Sm (39 mg, 80%) as a white solid. NMR: 6H (400 MHz, CDCI3) 7.61 (1H, t, J 7.5), 7.47 (1H,
d, J7.8), 7.44-7.38 (1H, m), 7.26-7.25 (2H, m), 7.23-7.17 (1H, m), 7.10 (1H, t, J 7.6), 6.97-6.92 (1H,
m). 6C (101 MHz, CDCl3) 192.90, 161.8 (d, J259.6), 141.7, 135.23 (d, J 8.1), 133.5, 131.8, 129.4, 127.5,
125.9 (d, J 10.1), 124.5 (d, J 3.0), 119.5, 116.8 (d, J 22.2). HRMS (ESI): Calcd. for Ci3Hg 3'BrFNaO
[M+H]+ 302.9620; found 302.9608.

1.4 Preparation and characterization of 2-benzoylbenzoate esters 2 from 2-
bromobenzophenones 5 by alkoxycarbonylation.
Butyl 2-(4-methoxybenzoyl)benzoate (2a). (2-Bromophenyl)(4-methoxyphenyl)methanone Sa (40 mg,
0.14 mmol) was transformed to 2a (28 mg, 65%) according to the general procedure F. NMR: 6H (400
MHz, CDCls) 8.05 (1H, d, J 8.8), 7.73 (2H, d, J 8.9), 7.63-7.59 (1H, m), 7.56-7.52 (1H, m), 7.36 (1H, d,
J 8.8), 6.90 (2H, d, J 8.9), 4.05 (2H, t, J 6.6), 3.85 (3H, s), 1.46-1.39 (2H, m), 1.27-1.18 (3H, m), 0.82
(3H, t, J 7.4). 8C (101 MHz, CDCl3) 195.82, 166.24, 163.69, 142.06, 132.32, 131.92, 130.41, 130.32,
129.41, 129.38, 127.67, 113.83, 77.48, 77.16, 76.84, 65.53, 55.62, 30.40, 19.21, 13.78. HRMS (ESI):
Calcd. for C19H20NaO4 [M+H]" 335.1259; found 335.1260.

Butyl 2-(3-methoxybenzoyl)benzoate (2b). (2-Bromophenyl)(3-methoxyphenyl)methanone 5b (30 mg,
0.1 mmol) was transformed to 2b (19 mg, 60%) according to the general procedure F. NMR: dH (400
MHz, CDCls) 8.06 (1H, d, J 7.6), 7.63 (1H, t, J 7.5), 7.56 (1H, t, J 7.5), 7.44-7.43 (1H, m), 7.39-7.37
(1H, m), 7.30 (1H, t, J 7.9), 7.21-7.18 (1H, m), 7.11-7.09 (1H, m), 4.05 (2H, t, J 6.6), 3.84 (3H, s), 1.48
—1.41 (2H, m), 1.28-1.15 (2H, m), 0.83 (3H, t, J 7.4). 5C (101 MHz, CDCl3) 196.9, 166.1, 159.9, 141.8,
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138.6, 132.4, 130.3, 129.7, 129.6, 129.6, 127.8, 122.9, 120.0, 113.1, 77.5, 77.2, 76.8, 65.6, 55.6, 30.4,
19.2, 13.8. HRMS (ESI): Calcd. for C19H20NaO4 [M+H]*335.1259; found 335.1260.

Butyl 2-(4-fluorobenzoyl)benzoate (2¢). (2-Bromophenyl)(4-fluorophenyl)methanone Sk (15mg, 0.054
mmol), was transformed to 2¢ (10 mg, 63%) according to the general procedure F.5H (400 MHz, CDCls)
8.07 (1H, d, J 8.6), 7.81-7.77 (2H, m), 7.66-7.62 (1H, m), 7.59-7.55 (1H, m), 7.37 (1H, d, J 8.6), 7.10
(2H,t,J 8.6),4.06 (2H, t, J 6.6), 1.49-1.41 (2H, m), 1.27-1.21 (3H, m), 0.84 (3H, t, J 7.4). 3C (101 MHz,
CDCl3) 195.6, 166.0, 165.9 (d, J 255.5), 141.6, 133.8, 132.5,132.2,132.2 (d,J 10.1), 132.1, 130.4, 129.8,
129.4, 127.6, 115.9, 115.7, 77.5, 77.2, 76.8, 65.6, 30.4, 19.2, 13.9, 13.8. HRMS (ESI): Calcd. for
CisHi7FNaOs [M+H]" 323.1059; found 323.1059.

Butyl 2-(2-fluorobenzoyl)benzoate (2d). (2-Bromophenyl)(4-methoxyphenyl)methanone 5m (40 mg,
0.47 mmol) was transformed to 2d (22 mg, 50%) according to the general procedure F. NMR: dH (400
MHz, CDCl;) 8.53 (1H, d, J 7.6), 8.38-8.33 (1H, m), 8.12-8.10 (1H, m), 8.07-8.05 (1H, m), 7.89-7.87
(2H, m), 7.77-7.75 (1H, m), 7.69-7.61 (1H, m), 7.60-7.55 (1H, m), 4.62 (2H, t, J 6.6), 2.03-1.99 (2H, m),
1.84-1.71 (3H, m), 1.36 (3H, t, J 7.4). 8C (101 MHz, CDCl3) 193.7, 166.3, 163.2, 161.9 (d, J 258.6),
160.7, 143.5, 134.99, 135.0 (d, J 9.1), 134.6, 132.3, 131.5, 130.1, 129.7, 127.0, 125.9, 124.3 (d, J 4.0),
124.3, 117.0, 116.9 (d, J 23.2), 116.8, 65.6, 30.5, 19.2, 13.8. HRMS (ESI): Calcd. for CisHi17FNaO3
[M+H]+ 323.1059; found 323.1059.

1.5 Preparation and characterization of 2-benzoylbenzoate esters 2 from 2-bromobenzoates 6
by Suzuki-Miyaura couplings.

Methyl 2-(4-methoxybenzoyl)benzoate (2aa). Methyl 2-bromobenzoate 6a (100 mg for procedure C and
D; 50 mg for procedure E) was reacted with 4-methoxyphenyl boronic acid 4a (105 mg, 1.5 equiv, 0.66
mmol), DABO boronate 2-(4-methoxyphenyl)-1,3,6,2-dioxazaboroane 7a (82 mg, 1.5 equiv, 0.37 mmol)
or sodium trihydroxy(4-methoxyphenyl)borate 8a (72 mg, 1.5 equiv, 0.37 mmol). Reactions were
performed following general procedure C, D or E to provide 2aa as a colorless oil. Procedure C with 4a:
100 mg, 80%; procedure D with 4a: 80 mg, 63%; procedure E with 7a: 45 mg, 67%; procedure E with
8a: 44 mg, 65%. NMR: 6H (400 MHz, CDCls) 8.02 (1H, d, J 7.6), 7.71 (2H, d, J 8.8), 7.61 (1H, t, J 7.5),
7.53 (1H, t, J 7.5), 7.37 (1H, d, J 7.6), 6.89 (2H, d, J 8.8), 3.83 (3H, s), 3.63 (3H, s). 6C (101 MHz,
CDCl3) 195.9, 166.5, 163.6, 142.1, 132.4, 132.3, 131.7, 130.3, 130.2, 129.4, 129.2, 127.8, 113.8, 55.6,
52.3. HRMS (ESI): Calcd. for CisHi4 NaO4 [M+H]*293.0790; found 293.0784. The spectroscopic data
is corresponding to the previously reported in literature.®

Methyl 2-(3-methoxybenzoyl) benzoate (2ab). Methyl 2-bromobenzoate 6a (100 mg) was reacted with 3-
methoxyphenyl boronic acid 4b (105 mg, 1.5 equiv, 0.66 mmol) according to the general procedure C to
provide 2ab (65 mg, 52%) as a colorless oil. NMR: 6H (400 MHz, CDCls) 7.90 (1H, d, J 8.7), 7.61-7.46
(1H, m), 7.46-7.33 (1H, m), 7.28 (2H, s), 7.21-7.08 (1H, m), 7.05 (1H, d, J 7.7), 6.96 (1H, dd, J 8.7, 3.2),
3.70 (3H, s), 3.50 (3H, s). 8C (101 MHz, CDCI3) 196.9, 166.5, 159.9, 141.8, 138.6, 132.5, 132.0, 131.2,
130.1, 130.0, 129.7, 129.6, 129.3, 129,0, 127.8, 122.5, 119.8, 113.0, 55.5, 55.3, 52.7, 52.3. HRMS (ESI):
Calcd. for Ci16Hi4 NaO4 [M+H]"293.0790; found 293.0784.

Methyl 2-(2-methoxybenzoyl)benzoate (2ac). Methyl 2-bromobenzoate 6a (100 mg) was reacted with 2-
methoxyphenyl boronic acid 4¢ (105 mg, 1.5 equiv, 0.66 mmol) according to the general procedure C to
provide 2ac (93 mg, 74%) as a white solid, Mp 100-103 °C. NMR: 6H (400 MHz, CDCls) 7.87 (1H, d,
J8.7),7.74-7.67 (1H, m), 7.53 (1H, t, J 7.5), 7.50-7.42 (2H, m), 7.36 (1H, d, J 8.7), 6.99 (1H, t, J 7.9),
6.90 (1H, d, J 8.3), 3.59 (3H, s), 3.57 (3H, s). 6C (101 MHz, CDCl3) 195.7, 167.3, 159.0, 143.8, 134.2,
131.7,131.6, 129.5, 129.3, 127.5, 127.0, 120.5, 112.2, 77.4, 55.7, 52.1. HRMS (ESI): Calcd. for CicH14
NaO4 [M+H]*293.0790; found 293.0784.

Methyl 2-(4-(methylthio)benzoyl) benzoate (2ad). Methyl 2-bromobenzoate 6a (100 mg) was reacted
with 4-(methylthio) phenyl boronic acid (110 mg, 1.5 equiv, 0.65 mmol) according to the general
procedure C to provide (101 mg, 76%) as a white solid, Mp 84-87 °C. 'H NMR (400 MHz, CDCls) &
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8.02 (1H, d, J8.6), 7.64 (2H, d, J 8.5), 7.61-7.59 (1H, m), 7.53-7.51 (1H, m), 7.36 (2H, d, J 8.6), 7.21(2H,
d, J8.5),3.62 (3H, 5), 2.47 (3H, 5). 5C NMR (101 MHz, CDCl5) 196.1, 166.4, 146.1, 141.8, 133.5, 132.4,
130.1, 129.7, 129.5, 129.1, 127.7, 124.9, 52.3, 14.7. HRMS (ESI): Calcd. for CiHis NaOsS [M+H]"
309.0561; found 309.0559.

Methyl 2-(3-(methoxycarbonyl)benzoyl)benzoate (2ag). Methyl 2-bromobenzoate 6a (100 mg) was
reacted with 3-(methoxycarbonyl)phenyl boronic acid 4g (125 mg, 1.5 equiv, 0.70 mmol) according to
the general procedure C to provide 2ag (65 mg, 47%) as a colorless oil. NMR: 6H (400 MHz, CDCls)
8.37 (1H, s), 8.23-8.21 (1H, m), 8.07 (1H, d, J 8.6), 7.96-7.95 (1H, m), 7.70-7.63 (1H, m), 7.63-7.56 (1H,
m), 7.53 (1H, t, J 7.8), 7.40 (1H, d, J 8.6), 3.90 (3H, s), 3.64 (3H, s). 8C (101 MHz, CDCl3) 196.4, 166.4,
141.4, 137.7, 134.0, 133.4, 132.8, 130.8, 130.5, 130.4, 130.0, 129.2, 128.9, 127.8, 52.5, 52.4. HRMS
(ESI): Calcd. for C17H14 NaOs [M+H]*321.0739; found 321.0730

Dimethyl 2,2'-carbonyldibenzoate (2ah). Methyl 2-bromobenzoate 6a (100 mg) was reacted with 2-
(methoxycarbonyl)phenyl boronic acid 4h (125 mg, 1.5 equiv, 0.70 mmol). Reactions were performed
both by the general procedure C and D to provide 2ah as a white solid, Mp 205-207 °C. Procedure C:
103 mg, 75%; procedure D: 36 mg, 26%. NMR: dH (400 MHz, CDCls) 7.78 (2H, d, J 8.6), 7.58-7.56
(2H, m), 7.53-7.48 (2H, m), 7.40 (2H, d, J 8.6), 3.73 (6H, s). 3C (101 MHz, CDCl3) 195.7, 168.3, 138.5,
132.0, 131.4, 131.2, 129.7, 129.4, 128.9, 77.4, 52.6. HRMS (ESI): Calcd. for Ci7Hi4 NaOs [M+H]*
321.0739; found 321.0730.

Methyl 2-(4-cyanobenzoyl) benzoate (2ai). Methyl 2-bromobenzoate 6a (100 mg) was reacted with 4-
cyanophenyl boronic acid 4i (102 mg, 1.5 equiv, 0.7 mmol). Reactions were performed following general
procedure C or D to provide 2ai as a colourless oil. Procedure C: 40 mg, 32%; procedure D: 20 mg, 16%.
NMR: 6H (400 MHz, CDCls) 8.08 (1H, d, J 8.6), 7.83 (2H, d, J 8.6), 7.73 (2H, d, J 8.6), 7.69-7.67 (1H,
m), 7.64 — 7.60 (1H, m), 7.40 (1H, d, J 8.6), 3.67 (3H, s). 8C (101 MHz, CDCl3) 195.4, 165.8, 140.6,
140.2, 132.7, 132.2, 130.1, 130.0, 129.2, 128.8, 127.4, 117.8, 116.0, 52.3. HRMS (ESI): Calcd. for
Ci6sH11NNaO3; [M+H]" 288.0637; found 288.0630.

Methyl 2-(3-cyanobenzoyl) benzoate (2aj). Methyl 2-bromobenzoate 6a (100 mg) was reacted with (3-
cyanophenyl) boronic acid 4j (102 mg, 1.5 equiv, 0.7 mmol). Reactions were performed following
general procedure C or D to provide 2aj as a colourless oil. Procedure C: 48 mg, 40%; procedure D: 32
mg, 26%. NMR: 6H (400 MHz, CDCIs) 8.10 (1H, d, J 8.6), 8.03-7.01 (1H, m), 7.96 (1H, s), 7.83-7.81
(1H, m), 7.70 (1H, t, J 7.5), 7.66 — 7.59 (1H, m), 7.58-7.56 (1H, m), 7.38 (1H, d, J 8.6), 3.70 (3H, s). 6C
NMR (101 MHz, CDCl3) 195.5, 166.4, 141.1, 138.6, 136.3, 133.4, 133.3, 133.2, 130.9, 130.6, 130.1,
129.3, 127.9, 118.4, 113.5, 52.9. Calcd. for Ci¢Hi1NNaO3 [M+H]*288.0637; found 288.0630.

Methyl 2-(4-fluorobenzoyl) benzoate (2ak). Methyl 2-bromobenzoate 6a (100 mg for procedure C; 50
mg for procedure E) was reacted with 4-fluorophenyl boronic acid 4k (100 mg, 1.5 equiv, 0.7 mmol) or
2-(4-fluorophenyl)-1,3,6,2-dioxazaborocane 7k (73 mg, 1.5 equiv, 0.35 mmol) according to the general
procedure C or E to provide 2ak as a colourless oil. Procedure C: 45 mg, 37%; procedure E: 15 mg, 25%.
NMR: 6H (400 MHz, CDCls) 8.05 (1H, d, J 8.7), 7.79-7.75 (2H, m), 7.66-7.62 (1H, m), 7.59-7.55 (1H,
m), 7.38 (1H, d, J 8.7), 7.12-7.07 (2H, m), 3.65 (3H, s). 6C (101 MHz, CDCl3) 195.5, 166.4, 165.8 (d, J
256.5), 164.4,141.5,133.8 (d,J3.0), 132.5,132.0 (d, J9.1), 130.3, 129.8, 129.2, 127.6, 115.8 (d, J 20.2),
52.3. HRMS (ESI): Calcd. for CisH1 FNaOs [M+H]" 281.0590; found 281.0584. The spectroscopic data
is corresponding to the previously reported in literature.®

Methyl 2-(3-fluorobenzoyl) benzoate (2al). Methyl 2-bromobenzoate 6a (100 mg) was reacted with (3-
fluorophenyl) boronic acid 41 (100 mg, 1.5 equiv, 0.7 mmol). Reactions were performed following
general procedure C or D to provide 2al as a colorless oil. Procedure C: 70 mg, 58%; procedure D: 51
mg, 43%. NMR: 6H (400 MHz, CDCl;) 8.06 (1H, d, J 8.7), 7.67-7.63 (1H, m), 7.60-7.56 (1H, m), 7.50-
7.44 (2H, m), 7.41-7.35 (2H, m), 7.29-7.21 (1H, m), 3.66 (3H, s). 6C (101 MHz, CDCls) 196.2, 166.6,
163.2 (d, J249.5), 141.8, 139.7 (d, J 7.1), 133.0, 130.7, 130.6, 130.3, 129.5, 128.1, 125.5 (d, J 3.0), 120.6
(d, J 21.6), 116.1 (d, J 23.2), 52.7. HRMS (ESI): Calcd. for CisHii FNaOs; [M+H]* 281.0590; found
281.0584.
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Methyl 2-(2-fluorobenzoyl) benzoate (2am). Methyl 2-bromobenzoate 6a (100 mg for procedure C and
D; 50 mg for procedure E) was reacted with 2-fluorophenyl boronic acid 4m (100 mg, 1.5 equiv, 0.7
mmol) or 2-(2-fluorophenyl)-1,3,6,2-dioxazaborocane 7m (73 mg, 1.5 equiv, 0.35 mmol). Reactions
were performed following general procedure C, D or E to provide 2am as a white solid, Mp 56-59 °C.
Procedure C: 78 mg, 65%; procedure D: 50 mg, 42%; procedure E: 21 mg, 35%. NMR: 6H (400 MHz,
CDCl3) 8.02 (1H, d, J 8.8), 7.85-7.81 (1H, m), 7.67-7.63 (1H, m), 7.61-7.52 (2H, m), 7.44-7.42 (1H, m),
7.31-7.24 (1H, m), 7.12-7.07 (1H, m), 3.72 (3H, s). 6C (101 MHz, CDCls) 193.8, 166.8, 161.7 (d, J
258.6),134.8 (d, J9.1), 132.5, 131.3, 130.00 (d, J 19.2), 128.9, 127.2, 125.9 (d, J 10.0), 124.3 (d, J 4.0),
116.87 (d, J22.2), 52.4. HRMS (ESI): Calcd. for Ci1sHii FNaOs [M+H]* 281.0590; found 281.0584.

Methyl 2-(thiophene-2-carbonyl) benzoate (2an). Methyl 2-bromobenzoate 6a (50 mg), was reacted with
2-(thiophen-2-yl)-1,3,6,2-dioxazaborocane 7n (69 mg, 1.5 equiv, 0.35 mmol) according to the general
procedure E to provide 2an (29 mg, 50%) as a colourless oil. NMR: 6H (400 MHz, CDCIs) 8.02 (1H, d,
J 7.6), 7.65-7.61 (2H, m), 7.58-7.54 (2H, m), 7.45 (1H, d, J 7.6), 7.35-7.33 (1H, m), 3.67 (3H, s). 6C
(101 MHz, CDCl3) 190.7, 166.7, 142.8, 142.2, 133.9, 132.4, 130.3, 129.9, 129.3, 127.8, 127.4, 126.8,
52.4. The spectroscopic data is corresponding to the previously reported in literature.’

Methyl 2-(benzo[b]thiophene-2-carbonyl) benzoate (2ao). Methyl 2-bromobenzoate 6a (50 mg), was
reacted with 2-(benzo[b]thiophen-2-yl)-1,3,6,2-dioxazaborocane 70 (86 mg, 1.5 equiv, 0.35 mmol)
according to the general procedure E to provide 2ao (55 mg, 75%) as a yellow solid. Mp 78-80 °C. NMR:
oH (400 MHz, CDCls) 7.89 (1H, d, J 7.5), 7.68 (1H, d, J 8.0), 7.57 (1H, d, J 8.0), 7.48-7.45 (2H, m),
7.42 — 7.39 (1H, m), 7.33(1H, d, J 7.5), 7.25-7.22 (1H, m), 7.17-7.14 (1H, m), 3.48 (3H, s). 6C (101
MHz, CDCl3) 190.7, 166.3, 144.1, 142.8, 140.8, 138.9, 132.4, 131.6, 130.3, 130.1, 129.2, 127.7, 127.5,
126.1, 125.0, 123.0, 52.4. HRMS (ESI): Calcd. for C17H;2 NaOs3 S [M+H]" 319.0405; found 319.0407.

Methyl 5-fluoro-2-(4-methoxybenzoyl)benzoate (2ba). Methyl 2-bromo-5-fluorobenzoate 6b (50 mg,
0.21 mmol), was reacted with (4-methoxyphenyl) boronic acid 4a (48 mg, 1.5 equiv, 0.32 mmol)
according to the general procedure E to provide 2ba (44 mg, 72%) as a colourless oil. NMR: 6H (400
MHz, CDCls) 7.72-7.68 (3H, m), 7.44-7.37 (1H, m), 7.33-7.28 (1H, m), 6.92-6.90 (2H, m), 3.85 (3H, s),
3.64 (3H, s). 8C (101 MHz, CDCls) 194.8, 165.5 (d, J 3.0), 163.8, 162.8 (d, J 251.5), 138.1 (d, J 3.0),
131.7,130.2, 130.0 (d, J 8.1), 119.4 (d, J 22.2), 117.2 (d, J 23.2), 113.9, 77.4, 55.6, 52.6. HRMS (ESI):
Calcd. for C16H13FNaO4 [M+H]" 311.0696; found 311.0695.

Methyl 4-fluoro-2-(4-methoxybenzoyl)benzoate (2ca). Methyl 2-bromo-4-fluorobenzoate 6¢ (57 mg,
0.24 mmol), was reacted with (4-methoxyphenyl) boronic acid 4a (48 mg, 1.5 equiv, 0.32 mmol)
according to the general procedure E to provide 2ca (35 mg, 50%) as a colourless oil. NMR: 6H (400
MHz, CDCl3) 8.08 (1H, dd, J 8.7, 5.4), 7.72 (2H, d, J 9.0), 7.24-7.19 (1H, m), 7.07 (1H, dd, J 8.3, 2.6),
6.92 (2H, d, J 9.0), 3.86 (3H, s), 3.64 (3H, s). 6C (101 MHz, CDCl3) 194.2, 165.5, 164.9 (d, J 257.5),
163.9, 145.1 (d, J 7.1), 133.1 (d, J 10.1), 131.8, 129.7, 125.2 (d, J 3.0), 116.5 (d, J 21.2), 115.2 (d, J
24.2), 114.0, 55.7, 52.4. HRMS (ESI): Calcd. for CisHi3FNaO4 [M+H]*311.0696; found 311.0695.

Methyl 5-chloro-2-(4-methoxybenzoyl)benzoate (2da). Methyl 2-bromo-5-chlorobenzoate 6d (50 mg,
0.20 mmol), was reacted with (4-methoxyphenyl) boronic acid 4a (45 mg, 1.5 equiv, 0.30 mmol)
according to the general procedure E to provide 2da (30 mg, 50%) as a colourless oil. NMR: 6H (400
MHz, CDCl3) 8.01 (1H, d, J 2.1), 7.71 (2H, d, J9.0), 7.59 (1H, dd, J 8.1, 2.1), 7.33 (1H, d, J 8.1), 6.91
(2H, d, J9.0), 3.86 (3H, s), 3.65 (3H, 5). 6C (101 MHz, CDCIl3) 194.8, 165.5, 163.9, 140.4, 135.7, 132.4,
131.8, 131.0, 130.3, 130.1, 129.3, 114.0, 55.6, 52.7. HRMS (ESI): Calcd. for CisHi3CINaO4 [M+H]*
327.0400; found 327.0401.

Methyl 4-chloro-2-(4-methoxybenzoyl)benzoate (2ea). Methyl 2-bromo-4-chlorobenzoate 6e (50 mg,
0.20 mmol), was reacted with (4-methoxyphenyl) boronic acid 4a (46 mg, 1.5 equiv, 0.30 mmol)
according to the general procedure E to provide 2ea (40 mg, 65%) as a colourless oil. NMR: 6H (400
MHz, CDCl3) 7.99 (1H, d, J 8.4), 7.72 (2H, d, J 9.0), 7.51 (1H, dd, J 8.4, 2.0), 7.36 (2H, d, J 2.0), 6.92
(2H, d, J9.0), 3.86 (3H, s), 3.65 (3H, 5). 6C (101 MHz, CDCIl3) 194.2, 165.7, 163.9, 143.8, 139.1, 131.8,
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131.8, 129.8, 129.6, 127.9, 127.4, 114.0, 55.7, 52.5. HRMS (ESI): Calcd. for CisH13CINaO4 [M+H]*
327.0400; found 327.0402.

Methyl 2-(4-methoxybenzoyl)-5-methylbenzoate (2fa). Methyl 2-bromo-5-methylbenzoate 6f (57 mg,
0.19 mmol), was reacted with (4-methoxyphenyl) boronic acid 4a (49 mg, 1.5 equiv, 0.32 mmol)
according to the general procedure E to provide 2fa (50 mg, 71%) as a colourless oil. NMR: 6H (400
MHz, CDCls) 7.82 (1H, s), 7.72 (2H, d, J9.0), 7.41 (1H, d, J 8.4), 7.28 (1H, d, J 7.7), 6.89 (2H, d, J 9.0),
3.84 (3H, s), 3.60 (3H, s), 2.45 (3H, s). 5C (101 MHz, CDCl3) 196.0, 166.9, 163.5, 139.8, 139.2, 132.9,
131.7, 130.6, 129.4, 128.0, 113.8, 77.4, 55.6, 52.2, 21.3. HRMS (ESI): Calcd. for C17HisNaOs [M+H]"
307.0900; found 307.0947.

Methyl 2-(4-methoxybenzoyl)-3-methylbenzoate (2ga). Methyl 2-bromo-3-methylbenzoate 6g (59 mg,
0.26 mmol), was reacted with (4-methoxyphenyl) boronic acid 4a (49 mg, 1.5 equiv, 0.32 mmol)
according to the general procedure E to provide 2ga (50 mg, 68%) as a colourless oil. NMR: 6H (400
MHz, CDCl3) 7.92 (1H, d, J 8.5), 7.73-7.71 (2H, m), 7.45-7.40 (2H, m), 6.90 (2H, d, J 9.1), 3.84 (3H,
s), 3.67 (3H, s), 2.17 (3H, s). 8C (101 MHz, CDCls) 197.0, 166.4, 163.7, 141.9, 135.6, 135.0, 131.1,
130.7, 128.6, 128.3, 127.9, 114.0, 77.4, 19.3. HRMS (ESI): Calcd. for Ci7HsNaO4 [M+H]" 307.0946;
found 307.0945.

Methyl 4-methoxy-2-(4-methoxybenzoyl) benzoate (2ha). Methyl 2-bromo-4-methoxybenzoate 6h (50
mg, 0.20 mmol), was reacted with (4-methoxyphenyl) boronic acid 4a (46 mg, 1.5 equiv, 0.30 mmol)
according to the general procedure E to provide 2ha (47 mg, 77%) as a colourless oil. NMR: 6H (400
MHz, CDCl3) 8.01 (1H, d, J 8.8), 7.73 (2H, d, J9.0), 7.00 (1H, dd, J 8.8, 2.6), 6.89 (2H, d, J 9.0), 6.83
(1H, d, J 2.6), 3.85 (3H, s), 3.84 (3H, s), 3.61 (3H, 5). 6C (101 MHz, CDCl3) 195.6, 166.0, 163.6, 162.9,
144.6, 132.4, 131.7, 130.2, 120.9, 114.8, 113.9, 112.7, 77.4, 55.8, 55.6, 52.0. HRMS (ESI): Calcd. for
Ci7H16NaOs [M+H]* 323.0895; found 323.0894.

Methyl 2-(4-methoxybenzoyl)-5-methylbenzoate (2ia). Methyl 2-bromo-4,5-dimethoxybenzoate 6i (50
mg, 0.18 mmol), was reacted with (4-methoxyphenyl) boronic acid 4a (40 mg, 1.5 equiv, 0.26 mmol)
according to the general procedure E to provide 2ia (44 mg, 73%) as a white solid, Mp 151-153 °C.
NMR: 6H (400 MHz, CDCl3) 7.70 (2H, d, J 9.0), 7.50 (1H, s), 6.89 (2H, d, J 9.0), 6.84 (1H, s), 3.97 (3H,
s), 3.90 (3H, s), 3.84 (3H, s), 3.55 (3H, ). 6C (101 MHz, CDCIl3) 195.6, 166.2, 163.5, 152.3, 149.3, 136.0,
131.5, 130.7, 121.5, 113.8, 112.2, 110.3, 56.3, 55.6, 52.1. HRMS (ESI): Calcd. for CisHsNaOs [M+H]"
353.1001; found 353.1001. The spectroscopic data is corresponding to the previously reported in
literature.'?

Methyl 5-fluoro-2-(2-methoxybenzoyl)benzoate (2bc). Methyl 2-bromo-5-fluorobenzoate 6b (50 mg,
0.24 mmol), was reacted with (2-methoxyphenyl) boronic acid 4¢ (49 mg, 1.5 equiv, 0.32 mmol)
according to the general procedure E to provide 2bc (40 mg, 66%) as a colourless oil. NMR: 6H (400
MHz, CDCl3) 7.72 (1H, dd, J 7.7, 1.8), 7.54 (1H, dd, J 8.9, 2.6), 7.51-7.44 (1H, m), 7.42-7.38 (1H, m),
7.25-7.20 (1H, m), 7.02 (1H, t, J 7.5), 6.92 (1H, d, J 8.4), 3.61 (3H, s), 3.60 (3H, s). 3C (101 MHz,
CDCl3) 194.6, 166.5, 166.4 (d, J 2.0), 162.9 (d, J 252.5), 158.9, 139.7 (d, J 4.0), 134.4,132.3 (d, J 7.1),
131.5,130.2(d, J8.1), 127.0, 120.7, 118.6 (d, J 22.2), 116.4 (d, J 24.2) , 112.2, 55.7, 52.5. HRMS (ESI):
Calcd. for Ci6Hi3 FNaO4 [M+H]"311.0696; found 311.0693.

Methyl 5-fluoro-2-(2-(methoxycarbonyl)benzoyl)benzoate (2bh). Methyl 2-bromo-5-fluorobenzoate 6b
(50 mg, 0.24 mmol), was reacted with 2-(methoxycarbonyl)phenylboronic acid 4h (58 mg, 1.5 equiv,
0.32 mmol) according to the general procedure E to provide 2bh (30 mg, 40%) as a colorless oil. NMR:
0H (400 MHz, CDCls) 7.85 (1H, d, J 8.8), 7.61-7.53 (2H, m), 7.44 (1H, dd, J 5.9, 2.6), 7.42-7.41 (1H,
m), 7.40 (1H, s), 3.78 (3H, s), 3.74 (3H, s). 6C (101 MHz, CDCI3) 194.5, 167.9, 167.5 (d, J 2.0), 164.1
(d, J255.5),138.9,135.2 (d, J 8.1), 134.3 (d, J4.0), 132.6 (d, J 9.1), 131.5, 131.4 (d, J 27.3), 129.5 (d,
J37.4), 1179, 117.8 (d, J 22.2), 116.7 (d, J 24.2), 77.4, 53.0, 52.7. HRMS (ESI): Calcd. for Ci7Hi3
FNaOs [M+H]"339.0645; found 339.0640.
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Methyl 2-(2-naphthoyl)-4-methoxybenzoate (2hp). Methyl 2-bromo-4-methoxybenzoate 6h (50 mg, 0.20
mmol), was reacted with 2-napthylboronic acid 4p (52 mg, 1.5 equiv, 0.30 mmol) according to the
general procedure E to provide 2hp (57 mg, 61%) as a colourless oil. NMR: 6H (400 MHz, CDCI3) 8.09-
8.07 (2H, m), 8.02 (1H, dd, J 8.6, 1.7), 7.93-7.88 (1H, m), 7.86-7.83 (2H, m), 7.60-7.56 (1H, m), 7.53-
7.48 (1H, m),7.08 (1H, dd, J 8.8, 2.6), 6.93 (1H, d, J 2.6), 3.89 (3H, s), 3.57 (3H, s). 8C (101 MHz,
CDCl3) 197.0, 166.0, 163.0, 144.4, 135.8, 134.7, 132.6, 132.5, 131.6, 129.8, 128.7, 127.9, 126.8, 124.4,
121.1, 115.1, 112.9, 77.4, 55.8, 52.1. HRMS (ESI): Calcd. for Ci9H14NaOs [M+H]" 329.0790; found
329.0790.

2 Additional experimental information
2.1 Two-chamber set-up:
The reactions were performed in the previously reported two-chamber system (Fig 1) under an argon
atmosphere.
Chamber B

Chamber A J
H\ﬁ CO generation chamber
u\ Cl

O'O

reaction mixture chamber

COgen (2.5 equiv)

Fig 1. The two-chamber system used in the reactions, and the CO generator (COgen)

2.2 Screening of catalysts and conditions for the Suzuki- Miyaura coupling of 2-
bromoiodobenzene 3 with 4-methoxyphenyl boronic acid 4a.

B(OH), Catalyst,
| CO (from COgen)
Cr, '
Br Conditions MeO MeO

OMe
3 4a 5a A

Chamber B: COgen (2.5 equiv)

Procedure:

Chamber A: 2-Bromoiodobenzene 3 (50 mg, 1.0 equiv, 0.18 mmol), aryl boronic acid 4a (1.2 equiv),
catalyst and base were dissolved in a solvent (3 ml).

Chamber B: COgen (107 mg, 2.5 equiv, 0.45 mmol), Pd(dba), (12 mg, 5 mol%), tri-tert-
butylphosphonium tetrafluoroborate (TTBP*HBF4) (6.3 mg, 5 mol%) were dissolved in anisole (3 ml).

DIPEA (240 mg, 3 equiv) was added to chamber B to release CO. The mixture was stirred at 80 °C in a
tightly closed system for 20 hours. The reaction mixture was filtered through celite and concentrated on
a rotavapor. The crude was purified by column chromatography with pentane: EtOAc (8:2) as eluent.
The ratio (5a: A) has been evaluated based on the crude '*C NMR spectra. The experimental data and
the NMR spectra of the byproduct A is shown later.

Characterization of 2-bromo-4'-methoxy-1,1"-biphenyl A (from direct coupling). O ol
The title compound was isolated as a side product from reactions towards 5a. NMR:
oH (400 MHz, CDCl3) 7.66 (1H, d, J 7.8), 7.40-7.31 (4H, m), 7.22-7.13 (1H, m), 6.97
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

(2H, d,J8.7), 3.87 (3H, s). 6C (101 MHz, CDCl;) 159.2, 142.3, 133.7, 133.2, 131.5, 130.7, 128.5, 127.9,
127.5,123.0, 114.3, 113.5, 77.5, 77.2, 76.8, 55.5, 55.4.

Table ESI-1. Carbonylative Suzuki-Miyaura coupling of 2-bromoiodobenzene 3 with 4-methoxyphenyl boronic
acid 4a.

Ran. T Additic | “PPIOX. lsol.

Entry A Catalyst (mol%) base time (h) = (°C) Solvent n ratio ylfld
5a: A (%)

1 Pd(PPhs)2Cl2 (3) K2COs 20 80 Anisole normal 0.7:1 50
2 Pd(OAc)2 (2) K2COs 20 80 Anisole normal 0.1:1 10
3 Pd(dba)z (3) K2COs 20 80 Anisole normal 05:1 35
4 PEPPSI-IPr (3) Cs2C0s 20 80 Chlorobenzene normal 0.7:1 30
5 PdClz (3) K2COs 20 80 Anisole normal 0.7:1 65
6 PdClz (1) K2COs3 20 80 Anisole normal 0.7 :1 60
7 PdClz (1) K2COs 20 50 Anisole normal 02:1 30
8 PdClz (1) K2COs3 20 60 Anisole normal 0.3:1 35
9 PdClz (1) K2COs 40 80 Anisole normal 1:1 65
10 PdCI2° (1) K2CO3P 20 80 Anisole normal 1:0.9 55
11 PdClz (1) K2COs/KI 20 80 Anisole normal 06:1 55
12 PdClz (1) Cs2C0s 20 80 Anisole normal 1:1 60
13 PdClz (1) K2COs 20 80 Anisole slow? 1:01 80
14 PdClz (1) K2COs 20 100 Anisole slow? 1:0.1 80
15 PEPPSI- IPr (3) Cs2C0s 20 80 Chlorobenzene slow? 1:1 60
16 PEPPSI- IPr (3) Cs2C0s 20 120  Chlorobenzene slow? 1:1 65

alnstead of dissolving 4a in chamber A before CO release, a solution of aryl boronic acid 4a (1.2 equiv) in anisole (2 ml) was added slowly
(1-2 h) to the reaction mixture in chamber A after CO release. See General procedure A. b PdCL and K.CO. were used as a premix with
ratio 1:300. ¢ The ratio (5a : A) is approximately determined using "C NMR of the crude product mixture.

2.3 Screening of precursors for ex-situ generation of CO.
Procedures:

Chamber A: 2-Bromoiodobenzene 3 (50 mg, 1.0 equiv, 0.18 mmol), PdCl; (0.3 mg, 1 mol%), K»COs3 (70
mg, 3 equiv, 0.55 mmol) were dissolved in a solvent (3 ml). In case of normal addition, the aryl boronic
acid 4a (1.2 equiv) was added to the mixture before CO generation was started. In case of slow addition,
the aryl boronic acid 4a (1.2 equiv) was dissolved in anisole (2 ml) and added after CO generation over
a period of 1-2 hours.

Chamber B for entry 1 and 2: Fe-tetraphenylporphyrin (6 mg), TBABF4 (1.1g), DMF (30 ml), and
tetrafluoroethylene (2 ml) were introduced to chamber B. Electrodes were mounted and the COware was
sealed tightly with the screw caps fitted with teflon-coated silicon seals.

The reaction mixture in chamber A was bubbled through with CO; for 10-15 min until saturation. The
ElectroWare* was set up using galvanostatic configuration. The electrodes were connected and the
electrolysis began, while both reaction chambers were stirring. Chamber B kept stirring at room
temperature, while the other chamber A was placed in a preheated hotplate at 80 °C for 18 h. The reaction
mixture was filtered through celite and concentrated on a rotavapor. The crude was purified by column
chromatography with pentane: EtOAc (8:2) as eluent.!!
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Chamber B for entry 3 and 4: COgen (107 mg, 2.5 equiv, 0.45 mmol), Pd(dba)> (12 mg, 5 mol%), tri-
tert-butylphosphonium tetrafluoroborate (TTBP*HBF) (6.3 mg, 5 mol%) and DIPEA (240 mg, 3 equiv)
were dissolved in anisole (3 ml).

The mixture was stirred at 80 °C in a tightly closed system for 20 hours. The reaction mixture was filtered
through celite and concentrated on a rotavapor. The crude was purified by column chromatography with
pentane: EtOAc (8:2) as eluent.

Forentry 5 and 6: To a two necked round bottomed flask degassed and charged with aqueous solution
of NaOH (2 M, 20 ml), a balloon was fitted via 5 ml syringe cylinder at one neck. The syringe cylinder
was filled with CaCls as a drying agent, that was kept in place by cotton wool pads at both sides. Through
the other neck oxalyl chloride was added slowly with a syringe to the basic solution. The evolved gas
was collected in the balloon. The CO balloon was transferred to the reaction mixture vial (chamber A).
The mixture was stirred at 80 °C in a tightly closed system for 20 hours. The reaction mixture was filtered
through celite and concentrated on a rotavapor. The crude was purified by column chromatography with
pentane: EtOAc (8:2) as eluent.'?

Chamber B for entry 7 and 8: Sulfuric acid (1.5 mmol) was introduced before the two-chamber system
was tightened and heated at 80 °C. Then formic acid was added slowly to chamber B. The reaction
mixture was allowed to stir at 80 °C for 18h.!?

Table ESI-2. Screening of CO precursors.

B(OH), PdCl, (1 mol%) O Br
| K>CO3 (3 equiv)
©j co ‘) K‘ CO precursor
Br ' © anisole, 80 °C, ~0 entry 1-8
3 e overnight
no CO source Addition of boronic acid | Isolated yield (%)
1 CO:z2 reduction Normal 29
2 CO:z2 reduction Slow addition 30
3 COgen Normal 60
4 COgen Slow addition 80
5 Oxalyl chloride+ NaOH (aq) Normal (ballon) 60
6 Oxalyl chloride + NaOH (aq) Slow addition (ballon) 60
7 | Formic acid+ H2S04 (1.2 mmol) Normal (ballon) 10
8 | Formic acid+ H2S04 (1.2 mmol) In situ 0

2.4 Attempts to hydroxycarbonylate 2-bromoiodobenzene 3 or 2-bromobenzophenone 5a

o Br oO OH
Pd catalyst H
X sl eas
or or
Br MeO Br OMe
3 5a

Procedures:

In a dry and clean 8 ml vial equipped with a stirring bar, the aryl halide (1 equiv.), MePhoSiCOOH (64
mg, 1.5 equiv), base (2-3 equiv.), palladium precursor and ligand were dissolved in 3 ml dioxane. The
vial was tightly sealed with a screw cap. The reaction was allowed to stir for overnight at 40 °C. The
crude mixture was then poured into water (30 ml) and diluted with DCM before pH was adjusted to 10.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

The aqueous phase was washed with DCM several times. The combined aqueous phase was acidified to
pH 2-3 using HCI (4M) and then washed with DCM for several times. The combined organic phase was
then dried over MgSQg, filtered by suction and concentrated in vacuo to leave the product as colorless
solid.

Table ESI-3. Screening of catalyst and conditions for hydroxycarbonylation of 3 or 5a.

Entry | Subst. P((jr:gll:/:;:e :'r:‘g;;g Base Ca;t;z):zleate Solvent g% (°-£:) ;i{lld
4 3 Pd(dba)z (5) - TMSOLi | MePh2SiCO2H | dioxane | 2.5 | 110 -
6 3 Pd(dba)2(5) | Xantphos (5) | TMSOK | MePh:SiCO2H | toluene | 1.5 | 60 | traces
7 3 Pd(dba)2 (5) | Xantphos (5) | TMSOK | MePh2SiCO2H | dioxane | 1.5 60 60
8 5a Pd(dba)z2 (5) | Xantphos (5) | TMSOLi | MePh2SiCO2H | dioxane | 1.5 80 -
9 5a Pd(dba)2 (5) | Xantphos (5) | TMSOLi | MePh2SiCO2H | dioxane | 1.5 | 115 -

—_
o

5a | Pd(dba).(5) =~ PPhs(10) | TMSOLi MePh,SiCOH | dioxane | 2.5 110 -

The following control experiments were performed to establish that the procedure gives the wanted
carboxylation product for standard substrates.

Pd(dba), (5 mol%)

@)
Br Xantphos (5 mol%)
/@ TMS-OLi OH
MePh,SiCO,H

dioxane 80 %
80 °C,
overnight

Pd(dba), (5 mol%)
0.0 Xantphos (5 mol%) 0.0 0
TMS-OLi
Br MePh,SiCO,H OH

dioxane
110 °C,

overnight 57 %

2.5 Screening for catalysts and conditions for the alkoxycarbonylation of 2-
bromobenzophenone 5a

OO«

O Br Catalyst 0 R chamber B: COgen (2.5 equiv)
CO (from COgen),
O O nucleophile, conditions O O O Cl
5a 2a

Procedure:
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Chamber A: 2-Bromophenyl-4-methoxyphenylmethanone Sa (1.0 equiv, 0.47 mmol), Pd precursor and
base (3 equiv) were dissolved in solvent (2 ml). The nucleophile (2 equiv) was added to the reaction

mixture.

Chamber B: COgen (2.5 equiv), Pd(dba), (5 mol%), TTBPsHBF, (5 mol%) were dissolved in anisole (3
ml) before DIPEA (3 equiv) was added. The mixture was stirred with heating in a tightly closed system

for 20-24 hours.

The reaction mixture in chamber A was filtered through celite and concentrated on a rotavapor. The crude
was purified by column chromatography with pentane : EtOAc (7:3) as eluent.

Table ESI-4. Screening for conditions for alkoxycarbonylation on the 2-bromobenzophenone.

Entry | Pd source (mol%) | Ligand (mol%) | Nucl. Base Solvent T (°C) | Isol. yield (%)
1 dppf(PdCl2) (10) H20 TEA | H20: THF (1:4) | 120 -
2 dppf(PdCl2) (10) Dppf (20) iPrOH TEA DMF 80 11
3 dppf(PdCl2) (10) Dppf (20) nBuOH | TEA DMF 80 =¥
4 Pd(OAc)2 (2) Xantphos (4) iPrOH TEA TEA 80 15
5 Pd(OAc)2(2) Xantphos (4) | nBuOH | TEA TEA 80 11
6 Pd(OAc)2(2) Xantphos (4) MeOH TEA Dioxane 110 5
7 dppf(PdCl2) (10) Dppf (20) MeOH TEA DMF 80 =¥
8 Pd(dba)z (5) Dippf (5) EtONa - THF 80 =¥
9 PEPPSI-IPr (3) nBuOH | Cs2C0O3 | Chlorobenzene 80 -*
10 PEPPSI (5) IMes (10) nBuOH | Cs2C0Os3 | Chlorobenzene | 110 -*
11 Pd(PPh3)2Cl2 (5) IMes (10) nBuOH | Cs2C0Os3 Heptane 120 -*
12 PdCl2 (2) Xantphos (2) | nBuOH | K2COs Anisole 110 65
* Only starting material or the corresponding biphenyl were detected.
Table ESI-5. Control experiments for alkoxycarbonylation with 4-bromobenzophenone.
Catalyst chamber B: COgen (2.5 equiv)
CO (from COgen),
TEA ')
O nucleophile, solvent N XN &Cﬂ
"L, o Ao L

Err;t Substrate P((i nfgll:/:;:e :_;19015}3 Nucl. Base Solvent Isol(.o/i()ield

1 2 Pd(OAc)2(2) | Xantphos (4) nBuOH TEA TEA 99

2 MSOB, dppfPdClI2 (10) Dppf (20) iPrOH TEA DMF 97

3 o b Pd(OAc)2(2) | Xantphos (4) | nBuOH TEA TEA 11

4 Meo dppfPdClI2 (10) Dppf (20) iPrOH TEA DMF 11

Oy_OMe
5 Br Pd(dba)z (5) Dippf (5) tBuONa - THF 60
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

2.6 Screening for catalysts and conditions for the carbonylative Suzuki-Miyaura coupling of
methyl 2-bromobenzoate 6a

Table ESI-6. Optimization of reaction conditions for the palladium catalyzed carbonylative Suzuki-Miyaura

coupling of methyl-2-bromobenzoate 6a.

O
oM Catalyst 0. _OM
¢ CO (from CyOgen), @) © MeO O
Br boronic acid derivative
(4a, 6 or 7), O O + O
conditions
MeO MeO
6a 2aa B
B(OH), B(OH), K\NH
[ j \o
OMe OMe MeO
Entr | Pd T dditi Isol.
nir "SOUrCe | igand (mol%) = Nuc. = base solvent o acaill | Ratio? | yield
y (mol%) (°C) on 0
2aa: B (%)
Pd(acac).. | CataCXium A-HI Toluene: H20 .
12 - I 1:045 652
(5) (10) 8 (10:1) 80 | norma 0
Pd(acac): | CataCXium A-HI Toluene: H20 _
a _ a
2 (5) (10) 7a (10:1) 95 | normal | 1:0.3 67
Pd(acac): CataCXium A Toluene: H20 i
3 (5) (10) 4a K2COs3 (10:1) 100 | normal 30
42 | Pd(acacj | CataCXium A-Hl = 7, - DMSO 90 | normal - traces®
(5) (10)
o | Pd@cack | CataCXium AHI o, - DMF:H:O(10:1) 90 normal -
(5) (10)
. Toluene: H20:
6 Pd(?g;\c)z CataCi(;g;n AHI o i MeOH 90 | slow i traces
(10:1:1)
Pd CataCXium AeH Toluene: H20:
7 (?g)a C)2 ala ( 1'3;“ 7a - TBAB 95 | slow - traces
(1:1:0.5)
ga Pd(acac). | CataCXium A-HI | . i Dioxane: H20 95 | normal i xa
(5) (10) (10:1)
gb PdCl2 (1) 4a K2COs3 Anisole 110 | normal - -*b
CataCXium A Toluene: H20
b _ _*b
10° | Pd(OAc):2(5) (10) 4a K2CO3 (10:1) 110 | normal
11P Pd(PPh)sCl2 (10) 4a K2COs Anisole 110 | normal | 0.2:1 20
12 | Pd(OAc)2(5) | Xantphos (5) 4a Cs2CO0s Toluene 80 | normal | 0.3:1 20°
13¢ Xantphos G2 (5) 4a K2COs3 Anisole 100 | slow - traces®
14> | Pd(OAc): (5) Cata(ﬁ)é')“m A 4a | KOs Dioxane 100  normal - | traces®
15P PdCl2 (2) Xantphos (4) 4a K2CO3 Toluene 100 | normal - -*b
16> PEPPSI-IPr (3) 4a Cs2C03 Chlorobenzene 80 | normal | 1:0.5 60°
17¢ PEPPSI-IPr (3) 4a Cs2C0s3 Chlorobenzene | 110 | slow 1:0.15 80°
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18¢ PEPPSI-IPr (3) 4a Cs2C03 Anisole 110 | slow 1:0.15 80°
19P PEPPSI-Allyl (3) 4a Cs2C03 Anisole 110 | normal 1: 0.6 50°
20 Ni(COD)2 dcype 4a Cs2CO0s Toluene 110 | normal - -*b

a Following general procedure E. b Following general procedure D. ¢ Following general procedure C. d The ratio (2aa : B) was determined

using "C NMR of the crudes. *Only starting material or the corresponding biphenyl B were detected.

Characterization of methyl 4"-methoxy-[1,1'-biphenyl]-2-carboxylate B.

O oL The title compound was isolated as a side product from reactions towards 2aa. NMR: 6H

(0]

(400 MHz, CDCls) 7.70 (1H, d, J 8.2), 7.41 (1H, t, J 8.3), 7.29 (2H, d, J 7.3), 7.16 (2H,

o d, J 8.8), 6.85 (2H, d, J 8.8), 3.75 (3H, s), 3.58 (3H, s). 8C (101 MHz, CDCl3) 169.5,
159.1, 142.1, 133.7, 131.3, 131.0, 130.8, 129.8, 129.6, 126.9, 113.7, 77.5, 77.2, 76.8,
> 55.4,52.1.
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4 Spectra

4.1 Spectra for diaryl ketones 5

2-Bromophenyl 4-methoxyphenyl methanone 5a.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-85-1_180618144811 #1-4 RT: 0.00-0.09 AV: 4 NL: 2.58
T: FTMS + p ESI Full ms [200.00-400.00]
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

2-Bromophenyl 2-methoxyphenyl methanone 5¢
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI :

Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

ABAI-86-52NDP_20180224.3.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

tert-Butyl 2-(2-bromobenzoyl)-1H-pyrrole-1-carboxylate 5e
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

tert-butyl 2-(2-bromobenzoyl)-1H-indole-1-carboxylate 5f
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-90-1_180618162022 #4 RT: 0.09 AV: 1 NL: 6.40E
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-89-1p_20180227.3.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 2-(2-bromobenzoyl)benzoate 5h
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-90-3p_180618164331 #3 RT: 0.07 AV: 1 NL: 3.32E7
T: FTMS + p ESI Full ms [200.00-500.00]
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

ABAI-87-5P_20180223.3.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

3-(2-Bromobenzoyl)benzonitrile 5§
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-87-2p_180618154346 #1-5 RT: 0.00-0.11 AV: 5 NL: 7.4
T: FTMS + p ESI Full ms [200.00-400.00]
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

ABAI-87-1F1_20180222.3.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-86-4-f1_180618150932 #1-4 RT: 0.02-0.10 AV: 4 NL: 1.
T: FTMS + p ESI Full ms [200.00-400.00]
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100 -0.4553 mmu

95+

90—
85—
80|

75-

70
65—

60—
55—

50—

457
405
35-]
30
25-]

20 281.0578

= 393.2966
105 217.0462 251.1044

57 ’ ‘ ‘ l 381.2967
o o R L L., llllwu.‘.xim ”‘J [l I‘Lﬂ\‘ﬂhl
s s B I B O B B
220 240 260 280 300 320 340 360 380 400
m/z

341.0940

2-bromophenyl 3-fluorophenyl methanone 51

abai-86-4f2_20180221.1.fid resvu
Project AB_ 8000
NI NWLOBnANNWD;m ﬁNOw@*ﬁ‘MN-—iOG\w‘D
‘*Q‘Q"’T“‘."’T"’.*.i LM MmN NN
NN N NS L7500
7000
/ / 16500
6000
b 5500
7.43 15000
B (td)
230 . 4500
A® 'ﬁ ] 4000
7.54 ~ .~
= = 3500
C (m)
7,35 3000
E ) 12500
7166
|, 2000
il 1500
11000
. NMJ ,VA\A)J\JR~/x_~______SOO
. Lo
L
F8RG3 -500

80 75 70 65 60 55 50 45 40 35 30 25 20 15 1.0 0.5
f1 (ppm)

- 35 -



ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-86-4f2_20180221.3.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

2-Bromophenyl! 2-fluorophenyl methanone 5m
abai-86-3_20180221.1.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-86-3_180618173109 #1 RT: 0.01 AV: 1 NL: 3.90E7
T: FTMS + p ESI Full ms [200.00-400.00]
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

4.2 Spectra for butyl 2-benzoylbenzoate esters 2

Butyl 2-(4-methoxybenzoyl)benzoate 2a
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-112-6f3_190627172410 #1-4 RT: 0.01-0.10 AV: 4 NL: 5.01E7
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Butyl 2-(4-fluorobenzoyl)benzoate 2¢
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-112-1f1_190627172410 #1-5 RT: 0.01-0.12 AV: 5 NL: 6.71E7
T: FTMS + p ESI Full ms [150.00-500.00]
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

4.3 Spectra for methyl 2-benzoylbenzoate esters 2

Methyl 2-(4-methoxybenzoyl)benzoate 2aa

abai-111-omef5_20180525.1.fid 12000
Project AB_
NN AMOMM—A AL M A — 00 OO O — 0 <Fn(
©O0ONKROEYEMINININININMMM N QX ® @ 11000
COOOWOOMNMNMNMNMNMNMNMNNNMNNNNMNMNNNNNN [te Vo) oh oh
NN rr—————— —
10000
j/ / ) J 9000
8000
o OQT,O\R
.S 7000
F (m) I \T [ ) B|(s)
7.61 A 3184
o - 6000
D(m)|E()||H(m) C(d) Al(s)
8.02(7.72||7.37 6.89 3163
5000
|G (td)
7.53
4000
3000
2000
1000
J A "
T Tave T 5L
3 J333 3 N2 -1000
8.6 84828078767.47.27.06.86.66.46.26.05.8565.45.25.04.84.64.44.24.03.83.63.43.23.02.8
f1 (ppm)
abai-111-ogef5_201805253.fid N R TN AN o oo [2uVY
Project AB_g $3 ¢ daggaanag ~ DN
— — — R B B B B B B ~ mn wn
| | I = Il 4500
4000
3500
0 OO0~ 3000
T’Q\T.Ji\],/
0T F S 2500
F2000
1500
1000
500
| | Lo
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 O -10

f1 (ppm)

45



ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-111-17f2_20180610.3.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 2-(2-methoxybenzoyl)benzoate 2ac
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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Project AB_
3 & NRBINENSES © - 11000
S © S HMNS RGN ¢ N N
2 3 AR RA X h
[ S \e==——" 110000
r9000
r8000
r7000
r6000
r5000
r4000
r3000
r2000
| | r1000
‘ ‘ A A 70
r-1000
210 200 190 180 170 160 150 140 130 120 1101 %00 )90 80 70 60 50 40 30 20 10 O -10
ppm
ABAI-111-14F2 #4 RT: 0.11 AV: 1 NL: 6.49E7
T: FTMS + p ESI Full ms [200.00-500.00]
309.0559
C16 H14 O3 Na S = 309.0567
100 -0.7748 mmu
95-]
90—
85—
80|
75-
705
65-]
60|
557
50—
457
40—
355
30-]
25-]
20~ 314.0332
15—
10; 255.0474
B 441.2976
5; 217.‘0468 ( M ‘ 371.1254 ‘ “
01—+ \\‘\‘\\‘\\l”\\\\ \“\“\‘\\\ \‘\‘“\ ™
200 250 300 350 400 450 500

m/z



ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 2-(3-(methoxycarbonyl)benzoyl)benzoate 2ag
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 2-(4-cyanobenzoyl) benzoate 2ai
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

ABAI-111-5DF2_180618113446 #1-4 RT: 0.01-0.09 AV: 4 NI 6
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-111-4d_20180612.4.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 2-(4-fluorobenzoyl) benzoate 2ak
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

ABAI-111-6D-F2_180618113446 #1-4 RT: 0.02-0.11 AV: 4 N =7
T: FTMS + p ESI Full ms [200.00-400.00]
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-111-3d_20180612.4.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 2-(2-fluorobenzoyl) benzoate 2am
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

ABAI-111-2DF2 #1-4 RT: 0.01-0.10 AV: 4 NL: 3.70E7
T: FTMS + p ESI Full ms [200.00-500.00]
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-115-4-f2_20180921.3.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides

Methyl 4-fluoro-2-(4-methoxybenzoyl)benzoate 2ca
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-115-8f2_181005161140 #1-5 RT: 0.01-0.12 AV: 5 NL: 5.13E7
T: FTMS + p ESI Full ms [200.00-500.00]
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 5-chloro-2-(4-methoxybenzoyl)benzoate 2da
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-115-2f3_181005104518 #1-5 RT: 0.02-0.13 AV: 5 NL: 3.24E7
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-115-6-f2_20180923.3.fid
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 2-(4-methoxybenzoyl)-5-methylbenzoate 2fa
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 4-methoxy-2-(4-methoxybenzoyl) benzoate 2ha
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methy! 5-fluoro-2-(2-methoxybenzoyl)benzoate 2bc
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

abai-115-12-f2_181005163548 #1-4 RT: 0.01-0.10 AV: 4 NL: 4.68E7
T: FTMS + p ESI Full ms [200.00-400.00]
311.0693
C16 H13 O4 F Na =311.0690

100— 0.2498 mmu

©
a

©
o

©
a

o]
o

~
o

~
o

[o2]
a

D
o

0
a

I
a

N
o

w
a

w
o

289.0875
C1sH14 O4 F =289.0871
0.3905 mmu

N
(4]

N
o

[$))
S
i Do b v e Beccc e Dccr o Do Poco Do becee v e Tecn b Bl

N
(&)

339.0637
C17 H13 O5 F Na = 339.0639
-0.1936 mmu

-
o

o

o

““ LA B ““ | LA S H [ T
220 240 260 280 300 320 340 360 380
m/z

Methy! 5-fluoro-2-(2-(methoxycarbonyl)benzoyl)benzoate 2bh

abai-115-11f2_20180928.1.fid 124000
Project AB_ 123000
%35%$83$B%33#3#$???3% as4 NI 122000
N NN ) SRSAINININENENENERENENIN IR
S 21000
20000
j /’ 119000
18000
117000
116000
115000
~F 14000
D (m) B|(s) L
7.42 3lvs 13000
da| [cm © 12999
F m Al(s L
7.85 | |7.17 3|74 11000
10000
E (pd) F9000
7.57 2000
7000
16000
15000
4000
13000
12000
1000
L A_J\\__)[\— Fo
oy B b, F-1000
S 523 a8 F-2000
o NN ~NmMm
90 85 80 75 70 65 6.0 55 5.0 40 35 3.0 25 20 15 1.0 05 0.0

4.5
f1 (ppm)

- 78 —



ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

Methyl 2-(2-naphthoyl)-4-methoxybenzoate 2hp

abai-115-14_20181026.1.fid

Project AB_ r23000

122000
121000
20000
19000
18000
17000
116000
15000
14000
(s) 113000
89 112000

I(d) D @®]|K(s)
8.02/7.50||6.93

E (m)|A (d) B|(s) 11000
3

w N

7.587.08 110000

F(s) 19000
7.83 8000
H (s) 7000
7.92 L6000
5000
4000
3000
w 12000
1000

T -1000
¥ F-2000
3

6
4
8
2
3
3
0
1.001

© 10.93x

6.5 6.0 5.5 5.0 4.5 4.
f1 (ppm)

~

10.0 9.5 9.0 85 8.0 7.5

abai-115-14_20181026.3.fid

Project AB
. - s 15000

196.96
—165.95
~162.99

—144
135
134
132
132
131
129
128
127
126
124
121
115
112

77.36

—55.84

—52.07

r4500

r4000

r3500

r3000
r2500
r2000
r1500

r1000

L Htl 1” N

F-500

210 200 190 180 170 160 150 140 130 120 11?1%00 )90 80 70 60 50 40 30 20 10 O -10
ppm



ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.

4.4 Spectra for products from control experiments for hydrocarbonylations (section 1.4).
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ESI : Carbonylative Suzuki-Miyaura couplings of sterically hindered aryl halides.
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ABSTRACT: Solvents constitute the largest component for many chemical processes and
substitution of non-renewable solvents is a long-standing goal for green chemistry. Here we show
that Pd-catalyzed carbonylative couplings, such as carbonylative cross couplings,
aminocarbonylations and alkoxycarbonylations, can be successfully realized using renewable
solvents. The present research covers not only well-established renewable solvents, such as 2-
methyltetrahydrofuran, limonene and dimethyl carbonate, but also recently introduced biomass-
derived 1,1-diethoxyethane, isosorbide dimethyl ether, eucalyptol, rose oxide, y-terpinene and -
pinene. The carbonylative coupling of boronic acids and aryl bromides works well in limonene.
Aminocarbonylation gave excellent results in dimethyl carbonate, a-pinene and limonene, while
alkoxycarbonylation was successful in 2-methyltetrahydrofuran, a-pinene, y-terpinene and
dimethyl carbonate. The developed renewable methodologies can be used for the synthesis of

commercial drug Trimetozine and an analogue of Itopride.

KEYWORDS: renewable solvents, carbonylative C-C coupling, aminocarbonylation,

alkoxycarbonylation, palladium catalysis, carbon monoxide.

INTRODUCTION
According to the development plan of the United Nations General Assembly "Transforming Our
World: The 2030 Agenda for Sustainable Development" initiated in 2015, considerable efforts are
needed over the coming decade to build a better and more sustainable future.! The realization of
most of the aspects of "The 2030 Agenda for Sustainable Development" can be directly conditioned
by sustainable innovations in chemical research.

Today, most of the industrial processes and particularly the pharmaceutical industry are largely

based on the application of non-renewable solvents, which usually constitute over 80% of



materials needed for the production of the final ingredientes.? As a result, yearly manufacture of
non-renewable and hazardous common organic solvents exceeds 20 million metric tons.?¢ A recent
survey on the solvents used in the pharmaceutical industry for the period 1997 - 2012 revealed that
the top 10 most frequently used solvents are dichloromethane, hexane, diisopropyl ether, 1,2-
dimethoxyethane, 1,4-dioxane, 1,2-dichloroethane, diethyl ether, chloroform, diglyme and
chlorobenzene.> This unsustainable practice can be addressed by the development and
popularization of renewable and safe solvent candidates.

Liquids or low melting chemicals available from the valorization of biomass*> as well as
chemicals derived from the reduction of CO,%’ have enormous potential to replace the common
non-renewable solvents utilized in organic synthesis.? The most frequently used solvents available
from biomass are polar protic ethanol, glycerol and its derivatives, and choline chloride-based deep
eutectic solvents, polar aprotic 2-methyltetrahydrofuran (2MeTHF), cyrene and y-valerolactone
(GVL), as well as nonpolar limonene and p-cymene (Fig. 1).*3 Among CO»-derived chemicals
carbonates and ethers like dimethoxymethane (methylal) have attracted attention as solvents (Fig.
1).%7 Recently, we have shown that biomass-derived solvents such as nonpolar ethers (1,1-
diethoxyethane (acetal), dimethyl isosorbide, eucalyptol, rose oxide) and terpenes (y-terpinene and

a-pinene) can be successfully used in Cu-catalyzed carboxylation reactions (Fig. 1).!
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Figure 1. Overview of present work and renewable solvents used in the work (pictures taken by

AG).

A complete life cycle assessment (LCA) of the latter solvents is not available, but most of them
are significantly less toxic compared to common organic solvents.® Low toxicity is particularly
inherent to naturally occurring dimethyl isosorbide, GVL and eucalyptol, ethanol-derived
diethoxyethane (acetal), as well as COz-derived diethyl carbonate (DEC), dimethyl carbonate
(DMC) and methylal. Among others, these solvents are used in large quantities in the
pharmaceutical and food industries as additives, antiseptic and flavoring agents.” There is no need
to continue increasing the consumption of non-renewable solvents for processes where renewable

solvents provide comparable outcome.



Renewable solvents have proven to be suitable for a variety of transformations including
classical condensation reactions and transition-metal (TM)-catalyzed cross-couplings.*¢ However,
the use of renewable solvents as reaction media for carbonylative couplings with CO remain
largely unexplored.!®!! The fact that the Pd-catalyzed carbonylations have found numerous
applications in modern drug discovery and isotopic labeling of pharmaceuticals'*¢ makes the
development of renewable methodologies for carbonylations a task of great significance. This
work describe the use of newly introduced biomass-derived solvents (acetal, dimethyl isosorbide,
y-terpinene, o-pinene, eucalyptol, and rose oxide, Fig. 1), and previously studied renewable
solvents (2MeTHF, GVL, limonene, p-cymene, DMC, DEC, ethylene carbonate (EC), propylene
carbonate (PC), methylal and diethoxymethane (ethylal) Fig. 1) for Pd-catalyzed carbonylations.
RESULTS AND DISCUSSION
A range of renewable solvents were studied for carbonylative couplings of aryl bromides with
arylboronic acids,'? amines (aminocarbonylation)!* and alcohols (alkoxycarbonylation) (Fig. 1).'4
We decided to focus on Pd-based catalytic systems that have proven to be versatile catalysts for
carbonylative couplings.''®!12-14 For safety reasons the reactions were conducted in two chamber
reactors (COware) developed in the group of Skrydstrup, using stoichiometric quantities of CO
generated ex situ from COgen (9-methyl-9H-fluorene-9-carbonyl chloride).!® The solvent’s
polarity was approximated as nonpolar and polar based on their dielectric constant; a solvent was
classified as polar if the dielectric constant was over 5 (Fig. 1, Table S1).

Carbonylative C-C couplings of aryl bromides and arylboronic acids

As a starting point, we analyzed the carbonylative coupling of 3-bromoanisole with m-

tolylboronic acid (Chart 1). We focused on the catalytic system based on Pd(acac), as catalyst

precursor, and di(1-adamantyl)-n-butylphosphine hydroiodide (cataCXium AHI) as ligand,



originally developed in the group of Skrydstrup.'?® The original protocol relied on cyclic
diethanolamine esters of boronic acids (DABO boronates) or aryl trihydroxyborates as successful
starting materials and used toluene/H>O (10:1) or toluene as solvent.'?¢ We initiated our work by
developing a simplified protocol where the aryl trihydroxyborates was generated in situ from
simple boronic acids by addition of 1M aqueous NaOH, thus preventing the external, up-front

preparation of the organoboronate (see ESI, Table S1, entry 3).
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Chart 1. Screening of renewable solvents for carbonylative coupling of m-tolylboronic acid and

3-bromoanisole.

Using the modified protocol, we investigated the efficiency of various renewable solvents in the
Pd-catalyzed carbonylative coupling of m-tolylboronic acid and 3-bromoanisole (Chart 1, see also

Table S1 for a correlation of solvent polarity and yields). It has to be noted that the final reaction



media contained approx. 15% (v/v) of water in all cases due to the addition of aqueous NaOH. Our
studies revealed that nonpolar ethers and carbonates (rose oxide, methylal, DMC) and polar ether
2MeTHF provide the carbonylation product in low to moderate yields (16-50%). In contrast,
biomass-derived nonpolar hydrocarbons (limonene, p-cymene, y-terpinene, o-pinene) gave
consistently better yields with p-cymene and limonene being the best solvents (75% and 80%
isolated yield, respectively); an observation that correlates well with the use of toluene or
toluene/water as solvent in previous studies providing the corresponding product in 90% yield.!?¢
Despite the fact that limonene possesses a terminal and an internal double bond, the Heck-type
arylation of the solvent was not observed under the reaction conditions. Neither were related side
products noted for reactions in rose oxide, y-terpinene and o-pinene.

We proceeded to analyze the generality of the Pd-catalyzed carbonylative couplings in limonene
as solvent (Scheme 1). Examination of a variety of aromatic boronic acids and aryl bromides
indicated a good substrate scope. The yields varied from 71-95% for electron-rich (3a, 3¢, 3d, 3e,
3h, 3i), electron-deficient aryl (3f, 3g) and heterocyclic boronic acids (3j, 3k). The broad
applicability of boronic acids is particularly interesting as the use of in situ generated aryl
trihydroxyborates extended the substrate scope beyond the limitations associated with isolation of
unstable trihydroxyborate salts.!?¢ Similarly, both electron-rich (3m, 75%; 30, 79%) and electron-
deficient (3n, 83%; 3p, 83%) aryl bromides as well as heteroaryl bromides (31, 91%) were
successful in the carbonylative couplings. We observed a low yield only for 2-methoxycarbonyl-
phenylboronic acid (3b, 40%), which may be due to steric hindrance or side reactions such as
hydrolysis of the ester. Overall, the observed yields were at the same level as previously reported
protocols using toluene as solvent,!>®¢ indicating that limonene is a renewable alternative for

carbonylative couplings of boronic acids and aryl bromides.
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Scheme 1. Scope of carbonylative coupling of boronic acids and aryl bromides using the

sustainable solvent limonene.

Aminocarbonylation of aryl bromides

Next, we examined the Pd-catalyzed aminocarbonylation reaction of aryl bromides. Here, we
focused on the catalytic system developed in the group of Buchwald using Pd(OAc): as Pd source,
4,5-bis(diphenylphosphino)-9,9-dimethylxanthene as ligand (XantPhos) and toluene as solvent.!4¢
The Pd-catalyst was tested in renewable solvents on the model reaction of N-methylaniline with

4-bromobenzonitrile (Chart 2).
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Chart 2. Screening of renewable solvents for aminocarbonylation with resulting isolated yields.

Our studies demonstrated that for this aminocarbonylation exceptional results can be obtained
in most of the renewable solvents (Chart 2). As a general trend, all reactions in nonpolar
hydrocarbons provided excellent yield (limonene, 99%; p-cymene, 97%; y-terpinene, 94%; o-
pinene; 97%); in good correlation with previous work being performed in toluene as solvent
providing the product in 97% yield.'*c Excellent yields were also obtained in nonpolar carbonates
(DMC, 97%; DEC, 94%). Other solvents like polar carbonate PC and lactone GVL, and nonpolar
and polar ethers (ethylal, acetal, rose oxide, eucalyptol, dimethyl isosorbide, 2MeTHF) were less
efficient with yields ranging between 62-89%.

Noteworthy, under the conditions used for aminocarbonylation we did not observe side reactions
like hydroamination or Mizoroki-Heck coupling for solvents possessing double bonds.

As several renewable solvents provided good yields, we screened the top three best solvents
(DMC, a-pinene, limonene) for several aminocarbonylations (Scheme 2). These studies revealed

that except for the products Sm and 5n, the best solvents DMC, a-pinene and limonene gave

10



Pd(OAG), (2 mol%),

) XantPhos (2 mol%), o

S R EtsN (3 equiv) R?

Ro +  HN P —— XY ONT

_— \R3 COgen (2 equiv), R1—| '

Solvent,? F R
1 4 80°C, 18h
(0]
FiC ?
8 N
| N
Me |
Me
OHC F3C
CF3
5a51% 5b 99% 5¢ 98%
i /@ i /@ I /©
FsC MeO
M Me
Me e Bu
5d 87% (DMC), 5e 62% 5f 35%

95% (a-pinene), 95% (limonene)

59 64% 5h 97% (DMC), 5i 81%
95% (a-pinene), 99% (limonene)

@@A L @/M 0 “A L

5j 65% 5k 83% 51 99% (DMC),
95% (a-pinene), 99% (limonene)

/@ 5m 94% (DMC), /@ 5n 16% (DMC),
39% (a-pinene), 50% (a-pinene),
97% (limonene) 53% (limonene)
Me
N N CF.
NC NC NC

50 87% 5p 90% 5q 85%

o o o]
NC e ne

5r 90% 5s 93% 5t 94%

o
MeO MeO
N N/\
T @
e
0 0" Meo
0 OMe

5u 95%,° Itopride derivative 5v 96%,° Trimetozine,
a sedative

ﬁ L e

Itopride,
treatment of gastrointestinal symptoms

Scheme 2. Scope of aminocarbonylation of aryl bromides. # Unless otherwise mentioned, the

reaction was performed in DMC. ® XantPhos Pd G3 was used instead of Pd(OAc)2/XantPhos.
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comparable results for several aminocarbonylations (5d, Sh, 51). For the product Sm, a-pinene
(39%) turned out far less effective than other solvents, while for the product Sn, DMC provided
low yield (16%) (Scheme 2). For an extended analysis of the substrate scope, we therefore decided
to focus on the use of DMC, as it is considerably less toxic and less expensive than the two other
solvents.!>

Reactions with variously substituted aryl bromides illustrated that many functional groups
(CHO, CN, CO:Me) were well tolerated. In general, aryl bromides with electron-withdrawing
substituents provided corresponding aminocarbonylation products in good to quantitative yields
(5b, 99%:; 5¢, 98%:; 5d, 87%; Sh, 97%:; 5i, 81%; 5k, 83%; Sm 94%), except for 5a (51% yield).
Electron-rich aryl bromides were less effective producing the corresponding amides from low to
acceptable yields (Se, 62%; 5f, 35%; S5g, 64%; Sn, 16%). However, the aminocarbonylation of
electron-rich 3,4,5-trimethoxyphenyl bromide, using XantPhos Pd G3 as catalyst, provided the
commercial drug Trimetozine (5v, 96% yield, a sedative) and an analogue of Itopride (5u, 95%
yield, Itopride is used for treatment of gastrointestinal symptoms) in excellent yields."3" The
reaction worked well also with fused systems like naphthalene (51, 99%) and heterocycles (5j,
65%) (Scheme 2). Changes in the amine structure were tolerated well and both anilines with
electron-donating and -withdrawing substituents, and primary and secondary aliphatic amines
were successfully coupled with 4-bromobenzonitrile and CO (Scheme 2, S0, 87%; Sp, 90%; 5q,
85%; 5r, 90%; 5s, 93%; 5t, 94%). Overall, the observed trends were in agreement with reports of

aminocarbonylations performed in non-renewable solvents.!'?!4

The good yields and substrate
scope indicate that renewable solvents like DMC, a-pinene and limonene can effectively replace
1,4-dioxane, toluene and THF frequently used in Pd-catalyzed aminocarbonylation

reactions.0b:13.14¢
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Alkoxycarbonylation of arylbromides

Finally, we analyzed the potential adaptation of renewable solvents for Pd-catalyzed
alkoxycarbonylation.!* For the initial studies, we examined the alkoxycarbonylation of 2-
bromonaphthalene with sodium zert-butoxide and CO using the catalytic system based on Pd(dba),
as catalyst precursor and 1,1'-bis(diisopropylphosphino)ferrocene (dippf) as ligand first reported
by Skrydstrup and coworkers for alkoxycarbonylations in THF (Chart 3).'%f The screening of
renewable solvents showed that excellent results can be achieved also for the Pd-catalyzed
alkoxycarbonylations (Chart 3).

Not surprisingly, the polar ether 2MeTHF (91% yield) was among the best solvents, as previous
studies were performed in THF (88% yield).!*! Interestingly, excellent yields of 93% were also
obtained in some nonpolar hydrocarbons (y-terpinene, a-pinene), while other nonpolar
hydrocarbons (limonene, 56%), ethers (methylal, 45%; ethylal, 64%; acetal, 55%; rose oxide,
36%; eucalyptol, 82%), and carbonates (DEC, 45%) provided low to moderate yields. In nonpolar
carbonate DMC, instead of fert-butoxycarbonylation, the product of methoxycarbonylation was
isolated in 93% yield (Chart 3, Scheme 4). This was the only observation where the solvent was
chemically transformed in the reaction. Similar transesterifications were not observed for the other
carbonates (DEC, PC, EC). Polar solvents (dimethyl isosorbide, 30%; GVL, 64%; PC, 60%; EC,

30% yield) were less efficient.
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Pd(dba), (5 mol%),
dippf (5 mol%), o

Br BUON COgen (2 equiv)
+ tBu a _—
Solvent, OtBu
80°C, 18h

Isolated yields

Chart 3. Screening of renewable solvents for alkoxycarbonylation with resulting isolated yields.

2 In DMC, methoxycarbonylation was observed.

As for aminocarbonylation, we screened the top three best solvents (2MeTHF, a-pinene and y-
terpinene) for alkoxycarbonylations of several substrates (Chart 3, Scheme 3). These studies
revealed that the choice of solvent is dependent on the substrate. 2MeTHF was the best solvent for
the products 7c¢ (52%) and 7d (45%). The best yields of 7b were seen in y-terpinene (98%),
whereas y-terpinene was not a good reaction media for the product 7f (44%). a-Pinene appeared
to be the best solvent for the products 7a (93%) and 7f (51%) and in general showed good

performance for most of the substrates.
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Scheme 3. Scope of tert-butoxycarbonylation of aryl bromides.  Unless otherwise mentioned, the

reaction was performed in a-pinene.

The following investigation of the scope of tert-butoxycarbonylation in a-pinene as solvent
showed that both electron-rich and -deficient aryl bromides can be effectively transformed into the
corresponding products in moderate to good yields (Scheme 3). The best yields were observed for
tert-butoxycarbonylation of electron-rich aryl bromides (7a, 93%; 7b, 91%; 7e, 80%; 7g, 85%;
7h, 90%; 7i, 93%). It should be noted that aryl bromides possessing electron-withdrawing groups
and electron-deficient 3-bromopyridine were less effective and gave products in moderate yields
(7e, 45%; 7d, 25%; Tf, 51%). Similar observations were reported by Skrydstrup et al. for
alkoxycarbonylations performed in THF."*f Overall, our studies indicate that for
alkoxycarbonylations renewable solvent perform on the same level, and in some cases even better,

than previously reported non-renewable solvents.'®!'* Renewable solvents such as 2MeTHF,
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DMC, a-pinene and y-terpinene can be useful alternatives for trimethylamine,
hexafluoroisopropanol, THF, toluene and dimethyl sulfoxide frequently used for
alkoxycarbonylation reactions.!'

Studies on the alkoxycarbonylation in DMC.

In general, alkoxycarbonylation reactions rely on the use of bulky alcohols, phenols or
corresponding alkoxides.!* Alcohols possessing a-hydrogens have found limited applications due
to the side processes associated with B-hydride elimination.!4*4 Therefore, we had a closer look
at the methoxycarbonylations observed in DMC. The scope of the reaction was briefly studied on
a range of substituted aryl bromides (Scheme 4). The reaction gave good yields for electron-rich
4-bromoanisole (8b 90%) and 4-bromotoluene (8d, 80%), as well as for 2-bromonaphthalene (8a,
93%) and 6-bromoquinoline (8e, 93%). Moderate yields were observed for electron-deficient aryl
bromides (8¢, 58%). For most of the products in Scheme 4, traces of fert-butoxycarbonylation

were seen along with the main methoxycarbonylation product.

Pd(dba), (5 mol%),
dippf (5 mol%),

COgen (2 equiv)
+ tBuONa
DMC
80°C, 18h

8a 93% 8b 90% 8¢ 58%

o) o)
OMe | N OMe
—
Me N

8d 80% 8e 93%

Scheme 4. Scope of methoxycarbonylation of aryl bromides.
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To gain a better understanding of the mechanism of the observed methoxycarbonylation, we
performed a set of control experiments (Scheme 5). The fert-butyl ester 7a was transformed into
corresponding methyl ester 8a in quantitative yield when treated with NaO7Bu in DMC. The
transesterification took place in presence and absence of the Pd-catalyst (Scheme 5, A, B). In
addition, the Pd-catalyzed methoxycarbonylation of 2-bromonaphthalene with sodium methoxide
in DMC provided the methoxycarbonylated product in 67% yield, while an equivalent experiment
in a-pinene did not lead to methoxycarbonylation (Scheme 5, C). These findings indicate that two
different reaction pathways may contribute to the formation of methoxycarbonylated products: (i)
the Pd-catalyzed alkoxycarbonlyation with zert-butoxide followed by a transesterification with
sodium methoxide generated in situ from the reaction of excess sodium tert-butoxide with DMC;

and (ii) the Pd-catalyzed methoxycarbonylation with in-situ generated sodium methoxide.

O O
+ tBuONa e —
@) OO otBu ovC, OMe
80°C, 18h
7a 6 8a 99%
0] Pd(dba), (5 mol%), 0]
BUON dippf (5 mol%)
e ——
(B) OO - + B a DMC! OO o
80°C, 18h
7a 6 8a 99%
Br Pd(dba), (5 mol%), o]
dippf (5 mol%)
C + MeONa _—
(©) Solvent, OMe
80°C, 18h
1 9 8a 67% (DMC),

0% (a-pinene)

Scheme 5. Control experiments to elucidate the formation of methoxycarbonylated products.

CONCLUSIONS
We have shown that Pd-catalyzed carbonylative transformations can be conducted in biomass- and

CO;-derived solvents with exceptionally high efficiency. A vast array of renewable solvents was
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analyzed for this purpose, including both well-established (2MeTHF, GVL, limonene, p-cymene,
DMC, DEC, PC, EC) and recently introduced solvent candidates (acetal, dimethyl isosorbide, y-
terpinene, a-pinene, eucalyptol, rose oxide, methylal and ethylal). The work covered Pd-catalyzed
carbonylative coupling of boronic acids and aryl bromides, aminocarbonylation and
alkoxycarbonylation. For each of these transformations we have found several renewable solvents,
which can successfully substitute traditional non-renewable solvents. For carbonylative coupling
of boronic acids and aryl bromides the best results were observed in limonene and p-cymene.
Aminocarbonylation worked well in DMC, a-pinene and limonene, whereas the best solvents for
alkoxycarbonylation turned out to be 2MeTHF, a-pinene, y-terpinene and DMC. Most of the
known methodologies on alkoxycarbonylation are limited to bulky alkoxides and alcohols. We
could show that this drawback can be overcome by the use of DMC, which lead to
methoxycarbonylated products. Finally, yet importantly, aminocarbonylation in renewable
solvents can be used for the production of commercial drug Trimetozine and an analogue of

Itopride.

EXPERIMENTAL METHODS

General considerations.

Solvents used in the work are purchased from Sigma Aldrich if not otherwise stated. 2MeTHF
(anhydrous, >99%, inhibitor-free, 673277-1L), methylal (absolute, over molecular sieve, >99.0%,
47676-250ML), ethylal (absolute, over molecular sieve, >99.0%, 47675-500ML-F), DMC
(anhydrous, >99%, 517127-1L), DEC (anhydrous, >99%, 517135-1L), PC (anhydrous, 99.7%,
310328-1L) and EC (anhydrous, 99%, 676802-1L) were bought as anhydrous solvents equipped
with a septa. Other renewable solvents were reagent grade; they were degassed, kept over activated

molecular sieves (4 A) at least a week before use and stored under Ar atmosphere. The purity of
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the solvents used in the work were as follows: acetal (99%, inhibitor-free, A902-500ML); dimethyl
isosorbide (98%, inhibitor-free, 247898-100G); GVL (99%, V403-500G); y-terpinene (97%,
223190-100ML); a-pinene (98%, 147524-250ML); limonene (97%, 183164-100ML); p-cymene
(99%, C121452-1L); eucalyptol (99%, inhibitor-free, C80601-500ML); rose oxide (97%,
inhibitor-free, TCI, M2363-25G).

2MeTHF, acetal, dimethyl isosorbide, eucalyptol, rose oxide, methylal and ethylal are ethers and
may form peroxides when stored under air. However, peroxide tests (test strips for peroxide,
MQuant®, Supelco®, VWR/Merck 1.10081.0001) of freshly bought solvents did not show any
noticeable levels of peroxides. Acetal, methylal and ethylal can be hydrolyzed in the presence of
strong acids when heated. Under basic conditions, which are frequently used for the reactions
involving organometallics, acetal, methylal and ethylal are stable. GVL, DMC, DEC, PC and EC
can be hydrolyzed in the presence of strongly basic water solutions; under anhydrous conditions,
they are stable. y-Terpinene, limonene and eucalyptol can be converted to p-cymene when heated
above 220°C.** Overall, the examined renewable solvents appeared to be stable under the
conditions used in this work. We have not observed the formation of side-products e.g. originating
from hydrolysis of the carbonate, ethers and esters used as solvents in this work (an exception was
alkoxycarbonylation in DMC). It should be noted that the oxidation products of terpenes can be
allergens.’

The reactions were performed in the previously reported two-chamber system (COware with
total volume 20 mL, ESI Fig. S1) under an argon atmosphere, and a glovebox was employed for
weighing out the reagents.

Warning! Most of the reactions were performed in specialized glassware under pressure. The

glassware should always be examined for damages before any manipulation. All laboratory safety
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procedures must be followed strictly and the work with pressure tubes must be conducted behind
a shield.

General procedure for Pd-catalyzed carbonylative coupling of boronic acids and aryl
bromides (Scheme 1).

Chamber A was sequentially charged with aryl bromide (50 mg, 1.0 equiv), boronic acid (1.2
equiv), Pd(acac), (5 mol%), cataCXium AHI (10 mol%), 1M NaOH (500 pl) and dry solvent (3
mL). The reaction mixtures consisted of an organic and an aqueous layer. Precipitation of
palladium was not observed.

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-
butylphosphonium tetrafluoroborate (TTBP*HBF4) (5 mol%), DIPEA (3 equiv) and 1,4-dioxane
(3 mL). The two-chamber system was closed tightly with suitable caps and Chamber B was stirred
at 80 °C until the release of CO was stopped. This was followed by stirring of both chambers at 80
°C for 18 hours. The resulting mixture of Chamber A was filtered through celite and concentrated
using a rotary evaporator. The crude was purified by column chromatography with heptane: EtOAc
(9:1) eluent.

General procedure for Pd-catalyzed aminocarbonylation (Scheme 2).

Chamber A was sequentially charged with aryl bromide (50 mg, 1.0 equiv), corresponding
amine (1.5 equiv), Pd(OAc)> (2 mol%), XantPhos (2 mol%), triethylamine (3 equiv) and dry
solvent (3 mL). At the onset of the reaction, the mixture was homogeneous, while precipitation of
palladium species (Pd-black) was observed during the course of the reaction both in conventional
and renewable solvents.

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-

butylphosphonium tetrafluoroborate (TTBP*HBF4) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3
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equiv). Addition of DIPEA initialize the release of CO. The two-chamber system was closed
tightly with suitable caps and stirred at 80 °C for 18 hours. The resulting mixture of Chamber A
was filtered through celite and concentrated using a rotary evaporator. The crude was purified by
column chromatography with heptane : EtOAc (9:2) eluent.

General procedure for Pd-catalyzed alkoxycarbonylation (Scheme 3, 4).

Chamber A was sequentially charged with aryl bromide (50 mg, 1.0 equiv), /BuONa (1.5
equiv), Pd(dba), (5 mol%), 1,1'-bis(diisopropylphosphino)ferrocene (dippf) (5 mol%) and
corresponding dry solvent (3 mL). At the onset of the reaction, the mixture was homogeneous,
while precipitation of palladium species was observed during the course of the reactions both in
conventional and renewable solvents.

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-
butylphosphonium tetrafluoroborate (TTBP*HBF4) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3
equiv). Addition of DIPEA initialize the release of CO. The two-chamber system was closed
tightly with suitable caps and stirred at 80 °C for 18 hours. The resulting mixture of Chamber A
was filtered through celite and concentrated using a rotary evaporator. The crude was purified by

column chromatography with heptane : EtOAc (9:1) eluent.
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ABBREVIATIONS

2MeTHF = 2-methyltetrahydrofuran; acetal = 1,1-diethoxyethane; COgen = 9-methyl-9H-
fluorene-9-carbonyl chloride; COware = two chamber reactor; cataCXium AHI = di(1-adamantyl)-
n-butylphosphine hydriodide; DMC = dimethyl carbonate; DEC = diethyl carbonate; DIPEA =
N,N-diisopropylethylamine; dippf = 1,1’-bis(diisopropylphosphino)ferrocene; EtOAc = ethyl
acetate; EC = ethylene carbonate; GVL = y-valerolactone; LCA = life-cycle assessment; PC =
propylene carbonate; Pd(acac), = palladium(II) acetylacetonate; Pd(OAc), = palladium(II) acetate;
Pd(dba), = bis(dibenzylideneacetone)palladium(0); TTBP*HBF4 = tri-tert-butylphosphonium
tetrafluoroborate; XantPhos = 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene; XantPhos Pd
G3 = [(4,5-bis(diphenylphosphino)-9,9-dimethylxanthene)-2-(2'-amino-1,1'-

biphenyl)]palladium(IT) methanesulfonate.
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1. General considerations

All chemicals and solvents were purchased from Sigma Aldrich and VWR and were used as received without
further purification. Solvents were dried according to standard procedures on molecular sieves 4 A.! Flash
chromatography was carried out on silica gel 60 (230-400 mesh). NMR spectra were obtained on a Bruker
Avance 400 MHz at 20°C. Data are represented as follows: chemical shift, multiplicity (s = singlet, d = doublet,
t = triplet, g = quartet, dt = double triplet, m = multiplet), coupling constant (/, Hz) and integration. Chemical
shifts (8) are reported in ppm relative to the residual solvent peak (CDCls: 8H 7.26 and 86C 77.16; Methanol-
ds: 8H 3.31 and 6C 49.00; Deuteriumoxid: 6H 4.79; DMSO-ds: 6H 2.51 and 6C 39.52). The raw data was
analyzed with MestReNova (Version 10.0.2-15465). Positive ion electrospray ionization mass spectrometry
was conducted on a Thermo electron LTQ Orbitrap XL spectrometer. The data was analyzed with Thermo
Scientific Xcalibur software. Melting points were measured using Stuart SMP50 automatic melting point
detector. Infrared spectra were recorded on a Agilent Cary 630 FT-IR spectrometer and absoptions are
reported in wavenumber (cm™); s = strong, m = medium, w = weak.

Solvents used in the work were purchased from Sigma Aldrich if not otherwise stated. 2MeTHF (anhydrous,
>99%, inhibitor-free, 673277-1L), methylal (absolute, over molecular sieve, 299.0%, 47676-250ML), ethylal
(absolute, over molecular sieve, 299.0%, 47675-500ML-F), dimethylcarbonate (anhydrous, 299%, 517127-
1L), diethylcarbonate (anhydrous, 299%, 517135-1L), propylene carbonate (anhydrous, 99.7%, 310328-11)
and ethylene carbonate (anhydrous, 99%, 676802-1L) were bought as anhydrous solvents equipped with a
septa. Other renewable solvents were reagent grade; they were degassed, kept over activated molecular
sieves (4 A) at least for a week before use and stored under Ar atmosphere. The purity of the solvents used
in the work were as follows: diethoxyethane (99%, inhibitor-free, A902-500ML); dimethyl isosorbide (98%,
inhibitor-free, 247898-100G); GVL (99%, V403-500G); y-terpinene (97%, 223190-100ML); a-pinene (98%,
147524-250ML); (R)-(+)-limonene (97%, 183164-100ML); p-cymene (99%, C121452-11); eucalyptol (99%,
inhibitor-free, C80601-500ML); (+)-rose oxide (97%, inhibitor-free, Chemtronica/TCl M2363-25G).

2MeTHF, acetal, dimethyl isosorbide, eucalyptol, rose oxide, methylal and ethylal are ethers and may form
peroxides when stored under air; however, peroxide tests (Test strips for peroxide, MQuant®, Supelco’,
VWR/Merck 1.10081.0001) of freshly bought solvents did not show any noticeable levels of peroxides. Acetal,
methylal and ethylal can be hydrolyzed in the presence of strong acids when heated. Under basic conditions,
which are frequently used for the reactions involving organometallics, acetal, methylal and ethylal are stable.
GVL, DMC, DEC, PC and EC can be hydrolyzed in the presence of strongly basic water solutions; under
anhydrous conditions, they are stable. y-Terpinene, limonene and eucalyptol can be converted to p-cymene
when heated above 220°C. Overall, the examined renewable solvents appeared to be stable under the
conditions used in this work. It should be noted that the oxidation products of terpenes can be allergens.

The reactions were performed in the previously reported two-chamber system (COware with total volume
of 20 mL, Fig. S1) under an argon atmosphere, and a glovebox was employed for weighing out the reagents.

Warning! Most of the reactions were performed in specialized glassware under pressure. The glassware
should always be examined for damages before any manipulation. All laboratory safety procedures must be
followed strictly and the work with pressure tubes must be conducted behind a shield.



2. The two-chamber system used in the work
Chamber B

Chamber A J

CO generation chamber
'd O Y
. . Cl
reaction mixture chamber

O'O

COgen (2.5 equiv)

Fig. S1. The two-chamber system used in the work, and the CO generator (COgen).
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4. Optimization of carbonylative Suzuki-Miyaura coupling with boronic acids
Table S2. Catalyst screening for the carbonylative coupling of boronic acids and 3-bromoanisole.

Catalyst (mol%),
Ligang (mol%),

(0]
MeO Br n(RO)B Me Base (2 equiv) _ MeO Me
N -
COgen (2 equiv), O O

Solvent (3 mL),

80°C, 18h
I . Isol. Yield
Entry | Boronic acid derivative f::;oy/:)t Ligand (mol%) Base Solvent so(%)le
Me B(OH),
P A .
1 dOACk |\ 1es (a) Cs:COs | 1,4-Dioxane 40

(3)

M B(OH);N
4 © (OH)sNa Pd(acac), | CataXCiumA.HlI
2 (5) (10) - Toluene 83
34 \g--NH Pd(acac); | CataXCiumA.HI i Toluene:H,0 45
Oy o] o)

M B(OH
. e ( )2 Pd(acac)z CataXCiumA.HlI 1IMagq. Toluene 82
(5) (10) NaOH

The reagents were weighed in the glove box!

Chamber A was sequentially charged with 3-methoxybromobenzene (50 mg, 1.0 equiv), corresponding
organoboronate (1.2 equiv), Pd-catalyst (3-5 mol%), ligand (4-10 mol%), base (0-2 equiv) and corresponding
solvent (3 mL).

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-butylphosphonium
tetrafluoroborate (TTBPeHBF,) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3 equiv). Addition of DIPEA initialize
the release of CO. The two-chamber system was closed tightly with suitable caps and stirred at 80°C for 18
hours. The resulting mixture of Chamber A was filtered through celite and concentrated using a rotary
evaporator. The crude was purified by column chromatography with heptane : EtOAc (9:2) eluent.

5. Screening of solvents

5.1 Screening of solvents for carbonylative coupling of boronic acids and aryl halides.
Pd(acac), (5 mol%),

- ; oLE " cataCXium AHI (10 mol%), o
COgen (2 equiv), O O
Solvent (3 mL),
80°C, 18h

The reagents were weighed in the glove box!

Chamber A was sequentially charged with 3-methoxybromobenzene (50 mg, 1.0 equiv), m-tolylboronic acid
(1.2 equiv), Pd(acac), (5 mol%), cataCXium AHI (10 mol%), 1M NaOH (500 ul) and corresponding dry solvent
(3 mL).



Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-butylphosphonium
tetrafluoroborate (TTBPeHBF,) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3 equiv). Addition of DIPEA initialize
the release of CO. The two-chamber system was closed tightly with suitable caps and stirred at 80°C for 18
hours. The resulting mixture of Chamber A was filtered through celite and concentrated using a rotary
evaporator. The crude was purified by column chromatography with heptane : EtOAc (9:2) eluent.

52 Screening of solvents for the aminocarbonylation.
Pd(OAc), (2 mol%),

Br H XantPhos (2 mol%), 0]
_N EtsN (3 equiv)
+ Me : - N
NG COgen (2 equiv), I
Solvent (3 mL), NC Me
80°C, 18h

Chamber A was sequentially charged with 4-bromobenzonitrile (50 mg, 1.0 equiv), N-methylaniline (1.5
equiv), Pd(OAc)2 (2 mol%), XantPhos (2 mol%), triethylamine (3 equiv) and corresponding dry solvent (3 mL).

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-butylphosphonium
tetrafluoroborate (TTBPeHBF,) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3 equiv). Addition of DIPEA initialize
the release of CO. The two-chamber system was closed tightly with suitable caps and stirred at 80°C for 18
hours. The resulting mixture of Chamber A was filtered through celite and concentrated using a rotary
evaporator. The crude was purified by column chromatography with heptane : EtOAc (9:2) eluent.

53 Screening of solvents for the alkoxycarbonylation.

Pd(dba), (5 mol%), 0

Br dippf (5 mol%)
+ {BuONa > OtBu
COgen (2 equiv),
Solvent (3 mL),
80°C, 18h

Chamber A was sequentially charged with 2-bromonaphthalene (50 mg, 1.0 equiv), tBuONa (1.5 equiv),
Pd(dba), (5 mol%), 1,1'-bis(diisopropylphosphino)ferrocene (dippf) (5 mol%) and corresponding dry solvent
(3 mL).

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-butylphosphonium
tetrafluoroborate (TTBPeHBF,) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3 equiv). Addition of DIPEA initialize
the release of CO. The two-chamber system was closed tightly with suitable caps and stirred at 80°C for 18
hours. The resulting mixture of Chamber A was filtered through celite and concentrated using a rotary
evaporator. The crude was purified by column chromatography with heptane : EtOAc (9:1) eluent.

6. General procedures
The reagents were weighed in the glove box!

6.1 General procedure A: Carbonylative coupling of boronic acids and aryl halides.
Chamber A was sequentially charged with aryl bromide (50 mg, 1.0 equiv), boronic acid (1.2 equiv), Pd(acac).
(5 mol%), cataCXium AHI (10 mol%), 1M NaOH (500 ul) and dry solvent (3 mL).

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-butylphosphonium
tetrafluoroborate (TTBPeHBF,) (5 mol%), DIPEA (3 equiv) and 1,4-dioxane (3 mL). The two-chamber system
was closed tightly with suitable caps and Chamber B was stirred at 80°C until the release of CO was stopped.
This was followed by stirring of both chambers at 80°C for 18 hours. The resulting mixture of Chamber A was



filtered through celite and concentrated using a rotary evaporator. The crude was purified by column
chromatography with heptane : EtOAc (9:1) eluent.

6.2 General procedure B: Aminocarbonylation.
Chamber A was sequentially charged with aryl bromide (50 mg, 1.0 equiv), corresponding amine (1.5 equiv),
Pd(OAc), (2 mol%), XantPhos (2 mol%), (in the case of 5u and 5v Pd(OAc),/XantPhos system was replaced by
XantPhos Pd G3 (2 mol%)), triethylamine (3 equiv) and corresponding dry solvent (3 mL).

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-butylphosphonium
tetrafluoroborate (TTBPeHBF,) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3 equiv). Addition of DIPEA initialize
the release of CO. The two-chamber system was closed tightly with suitable caps and stirred at 80°C for 18
hours. The resulting mixture of Chamber A was filtered through celite and concentrated using a rotary
evaporator. The crude was purified by column chromatography with heptane : EtOAc (9:2) eluent.

6.3 General procedure C: Alkoxycarbonylation.
Chamber A was sequentially charged with aryl bromide (50 mg, 1.0 equiv), tBuONa (1.5 equiv), Pd(dba), (5
mol%), 1,1'-bis(diisopropylphosphino)ferrocene (dippf) (5 mol%) and corresponding dry solvent (3 mL).

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-butylphosphonium
tetrafluoroborate (TTBPeHBF,) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3 equiv). Addition of DIPEA initialize
the release of CO. The two-chamber system was closed tightly with suitable caps and stirred at 80°C for 18
hours. The resulting mixture of Chamber A was filtered through celite and concentrated using a rotary
evaporator. The crude was purified by column chromatography with heptane : EtOAc (9:1) eluent.

7. Control experiments on methoxycarbonylation.
Transesterification in the absence of Pd-catalyst

10 mL pressure vial was sequentially charged with tert-butyl 2-naphthoate (26 mg, 1.0 equiv), tBuONa (1.5
equiv) and dry DMC (3 mL). The pressure vial was closed tightly with suitable cap and stirred at 80°C for 18
hours. The resulting mixture was filtered through celite and concentrated using a rotary evaporator. The
crude was purified by column chromatography with heptane : EtOAc (9:1) eluent.

Transesterification in the presence of Pd-catalyst

10 mL pressure vial was sequentially charged with tert-butyl 2-naphthoate (26 mg, 1.0 equiv), tBuONa (1.5
equiv), Pd(dba), (5 mol%), 1,1'-bis(diisopropylphosphino)ferrocene (dippf) (5 mol%) and dry DMC (3 mL). The
pressure vial was closed tightly with suitable cap and stirred at 80°C for 18 hours. The resulting mixture was
filtered through celite and concentrated using a rotary evaporator. The crude was purified by column
chromatography with heptane : EtOAc (9:1) eluent.

Pd-catalyzed methoxycarbonylation with sodium methoxide

Chamber A was sequentially charged with 2-bromonaphthalene (50 mg, 1.0 equiv), MeONa (1.5 equiv),
Pd(dba), (5 mol%), 1,1'-bis(diisopropylphosphino)ferrocene (dippf) (5 mol%) and dry DMC (3 mL).

Chamber B was sequentially charged with COgen (2 equiv), Pd(dba), (5 mol%), tri-tert-butylphosphonium
tetrafluoroborate (TTBPeHBF,) (5 mol%), 1,4-dioxane (3 mL) and DIPEA (3 equiv). Addition of DIPEA initialize
the release of CO. The two-chamber system was closed tightly with suitable caps and stirred at 80°C for 18
hours. The resulting mixture of Chamber A was filtered through celite and concentrated using a rotary
evaporator. The crude was purified by column chromatography with heptane : EtOAc (9:1) eluent.



8. Characterisation of products

o] Bis(3-methoxyphenyl)methanone, 3a.? 1-Bromo-3-methoxybenzene (50 mg,

MeO O O OMe 0.26 mmol) was reacted with (3-methoxyphenyl)boronic acid (48 mg, 0.32

mmol) according to the general procedure A to provide the product (57 mg,

89%) as red oil. 'H NMR (400 MHz, CDCls): § = 7.24-7.20 (m, 6H), 7.00-6.99

(m, 2H), 3.72 (s, 6H). 3C NMR (101 MHz, CDCls): § = 196.6, 159.9, 139.3, 129.6, 123.2, 119.2, 114.7, 55.8.
HRMS (ESI): Calcd. for C1sH140sNa [M+Na]* 265.0835; found 265.0837.

0 COMe Methyl 2-(3-methoxybenzoyl)benzoate, 3b.> 1-Bromo-3-methoxybenzene (50
MeO mg, 0.26 mmol) was reacted with (2-(methoxycarbonyl)phenyl)boronic acid (57

O O mg, 0.32 mmol) according to the general procedure A to provide the product (25
mg, 40%) as yellow oil. *H NMR (400 MHz, CDCls): & = 7.90 (d, J = 8.7 Hz, 1H), 7.61-7.46 (m, 1H), 7.46-7.33
(m, 1H), 7.28 (s, 2H), 7.21-7.08 (m, 1H), 7.05 (d, J = 7.7 Hz, 1H), 6.96 (dd, J = 8.7, 3.2 Hz, 1H), 3.70 (s, 3H), 3.50
(s, 3H). 3C NMR (101 MHz, CDCl3): & = 196.9, 166.5, 159.9, 141.8, 138.6, 132.5, 131.2, 130.1, 129.7, 129.6,
129.0, 127.8, 122.5, 119.8, 113.0, 55.5, 52.3. HRMS (ESI): Calcd. for CigH1404Na [M+Na]* 293.0784; found
293.0787.

o (3-Methoxyphenyl)(m-tolyl)methanone, 3c.* 1-Bromo-3-methoxybenzene (50
MeOWMe mg, 0.26 mmol) was reacted with m-tolylboronic acid (44 mg, 0.32 mmol)
O O according to the general procedure A to provide the product (48 mg, 80%) as
yellow oil. *H NMR (400 MHz, CDCls): & = 7.63 (s, 1H), 7.58 (d, J = 7.3 Hz, 1H), 7.43-7.29 (m, 5H), 7.14-7.11
(m, 1H), 3.85 (s, 3H), 2.41 (s, 3H). 3C NMR (101 MHz, CDCls): & = 196.8, 159.6, 139.1, 138.2, 137.7, 133.3,

130.5, 129.2, 128.1, 127.4, 122.9, 118.8, 114.4, 55.5, 21.4. HRMS (ESI): Calcd. for CisH140.Na [M+Na]*
249.0886; found 249.0886.

o Me (3-Methoxyphenyl)(o-tolyllmethanone, 3d.” 1-Bromo-3-methoxybenzene (50 mg,
Meo\‘)J\‘ 0.26 mmol) was reacted with o-tolylboronic acid (44 mg, 0.32 mmol) according to
O O the general procedure A to provide the product (57 mg, 79%) as brown oil. *H NMR

(400 MHz, CDCls): 6 = 7.47-7.46 (m, 1H), 7.45-7.40 (m, 1H), 7.38-7.36 (m, 1H), 7.35-7.33 (m, 1H), 7.32-7.31
(m, 2H), 7.30-7.28 (m, 1H), 7.18-7.15 (m, 1H), 3.88 (s, 3H), 2.38 (s, 3H). 3C NMR (101 MHz, CDCls): & = 198.5,

159.8, 139.2, 138.7, 136.8, 131.1, 130.3, 129.5, 128.5, 125.3, 123.4, 119.9, 113.9, 55.5. HRMS (ESI): Calcd.
for C15H140,Na [M+Na]* 249.0886; found 249.0886.

o (3-Methoxyphenyl)(naphthalen-2-yl)methanone, 3e.b 1-Bromo-3-
MeO\‘)J\“ methoxybenzene (50 mg, 0.26 mmol) was reacted with naphthalen-2-ylboronic
O OO acid (55 mg, 0.32 mmol) according to the general procedure A to provide the
product (53 mg, 79%) as yellow oil. 'H NMR (400 MHz, CDCls): & = 8.29 (s, 1H), 7.94-7.5 (m, 2H), 7.94-7.88
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(m, 2H), 7.61 (t, J = 7.5 Hz, 1H), 7.55 (t, J = 7.5 Hz, 1H), 7.43-7.40 (m, 3H), 7.22-7.10 (m, 1H), 3.87 (s, 3H). 3C
NMR (101 MHz, CDCl): 6 = 196.6, 159.7, 139.3, 135.4, 134.9, 132.3, 131.9, 129.5, 129.4, 128.4, 128.4, 127.9,
126.9, 125.9, 123.0, 118.9, 114.5, 55.6. HRMS (ESI): Calcd. for CisH:140,Na [M+Na]* 285.0886; found
285.0889.

0 (3-Fluorophenyl)(3-methoxyphenyl)methanone, 3f.7 1-Bromo-3-

MeO O O F methoxybenzene (50 mg, 0.26 mmol) was reacted with (3-
fluorophenyl)boronic acid (44 mg, 0.32 mmol) according to the general

procedure A to provide the product (59 mg, 96%) as yellow oil. 'H NMR (400

MHz, CDCls): & = 7.58 (d, J = 7.7 Hz, 1H), 7.51-7.49 (m 1H), 7.48-7.43 (m, 1H), 7.41-7.37 (m, 1H), 7.35 (s, 1H),
7.33 (s, 1H), 7.32-7.27 (m, 1H), 7.15 (dd, J = 8.1, 3.7 Hz, 1H), 3.86 (s, 3H). 3C NMR (101 MHz, CDCl3): § = 195.2
(d, J = 2.3Hz), 162.6 (d, J = 248.2 Hz), 159.8, 139.8 (d, J = 6.4 Hz), 138.5, 130.1 (d, J = 7.7 Hz), 129.5, 125.9 (d,

J =3.2 Hz), 122.9, 119.6 (d, J = 21.3 Hz), 119.3, 116.9 (d, J = 22.6 Hz), 114.4, 55.6. HRMS (ESI): Calcd. for
Ci14H1:0,FNa [M+Na]* 253.0635; found 253.0637.

o] 3-(3-Methoxybenzoyl)benzonitrile, 3g.2 1-Bromo-3-methoxybenzene (50 mg,

MeO O O CN 0.26 mmol) was reacted with (3-cyanophenyl)boronic acid (47 mg, 0.32 mmol)

according to the general procedure A to provide the product (45 mg, 71%) as

yellow oil. 'H NMR (400 MHz, CDCls): & = 8.06 (s, 1H), 8.02 (d, J = 7.9 Hz, 1H),

7.85(d, J=7.9Hz, 1H), 7.62 (t, J = 7.8 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.32 (s, 1H), 7.28-7.25 (m, 1H), 7.18-

7.15 (m, 1H), 3.86 (s, 3H). 3C NMR (101 MHz, CDCls): § = 194.3, 159.9, 138.8, 137.7, 135.4, 133.9, 133.5,

129.7, 129.5, 122.8, 119.7, 118.0, 114.4, 112.9, 55.6. HRMS (ESI): Calcd. for C1sH12NO, [M+H]* 238.0863;
found 238.0882.

Dibenzo[b,d]furan-4-yl(3-methoxyphenyl)methanone, 3h. 1-Bromo-3-

o o methoxybenzene (50 mg, 0.26 mmol) was reacted with dibenzo[b,d]furan-

MeO O O 4-ylboronic acid (68 mg, 0.32 mmol) according to the general procedure A

to provide the product (76 mg, 95%) as orange oil. *H NMR (400 MHz,

CDCls): §=8.15 (d, J = 8.8 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.56 (d, J = 8.2 Hz, 1H), 7.52-

7.51 (m, 1H), 7.49-7.45 (m, 1H), 7.44-7.43 (m, 1H), 7.42-7.41 (m, 1H), 7.40-7.35 (m, 2H), 7.18-7.16 (m, 1H),

3.86 (s, 3H). 3C NMR (101 MHz, CDCls): § = 193.8, 159.8, 156.5, 154.0, 139.1, 129.4, 128.7, 127.9, 125.7,

124.2,123.5,123.4, 123.3, 122.5, 120.8, 119.9, 114.2, 112.3, 55.6. IR (ATR, cm™) v = 2959 (s), 2929 (s), 1873

(m), 1719 (s), 1614 (w), 1462 (w), 1369 (s), 1294 (s), 1261 (s), 1171 (s), 1123 (s), 780 (s). HRMS (ESI): Calcd.
for C20H1403Na [M+Na]* 325.0835; found 325.0840.

0 (3-(Dimethylamino)phenyl)(3-methoxyphenyl)methanone, 3i. 1-Bromo-3-
'V'eON’V'e2 methoxybenzene (50 mg, 0.26 mmol) was reacted with 3-
((dimethylamino)phenyl)boronic acid (53 mg, 0.32 mmol) according to the

9



general procedure A to provide the product (56 mg, 82%) as yellow oil. 'H NMR (400 MHz, CDCls): 5 = 7.30-
7.27 (m, 3H), 7.24-7.14 (m, 1H), 7.09-7.08 (m, 1H), 7.04-6.99 (m, 1H), 6.97 (d, J = 7.6 Hz, 1H), 6.85-7.83 (m,
1H), 3.76 (s, 3H), 2.90 (s, 6H). 3C NMR (101 MHz, CDCls): 6 = 197.6, 159.7, 150.8, 139.7, 138.7, 129.5, 129.1,
123.3,119.1, 119.1, 116.8, 114.8, 113.6, 55.9, 40.9. HRMS (ESI): Calcd. for C1gH:,0.NNa [M+Na]* 278.1151;
found 278.1156.

0 (3-Methoxyphenyl)(thiophen-3-yl)methanone, 3j.° 1-Bromo-3-methoxybenzene
MeO S

\ p (50 mg, 0.26 mmol) was reacted with thiophen-2-ylboronic acid (41 mg, 0.32 mmol)

according to the general procedure A to provide the product (45 mg, 77%) as

orange oil. '"H NMR (400 MHz, CDCl;): 6 = 7.72 (d, ) = 6.1 Hz, 1H), 7.67 (d, ] = 4.9 Hz,
1H), 7.47-7.41 (m, 1H), 7.40-7.38 (m, 2H), 7.17-7.15 (m, 1H), 7.14-7.12 (m, 1H), 3.87 (s, 3H).**C NMR (101
MHz, CDCls): 6 = 188.1, 159.7, 143.7, 139.6, 135.0, 134.4, 129.5, 128.1, 121.9, 118.8, 113.9, 55.6. HRMS (ESI):
Calcd. for C12H100,NaS [M+Na]* 241.0294; found 241.0295.

Benzo[b]thiophen-3-yl(3-methoxyphenyl)methanone, 3k. 1-Bromo-3-

MeO
° methoxybenzene (50 mg, 0.26 mmol) was reacted with benzo[b]thiophen-3-

ylboronic acid (57 mg, 0.32 mmol) according to the general procedure A to
provide the product (47 mg, 80%) as orange oil. 'H NMR (400 MHz, CDCls): & 8.58
(d, ) =8.2 Hz, 1H), 8.02 (s, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.52 (t, ) = 8.2 Hz, 1H), 7.47-7.43 (m, 1H), 7.40-7.42 (m,
2H), 7.17- 7.15 (m, 1H), 7.14-7.12 (m, 1H), 3.87 (s, 3H). *C NMR (101 MHz, CDCls): & = 190.6, 159.8, 140.7,
140.1, 138.4, 137.5, 134.8, 129.5, 125.8, 125.7, 125.3, 122.4, 122.3, 118.8, 114.0, 55.6. HRMS (ESI): Calcd.
for C16H120,NaS [M+Na]* 291.0450; found 291.0453.

o) Quinolin-6-yl(m-tolyl)methanone, 3I. 6-Bromoquinoline (50 mg, 0.24 mmol) was
Me reacted with m-tolylboronic acid (39 mg, 0.29 mmol) according to the general
SN procedure A to provide the product (54 mg, 91%) as yellow oil. 'H NMR (400 MHz,
CDCls): 6 =9.02 (d, J = 5.9 Hz, 1H), 8.25 (s, 1H), 8.22-8.21 (m, 1H), 8.19 (s, 1H), 8.15-8.13 (m, 1H), 7.67 (s, 1H),
7.61(d, ) = 7.4 Hz, 1H), 7.48 (dd, J = 8.3, 4.2 Hz, 1H), 7.41 (dt, J = 14.9, 7.6 Hz, 2H), 2.43 (s, 3H). 3C NMR (101

MHz, CDCls): 6 = 196.4, 152.6, 149.9, 138.5, 137.6, 137.5, 135.8, 133.6, 131.4, 130.6, 129.9, 129.7, 128.4,
127.5,127.4,122.1, 21.5. HRMS (ESI): Calcd. for C17H130NNa [M+Na]* 270.0889; found 270.0893.

o (4-Methoxyphenyl)(m-tolyl)methanone, 3m.* 1-Bromo-4-methoxybenzene (50

O O Me mg, 0.28 mmol) was reacted with m-tolylboronic acid (44 mg, 0.32 mmol)
MeO according to the general procedure A to provide the product (45 mg, 75%) as
yellow oil. 'H NMR (400 MHz, CDCls): & = 7.83 (d, J = 8.9 Hz, 2H), 7.58 (s, 1H), 7.53 (d, J = 7.0 Hz, 1H), 7.39-
7.33 (m, 2H), 6.96 (d, J = 8.9 Hz, 2H), 3.89 (s, 3H), 2.42 (s, 3H). 3C NMR (101 MHz, CDCls): & = 195.9, 163.3,
138.5, 138.2, 132.8, 132.7, 130.4, 130.3, 128.1, 127.1, 113.6, 55.6, 21.5. HRMS (ESI): Calcd. for C15sH140,Na
[M+Na]* 249.0886; found 249.0890.
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o 4-(3-Methylbenzoyl)benzonitrile, 3n.*° 4-Bromobenzonitrile (50 mg, 0.27 mmol)

Me was reacted with m-tolylboronic acid (45 mg, 0.33 mmol) according to the general
NC procedure A to provide the product (50 mg, 83%) as white solid. Mp 118-121 °C.
'H NMR (400 MHz, CDCl;): 6 =7.86 (d, J = 8.5 Hz, 2H), 7.78 (d, J = 8.5 Hz, 2H), 7.60 (s, 1H), 7.54 (d, J = 7.5 Hz,
1H), 7.45 (d, J = 7.5 Hz, 1H), 7.40-7.37 (m, 1H), 2.43 (s, 3H). 3C NMR (101 MHz, CDCls): & = 195.4, 141.5,

138.7, 136.5, 134.2, 132.3, 130.3, 128.6, 127.5, 118.2, 115.7, 21.5. HRMS (ESI): Calcd. for C1sH1,0ON [M+H]*
222.0913; found 222.0914.

o) m-Tolyl(p-tolyllmethanone, 30.'! 1-Bromo-4-methylbenzene (50 mg, 0.29 mmol)

Me was reacted with m-tolylboronic acid (48 mg, 0.35 mmol) according to the general
Me procedure A to provide the product (48 mg, 79%) as yellow oil. 'H NMR (400 MHz,
CDCls): 8§ = 7.65 (d, J = 8.0 Hz, 2H), 7.54 (s, 1H), 7.50-7.48 (m, 1H), 7.34-7.28 (m, 2H), 7.21 (d, J = 8.0 Hz, 2H),

2.37(s, 3H), 2.35 (s, 3H). *C NMR (101 MHz, CDCl3): 6 = 196.8, 143.2, 138.1, 138.1, 135.1, 133.0, 130.4, 130.4,
129.0, 128.1, 127.3, 21.7, 21.5. HRMS (ESI): Calcd. for C15H140Na [M+Na]* 233.0937; found 233.0938.

o) 4-(3-Methylbenzoyl)benzaldehyde, 3p. 4-Bromobenzaldehyde (50 mg, 0.27

Me mmol) was reacted with m-tolylboronic acid (44 mg, 0.32 mmol) according to the
OHC general procedure A to provide the product (50 mg, 83%) as white solid. Mp 79-
82 °C. 'H NMR (400 MHz, CDCls): & = 10.12 (s, 1H), 7.99 (d, J = 8.2 Hz, 2H), 7.90 (d, J = 8.2 Hz, 2H), 7.62 (s,
1H), 7.56 (d, J = 7.5 Hz, 1H), 7.43 (d, J = 7.5 Hz, 1H), 7.39-7.35 (m, 1H), 2.42 (s, 3H). 3C NMR (101 MHz, CDCl3):
6=196.1,191.7, 142.8, 138.6, 136.9, 134.0, 130.4, 129.6, 128.4, 127.5, 21.5. HRMS (ESI): Calcd. for C15H130;
[M+H]* 225.0910; found 225.0907.

o N-Methyl-N-phenyl-3,5-bis(trifluoromethyl)benzamide, 5a. 1-Bromo-3,5-

FsC N/@ bis(trifluoromethyl)benzene (50 mg, 29.5 ul, 0.17 mmol) was reacted with N-

'\I/'e methyl aniline (28 ul, 0.26 mmol) according to the general procedure B to provide

CFs3 the product (30 mg, 51%) as white solid. Mp 85-88 °C. *H NMR (400 MHz, CDCls):

&=7.73 (s, 3H), 7.30-7.27 (m, 2H), 7.24-7.20 (m, 1H), 7.04 (d, J = 7.4 Hz, 2H), 3.54 (s, 3H). 3C NMR (101 MHz,

CDCLs): & = 167.3, 143.9, 137.9, 131.3 (q, J = 33.6 Hz), 130.8, 129.9, 129.3, 127.8, 127.1, 124.3, 123.7-122.8
(m), 121.6, 118.9, 38.6. HRMS (ESI): Calcd. for C16H1:0NFsNa [M+Na]* 370.0637; found 370.0641.

o 4-Formyl-N-methyl-N-phenylbenzamide, 5b.'> 4-Bromobenzaldehyde (50 mg, 0.27
/@)‘\,},@ mmol) was reacted with N-methyl aniline (43 ul, 0.43 mmol) according to the general
OHC Me procedure B to provide the product (66 mg, 99%) as colourless oil. *H NMR (400
MHz, CDCls): 6 =9.90 (s, 1H), 7.66 (d, J = 8.2 Hz, 2H), 7.42 (d, J = 8.2 Hz, 2H), 7.22-7.18 (m, 2H), 7.15-7.12 (m,
1H), 7.02-7.00 (d, J = 7.5 Hz, 2H), 3.49 (s, 3H). 3C NMR (101 MHz, CDCls): § = 191.6, 169.4, 144.2, 141.8,
136.5, 129.4, 129.2, 129.1, 127.1, 127.0, 38.3. HRMS (ESI): Calcd. for CisH140:N [M+H]* 240.1019; found
240.1023.
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o N-Methyl-N-phenyl-4-(trifluoromethyl)benzamide, 5c.’* 4-Bromobenzotrifluoride

/©)J\rlu/© (50 mg, 31.1 pl, 0.22 mmol) was reacted with N-methyl aniline (36 ul, 0.33 mmol)
FaC Me according to the general procedure B to provide the product (61 mg, 98%) as white
solid. Mp 80-83 °C. 'H NMR (400 MHz, CDCls): § = 7.43-7.38 (m, 4H), 7.25-7.21 (m, 2H), 7.18-7.14 (m, 1H),
7.02(d, J=7.5Hz, 2H), 3.50 (s, 3H). 3C NMR (101 MHz, CDCls): & = 169.2, 144.3, 139.6, 131.4 (q, J = 32.6 Hz),
129.5, 129.1, 127.8, 127.1, 127.0, 125.1, 124.9 (q, J = 3.8 Hz), 122.4, 119.7, 38.5. HRMS (ESI): Calcd. for
CisH130ONFs [M+H]* 280.0944; found 280.0948.

o N-Methyl-N-phenyl-3-(trifluoromethyl)benzamide, 5d.** 3-Bromobenzotrifluoride

F3C\©)LN/© (50 mg, 36 ul, 0.22 mmol) was reacted with N-methyl aniline (36 pl, 0.33 mmol)

'\I"e according to the general procedure B to provide the product (54 mg, 87%) as yellow

oil. '"H NMR (400 MHz, CDCl;): 6 = 7.53 (s, 1H), 7.43 (t, J = 6.6 Hz, 2H), 7.24-7.22 (m, 1H), 7.20 (d, J = 7.6 Hz,

2H), 7.15-7.12 (m, 1H), 7.00 (d, J = 7.6 Hz, 2H), 3.48 (s, 3H). 3C NMR (101 MHz, CDCls): & = 169.4, 144.4,

136.7, 132.0, 130.3 (q, J = 32.7 Hz), 129.8, 129.5, 128.4, 127.1, 127.0, 126.3 (q, J = 3.8 Hz), 125.9 (q, / = 3.8
Hz), 125.0, 122.3, 38.5. HRMS (ESI): Calcd. for C1sH130ONFs [M+H]* 280.0944; found 280.0948.

0 3-Methoxy-N-methyl-N-phenylbenzamide, 5e."> 1-Bromo-3-methoxybenzene (50

Meo\©)LN© mg, 33.8 Y, 0.27 mmol) was reacted with N-methyl aniline (44 ul, 0.43 mmol)

“I"e according to the general procedure B to provide the product (40 mg, 62%) as yellow

oil. 'H NMR (400 MHz, CDCls): & = 7.24-7.20 (m, 2H), 7.15-7.11 (m, 1H), 7.06-7.02 (m, 3H), 6.86 (s, 1H), 6.84-

6.82 (m, 1H), 6.77-6.75 (m, 1H), 3.64 (s, 3H), 3.48 (s, 3H). *3C NMR (101 MHz, CDCl;): = 170.5, 159.0, 145.0,

137.2,129.2,128.8,126.9,126.6,121.3,116.1, 113.8, 55.3, 38.5. HRMS (ESI): Calcd. for C1sH150;NNa [M+Na]*
264.0995; found 264.0997.

o 4-(tert-Butyl)-N-methyl-N-phenylbenzamide, 5f.° 1-Bromo-4-(tert-butyl)benzene
/©)‘\,}1© (50 mg, 40.7 ul, 0.23 mmol) was reacted with N-methyl aniline (38 pl, 0.35 mmol)
tBu Me according to the general procedure B to provide the product (22 mg, 35%) as white
solid. Mp 100-103 °C. *H NMR (400 MHz, CDCl;): & = 7.25-7.22 (m, 4H), 7.18 (s, 1H), 7.17-7.12 (m, 2H), 7.05
(d, J = 7.3 Hz, 2H), 3.49 (s, 3H), 1.22 (s, 9H). 3C NMR (101 MHz, CDCl;): § = 170.7, 153.0, 145.3, 132.9, 129.2,
128.8, 127.0, 126.5, 124.7, 38.7, 34.8, 31.4, 31.2. HRMS (ESI): Calcd. for CisH,:ONNa [M+Na]* 290.1515;
found 290.1526.

0 N, 3-Dimethyl-N-phenylbenzamide, 5g.2” 1-Bromo-3-methylbenzene (50 mg, 35.6 pl,
ME\O)J\N/Q 0.29 mmol) was reacted with N-methyl aniline (47 pl, 0.43 mmol) according to the

'\I"e general procedure B to provide the product (42 mg, 64%) as yellow oil. *H NMR (400
MHz, CDCls): & = 7.24-7.20 (m, 3H), 7.14-7.11 (m, 1H), 7.04-7.02 (m, 3H), 7.00-6.99 (m, 2H), 3.48 (s, 3H), 2.21

(s, 3H). 23C NMR (101 MHz, CDCl;): & = 170.9, 145.1, 137.6, 135.9, 130.4, 129.5, 129.2, 127.5, 127.0, 126.5,
125.8, 38.5, 21.3. HRMS (ESI): Calcd. for C1sH1sONNa [M+Na]* 248.1046; found 248.1050.
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o 4-Cyano-N-methyl-N-phenylbenzamide, 5h.’® 4-Bromobenzonitrile (50 mg, 0.27

/@)‘\K@ mmol) was reacted with N-methyl aniline (45 pl, 0.43 mmol) according to the general
NC Me procedure B to provide the product (63 mg, 97%) as colourless oil. *H NMR (400 MHz,
CDCl3): 6 =7.43 (d, J = 8.4 Hz, 2H), 7.35 (d, / = 8.4 Hz, 2H), 7.24-7.20 (m, 2H), 7.17-7.13 (m, 1H), 7.00-6.98 (d,
J=7.5Hz, 2H), 3.47 (s, 3H). 3C NMR (101 MHz, CDCl3): & = 168.3, 143.6, 140.0, 131.3, 129.2, 128.9, 126.9,
126.6, 117.8, 112.8, 38.0. HRMS (ESI): Calcd. for Ci5sH130N; [M+H]* 237.1022; found 237.1033.

o 4-Fluoro-N-methyl-N-phenylbenzamide, 5i.*> 1-Bromo-4-fluorobenzene (50 mg, 32 pl,

/©)L|}j/© 0.28 mmol) was reacted with N-methyl aniline (46.4 ul, 0.43 mmol) according to the
F Me general procedure B to provide the product (53 mg, 81%) as orange oil. *H NMR (400
MHz, CDCls): & = 7.32-7.30 (m, 2H), 7.28-7.22 (m, 2H), 7.18-7.15 (m, 1H), 7.03-7.02 (m, 2H), 6.84 (t, J = 8.7
Hz, 2H), 3.49 (s, 3H). 3C NMR (101 MHz, CDCls): & = 169.7, 163.3 (d, J = 250.2 Hz), 145.0, 132.0, 132.0, 131.2
(d, J=8.6 Hz), 129.4, 127.0, 126.8, 114.9 (d, J = 21.8 Hz), 38.6. HRMS (ESI): Calcd. for C1sH1,ONFNa [M+Na]*
252.0795; found 252.0798.

o N-Methyl-N-phenylquinoline-6-carboxamide, 5j.*° 6-Bromo-quinoline (50 mg, 32.5
(t@)%ﬁ@ ul, 0.24 mmol) was reacted with N-methyl aniline (39 ul, 0.35 mmol) according to the
SN Me general procedure B to provide the product (41mg, 65%) as colourless oil. *H NMR
(400 MHz, CDCls): 6 = 8.88 (d, J = 5.9 Hz, 1H), 8.03 (d, J = 9.0 Hz, 1H), 7.88 (s, 1H), 7.84 (d, J = 8.8 Hz, 1H), 7.53
(d, J=8.8 Hz, 1H), 7.36 (dd, J = 8.3, 4.2 Hz, 1H), 7.22-7.18 (m, 2H), 7.13-7.12 (m, 1H), 7.08-7.06 (m, 2H), 3.56
(s, 3H). 3C NMR (101 MHz, CDCls): & = 169.9, 151.6, 148.3, 144.7, 136.8, 134.3, 129.5, 129.3, 129.3, 128.9,
127.5,127.1, 126.9, 121.7, 38.7. HRMS (ESI): Calcd. for C17H140N;Na [M+Na]* 285.0998; found 285.1004.

o Methyl 3-(methyl(phenyl)carbamoyl)benzoate, 5k. Methyl 3-bromobenzoate

MeOZC\O)‘\N (50 mg, 0.23 mmol) was reacted with N-methyl aniline (38 pl, 0.35 mmol)
|

Me according to the general procedure B to provide the product (52 mg, 83%) as

colourless oil. H NMR (400 MHz, CDCls): & = 8.00 (s, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.22-
7.18 (m, 2H), 7.15-7.11 (m, 2H), 7.03 (d, J = 7.4 Hz, 2H), 3.83 (s, 3H), 3.49 (s, 3H). 3C NMR (101 MHz, CDCls):
8 =169.7, 166.3, 144.6, 136.4, 132.9, 130.7, 130.1, 129.9, 129.4, 128.0, 127.1, 126.9, 52.3, 38.5. HRMS (ESI):
Calcd. for C16H150sNNa [M+Na]* 292.0944; found 292.0949.

0 N-Methyl-N-phenyl-2-naphthamide, 5.7 2-Bromonaphthalene (50 mg, 0.24 mmol)
“)‘\NQ was reacted with N-methyl aniline (40 pl, 0.40 mmol) according to the general
OO '\I"e procedure B to provide the product (64 mg, 99%) as colourless oil. *H NMR (400
MHz, CDCls): & = 7.91 (s, 1H), 7.71 (d, J = 7.8 Hz, 2H), 7.59 (d, J = 8.6 Hz, 1H), 7.47-7.40 (m, 2H), 7.33 (d, J =
8.5 Hz, 1H), 7.21-7.17 (m, 2H), 7.12-7.07 (m, 3H), 3.56 (s, 3H). 3C NMR (101 MHz, CDCls): § = 170.3, 144.7,

133.3, 133.0, 132.1, 129.2, 129.0, 128.4, 127.3, 127.0, 126.9, 126.6, 126.2, 126.0, 125.2, 38.3. HRMS (ESI):
Calcd. for C1sH1sONNa [M+Na]* 284.1046; found 284.1051.
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0 3-Cyano-N-methyl-N-phenylbenzamide, 5m. 3-Bromobenzonitrile (50 mg, 0.27
NC\O)‘\N/Q mmol) was reacted with N-methyl aniline (45 pl, 0.43 mmol) according to the
'\I/'e general procedure B to provide the product (61 mg, 94%) as white solid. Mp 72-75

°C. 'H NMR (400 MHz, CDCl): § = 7.54 (s, 1H), 7.48-7.45 (m, 2H), 7.24-7.20 (m, 3H), 7.17-7.15 (m, 1H), 6.99
(d, J = 7.6 Hz, 2H), 3.46 (s, 3H). 13C NMR (101 MHz, CDCls): & = 168.2, 144.0, 137.3, 133.0, 132.9, 132.4, 129.6,
128.8, 127.4,127.0,118.1, 112.2, 38.5. HRMS (ESI): Calcd. for C15sH130N; [M+H]*237.1022; found 237.1033.

o 4-Methoxy-N-methyl-N-phenylbenzamide, 5n.'3 1-Bromo-4-methoxybenzene (50
/©)‘\,}/© mg, 33.5 ul, 0.27 mmol) was reacted with N-methyl aniline (44 ul, 0.43 mmol)
MeO Me according to the general procedure B to provide the product (10 mg, 16%) as yellow
oil. 'TH NMR (400 MHz, CDCls): § = 7.27-7.23 (m, 2H), 7.21 (d, J = 7.9 Hz, 2H), 7.13 (t, J = 7.4 Hz, 1H), 7.02 (d, J
= 8.2 Hz, 2H), 6.64 (d, J = 8.9 Hz, 2H), 3.72 (s, 3H), 3.47 (s, 3H). 3C NMR (101 MHz, CDCls): § = 170.4, 160.7,
145.6, 131.0, 129.3, 128.1, 127.0, 126.4, 113.1, 55.3, 38.8. HRMS (ESI): Calcd. for CisH1s0;NNa [M+Na]*
264.0995; found 264.0997.

(e}

/@)‘\ 0.27 mmol) was reacted with p-anisidine (50 mg, 0.41 mmol) according to the
H
NC general procedure B to provide the product (60 mg, 87%) as white solid. Mp 157-

/©/0Me 4-Cyano-N-(4-methoxyphenyl)benzamide, 50.?° 4-Bromobenzonitrile (50 mg,
N

160 °C. *H NMR (400 MHz, CDCl;): & = 7.96 (d, J = 8.4 Hz, 2H), 7.78-7.76 (m, 3H), 7.52 (d, J = 8.4 Hz, 2H), 6.92
(d, J=8.9 Hz, 2H), 3.82 (s, 3H). 3C NMR (101 MHz, CDCls): 6 = 163.9, 157.2, 139.1, 132.7, 130.4, 127.9, 122.4,
118.1, 114.5, 55.7. HRMS (ESI): Calcd. for C15sH1,0,N2Na [M+Na]* 275.0791; found 275.0795.

o Me 4-Cyano-N-(p-tolyl)benzamide, 5p.?* 4-Bromobenzonitrile (50 mg, 0.27 mmol) was

/@)LNO/ reacted with p-toluidine (44 mg, 0.41 mmol) according to the general procedure B

NC " to provide the product (60 mg, 90%) as white solid. Mp 178-180 °C. 'H NMR (400

MHz, CDCls): 6 = 7.96 (d, J = 8.2 Hz, 2H), 7.81 (bs, 1H), 7.77 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 7.19 (d,

J =8.3 Hz, 2H), 2.35 (s, 3H). 3C NMR (101 MHz, CDCls): & = 162.3, 139.1, 135.2, 134.8, 132.7, 129.9, 127.9,
120.6, 118.1, 115.5, 21.1. HRMS (ESI): Calcd. for C1sH120N; [M+Nal* 237.1022; found 237.1024.

o 4-Cyano-N-(3-(trifluoromethyl)phenyl)benzamide, 5q. 4-Bromobenzonitrile (50
/©)J\H/©\CF3 mg, 0.27 mmol) was reacted with 3-(trifluoromethyl)aniline (51.4 pl, 0.41 mmol)
NC according to the general procedure B to provide the product (68 mg, 85%) as
white solid. Mp 166-168 °C. 'H NMR (400 MHz, CDCls): & = 8.01 (m, 3H), 7.93 (s, 1H), 7.86 (d, J = 8.1 Hz, 1H),
7.80(d, J = 8.3 Hz, 2H), 7.52 (t, J = 7.9 Hz, 1H), 7.47-7.44 (m, 1H). 3C NMR (101 MHz, CDCl3): 6 = 164.2, 138.4,
137.9,132.9, 131.8 (d, J = 32.7 Hz), 130.0, 127.9, 123.6, 121.9 (d, J = 3.7 Hz), 117.9, 117.3 (d, J = 4.0 Hz), 115.9.
HRMS (ESI): Calcd. for C1sHsOFsN; [M-H] 289.0594; found 289.0587.
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o) 4-Cyano-N-(4-(2-(dimethylamino)ethoxy)benzyl)benzamide, 5r. 4-

/©)‘\H/\©\ Me Bromobenzonitrile (50 mg, 0.27 mmol) was reacted with 2-(4-
NC o/\/N\Me (aminomethyl)phenoxy)-N,N-dimethylethan-1-amine (80 mg, 0.41
mmol) according to the general procedure B to provide the product (80 mg, 90%) as white solid. Mp 109-112
°C. *™H NMR (400 MHz, CDCl3): 6 =7.87 (d, J = 8.5 Hz, 2H), 7.72-7.25 (d, J = 8.5 Hz, 2H), 7.25 (m, 2H), 6.90 (d, J
= 8.7 Hz, 2H), 6.45 (bs, 1H), 4.57 (d, J = 5.5 Hz, 2H), 4.08 (t, / = 5.6 Hz, 2H), 2.78 (t, / = 5.6 Hz, 2H), 2.38 (s, 6H).

13C NMR (101 MHz, CDCls): & = 165.6, 158.6, 138.5, 132.6, 129.9, 129.5, 127.8, 118.1, 115.3, 115.1, 66.0, 58.2,
45.9, 44.1. HRMS (ESI): Calcd. for C19H2,0,N3 [M+H]* 324.1707; found 324.1714.

o) 4-(Morpholine-4-carbonyl)benzonitrile, 5s.?> 4-Bromobenzonitrile (50 mg, 0.27 mmol)
/©)J\N/ﬁ was reacted with morpholine (36 ul, 0.41 mmol) according to the general procedure B
NC K/O to provide the product (55 mg, 93%) as white solid. Mp 143-145.6 °C. 'H NMR (400
MHz, CDCl5): § =7.70 (d, J = 8.4 Hz, 2H), 7.49 (d, J = 8.4 Hz, 2H), 3.75-3.60 (m, 6H), 3.41-3.35 (m, 2H). *C NMR
(101 MHz, CDCl3): 6 = 165.8, 138.3, 137.7, 132.5, 128.9, 127.9, 127.9, 127.8, 118.1, 115.1, 44.3. HRMS (ESI):
Calcd. for C1,H1,0:N2Na [M+Na]* 239.0791; found 239.0809.

o) N-Benzyl-4-cyanobenzamide, 5t.%* 4-Bromobenzonitrile (50 mg, 0.27 mmol) was

/©)J\H/\© reacted with phenylmethanamine (45 pl, 0.41 mmol) according to the general
NC procedure B to provide the product (61 mg, 94%) as white solid. Mp 148-150 °C.
14 NMR (400 MHz, CDCls): & = 7.85 (d, J = 8.5 Hz, 2H), 7.65 (d, J = 8.5 Hz, 2H), 7.36-7.27 (m, 5H), 6.93 (bs, 1H),

4.59 (d, J = 5.7 Hz, 2H). 3C NMR (101 MHz, CDCl3): & = 165.8, 138.3, 137.7, 132.5, 128.9, 127.9, 127.9, 127.8,
118.1, 115.1, 44.3. HRMS (ESI): Calcd. for C15sH1,0N;Na [M+Na]* 259.0842; found 259.0841.

o N-(4-(2-(Dimethylamino)ethoxy)benzyl)-3,4,5-

MeO N Vo trimethoxybenzamide, 5u. 5-Bromo-1,2,3-trimethoxybenzene
MeOI;)‘\H/\Q\O/\/K‘\Me (50 mg, 020 mmol) was reacted with 2-(4-
OMe (aminomethyl)phenoxy)-N,N-dimethylethan-1-amine (78 mg,

0.40 mmol) and XantPhos Pd G3 (38 mg, 2 mol%) according to the general procedure B to provide the product
(75 mg, 95%) as white solid. Mp 105-108 °C. *"H NMR (400 MHz, CDCl;): 6 = 7.22 (d, J = 8.6 Hz, 2H), 7.04 (s,
2H), 6.89 (bs, 1H), 6.82 (d, J = 8.6 Hz, 2H), 4.49 (d, J = 5.7 Hz, 2H), 4.07 (t, J = 5.5 Hz, 2H), 3.82 (s, 9H), 2.82 {(t,

J =5.5 Hz, 2H), 2.39 (s, 6H). *C NMR (101 MHz, CDCl;): § = 167.0, 158.0, 153.1, 140.8, 130.9, 129.9, 129.3,
114.7, 104.6, 65.4, 60.9, 58.0, 56.6, 45.5, 43.6. HRMS (ESI): Calcd. for C31H250sN, [M+H]* 389.2071; found

389.2080.

Morpholino(3,4,5-trimethoxyphenyl)methanone, 5v.% 5-Bromo-1,2,3-
o}
MeO trimethoxybenzene (50 mg, 0.20 mmol) was reacted with morpholine (36 ul, 0.40
N
Voo K/o mmol) and XantPhos Pd G3 (38 mg, 2 mol%) according to the general procedure B to
e

OMe provide the product (55 mg, 96%) as white solid. Mp 116-118 °C. *H NMR (400 MHz,
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CDCl3): 6 = 6.59 (s, 2H), 3.84-3.82 (m, 10H), 3.65 (bs, 7H). *C NMR (101 MHz, CDCls): & = 170.5, 153.7, 139.7,
131.0, 104.7, 67.3, 61.3, 56.6. HRMS (ESI): Calcd. for C14H1s0sNNa [M+Na]* 304.1155; found 304.1165.

o tert-Butyl 2-naphthoate, 7a.%> 2-Bromonaphthalen (50 mg, 0.24 mmol) was reacted
OtBu with tBuONa (34 mg, 0.35 mmol) according to the general procedure C to provide the
product (51 mg, 93%) as yellow oil. *H NMR (400 MHz, CDCls): § = 8.56 (s, 1H), 8.06-

8.03 (m, 1H), 7.95 (d, J = 7.9 Hz, 1H), 7.87-7.85 (m, 2H), 7.62-7.47 (m, 2H), 1.67 (s, 9H). **C NMR (101 MHz,

CDCl3): 6 =166.0, 135.4, 132.6, 130.8, 129.4, 128.0, 128.0, 127.8, 126.6, 125.5, 81.2, 28.4. HRMS (ESI): Calcd.
for C1sH160;,Na [M+Na]* 251.1043; found 251.1044.

o) tert-Butyl 4-methoxybenzoate, 7b.%° 1-Bromo-4-methoxybenzene (50 mg, 33.5 ul, 0.27
/©)J\OtBu mmol) was reacted with tBuONa (39 mg, 0.36 mmol) according to the general
MeO procedure C to provide the product (54 mg ,98%) as colourless oil. *H NMR (400 MHz,
CDCl3): 6 =7.94 (d, J = 8.8 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 3.84 (s, 3H), 1.58 (s, 9H). 3C NMR (101 MHz, CDCl;):

6=165.7,163.1, 131.5, 124.6, 113.5, 80.6, 55.5, 28.4. HRMS (ESI): Calcd. for C1,H160sNa [M+Na]* 231.0992;
found 231.0988.

o tert-Butyl nicotinate, 7c.>* 3-Bromopyridine (50mg, 30.5 pl, 0.32 mmol) was reacted with

| A ou tBuONa (46 mg, 0.48 mmol) according to the general procedure C to provide the product (29
N mg, 52%) as yellow oil. 'H NMR (400 MHz, CDCls): & = 9.15 (s, 1H), 8.73-8.72 (m, 1H), 8.22 (d,
J=7.9 Hz, 1H), 7.45-7.30 (m, 1H), 1.59 (s, 9H). 3C NMR (101 MHz, CDCls): § = 164.5, 153.0, 151.0, 137.0,

127.9, 123.3, 82.2, 28.3. HRMS (ESI): Calcd. for C10H140,N [M+H]* 180.1019; found 180.1014.

o tert-Butyl 4-cyanobenzoate, 7d.?> 1-Bromo-4-benzonitrile (50mg, 0.27 mmol) was

otu reacted with tBuONa (40 mg, 0.48 mmol) according to the general procedure C to

NC provide the product (25 mg, 45%) as colourless oil. *H NMR (400 MHz, CDCls): § = 8.07

(d, J = 8.5 Hz, 2H), 7.71 (d, J = 8.5 Hz, 2H), 1.60 (s, 9H). 3C NMR (101 MHz, CDCls): 6 = 164.4, 136.3, 132.5,
130.4, 118.6, 116.3, 82.8, 28.5. HRMS (ESI): Calcd. for C1,H130,NNa [M+Na]* 226.0838; found 226.0855.

0 tert-Butyl 4-methylbenzoate, 7e.%° 1-Bromo-4-methylbenzene (50mg, 0.27 mmol) was
/O)J\OtBu reacted with tBuONa (42 mg, 0.43 mmol) according to the general procedure C to
Me provide the product (50 mg, 80%) as yellow oil. *H NMR (101 MHz, CDCls): 6 = 7.88 (d, J
= 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 2.39 (s, 3H), 1.59 (s, 9H). 3C NMR (101 MHz, CDCls): § = 166.3, 143.3,
129.9, 129.3, 81.1, 28.7, 22.0. HRMS (ESI): Calcd. for C1,H160:Na [M+Na]* 215.1043; found 215.1038.
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o tert-butyl 4-(trifluoromethyl)benzoate, 7f.° 4-Bromobenzotrifluoride (50 mg, 31.1 pl,

otu 0.22 mmol) was reacted with tBuONa (40 mg, 0.48 mmol) according to the general

n
w
O %

procedure C to provide the product (28 mg, 51%) as yellow oil. H NMR (101 MHz,
CDCls): §8.10 (d, J = 8.2 Hz, 2H), 7.68 (d, J = 8.2 Hz, 2H), 1.61 (s, 9H). 3C NMR (101 MHz,
CDCl3): 6 164.6, 135.4, 134.1 (d, J = 32.5 Hz), 129.9, 125.8 — 124.5 (m), 82.1, 28.3. HRMS (ESI): Calcd. for
C12H13F30;Na [M+Na]* 269.0760; found 269.0756.

o) tert-Butyl quinoline-6-carboxylate, 7g. 6-Bromoquinoline (50 mg, 0.24 mmol) was

otu reacted with tBuONa (34 mg, 0.34 mmol) according to the general procedure C to

zé/ \g

provide the product (47 mg, 85%) as yellow oil. *H NMR (400 MHz, CDCl;): § = 8.97-8.96
(m, 1H), 8.50 (s, 1H), 8.33-8.16 (m, 2H), 8.10 (d, J = 8.8 Hz, 1H), 7.43 (dd, J = 8.3, 4.2 Hz, 1H), 1.63 (s, 9H). 3C
NMR (101 MHz, CDCl3): 6 = 165.3, 152.3, 150.0, 137.4, 130.7, 130.1, 129.6, 129.2, 127.5, 121.8, 81.7, 28.3.
HRMS (ESI): Calcd. for C14H150,N [M+Na]* 230.1176; found 230.1195.

o tert-Butyl 4-(tert-butyl)benzoate, 7h.*> 1-Bromo-4-(tert-butyl)benzene (50 mg, 0.23

otBu  mmol) was reacted with tBuONa (33 mg, 0.34 mmol) according to the general procedure

9

tBu C to provide the product (50 mg, 90%) as colourless oil. 'H NMR (400 MHz, CDCls): & =
7.94 (d,J=8.6 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 1.60 (s, 9H), 1.34 (s, 9H). *C NMR (101 MHz, CDCls): & = 165.6,
155.8, 129.1, 124.9, 80.4, 34.8, 31.0, 28.0. HRMS (ESI): Calcd. for CisH»,0,Na [M+Na]* 257.1512; found

257.1537.

o) tert-Butyl 3,4-dimethoxybenzoate, 7i.>* 4-Bromo-1,2-dimethoxybenzene (50 mg, 0.23
MeoD)J\OtBu mmol) was reacted with tBuONa (33 mg, 0.34 mmol) according to the general
MeO procedure C to provide the product (51 mg, 93%) as yellow oil. *H NMR (400 MHz,
CDCl3): & = 7.62-7.60 (m, 1H), 7.51-750 (m, 1H), 6.85 (d, J = 8.4 Hz, 1H), 3.92 (s, 6H), 1.58 (s, 9H). *C NMR

(101 MHz, CDCls): 6 = 165.8, 152.7, 148.6, 124.7,123.4, 112.0, 110.2, 80.8, 56.1, 28.4. HRMS (ESI): Calcd. for
Ci13H1304Na [M+Na]* 261.1097; found 261.1095.

o tert-Butyl 3-methylbenzoate, 7j.*’ 1-Bromo-3-methylbenzene (50 mg, 35.6 ul, 0.27

omu Mmol) was reacted with tBuONa (42 mg, 0.43 mmol) according to the general

d

procedure C to provide the product (32 mg, 52%) as orange oil. H NMR (400 MHz,
CDCLs): & = 7.80-7.78 (m, 2H), 7.34-7.28 (m, 2H), 2.39 (s, 3H), 1.60 (s, 9H). *C NMR (101 MHz, CDCls): 6 =
166.1, 138.0, 133.3, 132.1, 130.1, 128.2, 126.7, 28.4, 21.4. HRMS (ESI): Calcd. for Ci2H160,Na [M+Na]*
215.1043; found 215.1037.

o Methyl 2-naphthoate, 8a. 1-Bromo-4-methoxybenzene (50 mg, 33.5 pl, 0.27 mmol) was

ome reacted with tBuONa (39 mg, 0.36 mmol) in dimethyl carbonate according to the general

3

procedure C to provide the product (49 mg, 93%) as yellow oil. H NMR (400 MHz,

CDCl3): 6 = 8.62 (s, 1H), 8.07 (d, J = 10.2 Hz, 1H), 7.95 (d, J = 8.0 Hz, 1H), 7.88 (d, J = 8.8 Hz, 2H), 7.69-7.46 (m,
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2H), 3.99 (s, 3H). *C NMR (101 MHz, CDCl;): 6 = 167.3, 135.6, 132.6, 131.2, 129.4, 128.3, 128.2, 127.9, 127.5,
126.7, 125.3, 52.3. HRMS (ESI): Calcd. for C12H100,Na [M+Na]* 209.0573; found 209.0566.

0 Methyl 4-methoxybenzoate, 8b.%¢ 1-Bromo-4-methoxybenzene (50 mg, 33.5 pl, 0.27
/©)J\0Me mmol) was reacted with tBuONa (39 mg, 0.36 mmol) in dimethyl carbonate according
MeO to the general procedure C to provide the product (40 mg, 90%) as yellow oil. *H NMR
(400 MHz, CDCl3): & = 7.99 (d, J = 8.9 Hz, 2H), 6.91 (d, J = 8.9 Hz, 2H), 3.87 (s, 3H), 3.84 (s, 3H). 3C NMR (101

MHz, CDCl3): 6 = 167.0, 163.4, 131.7, 122.7, 113.7, 55.5, 52.0. HRMS (ESI): Calcd. for CoH1003Na [M+H]*
167.0705; found 167.0717.

o) Methyl nicotinate, 8c.?° 3-Bromopyridine (50 mg, 30.5 ul, 0.32 mmol) was reacted with

| X oMe tBuONa (46 mg, 0.48 mmol) in dimethyl carbonate according to the general procedure C to
N provide the product (25 mg, 58%) as orange oil. *H NMR (400 MHz, CDCls): & = 9.21 (s, 1H),
8.76 (s, 1H), 8.28 (d, J = 7.9 Hz, 1H), 7.38 (dd, J = 7.7, 4.9 Hz, 1H), 3.94 (s, 3H). 3C NMR (101 MHz, CDCl;): 6 =
165.9, 153.5, 151.0, 137.1, 126.1, 123.4, 52.5. HRMS (ESI): Calcd. for C;HsO,N [M+H]" 138.0550; found

138.0545.
o) Methyl 4-methylbenzoate, 8d.3° 1-Bromo-4-methylbenzene (50mg, 0.27 mmol) was
/©)}\OM9 reacted with tBuONa (42 mg, 0.43 mmol) in dimethyl carbonate according to the general
Me procedure C to provide (35 mg, 80%) as colourless oil. 'H NMR (400 MHz, CDCl5): § = 7.93
(d, J = 8.2 Hz, 2H), 7.23 (d, J = 8.2 Hz, 2H), 3.89 (s, 3H), 2.40 (s, 3H). 3C NMR (101 MHz, CDCl3): 6 = 167.3,
143.7,129.7, 129.2, 127.5, 52.0, 21.8. HRMS (ESI): Calcd. for CsH1002Na [M+H]* 151.0754; found 151.0757.

o Methyl quinoline-6-carboxylate, 8e.?! 6-Bromoquinoline (50 mg, 0.24 mmol) was
(D)J\om reacted with tBuONa (34 mg, 0.34 mmol) in dimethyl carbonate according to the general
SN procedure C to provide the product (42 mg, 93%) as white solid. Mp 80-82 °C. *H NMR

(400 MHz, CDCls): & = 8.95-8.94 (m, 1H), 8.51 (s, 1H), 8.25-7.23 (m, 1H), 8.18 (d, J = 7.8 Hz, 1H), 8.10-8.08 (m,
1H), 7.40 (dd, J = 8.3, 4.2 Hz, 1H), 3.94 (s, 3H). 3C NMR (101 MHz, CDCls): & = 166.6, 152.5, 150.1, 137.3,
131.0, 129.8, 128.9, 128.1, 127.4, 121.9, 52.5. HRMS (ESI): Calcd. for C11H:10NO, [M+H]* 188.0706; found
188.0717.
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