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Abstract
Recent advancements in human-robot interaction have led to tremendous
improvement for humanoid robots but still lacks social acceptance among
people. Though verbal communication is the primary means of human-robot
interaction, non-verbal communication that is proven to be an integral part of
the human interactions is not widely used in humanoid robots. This thesis aims
to achieve human-robot interaction via non-verbal communication, especially
using hand-signs. It presents a prototype system that simulates hand-signs
recognition in the NAO humanoid robot, and further an online questionnaire
is used to examine people’s opinion on the use of non-verbal communication
to interact with a humanoid robot. The positive results derived from the study
indicates people’s willingness to use non-verbal communication as a means to
communicate with humanoid robots, thus encouraging robot designers to use
non-verbal communications for enhancing human-robot interaction.
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1
Introduction
A Humanoid Robot is a robot that resembles human’s physical attributes like a
head, upper torso, and legs. Moreover, it interacts with humans, other robots
and environment, interprets the information and performs some actions using
its sensors and actuators [1]. These robots were typically pre-programmed to
perform specific tasks.

Recent advancements in humanoid robots have widened the application areas
of humanoid robots typically to healthcare, education, research, and social care
[1]. Healthcare practitioners appreciate the presence and help from advanced
surgical robots. Humanoid robots acted as therapists have shown positive
results to people suffering from depression, anxiety and anger [1]. In education
and research, humanoid robots majorly serve as teaching assistants to teach
various subjects (language, mathematics, nutrition) resulting in positive effects
in learning, curiosity, creativity, knowledge and recall rate [1]. Humanoid robots
can evoke a feeling of care and enhance social awareness [1]. Social robots or
Socially Assistive Robots (SAR) have proven to be very useful among elderly
and hospitality industries[2].

Humanoid robots need to communicate naturally to succeed in various such
fields. Natural communication is multi-modal, with both verbal (text, speech)
and non-verbal channels (signs, gestures, and other behaviours) [2]. Humans
primarily interact using verbal communication. Therefore, verbal communica-
tion has been the first and principal form of communication robot designers
used for delivering efficient interactions among humans and robots. But non-
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2 chapter 1 introduction

verbal communication is often neglected that happens to be an integral part of
human interactions since a long time. It augments and reinforces the verbal
communication [3]. Thus, non-verbal communication has the potential to en-
hance the ability of robots to interact with humans and this thesis focuses on
exploring this possibility to improve the human-robot interaction in humanoid
robots.

Non-verbal communication is performed using eye contact, facial expressions,
touch, posture, gestures and others. Amongst these, hand signs are the easiest
to be controlled and one of the primary forms of non-verbal communication
[4]. Though other studies focus on using non-verbal communication, this thesis
aims to achieve human-robot interaction by establishing a non-verbal commu-
nication between a human and humanoid robot, mainly using hand-signs. It
presents a prototype that includes the NAO humanoid robot from Softbank
Robotics which can interact with its user using hand-signs [5]. Hand-signs
recognition is the most significant aspect carried out via the Hand-Signs Recog-
nition Component (HSRC) of the prototype. In simplest terms, the NAO robot
captures an image via its camera and sends it to the hsrc which then, recog-
nizes the hand-sign present in the received input image. After recognition, NAO
performs specific tasks mapped to the detected hand-sign. For example, playing
a favourite song after recognizing a ’Thumbs-Up’ sign, or giving weather infor-
mation after recognizing a ’OK’ sign. NAO is programmed using its proprietary
software suite called Choregraphe, and the Hand-Sign Recognition Component
uses Deep learning techniques like Convolutional Neural Networks, that are
described later in the thesis. The research in this thesis is interdisciplinary,
spanning the areas of computer vision, robotics, artificial intelligence and deep
learning.

1.1 Background and Motivation

The field of robotics has experienced enormous growth since the 20Cℎ century
and expected to boom further in the near future, with estimates of humanoid
robot markets reaching USD 5.5 billion by 2024 [6]. The applications of hu-
manoid robots have expanded to newer domains of healthcare, education and
home robots. However, in order to facilitate a higher use of robots in our daily
lives, it is important that these robots offer a high degree of communication and
interaction with humans [7]. Human-Robot Interaction (HRI) focuses exactly
on this and aims to make modern-day robots more acceptable to humans.

Verbal and Nonverbal communication are two mediums for Human-Robot Inter-
action. With recent advancements in Natural Language Processing (nlp) [8],
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verbal communication is widely used in humanoid robots for communication
but non-verbal communication still needs more work. Nonverbal communica-
tion is the subtle yet effective act of responding or communicating without
using any words [9]. It has played a significant role in human interaction
for many centuries [10]. Different types of non-verbal communication include
hand-signs and gestures, facial expressions, posture, eye contact and others
[11]. Hand signs and gestures are forms of non-verbal communication in which
a speaker uses hand movements when talking to others. It has been an integral
part of the language that allows people to express their emotions and improve
the level of communication among them. People from different cultures use
hand signs and gestures when they talk. Even congenitally blind individuals,
who have never seen anyone gesture, move their hands while talking. Thus,
it highlights the robustness of hand signs and gestures in communication [3].
The project in this thesis focuses on these aspects to establish human-robot
interaction using non-verbal communication via the hand-signs.

Recognizing the hand-signs is the most significant task in this thesis. It is
achieved using advanced deep learning techniques, specifically the Convo-
lutional Neural Network (cnn). Deep learning is a recent development of
artificial intelligence and a sub-field of machine learning that involves many
neural networks to produce an output without any human intervention [12, 13].
Modern advancements in deep learning research have led it to become an ideal
choice for image classification problems, such as the hand-signs recognition in
this research.

1.2 Problem

With the rapid developments in the field of humanoid robots [6] , robot design-
ers are always finding different ways to enhance human-robot interaction and
improve its acceptance in the real world [7]. Human-Robot Interaction can be
achieved via verbal or non-verbal means. Advancements in Natural Language
Processing (nlp) and speech recognition has improved the verbal part [8], but
non-verbal communication - though an integral part of human interactions is
thinly incorporated in the actual world for humanoid robots [14]. Non-verbal
signs such as hand-signs, facial expressions, postures, and others give additional
information and meaning emphasizing verbal communication of an individual.
Some studies estimate that around 70-80% of communication is non-verbal
[15]. Indeed, it suggests that using non-verbal communication can help robot
designers to improve the human-robot interaction for humanoid robots. The
research work in this thesis explores the use of non-verbal communication in a
humanoid robot to interact with people, especially using hand-signs.
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1.3 Purpose

The purpose of this thesis is to achieve human-robot interaction via non-verbal
communication in humanoid robots, especially using hand-signs. Humanoid
robots struggle to attain natural interactions with people, making them less
acceptable for usage. Understanding non-verbal communication would make
the interactions more natural and thus, improve the human-robot interaction in
humanoid robots. To achieve it, a Hand-Sign Recognition Component (hsrc) is
developed to recognize the hand-signs shown to an NAO humanoid robot [5] by
a human subject. The hsrc is loosely-coupled and can easily be disintegrated
from the NAO robot providing greater flexibility and re-usability. The work in
this research, with some extensions, can serve as an application to aid people
with hearing disabilities.

1.4 Goals

This research explores the use of non-verbal communication in a humanoid
robot by interpreting human sign language and establish interaction with
humans. These two aspects - the Humanoid robot and Sign Language Interpre-
tation, are the most significant aspects of this research implementation. The
NAO humanoid robot actualises the former, and the Hand-Sign Recognition
Component (hsrc) achieves the latter. The NAO robot establishes the inter-
action with humans via a task-based scenario. In this scenario, NAO captures
the hand-sign via its camera, recognises the hand-sign with the help of HSRC,
and finally performs a specific task assigned to the detected hand-sign. The
HSRC uses a deep learning model employing Convolutional Neural Networks
(CNN) that predicts the hand-sign in an input image. Further, this research
also assesses people’s opinion on using non-verbal communication to interact
with a humanoid robot via online questionnaires.

1.5 Methodology

A research methodology represents the means, procedure, or technique used
to carry the research in a logical, orderly and systematic way [16]. It offers a
set of practices of analysing different methods, implying a set of principles and
rules for managing the research project [16]. When a problem is studied, the
researcher has a certain a priori assumptions affecting the way the research
is perceived and its final result [16, 17]. Research methods ensure the results
are trustworthy meaning they are valid independent of one’s personal experi-
ences[16]. There are two types of research methodologies to ensure validity-
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Quantitative methods and Qualitative methods. Quantitative methods focus on
understanding how to construct something, to build a thing, or understanding
how it works. Whereas Qualitative methods focus on why to build something or
what is its significance. Quantitative methods strive to formulate laws, theories
or principles for a phenomenon, but Qualitative methods aim to observe and
deepen our knowledge and understanding of that phenomenon [17].

The Hand-Sign Recognition Component and the humanoid robot are two
primary components of the system developed in this project. Examining some
of the challenges with both these components like lack of firm guidelines to
develop deep learning models in the HSRC, and the software limitations of the
NAO robot, this research applies Qualitative research methodologies rather
than quantitative, to handle such a high degree of uncertainty in this scenario
[18].

This research follows interpretivism philosophy and development research
methods [19] to achieve its goal of establishing non-verbal communication in
humanoid robots. It uses design science research strategies, more precisely
- Software Engineering principles to build a prototype of a humanoid robot
recognising different hand signs. This research uses inductive reasoning [17]
based on the observations throughout the development phase and online ques-
tionnaires to assess people’s opinion of using non-verbal communication to
achieve HRI. Initially, data collection was planned by taking questionnaires
and noting people’s opinion of the developed prototype, but it was difficult,
given the COVID-19 pandemic outbreak [20]. Instead, this research employs
online questionnaires that contain a video demonstration of the prototype,
followed by a list of questions to assess the research. Data collected by online
questionnaires are analysed using statistics [17] that help to express the peo-
ple’s acceptance to use non-verbal communication in humanoid robots. Quality
assurance of the research is achieved in terms of attaining validity, transferabil-
ity and dependability [17]. Validity refers to if the system uses state-of-the-art
knowledge (content validity) and various components to be consistently linked
to each other (construct validity). Dependability corresponds to reliability of
the research process and transferability is to create richer descriptions that
become a database for other researchers [17, 21].

1.6 Contribution

This research presents a way for robot designers emphasizing the use of non-
verbal communication (especially hand-signs) to establish human-robot inter-
action in humanoid robots. The contribution of this thesis is mainly two folds.
The first being the prototype system developed in this thesis that demonstrates



6 chapter 1 introduction

a humanoid robot recognizing the user’s hand-signs and performing useful
actions based on the detected signs. The HSRC is loosely coupled and operates
independently from the rest of the system, offering simple integration to other
systems requiring just the signs recognition functionality. Thus, providing an
immediate solution to people with speech impairments. This thesis implicitly
provides a step-by-step procedure to develop advanced deep learning models
for image classification problems and related research areas. The second con-
tribution is to essentially highlight the potential of incorporating non-verbal
communication to achieve Human-Robot Interaction in Humanoid Robots. This
research adopts and showcases an unconventional way of collecting data using
online questionnaires. Moreover, both of these contributions add to the exist-
ing literature in the fields of Computer Vision, Robotics and related research
communities.

1.7 Delimitation

The system developed in this research achieves human-robot interaction via
non-verbal communication using only hand-signs because hand-signs are
adopted universally in conversations and are more robust than other forms
of non-verbal communication. Though the system recognizes hand-signs of
the user and performs most of the tasks without verbally communicating with
the user, few of the basic commands like "Yes" or "No" still require verbal con-
firmation. The Hand-Signs Recognition Component of the system currently
recognizes the following three hand-signs: ’Palms-Open, ’Thumbs-Up’, and ’OK’
sign. To addmore hand-signs, one must produce an adequate number of images
for every sign and may consider implementing image preprocessing techniques
for better model performance. The research evaluation did not receive lot
of participants, but the majority of responses are convincing to direct robot
designers to adopt more to non-verbal communication features in humanoid
robots.

1.8 Outline

Moving forward, this thesis follows the following structure: Chapter 2 and
Chapter 3 provide a background on humanoid robots and theoretical under-
standing of deep learning concepts. Chapter 2 first describes the humanoid
robots, introduces the NAO humanoid robot used in this research along with
its features and software development kit. Later, it discusses the importance
of hand-signs in non-verbal communication and different types of hand-signs
commonly used in daily interactions.
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Chapter 3 describes the fundamentals of deep learning along with different
types of neural networks, reflects the theoretical concepts of how to train a
deep neural networks, and further presents related works about hand signs
recognition systems using deep learning.

Chapter 4 discusses the research methodologies used in this research. Qualita-
tive researchmethodologies that adopt the Development research and Software
Engineering methods are used as a means to conduct system development and
research in this thesis. It also describes a reformed technique of online ques-
tionnaires used in collecting the data for research evaluation.

Chapter 5 describes the designing process of the prototype. It specifies the
system requirements, illustrates the system architecture of the prototype system
and how the human-interaction is established by the prototype in this thesis.
Chapter 6 provides a detailed description on how each of the components of
the prototype are developed.

Chapter 7 first presents the performance of the deep learning models devel-
oped by the HSRC and second compiles the results obtained from the online
questionnaire revealing people’s opinion on the developed prototype. Chap-
ter 8 reflect over different phases in the entire research, the choices made, and
findings from the research.

And Chapter 9 concisely summarizes the purpose of this research, contributions
and impact of this research including suggestions for future work.





2
Humanoid Robots and
Importance of Hand-Signs

This section provides an overview of humanoid robot including the NAO robot
[5] used in the thesis, the importance of non-verbal communication in human-
robot interaction and fundamentals of developing deep learning models along
with its theoretical concepts.

2.1 Humanoid Robot

A Humanoid robot is a robot that resembles a human’s physical appearance
(like having a head, torso, arms, or other body parts) that communicates
with humans, interprets the collected information, and acts according to the
user’s input [1]. Every humanoid robot may not entirely look like a human.
Some humanoids can only resemble a specific part of the human body - like
the head and may miss the arms and legs. Humanoids resembling the male
humans are called Androids, and those resembling the female humans are
called Gynoids. Leonardo DaVinci developed the earliest form of a humanoid
robot in 1495, which resembled an armoured knight who could stand, sit and
walk like a human [22]. Traditionally humanoids were invented to provide
better orthotics and prosthetics for humans [22], but nowadays they are being
used as research tools, to carry out different tasks and play various roles in
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our lives [22]. Modern-day humanoids act as personal assistants, receptionists,
caretakers, entertainers, and assist humans in several types of activities. They
have the highest potential to become themost useful industrial tool in the future.
Humanoid robots are excelling in the medical industry, especially as companion
robots [1]. Companion robots are a special kind of robots specifically designed
for personal use at home. Ideally, they should communicate with humans
naturally, perform a wide variety of tasks including daily chores, message
delivery, home security, et cetera. Another type is the social robot that intends
to interact with humans and other robots to accomplish an entire job function,
like greeting or basic customer service. Some of the popular humanoid robots
are Kuri - a home robot designed to interact in a family, Sophia - a first
social robot to acquire national citizenship, Pepper - a humanoid robot used
in many businesses and schools, NAO - an autonomous robot widely used for
research, and many others [23]. This research uses the NAO robot as a tool to
incorporate non-verbal communication to build the human-robot interaction
with its user.

2.1.1 Introduction to NAO humanoid robot

The NAO robot is an autonomous, programmable robot developed by Aldebaran
robotics in 2006 [24], which was later acquired by Softbank Robotics in 2015.
NAO is 56cm tall, having up to 25 degrees of freedom, with an ability to
interact with humans in multiple languages, recognizes human faces, and
other advanced features [5].

2.1.2 Key components and Features of the NAO robot

NAO robot possesses various sensors and motors along with several pro-
grammable APIs operating on the Intel ATOM 1.6 GHz GPU processor, with 1
GB RAM, 2 GB flash memory, and 8 GB micro SDHC storage capabilities. It is
accessible via Ethernet orWi-Fi [25]. NAO has 62.5 Watt/hour battery providing
about 1.5 hours of autonomy, depending on usage[25]. Among the many, the
following features are of most relevance in this research:

1. NAO has two front cameras that can capture images with resolution
from 160x120 up to 1280x960 [26]. None of these cameras is placed in
the "eyes". One camera is on the forehead, and the other is placed at
the "mouth". These cameras have 72.6◦ Field Of View (FOV) with 60.9◦
horizontal FOV and 47.6◦ vertical FOV [27].

2. NAO has four directional microphones and speakers offering multilingual
language support to interact with humans [28]. Speech recognition mod-
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Figure 2.1: Sensors and Actuators of NAO robot, Source: Taken from [25]

ules are easily configurable to produce audio outputs of the recognized
signs and any other activities.

2.1.3 The NAOqi Framework and Choregraphe

NAOqi is the main framework based on a Linux based operating system offering
cross-platform software development for the NAO robot [29]. It provides highly
featured APIs in C++ and Python [30, 31]. NAOqi APIs are separated in
different parts, each allowing access to a unique set of functionalities based on
one’s requirements. Below are the modules of more importance to the work in
this thesis:

1. NAOqi Core: NAOqi Core contains API that is always available to run
general-purpose tasks like network connections, memory, and event han-
dling, etc [32].
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2. NAOqi Audio: NAOqi Audio helps to set up an audio communication and
interaction with the user in multiple languages [32].

3. NAOqi Vision: NAOqi Vision allows us to use the cameras to capture
images or record videos [32].

Choregraphe is a multi-platform desktop application using the NAOqi frame-
work that allows us to create applications and monitor the NAO robot without
writing a single line of code [27]. One could create animations, configure dif-
ferent behaviours and dialogues, add a customized module in Python, and test
everything on the robot using Choregraphe. The Figure 2.2 shows an overview
of the main window of the Choregraphe tool that contains many panels anno-
tated by different letters in the image. The Table 2.1 provides a brief description
of these panels [33].

Figure 2.2: Overview of the Choregraphe tool

Table 2.1: Main components of Choregraphe [33]

Component Label Name of the panel Description
A Project Content panel Displays the properties of the project and all the files belonging to the current project
B Box Libraries panel Displays the list of programmable modules and behaviours available in the NAO robot
C Flow Diagram panel Displays the behaviours and their interconnections that are currently used in the project
D Robot View panel Displays a 3D view of the robot Choregraphe is currently connected
E Pose Library panel Displays specific poses for the NAO when creating a behaviour
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2.2 Importance of Hand-Signs in Non-Verbal
Communication

With all the recent advancements in creating a humanoid robot, it requires
high-quality interaction with humans to be more acceptable in regular use
[7]. The field of Human-Robot Interaction studies exactly these interactions
between humans and robots.

The field of Human-Robot Interaction (hri) is dedicated to understanding,
designing, and evaluating robotic systems for human use. The HRI problem is
to understand and shape the interactions between humans and robots[34, 35].
hri helps to understand and perceive human’s behaviour, encouraging the
robots to collaborate with humans in different scenarios. Information exchange
is an intrinsic part of an interaction [34]. The primary medium for information
exchange is via verbal and nonverbal communication. Verbal communication
includes speech and natural language and using visual displays (graphical
user interfaces). Nonverbal communication includes gestures (hand and facial
gestures), physical interaction, and haptics (use of human’s sense of touch)
[34]. Advancements in Natural Language Processing and speech recognition
achieve verbal communication, but non-verbal communication gets neglected,
even being an integral part of human interactions [14]. This research focuses
on using non-verbal communication to improve human-robot interaction in
humanoid robots.

Speech and gestures commonly form the building blocks of human interaction
[36]. The former is a verbal and orderly means of how humans communicate
while the latter is non-verbal means in which bodily actions reinforce particular
aspects of the communication [37]. Typically, gestures refer to arm, hand or
head movements. Gestures perform many intrapersonal and interpersonal
functions beneficial to both - the person doing the gesturing and other(s) who
receive it [36].

There are two types of gestures:

1. Speech-independent gestures: Gestures occurring independently of
the speech that has a direct verbal translation, with a word or phrase,
are categorized as Speech-independent gestures [38]. It is important to
remember that these gestures are highly dependent on a specific region,
surrounding culture, and others [36]. For example - The ’V’ sign (palms
facing outside) shown in Table 2.2 is usually a peace sign in the United
States, but in the United Kingdom, it may be considered to be an obscene
gesture [39].
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Table 2.2: Common hand-signs and their meanings

Sign Meaning

’Thumbs-Up’ Sign Approval/Acceptance to something

’V’ Sign In US, the outward-facing-palm indicates peace.
In UK, the inward-facing-palm is treated obscene.

’OK’ Sign Symbolizes everything is okay

’Vulkan-V’ Sign Modified V-Sign signifies to live long and prosper

2. Speech-dependent gestures: Gestures that occur along with the speech
that emphasizes the speaker’s words in communication. These gestures
mostly happen subconsciously [36]. For example - a manager pointing
towards a specific person when introducing his team to others.

Some of the commonly-used hand-signs are shown in the Table 2.2. Among
the type of hand-signs described above, speech-independent gestures will have
higher interpretability in establishing human-robot interaction in humanoid
robots. The next Chapter 3 explains the fundamental concepts of deep learning
useful in developing a hand-signs recognition system.



3
Deep Learning Neural
Networks

Hand Signs Recognition is a process of identifying a few hand-signs shown to
the system via an image or video format. In mathematical terms it is simply
considered to be a classification task. The resulting system must classify the
input data (an image or video) into one of the defined classes (the hand
signs). This research uses state-of-the-art approaches of Deep Learning to
recognize hand-signs for an input image. The following sections provides a
brief overview of what is deep learning, the fundamental concept of deep
learning and various deep learning techniques (like Artificial Neural Network
(ann) and Convolutional Neural Network (cnn)) used in this research.

3.1 Deep Learning

Deep Learning is a sub-field of Machine Learning [40] inspired by the structure
and function of the brain to improve the efficiency of learning algorithms.
Before diving into the concept of deep learning, one must understand the
working of learning algorithms - also described as Machine Learning.

Arthur Samuel explains Machine learning as the science of giving "computers the
ability to learn without being explicitly programmed" [41]. Machine Learning

15
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algorithms take input data samples and find a statistical relationship that
eventually results in the automation of the original task. Such algorithms are
different from traditional programming, in the sense that, they do not need
static program instructions but make data-driven decisions through building
models from sample inputs [42]. Suppose a system has to recognize if the
input image given to it contains a dog or a cat, the machine learning model
then acts as an image classifier. It uses the features in the image (shape of eyes,
nose, ears, whiskers, body colour and others) to classify it into a dog image
or cat image. An image has many features, but only a few are relevant to the
classification task (the shape of eyes, nose and ears are significant, but the
body colour might not be very suitable when classifying a dog from a cat). This
process of extracting relevant features is called Feature Extraction. Machine
Learning algorithms need feature extraction before beginning the classification
task. Whereas Deep Learning algorithms implicitly handle both these processes
via their hidden architecture called neural networks [40].

Another difference between deep learning and machine learning is how the
model learns about these features for the given task. For the image classifica-
tion task, machine learning models learn features explicitly in succession and
therefore, cannot recognize complicated features (like the distance between
the eyes or length of the face). On the other hand, deep learning models can
determine complicated features from low-level features incrementally in their
deeper layers. And these intermediate and incremental representations are
learnt collectively [43].

The idea behind these representative layers in deep learning is analogous to
neural layers in the human brain. The human brain consists of billions of
neuron cells connected to form a network called the Neural Network [44].
Figure 3.1 illustrates the structure of a neuron in the human brain. Each neuron
consists of a cell body, dendrites, and axons. Dendrites accept input signals
from sensory organs or other neurons. The cell body processes the information
and axons transmit the information to other neurons. Dendrites and axons do
not physically touch each other, but there exists a tiny space between them
called synapses. A neuron can forward the message further to another neuron
or choose not to do so. Deep Learning strives to simulate the biological neural
network in a machine by creating an Artificial Neural Network (ann).

3.2 Artificial Neural Network (ANN)

Artificial Neural Network is an approximation of biological nervous system
of living organisms that consists of a collection of connected units called
artificial neurons. Figure 3.2 shows the structure of an artificial neuron. The
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Figure 3.1: Structure of Biological Neuron, Source: Taken from [44]

Figure 3.2: Structure of Artificial Neuron, Source: Adapted from [45]

synapse resembles a connection of one neuron transmitting information to
another neuron. A neuron receives multiple input values similar to dendrites
in the brain, usually denoted by -8 where - is the 8Cℎ input unit. These
inputs are assigned weightsF , real numbers expressing the importance of the
corresponding input unit to predict the output ~̂.

The neurons that initially accept the input values form the Input Layer and
that which produce the final output form the Output Layer of the ANN. The
layers between the input and output layers are called Hidden Layers. There
could be several hidden layers in the ANN architecture. Figure 3.2 shows an
architecture with a single hidden layer, which is also called as a Single Layer
Perceptronmodel. ANNs with two ormore hidden layers are calledMultilayer
Perceptron model [46].

Deep learning strives to find a relation between the input and output variables
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during the training process. The input layer receives independent variables
-8{8 = 1, 2, ...<} of a single observation in a dataset. For example, if an ANN
model predicts the selling prize of an apartment flat, independent variables
could be number of bedrooms, size of the house, nearest airport, etc. The input
layers are generally standardized or normalized to speed up the training or
prediction process. In simpler terms, standardizing or normalizing the input
data supports the computations inside a neuron for faster results. The output
layer neurons produce either a continuous value (predicting the selling prize
of a flat), binary value (determining a fraudulent customer for a bank) or
categorical values (detecting different objects in an image).

Each neuron receives the input from the previous layer, either from an in-
put layer or previous hidden layer. Each input value is assigned with some
weight value F that gets adjusted during the training phase. These weights
ultimately form the deep learning model. Inside a neuron, the weighted inputs
are summed and passed through a non-linear function to produce the output.
This non-linear function is commonly referred to as the activation function
given by Equation 3.1.

q

( <∑
8=1

F8G8 + 18
)

(3.1)

The term 18 is a bias value added to tune the weight F8 in a better way to
improve the fit of the model. Note that the bias 1 is independent of the output
of previous layers and do not interact with input data G .

Activation functions

Activation functions introduce non-linear transformation to the input G that
helps to learn and solve complex problems in deep learning. The deep learning
model is a set of approximate values of the weights that produce accurate results
for the use case. Activation functions essentially help to achieve this universal
approximation of weights. There are various types of activation functions but
most commonly used in deep learning are described below:

1. Binary Step/Threshold function: As the term threshold implies, the
threshold function activates the output only when the input reaches a
particular threshold value. It follows a strict nature producing either one
output or none. It has a zero derivative. Therefore, it is not useful in
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hidden layers but preferred in output layers [47].

q (- ) =
{
1 if X>=0
0 if X<0

(3.2)

2. Linear Functions: It generates a series of linear values and not just binary
values. It has a fixed derivative, therefore linear functions also cannot be
used to observe the learning rate in the network.

3. Sigmoid function: Sigmoid function is one of the most frequently used
in machine learning problems. The output values are a smooth curve
approximated between (0, 1). It is used in the output layer to predict
probabilities for the outcome. For example, the output layer in image
classification predicts the different classes (dog, cat, humans, etc.).

q (- ) = 1
1 + 4−G =

4G

4G + 1 (3.3)

4. Hyperbolic Tangent function: The structure is very similar to the Sig-
moid function. However, it produces output between (-1, +1). The advan-
tage is a steeper derivative than the sigmoid function and broader range
of input values which are useful for some use cases.

q (- ) = 1 − 4−2G
1 + 4−2G (3.4)

5. Rectifier function: Activation by the sigmoid and hyperbolic tangent
functions are very intensive, increasing the computational load of the
network. Rectifier functions reduce the computations by dropping the
neurons producing negative values and accelerates the training process
[48]. There are various variants of the rectifier function but most widely
used is the Rectifier Linear Unit given by:

q (- ) =<0G (-, 0) (3.5)

6. Softmax function: Softmax functions are useful in multi-class neural
networks where the neural network has more than two outputs. Each
of the output classes predicts the chances that an input image belongs
to a class with a real number. For example, a binary image-classifier
predicts that the chances of an input image to be a ’Dog’ image is 0.854
and it to be a ’Cat’ image is −0.05. To interpret these output values in
simpler terms, softmax function normalizes these output values into a
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Figure 3.3: Softmax function for binary image-classification

probability distribution - each output class represents a probability value
and all output probabilities sum to one [49, 50]. The Softmax function is
implemented just before the output layer and helps in faster convergence
when training the network. If ~8 represents the individual probability
of an output class and 9 represents total number of classes the Softmax
function is given by:

Softmax(~8) =
(~8)∑

9 exp(~ 9 )
(3.6)

Figure 3.3 shows the effect of using Softmax function for the previous
example for binary image-classifier. The individual probabilities ~1 =

0.854 and ~2 = −0.05 are transformed to 0.95 and 0.05 respectively,
giving a simpler interpretation that the network classifies the input
image as a ’Dog’ image.

3.3 Convolutional Neural Network (CNN)

Convolutional Neural Network is a deep learning algorithm that in simple terms
- takes an input image, assigns some importance to the features in the image
and classifies an image into the pre-defined classes (for example, a dog, cat,
tiger, human, and so on). The architecture of CNN is similar to the connectivity
of neurons in the human brain. The neurons in the Visual Cortex (part of the
human brain responsible for handling visual inputs from the eyes) respond
only in a restricted region of the visual field known as Receptive field. Similarly,
the key to image recognition in CNN is to find such receptive areas, otherwise



3.3 convolutional neural network (cnn) 21

Figure 3.4: Matrix representations of a digital image, Source: Adapted from [51]

called features from the input image. An image is a matrix of pixel values
based on image resolution. A black and white image converts to a 2D array
whereas a RGB (Red-Green-Blue) colour image converts to a 3D array as shown
in the Figure 3.4. An image recognition CNN follows four steps: Convolution,
Max Pooling, Flattening and Fully-Connected Artificial Neural Network.

Convolution

In image processing, convolution is a process of extracting features from the
input image using a feature detector. A feature detector is a matrix whose
size and values determine the extraction of features. A feature detector is also
called convolutional kernel or filter. The convolution operation is a three-step
process [52]:

1. Placing the feature detector matrix over the input image matrix.

2. Performing element-wise multiplication of these two matrices - comput-
ing the product between each value in the feature detector and corre-
sponding input image and summing all such products into a single value.
Consider a 7x7 input image and a 3x3 feature detector as shown in the
Figure 3.5. The feature detector is placed over the input image on the
source pixel to carry the convolution operation.
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Figure 3.5: Convolution in CNN, Source: Taken from [52]

3. Move the feature detector by one pixel to the right and repeat above
steps until the entire image is covered. The number of steps by which the
feature detector moves is called the stride length. Figure 3.6 provides a
visual representation with stride equals two for a 7x7 input image and
3x3 feature detector.

Figure 3.6: Convolution in CNN (Stride=2), Source: Taken from [53]

The output of the convolution is called a feature map, also referred as con-
volved feature or activation map. The importance of the convolution opera-
tion is to two folds - reduce the size of the input image to speed up processing
and also extract certain essential features of the image for accurate predictions.
One feature map can only extract one feature from the input image. Hence,
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several feature maps are obtained using various feature detectors. Figure 3.7
shows 3 set of low level feature maps representing different facial features from
a human face - eyebrows, eyes, nostrils and mouth [54].

Figure 3.7: Examples of Feature Maps, Source: Taken from [54]

Rectified Linear Unit (ReLU) Layer

A Rectified Linear Unit (ReLU) layer is applied to the feature maps to improve
the non-linearity in the image. An image has various non-linear elements
like - different objects, colours, borders, shapes, position and others. With
convolution, there is a possibility to add some linearity in the resulting feature
maps. Hence, a ReLU layer helps to break this possible linearity and improve
the training process.

Max Pooling

Max Pooling is a process to extract the dominant features which are rotational
or positional invariant, thus preserving spatial variance in an image [55]. Max
Pooling returns the maximum value from the portion of the image covered by
the kernel. It discards the noisy features, reduces the image size and parame-
ters preventing over-fitting and further enhancing the computational benefits.
Figure 3.8 shows the max pooling operation on a 4x4 feature map.



24 chapter 3 deep learning neural networks

Figure 3.8: Max pooling in CNN, Source: Taken from [56]

Flattening

Pooled feature maps have two or more dimensions and cannot be directly used
for computations to classify the input data. Flattening is a simple process of flat-
tening the multi-dimensional pooled feature map matrix into a 1-Dimensional
vector. This single long feature vector is then fed to a fully-connected Artificial
Neural Network for further processing.

Fully-Connected Artificial Neural Network

The final step in building the Convolutional Neural Network is adding a fully-
connected ann to the output vector from the previous step. The values in the
output vector represent the probabilities of a certain feature belonging to the
input image. For example, if the input image is of a cat, features representing
whiskers would have a higher probability for it [57].

The Fully-Connected Artificial Neural Network (ann) is simply an Artificial
Neural Network (ann) with densely connected hidden layers. It undergoes its
entire backpropagation process to determine weights that prioritize the most
appropriate output label. The second-to-last layer gets to ’vote’ for each of the
class labels (cat or dog), and the last layer outputs probabilities for these class
labels (cat=0.79 and dog=0.21).
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Summary of CNN

To summarize the process of Convolutional Neural Network (cnn), it initially
applies several feature detectors on the input image to create feature maps in
the convolutional layer. A ReLU layer is used to remove any linearity in the
process. Then a pooling layer is applied on the feature maps to ensure spatial
invariance, reduce the size of the images and prevent overfitting of the model.
Lastly, the pooled images are flattened and given to a fully-connected ANN that
performs voting to predict the probabilities of the class labels. The training
process involves forward and backward propagation that adjusts the weights
of neurons in the full-connected layer and also the feature detectors to get best
feature maps. Figure 3.9 shows the steps described in the section.

Figure 3.9: Steps in cnn, Source: Adapted from [51]

3.4 Training Deep Learning Neural Networks

In simpler terms, the goal of any deep learning model is the ability to generalize
- that is to predict the results correctly for an unknown data (data that is never
shown to the model). For image classification, the goal is to classify the input
image correctly into a class used while training the deep learning model. Thus,
it is crucial to evaluate the generalization for a deep learning model. This
section briefly describes practices to achieve the generalization followed in
every deep learning project like - data preprocessing, model evaluation and
problems faced in developing a deep learning model.
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Data Preprocessing for neural networks

Data Preprocessing refers to all the transformationsmade to the raw data before
feeding it to the neural network. Usually, the raw data is not clean - the data
might have missing field values, different formats, outliers and features. The
quality of training data determines the quality of the developed model. Hence,
data preprocessing is a necessary step before training neural networks. Most
general data preprocessing techniques are vectorization, value normalization,
and handling missing values.

1. Vectorization: Vectorization is a process of converting the data (audio,
image, text) to Tensors. A tensor is similar to an array representation
of these data, almost always in a numeric format. Tensors are of dif-
ferent dimensions - single-digit scalars are 0-dimensional, vectors are
1-dimensional, matrices are 2-dimensional, audio signals, images, text
are higher dimensional tensors.

2. Value Normalization: Data fed to the neural network must have values
close to each other or in a similar range. Higher differences between the
input and output variables may lead to lower learning rates and poor
results. Normalization is a process of transforming the raw data variables
to homogeneous format (all features take value in the same range, and
each value lies between 0-1).

3. Handling Missing Values: Sometimes, values for some features are
missing like the last year’s belance for a new customer. It is necessary
to handle these missing values when we develop the neural network to
predict the individual’s credit score. The neural network learns treats the
value 0 to be ’missing data’ and neglects in the prediction.

Evaluating Deep Learning Models

Evaluating deep learning models is a process of estimating the generalization of
the developed model on unseen data. It is necessary to know if the predictions
are accurate and consequently, trustworthy before the actual deployment of a
deep learning model. Below are the general guidelines for evaluating a deep
learning model:

1. Splitting data into a training set, validation set and test set: Sepa-
rating the collected data into three distinct groups (training, validation
and test dataset) is useful in dealing with problems like underfitting
and overfitting in the evaluation phase. The model is trained over the
training set, evaluated over the validation set, and finally tested over the
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test dataset, once before deployment. Common ratios are

• 70% train, 15% validation, 15% test dataset

• 80% train, 10% validation, 10% test dataset

• 60% train, 20% validation, 20% test dataset [58][59]

Developing a deep learning model involves tuning hyper-parameters of
the model (like the number of epochs, batch size, steps in each epoch,
etc.) which are different from the model parameters (weights of neurons,
activation function, etc.) [60]. This tuning process is carried by evaluating
the performance on the validation dataset. Also, the more you repeat this
hyperparameter tuning, the model is indirectly learning the validation
dataset, leading to a phenomenon called Information Leakage. Hence,
a test dataset separated at the beginning helps to avoid both of these
problems, and achieve a more robust model for deployment.

2. Bias and Variance Trade-off: The issue with deep learning models is to
achieve generalization over unseen data (test data) by using optimization
techniques entirely over the limited amount of existing training data.
Handling this enigma establishes the performance and robustness of a
deep learning model, but suffers problems related to a couple of factors
in the process:

• Bias: Bias refers to the simplifying assumptions a model makes to
learn features from the available training data [61]. Based on how
strong these assumptions are, models have one of the following:

(a) Low Bias: Models have very few assumptions about the training
data decreasing the learning rate but improving the predictive
performance of the model [61].

(b) High Bias: Models have more assumptions about the train-
ing data increasing the learning rate suffering from a lower
predictive performance [61].

• Variance: Variance refers to the change in predictive performance
on using a different training dataset. Ideally, a model’s predictive
performance must not change too much from one training dataset
to another, indicating the model is good at picking underlying fea-
tures from the available dataset [61]. Based on the degree of these
changes, models have one of the following:
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Figure 3.10: Underfitting vs Good fitting models, Source:[62]

(a) Low Variance: It suggests small changes in the model’s predic-
tive performance on changing the training dataset [61].

(b) High Variance: It suggests large changes in the model’s pre-
dictive performance on changing the training dataset [61].

Ideally, a deep learning model aims to achieve low bias and low
variance. In reality, bias and variance have a complex relation:

– Increasing the bias decreases the variance that leads to Under-
fitting [61].

– Increasing the variance decreases the bias that leads to Overfit-
ting [61].

• Underfitting: The phenomenon where the deep learning model has
not learned enough relevant patterns/correlations in the training
data, thus lacking the ability to generalize over unseen data. The
rate of loss over the validation/test data is directly proportional to
the rate of loss over the training data. Underfitting refers to a model
that neither models training data nor the validation/test data. The
figure shows a graph with two distributions of fit over data samples.
In the left graph, the distance between the fit of the model and
actual data points is very high as compared to the one in the right
graph. The model in the right graph is close to the true function that
represents the given data samples very well. Underfitting occurs
due to inadequate training data or prematurely training the model
before it achieves generalization. An underfitting model has high
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Figure 3.11: Overfitting vs Good fitting models, Source: Taken from [62]

bias and low variance [62]. Increasing the size of datasets, data
augmentation, training the model for longer periods are some of
the common techniques to handle underfitting.

• Overfitting: The phenomenon where the deep learning model has
rigorously learned the patterns/correlations in the training data,
thus missing the ability to generalize over unseen data. The rate
of loss over the validation/test data increases in the later phases.
Overfitting refers to a model that has learnt specific patterns in the
training data that are irrelevant to unseen data. The right graph
in the figure represents how accurately the model represents the
data samples, but fails to match the true function describing the
ideal distribution of those data samples. Overfitting occurs due to
complicatedmodels that learn from the noise and fluctuations in the
training data which are unique to training data. Thus, preventing
the neural network’s ability to generalize. An overfitting model has
low bias and high variance [62]. Reducing the network’s complexity
by dropping some layers, weight regularization (setting constraints
on the model weights to have smaller values), and adding dropouts
(randomly dropping some neurons in the layer while training) are
some techniques to prevent overfitting.

Optimizing Deep Learning Models

The goal of achieving generalization in deep learning is to find a perfectly
fitting model in deep learning. The most central problem in deep learning
is to reduce overfitting (where the training set accuracy is very high than
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the validation/test set accuracy). Overcoming overfitting and enhancing the
degree of generalization is done using various strategies or techniques, that are
collectively known as Model Regularization/Optimization techniques [63].
Some of the common regularization techniques are discussed below:

• Data Augmentation: Overfitting usually occurs due to an insufficient
amount of data samples to learn from that ultimately fails to achieve the
desired generalization. Given unlimited data, themodel would learn from
every aspect of data distribution and never overfit [43]. Data augmen-
tation generates more training data from the available training samples
by augmenting the samples via several data transformations and yield-
ing into similar-looking training data [43]. Data augmentation is very
popular for computer vision problems because images or videos are high
dimensional having many factors of variation that are easy to simulate.
It includes operations like rotating, scaling, flipping, or translating a few
pixels in each direction [63]. With the newly generated augmented im-
ages, the neural network does not see the same input image twice, but
these images are highly correlated [43].

• Dropout Regularization: Dropout regularization for the neural network
was proposed by Srivastava et al. in 2014. Dropout is a technique where
randomly selected neurons are ignored or deactivated during training.
Dropping some neurons limits their contribution to activation in sub-
sequent layers in the forward pass and restricts weight updates in the
backward pass. With dropout regularizations, neurons learn better rep-
resentations without co-adapting with other neurons. Thus, it results in
improving generalization and reducing overfitting [65].

• !2 Regularization: Anothermost commonly used and intuitive approach
to reduce overfitting is to penalize the model and prevent the network
from accurately modelling the training data. The optimization algorithm
is now a function of two terms: Loss term that represents how well the
model fits the data, and a Regularization term that describes the com-
plexity of the model [66]. The Equation 3.7 shows the !2 regularization
where \ represents a vector containing all the parameters of the neural
network:

�AA (G,~) = !>BB (G,~) +
∑
8

\28 (3.7)

• Early Stopping of Training: For sufficiently big datasets, training neural
networks for a longer time reduces the generalization and results in
overfitting. Early stopping helps to stop the training process as soon as
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the validation error starts to increase and freezes the parameters, thus
avoiding overfitting [63].

Optimization techniques helps to avoid underfitting as well as overfitting prob-
lems. An ideal deep learning model balances the bias and variance just right as
shown in the Figure 3.12. The validation loss and training loss are at minimum
resulting in higher degree of generalization for the model. When the validation
loss gets higher than the training loss in

Figure 3.12: Model Complexity Graph, Source: Taken from [67]

Selecting the final model

You create many models before arriving at the final model. Explain procedure
on how intermediate models are chosen. How many models are chosen at last
- single or many - combined.

3.5 Related Work

Deep Learning approaches hand signs recognition as an image classification
problem. In simpler terms, image classification means - given a set of input
images labelled with a particular hand sign (training data), the algorithm
predicts the hand sign in a novel set of test images (images never shown to the
algorithm) by learning certain features from the image.
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Luo andWu [68] proposed an innovative technique for Hand Signs Recognition
called Combinatorial Approach Recognizer (CAR) that uses two recognizers
aimed to complement the ability of discrimination. They implemented it on
an autonomous mobile robot, Ren-Q.Jr developed in their NTU-IRA Lab. One
recognizer recognizes hand gesture by hand skeleton recognizer (HSR), and
the other using support vector machines (SVM). The hand skeleton recognizer
includes several processes like skin colour detection and segmentation, distance
mapping, and polygonal approximation. Support Vector Machines [69] are a
dominant technique for pattern recognition applied after the Local Binary
Pattern process on the input images. The rules of combination in the CAR are
summarized that for every frame  :

1. If SVM is unreliable, combine SVM and HSR as CAR.

2. If SVM is reliable, use HSR to double-check it.

Experiments by Luo and Wu [68] showed that the combined method CAR
has higher performance than the individual HSR and SVM. SVM needs lots
of training data and is not very significant for the sign of two, three and four.
However, CAR has a well average rate but lower for the signs of two, three and
four. Their work implemented six hand signs on a service robot, as compared to
the implementation in this master’s thesis that uses three signs on a humanoid
robot using Convolutional Neural Networks that works comprehensively well
with less number of classes.

Tellaeche, Kildal, and Maurtua [70] describe a gesture recognition module in
a collaborative human-robot application, especially in industrial environments.
The system estimate gestures relying on the processing of depth images to
identify the operator skeleton and tracking its joints movements. The sensors
used were Microsoft Kinect [71] incorporated in the Robot Operating System
(ROS) [72]. They implemented 36 gestures using Adaptive Naive Bayesian
classifiers from Machine learning. The experimental results are impressive, but
it is applicable for static gestures from an RGB-D sensor input data gathered
fromMicrosoft Kinect or similar device. In this thesis, the hand-signs recognition
system uses color images recorded from a simple camera and does not need
any depth information.

Bheda and Radpour [73] use deep learning techniques for gesture recognition.
They present Deep Convolutional Neural Networks (Deep-CNN) that funda-
mentally classify (or recognize) letters and digits in American Sign Language.
Deep CNNs are CNNs with denser architectures that automatically extract vari-
ous features like edges, colour, discontinuities, lines, and textures from a simple
input image. The architecture of Bheda and Radpour’s model includes three
groups - each group having 2 convolutional layers, a max pool and dropout
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layer; and followed by two groups of fully connected layers, that achieves
82.5% accuracy on alphabet gestures and 92.7% on digits in American Sign
Language [73]. Their implementation showed the potential to work with a sim-
ple camera without compromising performance to a greater extent. It served
as a plan to overcome the hardware limitations with the NAO robot’s camera
and processing speeds by employing Deep Convolutional Neural Networks in
this thesis.





4
Methodology
4.1 Development Research

The research in this master’s thesis adopts Qualitative research methodolo-
gies and implements Development research methods to conduct the research.
Development research is problem-oriented, looking for new and innovative
solutions, and also seeking findings that are transferable, practical and socially
acceptable [19]. It has a dual focus:

1. Development goal: Develop an innovative way to solve a problem pro-
viding empirical evidence to achieve the research goal.

2. Research goal: Explore ways to use non-verbal communication in hu-
manoid robots to improve Human-Robot Interaction and access people’s
responses towards adopting it.

The research work presented in this thesis presumes that non-verbal com-
munication will improve human-robot interaction, as it does to inter-human
interaction [14]. Thus, the immediate goal is to design and develop a system
to interpret sign language for a humanoid robot. The researcher is actively
involved in the developmental process to observe and reflect on his design
choices which would also offer broad guidelines for similar use cases in the
future.

This research usesDesign Science Research (DSR) [74] strategies that provide

35
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knowledge in the form of constructs, techniques, methods, models or theories
to create an artefact that satisfies given set of requirements. In this research,
it is the entire system that enables a humanoid robot to recognise hand signs
using deep learning techniques. The most defining feature of dsr is to learn
through building artefacts, and Peffers et al. [75] presents the following steps
to learn via the dsr process model, as shown in Figure 4.1:

Figure 4.1: Design Science Research (DSR) process model, Source: Taken from [75]

1. Problem Identification: Identifying a research problem helps to develop
an artefact and gives a conceptual understanding of the necessary steps
required for its development. This research focuses to utilise non-verbal
communication to improve human-robot interaction and also addresses
a direct problem faced by people with speech impairments or hearing
disabilities that are unable to make use of humanoid robots due to the
verbal means of interaction. In technical terms, the developed system
must recognize the hand-sign shown by the user and also perform a task
mapped onto that particular hand-sign.

2. Define the objectives of the solution:After problem identification, goals
are defined based on the knowledge gathered from problem specifications.
For this research, the developed system must enable a humanoid robot
to identify human hand signs and thus, hand signs recognition is an
essential task in system development. The humanoid robot receives input
in a form of an image, performs a prediction using the pre-trained deep
learning model, and finally performs a specific task corresponding to the
predicted hand-sign.

3. Design and Development: Once the objectives are well defined, one
can start building artefacts in the form of models, methods, principles,
constructs or any object in which a research contribution is conceptually
rooted in the design. It requires theoretical and practical expertise to
bear the solution. This research uses knowledge about state-of-the-art
implementations of deep learning techniques to develop hand signs
recognition and integrate it into the humanoid robot.

4. Demonstration and Evaluation: This step includes demonstrating the
use of artefact (via functional testing, experiments, simulations, case



4.2 software engineering 37

studies, or other appropriate activity) and evaluating the performance
of the developed artefact. Evaluations must provide suitable empirical
evidence or logical proof of the implemented solution. The developed
system in this research involves a scenario where the user interacts with
the humanoid robot to recognise a hand sign.

5. Communication: The final step is to present the problem along with its
importance, and the developed solution with its utility, novelty, effective-
ness to relevant audiences like scholars and professionals related to the
field. The thesis presented here is itself a part of this step.

These steps for the artefact development are analogous to a Software De-
velopment Life Cycle (SDLC) model that involves problem understanding,
planning, implementation, testing, and finally deploying the software system
for actual use. sdlc falls under the paradigm of Software Engineering that
systematically applies engineering principles to develop software systems [76].
This research uses Software Engineering principles as a means of the research
method/strategy to carry out the design science research, intending the hu-
manoid robot to interpret few hand signs. The development goal is to build an
artefact, more specifically - a prototype simulating the hand sign recognition
via a humanoid robot. And the research goal is to evaluate people’s opinion on
using hand-signs to operate and interact with the humanoid robot.

The following sections describe the concept of Software Engineering and
Prototyping - that fulfill the development goal in this research.

4.2 Software Engineering

Software engineering is an engineering discipline that selectively applies differ-
ent theories and practices to design, implement, test, andmaintain the software
in a systematic approach. The systematic approach is called a software process
[76]. Software processes are a set of activities concerned with different aspects
of software production:

1. Specification: activities that define the system goals.

2. Development: activities that describe the design and implementation of
the system.

3. Validation: activities that ensure the delivery of expected results.

4. Evolution: activities that involve tuning the system in response to chang-
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ing demands in the use-case.

A software process model is a simplified representation of a software pro-
cess. Different types of problems require different software process models.
For example, a security-critical problem is solved using the waterfall model
by rigorous analysis before starting the implementation [76]. Business use-
cases are solved using existing knowledge and integrating into a new system
with added functionalities. Some of the popular software process models are
Waterfall model, Incremental development, Boehm’s Spiral Model, and many
others [76]. Choosing an appropriate model depends on various factors such
as - understanding the requirements, cost control, risk involvement, resource
availability, the need of expertise, flexibility, overlapping phases, and numerous
other factors [77].

In broader terms, this research has three phases:

1. Development of Hand-Signs Recognition Component.

2. Configuring the NAO humanoid robot for the scenario.

3. Integrating the Hand Signs Recognition Component (HSRC) to the NAO
humanoid robot

The first phase is the most critical since the Hand Signs Recognition Component
(HSRC) defines the output of the overall system. Following that, configuring
and integrating the NAO robot is an incremental process. Considering the risk
involved with incompatibility issues of NAO robot and state-of-the-art deep
learning implementations, limited documentation on using the NAO robot, trou-
bleshooting required during the integration of NAO robot to HSRC, this research
projects utilises Prototyping models for the system implementation.

4.3 Prototyping

Prototyping is a software process model where the developer(s) first create
a prototype - an early version of the software system used to demonstrate
concepts, analyse design options, to get a deeper understanding of the problem
and possible solutions [78]. Figure 4.2 shows general steps in the Prototype
Development:

1. Specify Requirements: A prototype model starts with gathering require-
ment analysis where the objectives of the prototype are defined. The goal
of requirement gathering analysis is to identify the functional and non-
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Figure 4.2: Steps in Prototype Development

functional requirements of the system [79, 80], to adequately understand
the user’s expectations and needs of the prototype.

2. Design Prototype: The second phase is making a preliminary design of
the prototype. Often, it is not a complete design but specifies plans or
frameworks to give the idea of the system internals to the developer or
end-user. A quick design provides a blueprint to start the initial prototype
development.

3. Build Prototype: In this phase, a prototype is built based on the infor-
mation gathered in previous steps. It is a small working model that might
involve parts of the system being developed incrementally instead of the
entire system at once.

4. Evaluate Prototype: In business use-cases, this phase involves presenting
the built prototype to clients for an initial evaluation to find the strengths
and weakness of the model.

5. Refine Prototype: Refining includes tuning the prototype until the client
is satisfied. This step continues until all the requirements for the end-user
are satisfied.

6. Implement and Maintain: In large-scale projects, this phase involves
testing, deploying the developed system in production, and maintaining
it to prevent critical failures. This research implementation skips the
maintenance phase since prototyping serves more, as a vehicle for an
inquiry to generate understanding and explore the use of non-verbal
communication in humanoid robot [78].

4.4 Research Evaluation

Evaluating this master’s thesis involves evaluating functional testing of the
prototype system that fulfils the development goal and understanding the
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user’s impression of the prototype developed for improving Human-Robot
Interaction that satisfies the research goal. Functional Testing ensures that
the components of a system are working correctly as per their specifications
[81].

The functional tests aim to improve the performance of the prototype - particu-
larly in terms of Accuracy and Response time. Accuracy is the ratio of correct
predictions to total input samples [82]. Response time is the time taken by the
robot to predict the hand sign shown by the user.

After developing the prototype, it is used in a task-based scenario to evaluate
how users perceive the prototype and evaluate the research goal of using non-
verbal communication to improve Human-Robot Interaction. For evaluation,
one requires to collect data relevant to the research goal and later analyze it
to derive meaningful results. Data collection is the process of gathering and
measuring information on variables of interest in a systematic manner that
enables one to answer the research questions, test hypotheses and evaluate
outcomes [83]. It typically helps to maintain the integrity of the research.
Due to the exploratory nature of qualitative research, all the data collected
is significant. The researcher neither restricts the scope of data collection
in advance nor applies the formal rules to decide what data is inadmissible
or irrelevant. Different data collections methods used in qualitative research
are:

1. Interviewing: An interview requires a systematic approach that is use-
ful to explore experiences, views, opinions, or beliefs on specific topics.
Depending upon the approach, there are several types of interviews -

(a) Structured interviews where the interviewer prepares the ques-
tions before the interview with a limited set of answers. The inter-
viewer plays a neutral role and does not influence the participant’s
choices [84].

(b) Semi-structured interviews where the interviewer develops an
’interview guiding document’ - a list of questions and topics to
be covered in the conversation with the participant. Here the in-
terviewer may engage more freely with the participant and guide
them when felt appropriate [84].

(c) Unstructured interviews where the interviewer has developed
enough understanding of the research topic, and a clear plan in
mind regarding the focus of the interview. There is no structure
to the interview and contain open-ended questions to explore the
depth of the researched topic [84].
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(d) Informal interviews are typically useful in observing social phe-
nomenons and works best in the early stages of development where
there is less literature about the researched topic [84].

(e) Observations: Observations is a systematic data collection tech-
nique that requires prolong involvement in a research topic, me-
thodical improvisation to understand it, and critically analyzing it
to derive meaningful results [84].

(f) Collecting texts and artifacts: One of the most common ways to
begin the data collection to study a culture or a social setting is to
look out for different types of documents related to the research.
These documents could be files, statistical records, meeting notes,
emails, memos, public postings, wall posters, etc. that provide some
amount of information useful for research [84].

The initial choice of data collection technique was to have a semi-structured
interview that presents a live demonstration of the NAO robot handling the
hand-signs recognition and further record a user’s feedback via a question-
naire. But due to the outbreak of COVID-19 global pandemic leading to social
distancing - meeting the participants and conducting questionnaires was not
permissible. Hence, the entire data collection was managed online by showing
a recorded video footage of the hand-signs recognition to the participants,
followed by an online questionnaire form. The video recording presents how
a user interacts with the NAO robot simulating the hand-signs recognition
scenario. The online questionnaire, hereafter referred as the User-Feedback
Questionnaire - contains a set of close-ended and open-ended questions to
assess the research goal. Various platforms like Microsoft, Google, Hubsoft, and
many others provide services with the necessary tools to conduct and moni-
tor online surveys [85, 86]. This research uses Google Forms to conduct the
questionnaire. After completing the form generation, these platforms provide
a public URL through which one can invite people to participate in the survey.
Their responses are stored on a cloud storage usually in an online spreadsheet
file.

The responses from the online questionnaire are analyzed using descriptive
statistics to compare different observations of the participants. Descriptive
statistics helps to describe the basic features of the data giving a simpler
summary for the sample population [87]. Later, distribution graphs present the
results summarizing the frequency of individual values or ranges of values for
a variable.

One of the significant things associated in collecting and analyzing the data
is to understand what the researcher brings to the evaluation task - the bias,
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interests, perceptions, knowledge, communication with people, all might influ-
ence the end-results of the research. Validity in qualitative research addresses
this subjective nature of data collection and analysis. Since the researcher is
the tool for data collection and analysis, researchers can approach the same re-
search in different ways. Qualitative research always results in interpretations,
rather than a purely objective goal. It is often valuable for other researchers
to reproduce the tests, analyze the same data, and compare results giving a
strong validity to every research. It is often valuable in qualitative research that
one can repeat the tests, analyze the same data, and compare results giving
a strong validity to every research. To ensure the validity and transferabil-
ity, all components of the prototype developed in this research are publicly
available at Github[88] working as a source for other researchers to continue
this work. HSRC uses the state-of-the-art techniques of deep learning ensuring
content validity. All the components of the prototype system work consistently
with each other, guaranteeing construct validity. The research is based on an
underlying assumption that non-verbal communication has the potential to
improve Human-Robot Interaction. Though in-person questionnaires was an
ideal choice for data collection, the research had to opt for different evaluation
strategies due to the COVID-19 pandemic lock down [20] beginning from 13
March 2020 until 15 August 2020 (the last phase of this thesis project). Thus,
any further research based on this thesis must take into account these factors
of dependability.

https://github.com/mayureshsa/masters_thesis_hsrs
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Prototype development of
the Humanoid robot
handling Hand-Signs
This chapter presents the system requirements, the design process for each of
the components of the developed system. The final version of the prototype
enabling a humanoid robot to understand hand signs mainly needs three
components: the humanoid robot, a layer that integrates the humanoid and
the HSRC (hereafter, referred to as Integration layer), and the Hand-Signs
Recognition Component itself. Further sections describe different modules
required in each of these components.

5.1 System Requirements

Clearly defined requirements are essential for every successful project journey
[79]. For a software engineering project, requirements refer to the specifications
that the project must accomplish. It is broadly of two types:

1. Functional Requirements: Functional requirements specify what the
product/service do. It captures the intended behaviour of the system
in the form of features or functions [80]. Functional requirements help
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to check whether the product provides all the services it intends to.
Below are the functional specifications for each of the components of the
prototype developed in this work:

• The NAO robot recognizes only three hand-signs - Palms-Open,
Thumbs-Up, and OK.

• NAO robot must be able to access the Integration Layer.

• User must initiate the conversation with the robot and start the
configured scenario using ’Start Sign Recognition’ audio command.

• NAO uses the following eye colour to represent its state:

– Red: NAO has stopped the sign recognition scenario.

– Green eyes: NAO robot is ready to do a job.

– Blinking Blue eyes: NAO robot is processing the hand-sign.

– Blinking Orange eyes: NAO robot is processing the specified
action mapped to the detected hand-sign.

• Integration Layer architecturemust support the deep learning frame-
works and necessary libraries required for the model to perform
predictions.

• Integration Layer must store the deep learning model to perform
hand-signs recognition process.

• The HSRC receives an input image of size 224 x 224 (width x height).

• User must place the hand correctly in front of the top cameras of
the NAO robot during the sign recognition.

2. Non-Functional Requirements: Non-functional requirements specify
how the system should behave. It helps to ensure the usability and
effectiveness of the system. Non-functional requirements guarantee relia-
bility, availability, and ease of use [79, 80]. Below are the non-functional
requirements of the entire prototype:

• All the data collected during the process (voice commands and
input image for the NAO robot) should be kept private and not be
available to other users or third-parties.
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• NAO must guide the user and ease the use of prototype by giving
important instructions.

5.2 Design process of the prototype system

Following the steps in a prototype development, each of these components
along with their design specifications are described below:

• Specify design requirements: In broader terms,designing the prototype
system included designing following three components:

1. NAO Humanoid robot: NAO interacts with the user and records
the hand-sign shown by an user via its cameras in image format
(.jpg). NAO robot interprets only three hand-signs, as shown in the
Figure 5.1. These three signs are as follows:

(a) Palms-Open: Hand sign achieved by showing an open palm

(b) Thumbs-Up: Hand sign achieved by closing the fist held with
the thumb extended outwards.

(c) OK: Hand sign achieved connecting the thumb and forefinger
in a circle and holding the other fingers straight.

(a) ’Palms-Open’
hand sign

(b) ’Thumbs-Up’
hand sign

(c) ’OK’
hand sign

Figure 5.1: Hand-Signs recognized by the prototype

2. Integration Layer: Integration layer simulates a middleware pri-
marily responsible for two things -

(a) Store the input image from NAO and apply any pre-processing
operations as required for the deep learning model.

(b) On receiving the response from the model generated by the
HSRC, apply post-processing operations (if required) to the
results and finally, send it to the NAO robot.
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3. Hand-Signs Recognition Component (HSRC): HSRC is the most
influential component that identifies a hand sign from the fed im-
age. Initial prototypes in this project solely focus on developing
this component since the overall performance of the system would
directly depend on how HSRC performs hand signs recognition.
The HSRC generates a model that is used in the integration layer to
predict the hand sign in the captured image using deep learning. Its
performance depends on the available dataset. In this case, it refers
to the number of images for each of the three hand-signs. More
the number of classes, more is the data required. Hence, only three
hand-signs were used to train the model that simplifies the design
of HSRC by speeding data-processing steps. Although this does not
change the procedure one uses to build a deep learning model.

• Design Prototype: Once the specifications for the system components
are defined, the next step is to understand the frameworks or techniques
to develop these individual components, as given below:

1. NAO Humanoid Robot: NAO robot runs on the NAOqi program-
ming framework [29] under OpenNAO distribution (based on Gen-
too GNU/Linux distribution) [89]. It is formerly developed in C++
and Python providing various APIs for programming the NAO robot.
Choregraphe [27] is another software toolkit that provides an in-
teractive GUI to control multiple components of the robot without
intricate programming, and hence Choregraphe is used to configure
the NAO robot in this thesis.

2. Integration Layer: Integration acts as a middleware between the
NAO robot and the HSRC. The primary task of the integration layer
is to receive the image captured by the NAO robot via APIs and run
predictions over this image (test image) using the deep learning
model. Additionally, it is responsible for pre-processing the received
input and post-processing the generated results from the deep learn-
ing model. Pre-processing involves applying image compositions
(resizing, gray scaling, and other methods) such that the input im-
age is compatible with the deep learning model for predictions. The
Post-processing might involve some data conversions (data type,
data format and other parameters) required by the NAO robot for
its next task execution.

3. Hand-Signs Recognition Component (HSRC): Designing theHSRC
deals with creating a new deep learning architecture or using ex-
isting architectures and modify them to solve the current problem
via Transfer Learning. [90]. Transfer learning is the idea to reuse
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the knowledge acquired in one domain and apply to other related
domains [90]. For example, in image classification - if the goal of
a deep learning model is to identify horses in an input image, but
there aren’t any publicly available models to do it. One can begin
with an existing implementation that identifies other animals (say
cats) and modify some parameters of the model to achieve similar
results for horses [91].

After designing an architecture, one decides a software framework
to implement themodel. As of 2020,many deep learning frameworks
exist - TensorFlow, Keras, Apache Spark, PyTorch, Apache MXNet,
Caffe, and others [92, 93, 94, 95, 96, 97]. Choosing a software
framework depends on the areas of application, support of low-
level APIs, integration to other systems, user-friendliness, and other
factors [98].

One has to make many decisions throughout the design phase like
- deciding the data split, deciding frameworks, number of layers,
number of neurons, values of the hyperparameters, arrangements
to log the experiments, observing the results and modifying the
model’s architecture accordingly.

• Build Prototype: The building process is an incremental procedure. Ini-
tial builds of the prototype only focused on developing the deep learning
models for the HSRC, and succeeding builds included its integration to
the Integration Layer with NAO robot.

• Evaluate Prototype: In this research project, this phase evaluates the
performance of the system two ways - the first is the performance of
the HSRC part and second is conducting the questionnaire to under-
stand people’s opinion about the prototype’s performance in establishing
Human-Robot Interaction.

• Refine Prototype: This research does not involve refining the prototype
system until the user is satisfied, but refers to functional development of
the prototype system until the NAO robot, Integration Layer and HSRC
respond correctly to the human subject for the presented hand-sign.

5.3 Development of the NAO humanoid robot

The humanoid robot acts as a front end layer that interacts with the user. One
can use multiple modules and sensors available on the robot to establish the
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interaction. The list below provides a few of the essential modules used in this
prototype development as shown in the Figure 5.2:

Figure 5.2: System design of the prototype

1. Speech Recognition - Speech recognition is useful for speech-to-text
and text-to-speech conversion. Former to process the audio commands
given by the user and latter to generate an audio response to interact
with the user.

2. Camera Module - Camera module is useful to capture the input image
of the hand-sign and to implement other features like facial recognition,
emotion recognition, and others. The camera module in this prototype
captures the image of X x Y dimensions in (.jpeg) format [99], initially to
recognize the hand-sign and later to simulate facial emotion recognition.

3. Animation Handler - Animation Handler animates the robot by control-
ling different parts of the robot such as - eye colour, voice tone, voice
pitch and other parameters. It helps to add subtle nuances that improve
the robot’s expressiveness in the interaction.

4. Profile Manager - Profile Manager creates a profile of a user and stores
different hand-signs along with their corresponding action/features to
be performed by the humanoid robot. For example - User A wants to use
’Thumbs Up’ sign to ’Play a song’, but User B would use the same sign to
’Know Weather Information’. For the developed prototype, it only works
for a single user, but one can easily customize these actions/features as
required.
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5.4 Development of the Integration Layer

The integration layer can be a complex middleware setup on a cloud container
or a simple piece of code that is responsible for communication between the
humanoid robot and the HSRC. It is mainly responsible to receive the captured
image from the NAO robot, pre-process the image to be compatible for the
model, load and run the predictions using the trained model, perform post-
processing operations over the predicted results, and finally send it to the NAO
robot. The modules commonly required in the Integration layer shown in the
Figure 5.2 are described below:

1. Pre-processing - The preprocessing module is responsible for transform-
ing the captured image, such that it can is acceptable by the trainedmodel
formed by the HSRC. Commonly used image transformation operations
are resizing, gray scaling, removing the noise, and segmentation [100].

2. Post-processing - Often the predicted results have a numeric format.
The postprocessing module converts the results into the desired format
as required for the NAO robot. It may involve decoding, transforming
into a string format or other operations as per the specifications. If the
predicted results could be directly used by the NAO robot, one can skip
this post-processing module.

5.5 Development of Hand Signs Recognition
Component (HSRC)

Developing the Hand Signs Recognition Component (HSRC) essentially means
to generate deep learning models using different deep learning architectures.
These generatedmodels are used by the Integration Layer to recognize the hand-
sign shown by the user to the NAO robot. The development process follows
the steps similar to any project in deep learning as described below:

1. Problem Definition: Every deep learning project starts by analyzing a
problem and defining the objectives by setting specific goals to solve it.
In this research, the goal is to develop a deep learning model that accepts
an input image (of a person showing hand sign to the robot) and output
the class label (1 out of 3 hand signs). Before designing the prototype
model, an additional step in deep learning is data collection. Since deep
learning models feed on data, HSRC requires a dataset that represents
each of these three hand signs. The choice of three hand-signs in the
prototype sufficiently demonstrates the scenario of using hand-signs to



50
chapter 5 prototype development of the humanoid robot handling

hand-signs

establish human-robot interaction in humanoid robots. If one has an
adequate amount of data for every hand-sign, it is easy to include more
signs in the model. The dataset generated for this project has 2975 images
of each sign, having 8925 images in the complete dataset.

2. Designing the model: The actual process of prototyping a deep learning
model starts after data preprocessing. Designing involves creating a plan
of action for the deep learning project depending upon the available data
and goals to achieve within the project timeline. It deals with creating a
new model architecture or using existing architectures and modify them
to solve the current problem via Transfer Learning [90].

Transfer learning is the idea to reuse the knowledge acquired in one
domain and apply to other related domains [90]. For example, in image
classification - if the goal of a deep learning model is to identify horses
in an input image, but there aren’t any publicly available models to do
it. One can begin with an existing implementation that identifies other
animals (say cats) and modify some parameters to achieve similar results
for horses [91].

The HSRC generates two models - one that contains various groups of
convolution-pooling layers, and another that uses the transfer learning
technique. The former gives greater control to design the model specifi-
cally for the use-case, but the latter provides better generalizations and
re-usability. Implementation details of both these models are presented
in next Chapter 6.

After designing an architecture, one has to decide the software framework
to implement the model. As of 2020, many frameworks in deep learning
exist - TensorFlow, Keras, Apache Spark, PyTorch, Apache MXNet, Caffe,
and many more [92, 93, 94, 96, 95, 97]. Choosing a software framework
depends on the areas of application, support of low-level APIs, integration
to other systems, user-friendliness, and other factors [98].

The HSRC uses Keras framework [93] running over TensorFlow 2.0
backend [92]. Keras provides simple APIs for various deep learning
processes like data augmentation, saving the best model in an epoch
obtained during the entire training, allowing to interrupt the model
training in case of poor performance and many others. Determining the
optimal CNN architecture for HSRC is an incremental procedure. The
initial design consisted of a shallow model with only a couple of layers
yielding the ’Baseline Performance’ for this problem. Further iterations
of the model include minor changes to beat the Baseline Performance,
like - adding an extra convolutional layer, changing the filter sizes, or
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tuning one of the hyperparameters.

One has to make many decisions throughout the design phase like - de-
ciding the data split, deciding frameworks, number of layers, number of
neurons, values of the hyperparameters, arrangements to log the experi-
ments, observing the results and modifying the architecture accordingly.
All of these are discussed in the next Chapter 6.

3. Evaluating the model: Evaluation includes training the model and as-
sessing its performance using various metrics like Accuracy, Precision,
Recall, F1 score or AUC score [82]. The mode’s accuracy gives the ratio of
the correct hand -sign predictions to the total number of predictions. It
works well for a balanced dataset such as the final dataset in this research
having 2975 image samples for each sign.

4. Deployment and Maintenance: Since this research does not involve any
production deployment, this phase only includes integrating the HSRC
to other parts of the system.

5.6 Establishing the Human-Robot Interaction

Once the NAO robot, the integration layer, and Hand-Sign Recognition Compo-
nent are developed, the next step is to make these components work together
coherently to establish a human-robot interaction. A task-based scenario sim-
ulates it - where a user starts hand-signs recognition using a voice command
to the NAO robot, and NAO performs an action based on the predicted hand-
sign. The following section explains the design choices made for the different
components to simulate the scenario represented in the Figure 5.3.

Interacting with the Robot

It is a functional requirement that the user must initiate the scenario by inter-
acting with the prototype by saying specific words - like ’Hi’, ’Hello’, ’Start’, or
others to the NAO robot. NAO robot always listens to the environment via its
microphones and detects those words from its input audio using keyword spot-
ting [101]. On successful detection, it greets the user back by saying ’Hi, I am
ready’ or says ’Sorry, I could not hear you clearly, could you please repeat?’ on a
failure. Another possible way to initiate the scenario is to use facial recognition
in the NAO robot and actively begin the interaction with the user. Although
NAO robot comes with pre-installed facial recognition program, it performs
poorly and hence, was not skipped in the final version of the prototype.
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Figure 5.3: Sequence diagram of establishing the human-robot interaction in
prototype
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Simulating the Hand-Signs Recognition

User can simulate the hand-signs recognition using the ’Start Sign Recognition’
audio command. NAO robot acknowledges the user and directs the user saying
’Please show the hand-sign’. The user is supposed to position his hand in front of
the NAO robot at this stage. The NAO robot records the image via its camera
(.jpg file), saves the image in its local storage, and sends it to the Integration
Layer using the available APIs. It waits for the results from the Integration
layer. At this stage, the Integration layer stores the trained model (.pkl file)
generated by the Hand Signs Recognition Component. It preprocesses the
received image from the NAO and runs predictions over it. After receiving
the results from the integration layer, NAO robot uses the profile manager to
retrieve the task mapped to the hand-sign, and responds to the user saying
- ’I detected ’Thumbs-Up’, so I will play some music’. After completing the task,
NAO asks the user if he wants to stop the hand-signs recognition scenario. If
no, it repeats the scenario asking the user to show the next hand-sign, else it
stops the scenario saying ’Goodbye’. Figures represent a user interacting with
the NAO robot for the above steps.

Figure 5.4: User showing the hand-sign to the NAO robot

Figure 5.5: NAO robot performing a task on detecting the hand-sign
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Implementation
This chapter describes all the steps taken to form the prototype system ex-
plained in the previous Chapter 5. The prototype system comprises of three
major components - the NAO robot, the Integration Layer, and the Hand Signs
Recognition Component (HSRC). Since, HSRC is the most critical part of the
prototype, initial build/versions of the prototype focused on developing only
the HSRC. Other two components were incorporated to the subsequent builds
forming the final version. These components are described independently in
different sections in this chapter.

6.1 The NAO robot

The NAO robot is the only component that the user interacts with the prototype
system. NAO acts as a front end interface of the prototype system for the user.
This research employs a task-based scenario for the user where the NAO
robot carries the following activities to simulate the hand signs recognition
process:

1. Communicate with the user using its speech recognition modules and
begin the hand signs recognition process after detecting the ’Start Sign
Recognition’ command.

2. Ask the user to prepare themselves for the hand signs recognition process.
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3. Capture the image using its camera module, and send it to the Integration
layer for predictions.

4. With the help of Profile Manager, retrieve and perform the actions for
the detected hand-sign, as configured by the user.

The NAO robot runs on the NAOqi software framework. NAOqi [29] is a cross-
platform programming framework developed in C++ and Python. It allows
homogeneous use of different hardware modules (sensors, robot parts) with
software processes (information sharing, parallelism, synchronization, event
handling). Programming and debugging for the above activities would be a
tedious process. A better alternative is to use the Choregraphe programming
tool, as recommended by the robot manufacturers [27]. Choregraphe is a multi-
platform desktop application that allows creating complex scenarios (interact
with users, customized response animations, speech recognition, and many
more) without writing low-level programming code. The next section provides
the implementation details on how NAO is programmed using the Choregraphe
for this prototype.

6.1.1 Programming NAO using Choregraphe

Choregraphe is a graphical language for the NAOqi framework that allows
using all the NAOqi APIs with additional visual tools that ease the program-
ming process of the NAO robot. It employs scenario-based implementation via
Projects. Projects are a collection of files and Behaviors to simulate a specific
scenario, a use-case or an experiment with the NAO robot. Behaviors are a
set of instructions sent or installed in the NAO robot to make it interact with
its environment, process the input, and generate suitable results. Behaviors
consist of various Boxes that simulate primary actions (like walking, saying a
word) and complex implementations (like exploring a room, recovering from
a fall).

The Figure 6.1 illustrates the hand signs recognition scenario implemented
in NAO Robot using Choregraphe for this research prototype. Box 1: Start
initializes the NAO robot with all the necessary libraries, including a speech-
recognition module to understand and recognize predefined words or phrases
to begin the hand-signs recognition scenario. The user must initiate this task-
based scenario using ’Start Sign Recognition’ voice command. NAO uses key-
word spotting in its speech recognition module - a technique where it continu-
ously searches for specific keywords (’Start Sign Recognition’ in this case) in its
input data.

On a successful search, NAO begins the hand-signs recognition process repre-
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Figure 6.1: Choregraphe Behavior: ’Hand Signs Recognition’

sented by Box 2: Hand-Signs Recognition. The second diagram in Figure 6.1
reveals different modules used in Box 2: Hand-Signs Recognition:

• Box 2.1: Say ’Show Sign’ - NAO asks the user to get ready by saying ’Please
show the Sign’ and expects the user to show the hand sign positioned
correctly in front of its eyes.

• Box 2.2: Take Picture and Box 2.3: Animate Eyes- NAO captures the
image using its top camera and acknowledges the user by saying ’Sign
Captured Successfully’ and animates its eyes (colour of both the Eye-
LEDs are changed green) using the animation handler. NAO saves the
captured image having a 1280 x 960 resolution in its internal storage at
"/home/nao/recordings/cameras/" as "image.jpg".

• Box 2.4: Integration Layer - The saved image is passed to the Integration
layer using a custom python script module. It uses ’requests’ library
to create a POST request containing the "image.jpg". NAO awaits the
response from the Integration layer, and the subsequent tasks are carried
by Box3: Action Mapping.

On receiving the response from the Integration layer, Box 3: Action Mapping
executes different actions/features of the robot to the corresponding hand-sign.
This mapping of a hand-sign to a particular action/feature is predefined in this
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scenario as follows:

• Palms-Open: NAO provides some information about the present day
(date, time, weather, etc.)

• Thumbs-Up: NAO plays somemusic to the user using ’PlayMusic’ module
available in Choregraphe.

• OK: NAO recognizes the user’s emotions from facial expressions employ-
ing Choregraphe’s Emotion Recognition module.

After executing the mapped action/feature, NAO asks if the user wishes to
end the scenario or perform the hand-signs recognition once more. If yes, it
repeats the execution from Box 2: Hand-Signs Recognition else terminates
the hand-signs recognition scenario saying ’Good Bye’ in Box 4: End.

6.2 Integration Layer

The Integration Layer fundamentally acts as a back-end system of the developed
prototype. The integration layer is primarily responsible for following tasks in
the prototype:

1. Receive an input image from the NAO robot

2. Load the trained deep learning model obtained from the Hand-Signs
Recognition Component (HSRC).

3. Preprocess the received input image as required for the trained model
and perform the predictions

4. Send the predicted hand sign to the NAO robot

Integration layer can be a complex cloud architecture that is more suitable
for production environments demanding high scalability, throughput and error
handling. But it can also be implemented more simply, with a web server as
used in this research prototype. The integration layer fundamentally creates
an API for deep learning models. It must support the necessary deep learning
frameworks on which the model got trained. Here, it requires TensorFlow 2.0,
Keras, Flask and Pillow libraries:

1. TensorFlow 2.0 and Keras: both are the deep learning frameworks used
in generating the model by the HSRC.
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2. Flask: a python web framework to create API endpoints and serve re-
quests from NAO robot.

3. Pillow: a python image processing library for preprocessing the image
before predictions.

The integration layer is setup on a machine present in the same network as the
NAO robot. Assuming the above dependencies are satisfied, a single file installs,
and deploys the integration layer for use. Three functions of the integration
layer are:

1. main(): On startup, the main() loads one of the trained models into the
memory using the load_model() from Keras libraries.

2. predict(): It does the following things:

• accepts any incoming requests

• checks for a POST request and retrieves an image from the ’files’
attribute of the POST request

• reads the image andpreprocesses the image by calling ’prepare_image()’

• makes predictions using predict_classes() from Keras library and
stores the results in a dictionary

3. preprocess_image(image, target_size): preprocess_image() is respon-
sible for all the preprocessing operations discussed previously. Here, it
converts the original image to RGB and resizes it to the spatial dimensions
(224 x 224 in this case) that is compatible for the trained model.

6.3 Hand Signs Recognition Component (HSRC)

Hand Signs Recognition Component (HSRC) is the most significant part of the
prototype system developed in this research. It produces different models using
state-of-the-art Convolutional Neural Networks from Deep learning. These
models are stored and used by the Integration layer to identify the hand sign
in an input image received from the NAO robot. Below are the most crucial
steps used in developing the final model:
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6.3.1 Data Collection/Exploration

As discussed earlier, deep learning models need a large amount of good quality
training data for higher performance. The quality of training data has profound
implications for the subsequent development of the model. It mainly involves
gathering the data and preparing it for the model training process [102].

A custom dataset containing a total of 8925 images for 3 static hand signs (2975
images for each sign) is prepared to train the deep learning model. These
images are nothing but still frames extracted from video footage recorded for
each hand sign, enacted by a person using a smartphone camera with a 720p
resolution in 30 frames per second. Images are derived every 0.15 seconds of
the entire video. The resulting images have dimensions of width 1280 x height
720 pixels. A python script takes an input video file, extracts the image frames
every G seconds (G = 0.15 in this case) and stores these images in a separate
directory.

Figure 6.2: Parts of training a CNN model
[103]
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6.3.2 Designing the model

The objective of the HSRC is to identify a hand sign in the input image. From
the deep learning perspective, it is a multi-class image classification problem
wherein it assumes that the input image belongs to one of the 3 available
classes (each class representing a different hand sign). There are three models
developed, each having a different architectural style. Since deep learning
architectures ultimately operate like black boxes [104], it is best to design
several architectures for the given problem.

Initially, a Baseline Model is developed having very few layers, as shown in
the Figure 6.2 and its performance, hereafter, referred to as the ’Baseline Per-
formance Score (BPS)’, guides the architectural design of subsequent models.
The Baseline model, as the term suggests, gives a baseline performance of the
model having the most simplistic CNN architecture. It serves as a reference to
building subsequent models. Accuracy is used to estimate the performance of
the HSRC. It is the ratio of correct predictions to the total predictions made by
the model. The goal for the succeeding models is simply to beat the accuracy
score of its preceding model.

Baseline Model

The Table 6.1 illustrates the CNN architecture to measure and set up the
Baseline Performance Score (BPS) for the HSRC. A CNN architecture typically
has two parts:

1. Convolutional Base: Convolutional base is a stack of convolutional
and pooling layers. The way to stack these layers differ. Some CNNs
follow Convolution-Pooling-Convolution-Pooling style or Convolution-
Convolution-Pooling-Convolution-Convolution-Pooling style. The CNN
used to measure the BPS has two blocks of Convolution-Pooling layers.
The first block has 32 filters of size 3x3, followed by a MaxPooling layer
of size 2x2. Each layer uses ReLU activation function, which is generally
a best practice. The second block has the same layers, but with 64 filters.
Filters in simple terms mean the number of neural units in a particu-
lar layer of the CNN architecture. The goal of the convolution base is
to generate feature detectors [103]. Feature detectors extract valuable
information from the image that helps in the classification.

2. Classifier: As the term suggests, the main goal of the classifier is to clas-
sify the image based on detected features from Convolutional Base. It is
usually composed of full-connected layers. The feature detectors from the
convolutional base are flattened and passed to the fully-connected layer
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for predictions. The CNN used to measure BPS has one fully-connected
layer with 128 units, followed by an output layer with 3 units (each unit
representing one out of 3 hand signs) using Softmax activation.

Table 6.1: Training Parameters and Accuracy of Baseline Model

Parameters
CNN Model Baseline

Convolution Base Conv2D(16, 3x3)
Maxpool2D(2x2)

Classifier Dense(16)
Dense(3)

Epochs 20
Training Accuracy (%) 63.97
Validation Accuracy (%) 59.80

CNN 1

CNN 1 uses the traditional format of Convolution-Pooling style of architecture
as shown in the figure. The convolutional base has four groups - each with a
convolutional layer (3x3 filters) followed immediately with a pooling layer (2x2
filters). The classifier has a single fully connected layer with 128 units, followed
by an output layer with 3 classes using Softmax activation.

CNN 2

CNN 2 uses online pre-trained models on the generated training dataset using
transfer learning. The purpose here is to leverage the previous learnings done
on a large dataset, expecting the hierarchical feature representations learned
by a model will help solve the problem at hand. Here, the pretrained model is
VGG-19 as a convolutional base, with a custom classifier similar to the previous
one, as shown in the figure. VGG-19 uses most straightforward approach to
improve the performance of the model - increasing the size of model by adding
more layers [105]. CNN 2 uses the convolutional base part of the VGG-19
and adds a custom classifier having a fully connected layer with 128 units,
followed by a dropout layer and an output layer with 3 classes using Softmax
activation.
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6.3.3 Evaluating and Refining the model

The accuracy of the Baseline model gives training accuracy of 63.97% and
validation accuracy of 59.80%. Subsequent models were developed by adding
a group of Convolution-Pooling layer or applying regularization techniques
such as Dropout or L2 regularization as explained in Chapter 3. Next Chapter 7
discusses the performances of each of the intermediate builds of CNN 1 and
CNN 2 in the HSRC, and the entire prototype system.
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Evaluation and Results
The most significant element of the prototype is the Hand-Signs Recognition
component, and therefore, its performance is of primary importance before
putting it to real-world usage. Below are the significant factors focused during
the prototype evaluation:

• Accuracy: Accuracy is the ratio of correct predictions to incorrect pre-
dictions made by the robot in the hand-signs recognition task. It is a
quantitative measurement expressed in percentage.

• Responsiveness: Responsiveness is a qualitative measure of the time
taken by the robot in completing the hand-signs recognition task. In this
thesis, it acts to generalize the user’s opinion on how fast was the robot
in the hand-signs recognition task.

• User Acceptance: Understanding the user’s perception of using non-
verbal communication as a means to improve HRI in humanoid robot.

7.1 Accuracy of the prototype

Accuracy of the prototype is indeed the accuracy of the models generated by
the HSRC. The Figure 7.1 and Figure 7.2 shows the training and validation
accuracy obtained for the intermediate builds of both the models - CNN 1 and
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CNN 2 respectively. The x in CNN 1.x and CNN 2.x express these intermediate
builds. Every subsequent build aims to be more accurate than its previous one.
Most common modifications made to a model to improve its accuracy are -
adding a group of Convolution-Pooling layer with more filters, changing the
filter size, or adding a dropout layer to regularize the results.

Figure 7.1: Accuracy of intermediate builds of CNN 1

Figure 7.2: Accuracy of intermediate builds of CNN 2

Table 7.1 presents the accuracy and losses of each of the builds for CNN 1.
The Table 7.1 shows the detailed architecture of every intermediate build of
CNN 1. The highlighted layers are the changes made in a specific build. For
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example, consider CNN 1.1 - it adds a two-dimensional Convolution-Pooling
layer (Conv2D(32 units, 3x3 filter size) and MaxPooling(2x2 filter size)) to the
Baseline model. CNN 1.2 contains another such layer (Conv2D(64, 3x3) and
MaxPooling(2x2)) and likewise. The Figure 7.1 presents the performance of
each of the builds of CNN 1. It shows that adding more layers improved the
accuracy of the HSRC until CNN 1.3, where it achieves maximum training
accuracy of 91.66% and validation accuracy of 94.37%. These numbers are
assuring for such use-case but may indicate overfitting (a scenario where the
model scores high accuracy on the training set but loses generalization over
unknown data). To examine it, one must observe the accuracy and loss values
for every epoch in the training phase. The graph Figure 7.3 presents the
accuracy and loss of the two best builds - CNN 1.2 and CNN 1.2. Both these
graphs do not show characteristics of overfitting (where the validation loss is
higher than the training loss) as explained in Figure 3.12 in Chapter 3. But here,
the validation loss is lower than training loss suggesting limitations with the
dataset, especially that the validation images are very similar to the training
images.

Table 7.1: Training Parameters and Accuracy of CNN 1

Parameters
CNN Build Baseline CNN 1.1 CNN 1.2 CNN 1.3 CNN 1.4 CNN 1.5

Convolution Base Conv2D(16, 3x3)
Maxpool2D(2x2)

Conv2D(16, 3x3)
Maxpool2D(2x2)
Conv2D(32, 3x3)
Maxpool2D(2x2)

Conv2D(16, 3x3)
Maxpool2D(2x2)
Conv2D(32, 3x3)
Maxpool2D(2x2)
Conv2D(64, 3x3)
Maxpool2D(2x2)

Conv2D(16, 3x3)
Maxpool2D(2x2)
Conv2D(32, 3x3)
Maxpool2D(2x2)
Conv2D(64, 3X3)
Maxpool2D(2x2)
Conv2D(128, 3X3)
Maxpool2D(2x2)

Conv2D(16, 3x3)
Maxpool2D(2x2)
Dropout(0.25)
Conv2D(32, 3x3)
Maxpool2D(2x2)
Dropout(0.25)
Conv2D(64, 3X3)
Maxpool2D(2x2)
Dropout(0.25)

Conv2D(128, 3X3)
Maxpool2D(2x2)
Dropout(0.25)

Conv2D(16, 3x3)
Maxpool2D(2x2)
Dropout(0.25)
Conv2D(32, 3x3)
Maxpool2D(2x2)
Dropout(0.25)
Conv2D(64, 3X3)
Maxpool2D(2x2)
Dropout(0.25)

Classifier Dense(16)
Dense(3)

Dense(32)
Dense(3)

Dense(64)
Dense(3)

Dense(128)
Dense(3)

Dense(128)
Dropout(0.25)

Dense(3)

Dense(64)
Dropout(0.25)

Dense(3)
Epochs 20 20 20 20 20 20

Training Accuracy (%) 63.97 70.44 91.19 91.66 32.74 70.40
Validation Accuracy (%) 59.80 74.83 93.54 94.37 33.34 73.12

Table 7.2: Training Parameters and Accuracy of CNN 2

Parameters
CNN Build Baseline CNN 2.1

Convolution Base Conv2D(16, 3x3)
Maxpool2D(2x2)

ConvBase(VGG-19)
Dropout(0.25)

Classifier Dense(16)
Dense(3)

Dense(128)
Dropuout(0.25)

Dense(3)
Epochs 20 28

Training Accuracy (%) 63.97 82.57
Validation Accuracy (%) 59.80 88.08

CNN 2 uses the transfer learning technique over VGG-19 model. The detailed
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architecture forCNN 2 is given in the Table 7.2. CNN 2.1 retains the convolutional
base of VGG-19 and a custom classifier giving a training accuracy of 91.86%
and validation accuracy of 98.61% as shown in the Figure 7.2. The accuracy
and loss graphs of CNN 2.1 in Figure 7.4 are similar to Figure 7.3 implying no
overfitting but interestingly, reflects that the size of the training dataset is small
and too simple for a complex model like VGG-19.

Figure 7.3: Accuracy and Loss of the best builds of CNN 1

Figure 7.4: Accuracy of intermediate builds of CNN 2

Generally, the final model is also tested once with the test dataset (dataset
unseen or unknown to the model) to assess its performance in real-world.
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Test datasets are extremely useful if one performs hyperparameter tuning or
model optimizations, as described in Chapter 3. The prototype does not use
any optimization techniques, and thus preparation of test dataset is skipped
from the evaluation.

7.2 Responsiveness and User Acceptance of the
prototype

Other two factors - Responsiveness and User acceptance are measured using
an online questionnaire showing a video demonstration of the NAO robot
performing the hand-signs recognition task [106]. The questionnaire consists
of the following questions:

1. Rate the responsiveness of the robot in the hand-signs recognition task:

• Slow
• Moderate
• Fast

2. Would you like to use non-verbal communication (hand-signs, facial
expression, eye contact, haptics, etc.) to access different features of the
robot?

• Yes
• No

3. If you had a humanoid robot, for what will you use hand-sign recognition
feature?

• Access a robot service (like reading news, playing music, etc.)
• Personalise/Customize the robot service (a user maps his desired

sign to a robot service)
• Sign-Language Translation/Communication
• Not use the hand-sign recognition feature
• Other Applications

4. What are your thoughts on using non-verbal communication for a hu-
manoid robot?

The questionnaire received replies from 56 people belonging to different age
groups, gender, and work domains. The results for each question is analyzed



70 chapter 7 evaluation and results

and presented below:

1. Question: Rate the responsiveness of the robot in the hand-signs recog-
nition task

Result: Figure 7.5 illustrates how users thought about the responsiveness
of the robot in the hand-signs recognition. 86% claimed it to be fast, 13%
believed to be moderate, and 2% felt it to be slow.

Figure 7.5: Responsiveness of the robot analyzed from questionnaire

2. Question: Would you like to use non-verbal communication (hand-signs,
facial expression, eye contact, haptics, etc.) to access different features
of the robot?

Result: All the participants said ’Yes’ for using non-verbal communication
to access different features of the robot.

3. Question: If you had a humanoid robot, for what will you use hand-sign
recognition feature?

Result: The table illustrated in the Figure 7.6 describes how users per-
ceived the use of non-verbal communication to improve Human-Robot
Interaction and its possible areas of application. 55% of people would
like to use non-verbal communication to access a robot’s service and for
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sign-language translation, while 57% would also personalize the robot’s
services, and 50% preferred it to interpret sign language. Other than the
given application areas, some suggested using non-verbal communica-
tion to control smart-home devices for people with speech impairments,
assigning delegatory work to a robot when one is busy and other appli-
cations.

Figure 7.6: Possible application areas for using non-verbal communication

4. Question: What are your thoughts on using non-verbal communication
for a humanoid robot?

Result: Some of the replies received are:

• "I recommend to shorten the processing dialogue by robot"
• "It would be a faster method and would not be restricted to language

spoken region"
• "In the times of corona (COVID-19 pandemic), this could be a great

contribution to non physical handling of basic services we use through
the day, for example TV remote controls etc."

7.2.1 Summary of the results

Accuracy, Responsiveness, and User Acceptance are three parameters used
to evaluate both the prototype and the research in this thesis. Accuracy of
the prototype is determined by the accuracy of the Hand-Sign Recognition
Component. The HSRC of the prototype produced several deep learning models
to carry out the sign recognition of three different signs. CNN 1.3 and CNN 1.2
are two of the best prototype builds, both having accuracy over 90% on the
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produced datasets. Referring to the table comparing architectural differences
of these two builds, the only difference is the additional Conv2D(128) and
Maxpool2D layers in CNN 1.3. CNN 1.4 contains Dropout(0.25) layers after every
Convolution-Pooling groups. Dropout layers usually improve the performance
by reducing the overfitting, but here it made the architecture more complex
and resulted in one of lowest accuracy (of about 32%) among all the builds.
Among CNN 1.2 and CNN 1.3, any of these builds can be chosen for the final
deployment to make predictions in real-time. This project further used CNN 1.3
to evaluate the research goal of evaluating people’s opinion towards using hand-
signs to interact with the humanoid robot. From Figure 7.5 that represents the
responsiveness of the prototype, it is evident that the majority of participants
rated the prototype to have a fast or quick response. All the positive responses
for the Question 2 (’Would you like to use non-verbal communication (hand-
signs, facial expression, eye contact, haptics, etc.) to access different features of
the robot?’) indicate people are willing to adopt non-verbal communication
to interact with humanoid robot. This satisfies the research goal and further
observing the Figure 7.6 shows people’s interests in possible areas to implement
nonverbal communication. Nearly half the participants would even like to have
personalized services when accessing the robot. Though this study involved
few participants, but the majority of positive responses towards non-verbal
communication suggest a strong potential in adopting non-verbal features to
improve human robot interaction in humanoid robots.



8
Discussion
This dissertation essentially explores the use of non-verbal communication
to establish human-robot interaction in humanoid robots. The prototype de-
scribed in the Chapter 6 and evaluation results presented in the Chapter 7
strive to highlight a way on how to achieve it and the people’s willingness in
adopting non-verbal communication for achieving HRI. There are three major
components forming the prototype - the NAO humanoid robot, the Integration
Layer, and the Hand-Signs Recognition Component. This chapter further dis-
cusses about the choices taken throughout the research for developing these
components and to evaluate the research along with the limiting factors.

The prototype system enables an NAO humanoid robot to interact with its
user using hand-signs and perform various tasks based on the recognized sign.
NAO robot acts as a tool for interaction that recognizes three hand-signs -
’Palms-Open’, ’Thumbs-Up’, and ’OK’ Sign and performs different actions on
a successful recognition. NAO captures an image via its camera and sends
it to the Integration layer for further processing. On receiving the output, it
performs different actions based on the recognized sign. Though this research
focusses on using non-verbal communication, some of the commands like
starting or stopping the recognition scenario still require voice inputs from
the user. Different colour codes for eyes were defined to interpret the NAO’s
current state as described in Chapter 5. NAO is entirely developed using the
built-in modules provided by the Choregraphe software suite. The integration
layer acting as a middleware for the NAO robot and the HSRC - is a webserver
hosted using the Flask web framework carrying out different preprocessing
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operations and loading the environment to run the deep learning model for
real-time predictions.

The most significant part of the prototype is the Hand-Signs Recognition
Component (HSRC) - that is fundamentally a Deep Learning model trained
using Convolutional Neural Networks to detect static hand-signs (Palms-Open,
Thumbs-Up, and OK). Though there are different methods in computer vision
to handle hand-signs recognition, deep learning proves to be the best due to
its data-driven approach as discussed in Chapter 3. Deep learning techniques
thrive on large amounts of ’good’ quality data, but it is harder to define what
qualifies as a ’good’ quality data before the training process. Thus, one may
have to revisit the data generation and data preprocessing phases to generate
more qualitative data for the model training process. During the development,
the data generation phase was repeated a few times, adding more ’good qual-
ity’ images in every iteration (’good quality’ refers to images having different
lighting conditions, backgrounds, etc.). Image preprocessing techniques such
as background removal, Gaussian filters were carried out but did not result in
better quality images. Hence, the images are directly fed to the Convolutional
Neural Networks in the model training phase. This truly highlights the robust-
ness of CNN in such image classification problems in computer vision. Another
way to handle the limitations with smaller datasets is to use data-augmentation.
Data augmentation is a technique that generates more training samples from
the existing dataset by applying various types of transformations. It indeed
played a significant role in this thesis to improve the performance of the deep
learning models.

As described in the Chapter 3, deep learning models are computationally inten-
sive and to ensure faster model training, they require more computation power
to run on. Hence, a decent GPU performs exceptionally well in such problems.
The deep learning models developed by the HSRC uses the Keras frameworks
running over the TensorFlow 2.1 backend with GPU support. The resulting mod-
els by the Hand-Signs Recognition Component can be seamlessly integrated
with the NAO robot using the Flask web framework. But the configuration of
Keras and TensorFlow was a complicated process. This conventional form of
configuring deep learning environments can be replaced with cloud platforms
offering machine learning and deep learning support such as Amazon Web
Services, Microsoft Azure, and others. These platforms offer paid services that
provide easy configuration of the hardware, required libraries, version control,
and automated deployment for various deep learning projects.

Testing the deep learning models yielded good results depending upon the way
the user interacts to NAO’s questions in the interaction. In the beginning, the
user may have to repeat the voice commands to familiarize with the robot to
understand - when the robot is waiting for the input, or capturing an image, or
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processing the results. Though the models with the custom CNN architecture
performed better than the ones using transfer learning, transfer learning is a
powerful technique that implicitly uses othermodels trained over large datasets
to one’s specific use-case.

To evaluate the research, the initial plan to collect data was to conduct a semi-
structured interview. The interview will begin by showing a live demonstration
of the prototype to the participants and later conduct a questionnaire to record
their feedback. But due to the COVID-19 pandemic occurring from 13 March
2020 until 15 August 2020, this research adopted a modernised technique of
data collection using online questionnaires. An online questionnaire in simplest
terms is a questionnaire conducted online, generally by hosting it on a server
or using cloud platforms providing such services. Though the researcher needs
to be aware of limiting his bias when forming such questionnaires, the online
version provides a wider and easier reach to collect data from the target subjects.
But online questionnaires may not be feasible choice if the research needs to
target a specific type of people, since filtering such participants could be a
tedious job and lead to noisy data.

The results from the online questionnaire show that people are willing to
use non-verbal communication as a means to interact with humanoid robots,
which was evident from the all the "Yes" responses to ’Question 2: Would you
like to use non-verbal communication (hand-signs, facial expression, eye contact,
haptics, etc.) to access different features of the robot?’ of the online questionnaire.
Majority of the participants looked forward to using non-verbal communication
to personalize features of a humanoid robot, which was observed from the
results to ’Question 3: If you had a humanoid robot, for what will you use
hand-sign recognition feature?’ of the questionnaire. Though the questionnaire
involved only 56 participants, their responses shows a positive acceptance of
the use of non-verbal communication in interacting with humanoid robots
and could encourage robot designers to use it for enhancing human-robot
interaction.





9
Conclusion and Future
Scope

This thesis presents a humanoid robot that establishes human-robot interaction
(HRI) with its users using non-verbal communication, especially using hand-
signs. The motivation behind it was to improve the acceptance of humanoid
robots in daily usage by enhancing the quality of communication with its
users. Humanoid robots can establish a communication either verbally or
non-verbally. Verbal communication is the primary form of communication
and is well-developed in the field of human-robot interaction. But non-verbal
communication even being an integral part of human interactions is not yet
widely used for humanoid robots. This research strives to use that impact of
non-verbal communication in human-human interactions, and provides a way
to use it for human-robot interactions. Both the research goals are satisfied
where first a working prototype of NAO humanoid robot handles hand-signs
recognition, and second where a study reflects people’s opinion on adopting
non-verbal features to access an robot.

The prototype development began with the development of the NAO robot,
acting as a means to conduct this research. It establishes the HRI with the user
by capturing an image of the user’s hand and performing a specific action on a
successful recognition along with some animations. The integration layer acts
as a middleware between the NAO and the Hand-Signs Recognition Compo-
nent (HSRC), which is the core element of the prototype. The HSRC generates
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various deep learning models using convolution neural networks to recognize
hand-signs from the input image. Out of the several models developed, custom
CNN architectures resulted in a training accuracy over 90% Chapter 7. HSRC
can be easily decoupled from other components of the prototype to run inde-
pendently as a standalone application to aid people with hearing disabilities
or perform hand-signs recognition for any external application or service. The
implementation details are available on the Github[88, 106] link for those
interested in it.

Themethodologies from software engineering and prototyping served very well
in conducting this research. This work adopts an alternative technique of online
questionnaires to collect data in this thesis. As there was no particular target
audience to conduct this research, online questionnaires made it easier to reach
more people. Creating the questionnaire certainly needed planning, but online
questionnaires do not provide the opportunity of observing participants in the
live interaction. The results from the online questionnaires shows unanimous
response to adopting non-verbal features to access the robot. Majority of the
participants were also looking forward to have personalized features from the
robot.

Considering the methodologies and results achieved in the current research, a
multitude of design improvements are possible in the current prototype: Few
of them are listed below:

• Personalizing the user experience: Personalized user experience is
the key to enhancing the human-robot interaction where an user can
customize his hand signs to interact with the robot and further assign
desired actions to these hand-signs. For example - User 1 assigns a new
sign like ’Thumbs Down’ and assigns it to ’reduce the volume of the NAO
robot’.

• Developing the Profile Manager: As proposed in the prototype design
of this research, developing a profile manager includes creating a new
user profile and storing the user’s sign-to-action mapping. This will allow
multiple people in the home or organization to use the same robot but
for their own desired task.

• Enhancing the security and privacy: Security and privacy of users is
utmost important if above features are included in the robot. Possible
solution is to use facial recognition features to authenticate a user and
further load the user-profile in the NAO’s memory for use.

• Automating the model development using cloud platforms: Instal-
lation and configuration setup for a deep learning project is a tedious

https://github.com/mayureshsa/masters_thesis_hsrs
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process that often faces problems with hardware and software incom-
patibilities. In such cases, cloud services provide managed services that
provide computing resources with all the required libraries, scheduled
updates, and greater flexibility to train large deep learning models.

Since theHSRC is loosely-coupled, it is easy to use itwith an external application
requiring just the hand-signs recognition feature. In situations such as a global
pandemic of COVID-19 where touching items or surfaces is restricted, the HSRC
can be integrated into a digital media device to control its different features.
For example - The ’Palms-Open’ sign shown to a TV can switch on the TV, the
’Thumbs-Up’ sign can increase the volume of the TV, and so on. The entire
system including the NAO robot is also useful as a sign language interpreter.
People with hearing impairments use sign language for communication. Many
do not know sign language and find it difficult to interact with these people. In
such cases, NAO can record the sequence of signs shown to it and later would
translate it into speech for others. NAO has already been successful in elderly
care. Using hand-signs recognition, elders who have movement restrictions may
use hand-signs to perform tasks like opening/closing of the door or adjusting
the thermostat.
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