
The Faculty of Science and Technology
Department of Computer Science

Towards Improved Support for Conflict-Free Replicated Data Types
—
Sigbjørn Rostad
INF-3981 Master’s Thesis in Computer Science - June 2020

This thesis document was typeset using the UiT Thesis LaTEX Template.
© 2020 – http://github.com/egraff/uit-thesis

http://github.com/egraff/uit-thesis

Abstract
Conflict-free Replicated Data Types (CRDTs) are distributed data types which
ensure Strong Eventual Consistency (SEL), and also has properties such as
commutativity and idempotence. There are many variations of CRDTs, and
the ones we will study are state-based delta CRDTs. State-based CRDTs is a
variation where the CRDT instances synchronize by sending their state to each
other. An improvement to this is delta CRDTs which is yet another variation
where only the difference of mutations is disseminated. We will explore some
of the existing CRDTs, but also present some new CRDT designs and their im-
plementations. One of the new CRDTs presented is Causal Length Set (CLSet),
which is a simple, yet effective state-based delta CRDT. It does not use dots as
causal context as many other CRDTs; it merely uses a single integer. With this
minimalist CRDT design, we can achieve both great performance and a small
memory footprint. Another CRDT presented is Multiple Value Map (MVMap),
a CRDT which focuses on convenience as opposed to performance.

Contents
Abstract i

List of Figures v

List of Listings vii

List of Abbreviations ix

1 Introduction 1
1.1 Outline . 2

2 Theoretical Background 5
2.1 Join-Semilattice . 5

2.1.1 Partially Ordered Set 5
2.1.2 Hasse Diagram . 5
2.1.3 Semilattice . 7

2.2 Idempotence . 8
2.3 Commutativity . 8
2.4 Causality . 9
2.5 Conflict-free Replicated Data Types 10

2.5.1 State-Based CRDTs 12
2.5.2 Operation-Based CRDTs 13
2.5.3 Other Variations of CRDTs 14

2.6 Further Reading . 15

3 Existing CRDTs 17
3.1 Grow-only Set . 19
3.2 Add-Wins Set . 20
3.3 Tombstone-Free Add-Wins Set 21
3.4 Observed-Remove Set . 23
3.5 Multi-Value Register . 24

4 New CRDTs 25
4.1 CLSet . 25

iii

iv contents

4.2 Multi-Value Map . 29

5 Implementation 31
5.1 GenServer . 32
5.2 CRDT Layer API . 33
5.3 Delta CRDT API . 34
5.4 Dots CRDT . 36

5.4.1 TFAWSet . 39
5.4.2 ORSet . 41
5.4.3 MVMap . 44

5.5 Simple CRDT . 48
5.5.1 CLSet . 51

6 Experiments & Results 55

7 Conclusion 59

References 61

Appendix 63
.1 CLSet . 63

List of Figures
2.1 Hasse diagram . 6
2.2 Hasse diagram of a semilattice 7
2.3 Causal context from Delta State Replicated Data Types [15] . 10
2.4 State-Based CRDT Example 12
2.5 Operation-Based CRDT Example 13

3.1 Causal context from Delta State Replicated Data Types [15] . 18
3.2 Dot stores from Delta State Replicated Data Types [15] 18
3.3 GSet CRDT . 19
3.4 GSet Hasse Diagram of States 20
3.5 Delta CRDT Add-Win Set, Replica i 20
3.6 TFAWSet delta-state CRDT 22
3.7 ORSet CRDT . 23
3.8 MVRegister CRDT [15] . 24

4.1 GSet CRDT and Hasse diagram of states 26
4.2 GSet Equivalence Classes of Concurrent Updates 26
4.3 CLSet CRDT . 28
4.4 MVMap CRDT . 30

5.1 Project File-Structure . 32

6.1 Concurrent Mutations and Merge Time 56
6.2 CRDT Memory Usage . 57
6.3 Query Execution Time . 58

v

List of Listings
2.1 Idempotent example in JavaScript 8
2.2 Commutativity example 1/2 in JavaScript 9
2.3 Commutativity example 2/2 in JavaScript 9

5.1 Delta CRDT API . 35
5.2 Dots CRDT Synchronization Phase 37
5.3 Dots CRDT Receive Delta 38
5.4 Dots CRDT Operation Phase 38
5.5 TFAWSet Module and Struct 39
5.6 TFAWSet Add . 39
5.7 TFAWSet Remove . 40
5.8 TFAWSet Join . 40
5.9 TFAWSet Read . 41
5.10 ORSet Module and Struct 41
5.11 ORSet Add . 42
5.12 ORSet Remove . 42
5.13 ORSet Join . 43
5.14 ORSet Read . 44
5.15 MVMap Module, Struct and MaxMap Resolve 45
5.16 MVMap Add . 45
5.17 MVMap Remove . 46
5.18 MVMap Join . 46
5.19 MVMap Read (resolve) . 47
5.20 MVMap - Resolve Examples 48
5.21 Simple CRDT Synchronization Phase 49
5.22 Simple CRDT Operation Phase 50
5.23 Simple CRDT Receive Delta 50
5.24 CLSet Module . 51
5.25 CLSet Add . 51
5.26 CLSet Remove . 52
5.27 CLSet Join . 52
5.28 CLSet Read . 53

vii

List of Abbreviations
AWLWWMap Add-Wins Last-Write-Wins Map

AWSet Add-Wins Set

CRDTs Conflict-free Replicated Data Types

GSet Grow-Only Set

LWW Last-Write-Wins

MVMap Multi-Value Map

MVReg Multi-Value Register

ORSet Observed-Remove Set

PID Process Identifier

Poset Partially Ordered Set

SEC Strong Eventual Consistency

TFAWSet Tombstone-Free Add-Wins Set

ix

1
Introduction
The CAP theorem [3] describes three different properties for distributed sys-
tems, consistency (C) - which refer to multiple sites having the same copy of a
piece of data, availability (A) - which refer to the data always being available
and partition-tolerance (P) - which refer to the system still working after being
partitioned on the network. These properties are not binary but continuous.
The CAP theorem states that one can only achieve at most two of these proper-
ties. Conflict-free Replicated Data Types (CRDTs) can achieve both availability
and partition-tolerance because of replication of data over multiple sites. How-
ever, CRDTs lack consistency as data can take some time to synchronize across
sites; this makes them eventually consistent.

There are many variations of CRDTs. State-based, operation-based, delta, add-
wins, last-write-wins and many more, even combinations of multiple variations
is possible. We will focus more on state-based delta CRDTs. This CRDT vari-
ation creates Xs (deltas) based on the mutations it receives, which in turn is
disseminated to the other CRDT sites. The other sites will incorporate updates
requiring only the X to reach the same state as its neighbours. The article
Delta State Replicated Data Types [15] has been a source for multiple of the
existing CRDT designs mentioned in this thesis. In addition, an already exist-
ing CRDT implementation [5] has been useful for implementing new CRDT
implementations.

We will look at some of the theory behind CRDTs. We will explore some existing
CRDT designs and their properties, then try to bring something new to the

1

2 chapter 1 introduction

table by mixing existing designs with some new ideas.

Existing set CRDTs today are expensive, and multi-value register CRDTs push
the responsibility of resolving conflicts to the applications. The contribution
of this thesis is CLSet, a new set CRDT, and MVMap, a new multi-value
CRDT.

The Causal Length Set (CLSet) design is based on causal lengths. Causal length
is a property observed on a CRDT called Grow-only Set (GSet). The causal
length is a by-product of its causal context. With this knowledge, we can
create CLSet. The main contribution of CLSet is a performant general-purpose
set CRDT. The results can be seen in Chapter 6. The CLSet CRDT has been
published in the PaPoC 2020 conference proceeding [17].

Multi-value CRDTs is a particular type of CRDT, where concurrent writes to
the same key across multiple sites will all be included in the CRDT, as such
there are multiple values on a key, and it is up to the application to decide
which value to use. The new CRDT design MVMap has a slight change such
that whenever the CRDT is read, the values are automatically sent through a
’resolver’ which decide what to do with the values. The main contribution of
MVMap is a multi-value CRDT where the responsibility of resolving conflicts
is shifted away from the application and more towards the CRDT itself.

1.1 Outline

Theoretical Background (Chapter 2) gives a basic introduction to theory behind
some CRDTs. It also highlights different CRDT designs and their variations.
Reading this chapter helps the reader get up to speed and get an overview of
CRDTs and make it easier to understand the later chapters.

Exisiting CRDTs (Chapter 3) explains some existing CRDT designs we have
today.

New CRDTs (Chapter 4) introduces some new CRDT designs which solve some
of the existing CRDT problems.

Implementation (Chapter 5) go deeper into the implementation details of the
new and some existing CRDTs. This chapter includes code samples from an
implementation written in Elixir.

Experiments & Results (Chapter 6) is the chapter where we put the CRDTs
discussed in Chapter 5 to the test. The CRDTs are benchmarked both in terms

1.1 outline 3

of response time and memory footprint, to get a more accurate representation
of how these CRDTs might fare in actual applications.

Finally the thesis is summarized in the Conclusion (Chapter 7).

2
Theoretical Background
2.1 Join-Semilattice

Conflict-free Replicated Data Types (crdts) is based on the theory of set,
order and lattice, thus understanding how these work is going to be important
for understanding CRDTs on a more fundamental level. On the surface, with
only a little pre-existing knowledge, CRDTs are relatively simple to understand,
but to understand the ’how’ we might need to learn some set, order and lattice
theory.

2.1.1 Partially Ordered Set

A Partially Ordered Set (poset) is a way to say that some elements in a set
precede others. The word ’partial’ in ’Partially Ordered Set’ indicates that not
every element in the set have to precede another element [14].

2.1.2 Hasse Diagram

Hasse Diagram is a diagram used in order theory. Wolfram Mathworld [8]
defines it in the following way:

A Hasse diagram is a graphical rendering of a partially ordered set
displayed via the cover relation of the partially ordered set with an

5

6 chapter 2 theoretical background

implied upward orientation. A point is drawn for each element of the
poset, and line segments are drawn between these points according
to the following two rules:

• If G < ~ in the poset, then the point corresponding to G appears
lower in the drawing than the point corresponding to ~.

• The line segment between the points corresponding to any two
elements G and ~ of the poset is included in the drawing if and
only if G covers ~ or ~ covers G

The definition explains the Hasse diagram as a display of a poset. As explained
in section 2.1.1, elements in posets might precede others. This is also the reason
for the Hasse diagram having an ’implied upward orientation’. Elements at the
bottom come before elements at the top. The line segments in the diagram
link two elements together only if the higher-order element contains the lower-
order element.

1111

1110 11011011 0111

1100 1010 10010110 0101 0011

1000 0100 0010 0001

0000

Figure 2.1: Hasse diagram

Figure 2.1 shows an example of a Hasse diagram. Notice that the element at the
bottom says 0000 and the element at the top says 1111. The other elements in
between are all possible permutations and their corresponding links. The Hasse
diagram displays theminimum amount of information necessary to describe the
order of the elements. Hasse diagrams also have a natural upwards direction. If
we look at the bottom element, 0000, it has four links. Each link is leading to a
possible state change. In this case, the logic of the diagram is that only one digit

2.1 join-semilattice 7

can change at a time, between 0 and 1. This means that the bottom element
has four links because all four of its digits is subject to change. If we move one
state upwards to 1000, this node has three links upwards as one of the digits
has already changed, but it also has one link going back to the previous state.
If we keep going upwards, the number of links above will decrease, and the
number of links below will continue to increase until all digits have changed
to 1.

2.1.3 Semilattice

Semilattice can be defined as such:

A join-semilattice is a poset which admits all finite joins, or equiva-
lently which admits a bottom element ⊥ and binary joins 0 ∨1. If we
think of a poset as a category, a join-semilattice is the same as a poset
with finite colimits, or equivalently, a poset with finite coproducts.

Dually, a meet-semilattice is a poset which admits all finite meets,
including a top element > and binary meets ∧. Once again, ∧ is
commutative, associative, unital for >, and idempotent. Once again
we can recover the order from it, but this time defining 0 ≤ 1 to mean
0 ∧ 1 = 0. If we think of a poset as a category, a meet-semilattice is
the same as a poset with finite limits, or equivalently, a poset with
finite products [12].

To elaborate on the definition; a join-semilattice is a construct for displaying
the state transitions (joins) of a system. The semilattice is a poset and implies
convergence. Thus, it starts with a bottom ⊥ element and ends with conver-
gence. The meet-semilattice is similar to the join-semilattice; it starts with a
top> element, and displays which two elements meet for every element.

{0, 1, 2}

{0, 1} {0, 2} {1, 2}

{0} {1} {2}

⊥
Figure 2.2: Hasse diagram of a semilattice

Figure 2.2 show an example of a semilattice. Notice it begins with a bottom ⊥
element. From the bottom element, we have in this example, three elements

8 chapter 2 theoretical background

being added 0, 1 and 2, illustrated by the three upward links. Now look at
state {0}, and notice that there are two possible links upwards. The first link
adds the element 1, and the second link adds the element 2. This effectively
means that each link illustrates a join ∨ of the other permutations of the state.
After the fact, all states in the second-order {0, 1}, {0, 2} and {1, 2} have two
elements. From this point, there is only one possibility, and that is that each
state adds the last remaining element; {0, 1} joined ∨ with any of the other
states will receive 2 , {0, 2} joined ∨ with any of the other states will receive
1, and {1, 2} joined ∨ with any of the other states will receive 0. The result is
convergence as the final state contains all elements, {0, 1, 2}.

2.2 Idempotence

Idempotence in math and computer science means that an operation applied
to a variable does not affect the value beyond the initial application [9].

1 let data = {x: 10}
2 {x: 10}
3
4 data.x = 20
5 {x: 20}
6
7 data.x = 20
8 {x: 20}

Listing 2.1: Idempotent example in JavaScript

Listing 2.1 show an example of idempotence, where only the first application
changed the value of ’x’ from 10 to 20, the second operation changed nothing.
This shows that the operations in Figure 2.1 are idempotent.

2.3 Commutativity

Commutative means that a series of operations can be applied in any order
still give the same result [4].

2.4 causality 9

1 let data = {x: 10}
2 {x: 10}
3
4 data.x += 10
5 {x: 20}
6
7 data.x += 5
8 {x: 25}

Listing 2.2: Commutativity example 1/2 in JavaScript

1 let data = {x: 10}
2 {x: 10}
3
4 data.x += 5
5 {x: 15}
6
7 data.x += 10
8 {x: 25}

Listing 2.3: Commutativity example 2/2 in JavaScript

Listing 2.2 show an example of commutativity. Two operations are applied to a
set-element. First, the value is incremented by 10, and then it is incremented
by 5. Listing 2.3 show the same operations, just in the opposite order. As can
be seen, the result is the same. Since the result is the same in both Figure 2.2
and Figure 2.3, we can say that the operations are commutative.

2.4 Causality

Causal means that something relates to, or is caused by something else. If
G and ~ have a causal relation, the value of G is going to be affected by the
value of ~. Causality is essential for ensuring correctness in data structures.
For example, when joining two sets, causality can help decide which elements
to keep and which elements to throw away. Causality in terms of maintaining
data structures revolves around keeping metadata for items added to the data
structure, then afterwards whenever there is a conflict of some sort, utilize the
information from the metadata to resolve the conflicts. How exactly causality is
implemented is very application-specific, so for more details, one should focus
on understanding the implementation of the application itself.

Figure 2.3 from [15] defines their version of causal context used in research they
performed on CRDTs. They call it causal context which compared to causality
is the same thing when we are talking about CRDTs, state and context. Figure

10 chapter 2 theoretical background

Figure 2.3: Causal context from Delta State Replicated Data Types [15]

2.3 is described as following in their article:

As seen in the Figure, a causal context is a set of dots. We define two
functions over causal contexts:<0G8 (2) gives the maximum sequence
number for pairs in 2 from replica 8, or 0 if there is no such dot;
=4GC8 (2) produces the next available sequence number for replica 8
given set of events in 2 [15].

The takeaway here is that causal context defines sequence numbers for data-
pairs in the CRDT. There is one function for getting the highest sequence
number, and one function for generating the next sequence number based on
the current state of the CRDT.

2.5 Conflict-free Replicated Data Types

CRDTs are data abstractions that guarantee convergence for replicated data.
CRDTs associate every element in the CRDT with causal contexts as metadata.
Having a context for every element is expensive and will scale poorly when
the number of items in the CRDT increases. Thus reducing memory footprint
and reducing operation (addition and removal) time is of high interest.

A CRDT in practice consists of multiple instances, sometimes also called sites or
nodes. The sites are all independent without any sort of leader- or master-site.
There is no need for a master-site since the CRDTs are ensured to converge.
Because of convergence, the end-result in all the CRDT sites is the same even if
additions/removals is received in a differing order. Even though we have these
challenges, the CRDT sites can still reach the same state. When all sites have
the same state, the CRDT has converged.

The sites are not connected through the CRDT,oftenmost the CRDTs are entirely
decoupled from any other pieces of code, and then there is an additional layer

2.5 conflict-free replicated data types 11

built on top of the CRDT to handle synchronization between the different sites.
For reference, the CRDT implementations can be called the CRDT layer, and
the synchronization implementation can be called the synchronization layer. It
is good to decouple these two layers such that they can be modified or replaced
without affecting each other. The synchronization layer can be seen as having
two phases, the operation phase and the synchronization phase.

The operation phase is the phase where the user can do operations such as
adding elements to the CRDT, removing elements from the CRDT and reading
the content of the CRDT. The synchronization phase is the phase where a site
sends data to other sites. What this data entails depends on the implementation.
It usually is either a set of operations to be executed or a piece of state to be
merged into the other sites’ state.

They way CRDTs reach convergence is through a synchronization phase which
will send data from one site of a CRDT to the other sites of the CRDT. The
CRDT site will look at the new data, and decide if they should merge its data
with the newly received data. The received data differs between state-based
CRDTs and operation-based CRDTs; this is further explained in the next two
sub-sections.

The uses of CRDTs aremany. One example is to incorporate it into an application
to handle and synchronize data. With a CRDT in the application structure, data
would automatically synchronize between the different units in the application,
and one would only need to read the CRDT occasionally to get the most recent
updates.

CRDTs are also a promising technology for building Local-First Software.

In local-first applications, we treat the copy of the data on the users’
local device — laptop, tablet, or phone — as the primary copy. Servers
still exist, but they hold secondary copies of the data in order to assist
with access from multiple devices [10].

Using CRDTs in local first software, users can do changes locally without an
internet connection. At a later time when the connection is recovered, multiple
sites can concurrently and asynchronously update data stored locally and
automatically merge updates performed at other sites. With these properties
we can categorize the CRDT as Strongly Eventually Consistent; all sites have
the same data state when the sites have incorporated the same set of updates,
regardless of the order in which they incorporated the updates. A site queries
and updates its local replica without coordination with other sites. The sites
will synchronize with each other until they reach convergence.

12 chapter 2 theoretical background

There are two main categories of CRDTs; state-based and operation-based.
Within these categories, there are subcategories with different implementations.
Therefore, when considering CRDTs, one should study the differences and pick
the CRDT with the properties that fit the application best.

2.5.1 State-Based CRDTs

State-based CRDTs is one of the two main categories of CRDTs. The main
idea is that when something is updated within the CRDT, it will merely send
its state to the other sites. State-based CRDTs are both commutative and
idempotent.

Figure 2.4: State-Based CRDT Example

Figure 2.4 shows an example of a state-based CRDT. The user performs an
add-operation, inserting a key-value pair into the CRDT. The CRDT performs
the add-operation, adding the pair into its state. During the next sync, the
CRDT will send its updated state to the neighbouring CRDTs. The neighbours
notice that the state they received is newer than their state, this is typically
through a timestamp or some sort of vector clock. Furthermore, the received
state is merged with its current state.

However, a major drawback in current state-based CRDTs is the com-
munication overhead of shipping the entire state, which can get very
large. For instance, the size of a counter CRDT (a vector of integer
counters, one per replica) increases with the number of replicas. In
contrast, in a grow-only Set, the state size depends on the set size,
that grows as more operations are invoked [15].

2.5 conflict-free replicated data types 13

The solution to this is delta CRDTs. Delta CRDTs instead only send a X (delta)
of the state to the other sites. In delta CRDTs, the X is the difference in the state
before and after an update (add/remove). However, since Xs is only fragments
of the actual CRDT state, it requires specific merge algorithms to maintain
the semantics of the CRDTs. The merge algorithm joins any pair of states so
that the set of join operations create a join-semilattice. The merge algorithm
is decided by the CRDT type.

CRDTs internal state must always monotonically increase through the update
function. The reason for this is as soon as some piece of information is removed,
the join algorithm might not be able to join a pair of states correctly. The result
of an incorrect join might be that an item that was previously removed might
return.

2.5.2 Operation-Based CRDTs

Operation-based CRDTs is the second category of CRDTs. The main idea behind
operation-based CRDTs is that whenever something is updated, only the oper-
ation itself propagates to the other sites. The other sites execute the operation
just as the original did. The sites should now be converged. Operation-based
CRDTs are commutative, meaning that the order of the applied operations does
not matter. However, operation-based CRDTs are not idempotent, meaning
that operations applied multiple times would change the value beyond the first
application.

Figure 2.5: Operation-Based CRDT Example

14 chapter 2 theoretical background

Figure 2.5 shows an example of an operation-based CRDT. The user performs
an add-operation with a key-value pair. ’CRDT-4’ executes the add-operation,
inserting it into its state. Afterwards, it will send the operation to the neigh-
bouring CRDTs. They will receive the add-operation and execute it the same
way ’CRDT-4’ did.

The drawback of operation-based CRDTs is that they are not idempotent. This
means that operations can only be applied once. Therefore when syncing it
requires additional logic to make sure all neighbours receive precisely one of
each operation.

2.5.3 Other Variations of CRDTs

There aremany variations of CRDTs, some of those notmentioned yet are:

• Delta CRDTs

• Named CRDTs

• Add-Wins (AW)

• Remove-Wins (RW)

• Last-Write-Wins (LWW)

Delta CRDTs refers to the data being synchronized between multiple sites
should only be the difference since the last synchronization. Each time a
mutation (add/remove) is applied to the CRDT, a X is created. During the next
synchronization, only this X will be distributed to the other sites. The benefit
to this is much less data transfer, especially for state-based CRDTs, but also a
lower amount of memory overhead since the CRDT will not be working with
any redundant data.

As mentioned, delta CRDTs are a variation of CRDTs, but there is no limiting
factor for which CRDT that can become a delta CRDT. Any CRDT can be
transformed into a delta CRDT with some modification to their mutator and
their join function. The mutator will instead return only the change that has
been done. The next synchronization will now instead simply distribute the Xs
gathered since the last synchronization. The CRDTs will also have a different
join function. This join function will still look at the incoming X to decide if it
should incorporate it. As they are just incorporating Xs, it might result in very
minor changes, but the result is precisely the same as a normal CRDT, just with
less overhead.

2.6 further reading 15

Named CRDTs refers to the mutators 0338 and A4<>E48 being denoted by an
8 (replica identifier). This means that the mutators are named as opposed to
being anonymous. Named CRDT and named mutators are synonymous. This
means that mutations can only update the part of the state that is specific to
the replica performing the mutation [15].

Add-Wins refers to a CRDT prioritizing add-operations when receivingmultiple
concurrent operations on the same key (maps) or value (sets). If a CRDT were
to receive two concurrent operations, one remove and one add, for a key. The
remove-operation would be disregarded while the add-operation would be
performed.

Remove-Wins refers to a CRDT prioritizing remove-operations. It is the same
as the Add-Wins, except for prioritizing remove instead.

Last-Write-Wins refers to CRDTs prioritizing later writes over earlier writes.
The prioritizing is both in terms of concurrent operations and single operations.
Every operation is paired with a timestamp, vector clock or any other way of
measuring time. Then the CRDT will utilize this to decide which operations to
apply.

These variations can be used by CRDTs. Also, multiple variations can be used
at once, but there are exceptions such as: add-wins and remove-wins at the
same time. The variations should be seen as defining a consistent behaviour
for a CRDT. Having a defined behaviour is vital for keeping the state of the
CRDT consistent with the other sites.

2.6 Further Reading

The following articles/papers would help for a better understanding of
CRDTs.

Conflict-free Replicated Data Types [16], is an article by Marc Shapiro, Nuno
Preguiça, Carlos Baquero and Marek Zawirski. They discuss large distributed
systems and the importance of replication and Strong Eventual Consistency
(sec) for these systems to be reliable and available. CRDTs can provide these
properties, and also ease problems of unreliable internet connections. They
then propose an approach which is a solution to these problems.

Scalable and Accurate Causality Tracking for Eventually Consistent Stores [1], is
an article by Paulo Sérgio Almeida, Carlos Baquero, Ricardo Gonçalves, Nuno
Preguiça and Victor Fonte. This article discusses causality between multiple

16 chapter 2 theoretical background

replicas and how performance takes a big hit whenever concurrent updates
happen. They propose a new logical clock mechanism and a logical clock frame-
work that together support a traditional key-value store API, while capturing
causality in an accurate and scalable way, avoiding false conflicts.

Delta State Replicated Data Types [15] is an article by Paulo Sérgio Almeida,
Ali Shoker, Carlos Baquero. This article presents different CRDT designs that
are based on a new strategy where only Xs (deltas) of updates are propagated
through a system. This drastically reduces the traffic and overhead that the
CRDT produces, which in turn increases the performance, while still having
the same properties. These ideas have been implemented by a Add-Wins Last-
Write-Wins Map (awlwwmap) CRDT implementation [5], which have been a
basis for the implementation of CLSet in this thesis.

3
Existing CRDTs
CRDTs is an abstraction for data replicated at multiple sites and for merging
updates from these sites without any conflicts. CRDTs data is guaranteed to
be strongly eventually consistent. This means that all sites have the same state
when they have incorporated the same set of updates, regardless of the order.
Differing applications call for different CRDT implementations.

Some of the significant differences are how the data is stored or represented,
how data of multiple sites are merged and how data gets output when reading.
There exists many different CRDT implementations and even many undiscov-
ered. Some of these implementations use ’set’ as their baseline data structure.
In contrast, others might use ’map’. The difference between set and map is
implementation-specific and does not matter as long as the properties of the
CRDT fulfil the requirements of the application.

Set and map are the two fundamental data types used in the CRDTs which are
going to be discussed. When these data types are used in CRDTs, elements are
associated with some causal context.

Causal means that something relates to, or is caused by something
else. If G and ~ have a causal relation, the value of G is going to be
affected by the value of ~.

This is the general meaning of causal. In terms of CRDTs, causal context refers
to values kept in state, additional to the actual elements themselves. During

17

18 chapter 3 existing crdts

Figure 3.1: Causal context from Delta State Replicated Data Types [15]

Figure 3.2: Dot stores from Delta State Replicated Data Types [15]

synchronization, elements and the causal context will propagate through the
CRDT sites. The context will help other sites decide if they need to apply an
update or not.

Figure 3.1 show an example of a causal context. Whenever elements are added
to the CRDT, an identifier is added. The identifier is a replica-unique integer
which is appended to a globally unique replica identifier. The integer represents
the event of adding this element. The elements being added to the CRDT is
paired with identifiers in the following way, (i, 1), (i, 2),.... The identifiers can
be collected such that we can know which elements are known to which replica.
This pair can be called a dot, and the collection of dots can be called causal
context [15]. During synchronization, other sites can compare the identifiers
to decide if the element should be added or not.

3.1 grow-only set 19

Figure 3.2 show an example of dot stores [15]. A dot store can be seen as an ex-
tension of a causal context seen in Figure 2.3. The dot store will contain all event
identifiers. The dot store can be queried about the identifiers corresponding to
relevant events. Figure 3.2 show three examples of dot stores:

• DotSet - Is a set of dots

• DotFun - Is a function that can map from dots to some lattice +

• DotMap - Is a map from some to some dot store +

The rest of this chapter will discuss some different CRDT designs and their
properties.

3.1 Grow-only Set

Grow-Only Set (gset) is one of the more simplistic CRDTs. It is a set CRDT,
so it does not do any mapping between keys and values. It only supports
add-operations which means that it is not fully a general-purpose CRDT, but
there are still situations where a GSet is sufficient.

GSet(�) def= P(�)
add(B, 4) def= {4} ∪ B

addX (B, 4) def=
{
{4} if 4 ∉ B
{} otherwise

B t B ′ def= B ∪ B ′
in(B, 4) def= 4 ∈ B

all(B) def= B

Figure 3.3: GSet CRDT

Figure 3.3 show the definition of a GSet. We can see that the add-operation is
simply a ∪ (union) of the set and the new element. Therefore the X (delta) of
the add is either a set containing only {4} or an empty set. The merge/join of
GSet is also simply a ∪.

GSet only relies on the elements themself as causal context. This is because as
previously mentioned, GSet is a set CRDT which only support add-operations.
This combination of properties enables GSet to only store the elements with no
additional metadata. During addition and join operations, GSet will match the
actual elements with each other to decide which elements to keep and which

20 chapter 3 existing crdts

to discard.

{0, 1, 2}

{0, 1} {0, 2} {1, 2}

{0} {1} {2}

{}
Figure 3.4: GSet Hasse Diagram of States

Figure 3.4 is a Hasse diagram of GSet states. Between joins, no information is
ever lost. Every new state subsumes the old one through a ∪-operation.

3.2 Add-Wins Set

Add-Wins Set (awset) is not a specific CRDT, but instead a general idea
that when the CRDT receives multiple concurrent operations, it should favour
add-operations. Add-Wins was previously mentioned in 2.5.3 - Theoretical
Background, Other Variations of CRDTs, as one of the defined behaviours for
keeping CRDTs consistent. In this case, it is a set designed with the add-wins
behaviour. As there are multiple ways to design an AWSet, we are going to
look at a specific CRDT from the article Delta State Replicated Data Types [15]
shown in Figure 3.5.

Figure 3.5: Delta CRDT Add-Win Set, Replica i

Figure 3.5 uses a map from elements to sets of dots as dot store.
When an element is added, all dots in the corresponding entry will
be replaced by a singleton set containing a new dot. If a DotSet for
some element were to become empty, such as when removing the
element, the join for�>C"0? 〈�, �>C(4C〉 will remove the entry from
the resulting map. Concurrently created dots are preserved when

3.3 tombstone-free add-wins set 21

joining. The clear delta mutator will put all dots from the dot store
in the causal context, to be removed when joining. As only non-empty
entries are kept in the map, the set of elements corresponds to the
map domain [15].

AWSet is a delta CRDT denoted by the X (delta) symbol in the 033X
8
, A4<>E4X

8

and 2;40AX
8
, also notice that the mutators are denoted by an 8 (replica identifier)

which means that the mutators are named as opposed to being anonymous,
this can also be called a named CRDT. This means that mutations update
only the part of the state that is specific to that replica. The clear-mutator will
remove all elements in the CRDT, but it will not remove dots. The reason that
it does not remove dots is that if it were to receive a late synchronization from
a different site, it would check its dots, and see that this element has already
been seen and cleared, thus ignoring the element.

3.3 Tombstone-Free Add-Wins Set

Elements added to CRDTs are often stored alongside some metadata associated
with that element. Tombstones are metadata associated with elements after
they have been removed from the CRDT. Thus tombstone-free means not to
store metadata after removals. This is also an AWSet, which means that add-
operations are prioritized above others when receiving multiple concurrent
operations.

Tombstone-Free Add-Wins Set (tfawset) is an alteration of a CRDT originally
from Delta State Replicated Data Types [15], but with the name Add-Wins Set
(AWSet). It has since been implemented by [5]. They modified the CRDT to
be a map instead of a set and also improved it to be tombstone-free. After
these modifications, it was given the name Add-Wins Last-Write-Wins Map
(AWLWWMap), but a more fitting name would be TFAWMap. For the purpose
of this thesis, TFAWMap has been modified to TFAWSet for a better comparison
with the other CRDTs.

This means that TFAWSet is originally from the article Delta State Replicated
Data Types [15] and it is described in the following way:

In an add-wins set, removals do not affect elements that have been
concurrently added. In this sense, under concurrent updates, add will
win over a remove of the same element. The implementation uses a
map from elements to sets of dots as dot store. This data-type can be
seen as a map from elements to enable-wins flags, but with a single

22 chapter 3 existing crdts

TFAWSet def
= (� ↩→ P(3>CB)) × P(3>CB)

addX8 ((<,2), 4)
def
= 〈{4 ↦→ 3}, {3}〉 where 3 = next8 (2)

removeX8 ((<,2), 4)
def
= 〈{},<(4)〉

(<,2) t (<′, 2 ′) def= 〈{4 ↦→ 3 ′′ | 4 ∈ dom(<) ∪ dom(<′)
∧ 3 ′′ ≠ {}},

2 ∪ 2 ′〉
where 3 =<(4), 3 ′ =<′(4) and
3 ′′ = (3 ∩ 3 ′) ∪ (3 − 2 ′) ∪ (3 ′ − 2)

in((<,2), 4) def= 4 ∈ dom(<)
all((<,2)) def= dom(<)

Figure 3.6: TFAWSet delta-state CRDT

common causal context, and keeping only elements mapped to an
enabled flag. When an element is added, all dots in the corresponding
entry will be replaced by a singleton set containing a new dot. If a
DotSet for some elementwere to become empty, such as when removing
the element, the join for DotMap<E, DotSet> will remove the entry
from the resulting map. Concurrently created dots are preserved when
joining. The clear delta mutator will put all dots from the dot store
in the causal context, to be removed when joining. As only non-empty
entries are kept in the map, the set of elements corresponds to the
map domain [15].

Figure 3.6 shows a definition of a TFAWSet. It is a CRDT that utilizes dots for
causal context. This definition in specific is a delta CRDT, which means it only
operates on Xs, and a delta CRDT’s mutator will only return a X for the change
that was done. This X is used by the join function to apply the update, and
a delta CRDT can do that with the minimal amount of operations necessary.
TFAWSet’s 033X

8
mutator takes<(<DC0C>A), 2 (2>=C4GC) and 4 (4=CA~) as input

and returns a tuple with the element and the next dot for the context.

3.4 observed-remove set 23

3.4 Observed-Remove Set

A CRDT for general-purpose sets with both addition and removal operations
can be designed as causal CRDTs [15]. Observed-Remove Set (orset) is one
of these causal CRDTs; by utilizing two causal contexts it can keep track of
both added and removed elements. Figure 3.7 from the CLSet [17] paper is a

ORSet def
= B : � ↩→ P(3>CB) × P(3>CB)

add8 (B, 4) def= B{4 ↦→ 〈fst(B (4)) ∪ {next8}, snd(B (4))〉}
addX8 (B, 4)

def
= {4 ↦→ 〈{next8}, {}〉}

remove8 (B, 4) def= B{4 ↦→ 〈fst(B (4)), snd(B (4)) ∪ fst(B (4))〉}
removeX8 (B, 4)

def
= {4 ↦→ 〈{}, fst(B (4))〉}

B t B ′ def= {(4 ↦→ 〈fst(B (4)) ∪ fst(B ′(4)),
snd(B (4)) ∪ snd(B ′(4))〉

| 4 ∈ dom(B) ∪ dom(B ′)}
in(B, 4) def= fst(B (4)) ⊃ snd(B (4))

all(B) def= {4 | 4 ∈ dom(B) : fst(B (4)) ⊃ snd(B (4))}

Figure 3.7: ORSet CRDT

state-based ORSet. Originally defined in Lasp [11].

In an ORSet, every element is associated with two causal contexts. This can be
described the following way in terms of the partial function:

Given a (total) function 5 : dom(5) → . where dom(5) ⊆ - . A partial function
5 : - ↩→ . maps G to ⊥. if G ∉ dom(5), where ⊥. is the bottom element of . .
For natural numbers N, ⊥N = 0. For P(() ordered with ⊆, ⊥P(() = {}.

As mentioned, the ORSet’s causal context consists of two sets. One of which
keeps track of elements added to the CRDT, whereas the other keeps track
of elements removed from the CRDT. When an element is added and later
removed, it is not deleted. It is instead added to the remove-context, hence the
name Observed-Remove Set.

The partial function conveniently simplifies the specification of some mutators
and the join operation. A causal context is a set of event identifiers, also known
as dots (typically a pair of a site identifier and a site-specific sequence number).

24 chapter 3 existing crdts

Additions and removals are achieved with inflationary updates of the associated
causal contexts. Using causal contexts, we can tell explicitly which additions
of an element have been later removed. However, maintaining causal contexts
for every element can be costly, even though it is possible to compress causal
contexts into version vectors, especially under causal consistency [17].

3.5 Multi-Value Register

Multi-Value Register (mvreg) supports read andwrite operations just like other
CRDTs. However, during concurrent writes, the join operation will include all
the values that were written concurrently. Note that the next write under the
same key will overwrite all the current values.

Figure 3.8: MVRegister CRDT [15]

Figure 3.8 show a definition of a MVReg. Initial implementations of
these registers tagged each value with a full version vector; here we
introduce an optimized implementation that tags each value with a
single dot, by using a �>C�D= 〈+ 〉 as dot store. In Figure 3.8, we can
see that the write delta mutator returns a causal context with all dots
in the store. They are then removed upon join, together with a single
mapping from a new dot to the value written; as usual, the new dot
is also put in the context. A clear operation simply removes current
dots, leaving the register in the initial empty state. Reading simply
returns all values mapped in the store [15].

The MVReg CRDT works much like other CRDTs. The MVReg FA8C4 mutator
is similar to the AWSet’s 033 mutator. The MVReg 2;40A mutator is identical
to the AWSet’s 2;40A mutator. The main difference is that concurrent writes
will write all elements into a list. This specific implementation in Figure 3.8
will return a random element on A403. However, a different and more versatile
approach is to return the whole list and let the application itself select the
value it wants.

4
New CRDTs
In this chapter, we will look at two new CRDT implementations, CLSet [17]
and MVMap. These CRDT designs are new additions of CRDTs in the state-
based general-purpose category. CLSet is a new, very simple CRDT based on
GSet. MVMap is a new CRDT inspired by MVRegister with a new interesting
feature.

4.1 CLSet

Before looking at CLSet, we should look at GSet and study it to find a way to
create a new general-purpose CRDT. By understanding GSet, we can better
understand the reasoning behind the CLSet design.

The fundamental issue that a general-purpose set CRDT must address is how to
identify the causality between the different addition and removal operations.
The logic behind CLSet originates from the GSet CRDT.

Figure 4.1, left side, show the definition of a GSet. We can see that the add-
operation is simply a ∪ (union) of the set and the new element. Therefore
the X (delta) of the add is either a set containing only {4} or an empty set.
The merge/join of GSet is also simply a ∪. The right side of Figure 4.1 is a

25

26 chapter 4 new crdts

GSet(�) def= P(�)
add(B, 4) def= {4} ∪ B

addX (B, 4) def=
{
{4} if 4 ∉ B
{} otherwise

B t B ′ def= B ∪ B ′
in(B, 4) def= 4 ∈ B

all(B) def= B

{0, 1, 2}

{0, 1} {0, 2} {1, 2}

{0} {1} {2}

{}

Figure 4.1: GSet CRDT and Hasse diagram of states

Figure 4.2: GSet Equivalence Classes of Concurrent Updates

Hasse diagram of GSet states. The states are partially ordered1, inflationary2
and join-irreducible3. With this, we can also say that the GSet states form a
join-semilattice.

A GSet CRDT is limited in its functionality because it can not remove elements.
We would like a CRDT where we can both add and remove elements. This
type of CRDT can be called a general-purpose CRDT. The challenge for a
general-purpose CRDT lies in the consistency and causality of concurrent
operations.

1. A Partially Ordered Set is a way to say that some elements in a set precede others.
2. Inflationary refer to the fact that the state is always increasing. No information is ever lost.
Every new state subsumes the old one.

3. Join-irreducible refer to the join of two states where the resulting join is the minimal
result. An element 0 in a lattice ! is said to be join-irreducible if and only if 0 is not a
bottom element, and, whenever 0 = 1 ∨ 2, then 0 = 1 or 0 = 2.

4.1 clset 27

Figure 4.2 shows a scenario of concurrent updates. There are three sites,
Site A, Site B and Site C. The top of the Figure is the beginning while the
bottom of the Figure is the end. The right-most column shows the equivalence
classes of the operations. All sites start with the same state. Site A and Site B
start by adding 0. We can see that two sites performing the same operation
result in equivalent states. The arrows between the different sites indicate a
synchronization between two sites. Synchronization of two equal states results
in the same states as before the synchronization. Also, in terms of remove-
operations, we can see that multiple remove-operations result in the same
equivalent state.

Finally, look at the right-most column to see the equivalence classes of Site C
at specific points in time, specified by the dotted line. Text in red indicates the
most recent change. Whenever a site does an operation, it will update their
local equivalence class data, then synchronize to the other sites.

The first look at the equivalence classes {{01
�
}} for Site C, we see that the first

addition’s equivalence class is added after the synchronization between Site B
and Site C. The element also says that it originates from Site B and that the
addition from Site A has not been received yet.

If we look at the second version of the equivalence classes {{01
�
}, {02

�
}} we can

see that Site C has removed element �, but not yet received the addition from
Site A nor the removal from Site B. Also, the equivalence classes for these two
operations are stored separately, because the first operation was an addition,
the second was a removal, so the corresponding elements for these operations
were not equal.

The third look at the equivalence classes {{01
�
}, {02

�
, 02
�
}} show that it has

received the remove-operation from Site B. We can see that the operation is
placed together with the remove-operation from Site C.

The fourth look of the equivalence classes {{01
�
, 01
�
}, {02

�
, 02
�
, 02
�
}, {03

�
}} tells

us that the first addition from Site A is received and that it is placed together
with the first equivalence class. The first removal from Site A is also received
and placed in the second equivalence class. The second add of element � is
received from Site B, and is added in a new equivalence class.

The final look at the equivalence classes {{01
�
, 01
�
}, {02

�
, 02
�
, 02
�
}, {03

�
}, {03

�
}}

show us that Site C has removed 0 one last time, and this operation is placed
in a new equivalence class.

The result is four different equivalence classes, after a set of operations on these
three sites. The takeaway here is that at four places in time did this CRDT system

28 chapter 4 new crdts

have equivalent states, the same number of times as the number of equivalence
classes. The CRDT system as a whole did the following operations (if we ignore
concurrent operations as they have no effect), 033 (0), A4<>E4 (0), 033 (0),
A4<>E4 (0), which sums up to four operations and therefore four equivalence
classes.

By using the information just learned, we can create a new CRDT using the
equivalence classes count, but in a much simpler form. The number of equiv-
alence classes reflects the number of times a specific element is added and
removed, and this number is precisely what the CLSet CRDT will track, we can
call this count the causal length (CL).

CLSet(�) def= � ↩→ N

add(B, 4) def=
{
B{4 ↦→ B (4) + 1} if even

(
B (4))

B if odd
(
B (4))

addX (B, 4) def=
{
{4 ↦→ B (4) + 1} if even

(
B (4))

{} if odd
(
B (4))

remove(B, 4) def=
{
B if even

(
B (4))

B{4 ↦→ B (4) + 1} if odd
(
B (4))

removeX (B, 4) def=
{
{} if even

(
B (4))

{4 ↦→ B (4) + 1} if odd
(
B (4))

(B t B ′) (4) def= max
(
B (4), B ′(4))

in(4, B) def= odd
(
B (4))

all(B) def= {4 | odd
(
B (4))}

Figure 4.3: CLSet CRDT

CLSet is designed with the abstraction of causal length, which is based on two
observations.

First, the additions and removals of a given element occur in turns, one causally
dependent on the other. Remove is an inverse of the last add it sees. Similarly,
an addition is an inversion of the last removal it sees (or none, if the element
has never been added).

Second, two concurrent executions of the same mutation of an anonymous
CRDT fulfil the same purpose and therefore are regarded as the same update.

4.2 multi-value map 29

Seeing one means seeing both. Two concurrent reverses of the same update
are also regarded as the same one [17].

Figure 4.3 shows the CLSet CRDT. An element 4 is in the set when its causal
length is an odd number. A local addition has an effect only when the element
is not in the set. Similarly, a local removal has an effect only when the element
is actually in the set. A local addition or removal simply increments the causal
length of the element by one. For every element 4 in B and/or B ′, the new
causal length of 4 after merging B and B ′ is the maximum of the causal lengths
of 4 in B and B ′. The CLSet CRDT does not rely on dots for synchronization
over multiple sites; it only uses causal length, which in turn is very similar to
Figure 2.3’s causal context [17].

4.2 Multi-Value Map

With many concurrent users using a CRDT system (multiple CRDT sites in
use), we might often stumble into the situation where multiple sites write the
same key at the same time. Typically, when multiple sites join their states,
we would experience that only the value with the latest timestamp would
remain (in the case of Last-Write-Wins (lww)). A multi-value CRDT would
instead join concurrently added values together to a list of values. From this
list, the application itself can decide on what to do with the result. The aim
with Multi-Value Map (mvmap) is to make it easier to work with multi-value
CRDTs and to automate tasks such as processing information read from the
CRDT.

Figure 4.4 show the definition of delta-stateMVMapwhich is inspired byMVReg
from section 3.5 - Multi-Value Register. The functionality of MVMap is very much
the same as MVReg. However, MVMap enables the user to prematurely define
what happens to the result coming out of the read query. The way it works is
that the user specifies which type of resolve function the CRDT should use. This
function should accept a list of values, perform some operation, then return a
result. This can be seen in the read function in Figure 4.4.

The add mutator creates new dots and maps keys to pairs of dot and value. The
remove mutator removes values based on keys. The join of two states includes
all keys and concurrently added values. If two different sites concurrently add
something to the same key, the dots will be the same, resulting in the next join
to include both values. The read function performs the resolve function from
the application on the given key’s value. This value sent to the resolver can
both be a list of values or a single value.

30 chapter 4 new crdts

MVMap def
= (↩→ (3>CB → +)) × P(3>CB)

addX8 (〈<,2〉, :, E)
def
= 〈{: ↦→ 〈3, E〉}, 3〉 where 3 = {next8 (2)}

removeX8 (〈<,2〉, :)
def
= 〈{}, dom(<(:))〉

〈<,2〉 t 〈<′, 2 ′〉 def= 〈{: ↦→<: | : ∈ dom(<) ∪ dom(<′) ∧ dom(<:) ≠ {}},
2 ∪ 2 ′〉

where 3 = dom(<(:)), 3 ′ = dom(<′(:)) and
dom(<:) = (3 ∩ 3 ′) ∪ (3 − 2 ′) ∪ (3 ′ − 2) and
<: = {〈3: , E〉| 3: ∈ dom(<(:)) ∧ (<(:)) (3:) = E

∨ 3: ∈ dom(<′(:)) ∧ (<′(:)) (3:) = E}
read(〈<,2〉, :) def= resolve(+:)

where +: = {E | ∃3 ∈ dom(<(:)) : E = (<(:)) (3)}

Note: Because dots are globally unique, E in <: is deterministically decided
even when 3: ∈ dom(<(:)) ∪ dom(<′(:))

Figure 4.4: MVMap CRDT

5
Implementation
The implementation for this thesis is written in the Elixir programming lan-
guage [7]. The basis for the code is an implementation of AWLWWMap found
on GitHub [5]. This implementation is then again based on AWSet from [15].
The code is written in a modular fashion, such that one can develop different
CRDTs and attach them to the existing implementation. The code, even though
it is modular, was not sufficient, so it has since been refactored to more easily
pair with different CRDT implementations.

The project is structured as illustrated in Figure 5.1. The CRDTs are split into
two categories, dots CRDT and simple CRDT. This is because TFAWSet, ORSet
andMVMap all utilize dots for causal context, whereas CLSet does not. To avoid
any confusion,we can give names to some of the parts and actions of the CRDTs.
Parts such as TFAWSet, ORSet, MVMap and CLSet can be called the CRDT layer.
The logic that takes X ’s (deltas) from the CRDT layer and synchronizes them to
neighbours can be called the synchronization layer. The synchronization layer,
for the most part, does two things: synchronize and apply operations. As such,
we can say that it has two phases, the synchronization phase and the operation
phase. This was also mentioned in Section 2.5 - Conflict-free Replicated Data
Types.

31

32 chapter 5 implementation

Figure 5.1: Project File-Structure

5.1 GenServer

The synchronization layers are implemented in an Elixir behaviour called
GenServer. The GenServer is in simple terms a skeleton server, with a set of
functions you can implement. Some of these functions include:

• init (automatically called whenever the GenServer process is created)

• handle_info (receives messages from other processes)

• handle_call (receives synchronous requests)

• handle_cast (receives asynchronous requests)

Init is a function implemented in GenServer. If implemented, it will be called
during the creation of the GenServer process.

handle_info is a function implemented in GenServer. It specifically re-
ceives messages which is sent in the form of send, Process.send or Pro-

5.2 crdt layer api 33

cess.send_after. These send functions all sends messages from one
process to another, and can then be received through a GenServer han-
dle_info.

handle_call and handle_cast is similar to each other as they both
respond to requests. The difference is that ’cast’ is asynchronous, whereas
’call’ is synchronous. They are called by calling GenServer.call or
GenServer.cast accordingly. The GenServer-call and -cast functions take
as input, the GenServer process which should receive the request, along with
a message.

The return value of handle_info, handle_call and handle_cast
should be a tuple in one of the following formats {:reply, return_value,
new_state} or{:noreply, new_state}. So this is where the GenServer
state is updated; by returning an updated version in the return tuple.

5.2 CRDT Layer API

The CRDT layer is connected to the CRDT synchronization layer. Whenever the
synchronization layer needs to update the CRDTs state, it will perform actions
through the CRDT layer API. The API consist of the following functions:

• new

• add

• remove

• join

• read

The new function is called inside the synchronization layer whenever the user
creates a new CRDT instance. It simply makes an instance of the CRDT layer’s
module struct. add is used in the synchronization layer whenever the user
does an add-mutation. remove is used when the user does a remove-mutation.
join, joins two CRDT Xs together. Usually one of the Xs is the existing state,
and the other is an incoming change. read returns the content of the CRDT.
It does not return any form of context, or tombstone related data (removed
values), which means that it is strictly values that are in the CRDT and have
not been removed.

34 chapter 5 implementation

5.3 Delta CRDT API

The file delta_crdt.ex is the API which the user interfaces with to use
the CRDTs. For increased modularity it is also placed outside of both dots and
simple directories so there is one interface for both CRDT categories. It has the
following API:

• start_link (starts a new CRDT instance)

• set_neighbours (set the neighbouring CRDTs for a CRDT)

• mutate (mutate a CRDT)

• read (read a CRDT)

In Elixir start_link is a normal name for a function which starts a process.
The delta CRDT start_link calls a GenServer start_link, thus it has
been given the same name since it indirectly starts a GenServer. The functions
set_neighbours, mutate and read all sends calls and messages to the
GenServer.

5.3 delta crdt api 35

1 def s t a r t _ l i n k (crdt_module , backend , opts \\ []) do
2 i n i t _ a r g s =
3 Keyword . put (opts , : crdt_module , crdt_module)
4 |> Keyword . put_new(: s ync_ in t e r va l , @defaul t_sync_ int)
5
6 case backend do
7 : s imple −>
8 GenServer . s t a r t _ l i n k (SimpleCrdt . Crdt , i n i t _ a r g s , opts)
9

10 : dots −>
11 GenServer . s t a r t _ l i n k (DotsCrdt . Crdt , i n i t _ a r g s , opts)
12 end
13 end
14
15 def se t_ne ighbours (crdt , neighbours) when i s _ l i s t (neighbours)

do
16 send (crdt , { : set_neighbours , neighbours })
17 : ok
18 end
19
20 def mutate (crdt , f , a , t imeout \\ 5000)
21 when is_atom (f) and i s _ l i s t (a) do
22 GenServer . c a l l (crdt , { : operat ion , { f , a}} , t imeout)
23 end
24
25 def read (crdt , t imeout \\ 5000) do
26 GenServer . c a l l (crdt , : read , t imeout)
27 end

Listing 5.1: Delta CRDT API

Listing 5.1 show the implementation of the delta CRDT API. start_link
takes one of the CRDT layers as input together with what type of backend it
uses. The backend can either be :simple or :dots. It will set up a set of
initial arguments followed by starting the appropriate GenServer process for
the given backend. The GenServer will remember the CRDT module for any
future mutations. The return value is a Process Identifier (pid) for the CRDT
process.

set_neighbours takes two inputs. The first one is a CRDT PID, and the
second one is a list of CRDT PIDs. It sends a message to the first PID asking it
to update its state to the given list of PIDs.

mutate takes a CRDT PID, a function name in the form of an atom, and a
list of two values. It does a GenServer.call to the PID, asking it to do
an operation. Which operation it does is chosen by the value of f. Inside the
GenServer, it will use apply, which requires both the CRDT module stored in

36 chapter 5 implementation

state and the function name stored in f, to decide what function to call. The
list a should consist of two values if the CRDT layer is a map CRDT, the first is
going to be the key and the second is going to be the value stored under that
key. However, if the CRDT layer is a set CRDT, only one value is needed.

read does a GenServer.call to a CRDT PID. It returns the result of the
CRDT layer’s read function.

5.4 Dots CRDT

The dots implementations consist of three different CRDTs; TFAWSet, ORSet
and MVMap. In addition to these three implementations there is a file called
dots.ex. This file is for managing dots, and is implemented separately such
that multiple CRDT implementations can make use of it. The dots implemen-
tation contains an API for interacting with dots:

• compress (anti-entropy algorithm returning a version vector containing
the highest sequence number for each replica)

• decompress (returns a list of all versions of all contexts)

• next_dot (computing the next dot based on given context)

• union (computes the union of two dot maps)

• difference (computes the difference of two dot maps)

• member? (check if a dot is a member of a dot map)

The last file in the dots_crdt directory is crdt.ex. This file implements the
module which is responsible for synchronizing changes between the different
CRDT sites, also called the synchronization layer. It stores the state of the CRDT,
keeps a list of neighbours, performs operations, stores changes and synchronizes
these changes to its neighbours in intervals. This file is the ’brain’ of the CRDT
and is implemented outside of the CRDT layer for modularity.

5.4 dots crdt 37

1 def handle_ info (: sync , s t a t e) do
2 s t a t e = s yn c _ i n t e r v a l _ o r _ s t a t e _ t o _ a l l (s t a t e)
3
4 Process . s end_a f t e r (s e l f () , : sync , s t a t e . s yn c _ i n t e r v a l)
5
6 { : noreply , s t a t e }
7 end

Listing 5.2: Dots CRDT Synchronization Phase

The synchronization layer is implemented as an Elixir GenServer [6]. A
GenServer behaves like a server; it can receive messages and perform op-
erations based on which type of message it receives. For example, during
initialization, the synchronization layer will send a message to itself containing
the :sync event.

The synchronization layer will receive the message in a handle_info func-
tion, as can be seen in Listing 5.2. The function will synchronize state to its
neighbours, followed by calling Process.send_after which then again
sends a :sync message to itself after a delay, telling the synchronization layer
to synchronize state again. The GenServer will repeat the :sync message
repeatedly in an interval, as such it can be seen as a synchronization loop. The
benefit of sending messages to itself is that the implementation is consistent in
only using GenServer built-in functionality. Also, we forgo any race conditions
as the GenServer keeps a message queue internally and processes the messages
synchronously. sync_interval_or_state_to_all is the function which
sends messages to neighbouring sites. Inside this function, it will call send,
which sends messages. Send is similar to Process.send_after, but instead
of being after a delay, it is instant.

As mentioned previously, the synchronization layer is split into two phases, the
operation phase and the synchronization phase. In practice, the synchronization
layer does not switch phases. However, it can instead be seen as being in
the operation phase when processing an :operation message, likewise it
can be seen as being in the synchronization phase while processing a :sync
message.

38 chapter 5 implementation

1 def handle_ info ({ : d i f f , d i f f , keys } , s t a t e) do
2 new_crdt_s ta te = s t a t e . crdt_module . j o i n (s t a t e . c rd t _ s t a t e ,

d i f f , keys)
3
4 new_state = Map. put (s t a t e , : c r d t _ s t a t e , new_crdt_s ta te)
5
6 { : noreply , new_state }
7 end

Listing 5.3: Dots CRDT Receive Delta

The synchronization phase sends out Xs, which are then received in han-
dle_info along with the :diff event. The dots CRDT implementation for
:diff can be seen in Listing 5.3. There is not much to be done when receiving
these messages, simply merge diff with the current state, through the
CRDT module stored in state. Afterwards, insert new_crdt_state into
the GenServer state and then return the updated state.

1 def hand le_ca l l ({ : operat ion , operat ion } , _from , s t a t e) do
2 { : reply , : ok , handle_operat ion (operat ion , s t a t e) }
3 end
4
5 defp handle_operat ion ({ funct ion , [key | r e s t _ a r g s] } , s t a t e)

do
6 de l t a =
7 apply (s t a t e . crdt_module , funct ion , [key | r e s t _ a r g s] ++

[s t a t e . node_id , s t a t e . c r d t _ s t a t e])
8
9 update_s ta te_wi th_de l ta (s t a t e , de l ta , [key])

10 end

Listing 5.4: Dots CRDT Operation Phase

Listing 5.4 show how the CRDT handles :operation messages. It calls
the handle_operation function, which in turn calls apply. apply is
an Elixir function for programmatically calling functions where the name
of the function can be stored in a variable. Notice the function uses the
value of state.crdt_module to decide which module to search for the function.
The CRDT module is set during initialization of the synchronization layer.
The return value from each of the operations should be a X . The X can be
used to update the CRDT state through the CRDT layer’s join-function. The
final step is done inside update_state_with_delta. In this function, the
synchronization layer will merge the X with the current state. This is also where
the synchronization layer stores each new X as an outstanding synchronization.
The outstanding synchronizations will be sent to neighbours during the next
synchronization.

5.4 dots crdt 39

The state of the CRDT is stored in the GenServer’s state. During the operation
phase a new X is computed which is then merged with the old state to get
the new state. The CRDT state is now updated to the new state. This means
that the different CRDT layers (TFAWSet, ORSet, ...) is not stateful. Instead,
the CRDT layer works like an interface taking the CRDT state as one of its
parameters and returning a X without doing any permanent changes. The
changes happen after merging the state with a X and storing the new state in
the GenServer state.

5.4.1 TFAWSet

One of the CRDTs discussed in this thesis is TFAWSet. TFAWSet is a modification
of AWLWWMap from [5]. This CRDT layer is made as a simple Elixir module,
containing a data structure and a set of functions.

1 defmodule Del taCrdt . DotsCrdt . TFAWSet do
2 de f s t r u c t dots : MapSet . new() ,
3 value : %{}
4
5 . . .

Listing 5.5: TFAWSet Module and Struct

Listing 5.5 show the TFAWSet module along with the definition of its struct.
The struct contains two fields, dots which is a MapSet, and value which is
a Map. The rest of the module implements the CRDT layer API mentioned in
5.2.

1 def add(key , i , s t a t e) do
2 case Map . f e t ch (s t a t e . value , key) do
3 : e r ro r −>
4 d = Dots . next_dot (i , s t a t e . dots)
5
6 %TFAWSet{
7 dots : MapSet . new([d]) ,
8 value : %{key => MapSet . new([d]) }
9 }

10
11 _ −>
12 TFAWSet . new()
13 end
14 end

Listing 5.6: TFAWSet Add

40 chapter 5 implementation

Listing 5.6 show the implementation of add. It takes a key, an identifier and a
state as input. It does a Map.fetch in the state for the given key. If unable
to find the key, it will return :error, which means that we wish to add the
element. It generates a new dot. The new dot is based on the identifier and the
current set of dots. Afterwards, it will create a new TFAWSet struct instance
with the new dot and element; this is the X . In the case of Map.fetch finding
an existing element, the function will return an empty TFAWSet, which is the
same as no changes (no X).

1 def remove (key , s t a t e) do
2 to_remove_dots =
3 case Map . f e t ch (s t a t e . value , key) do
4 { : ok , dots } −> dots
5 : e r ro r −> []
6 end
7
8 %TFAWSet{
9 dots : MapSet . new(to_remove_dots) ,

10 value : %{}
11 }
12 end

Listing 5.7: TFAWSet Remove

Listing 5.7 show the TFAWSet remove, which just Map.fetch for the key, if it
were successfully found, it figures out which dots should be removed, followed
by creating a new X . If it returns :error it results in an empty X .

1 def j o i n (delta1 , de l ta2) do
2 new_dots = Dots . union (de l ta1 . dots , de l ta2 . dots)
3
4 join_maps (delta1 , de l ta2)
5 |> Map. put (: dots , new_dots)
6 end

Listing 5.8: TFAWSet Join

The TFAWSet’s join function can be seen in Listing 5.8. It takes two X as
input. The function generates a new set of dots which is the union of all dots.
To join the values of the two Xs, it calls join_maps. In there it will resolve
any conflict by enumerating through all values, extracting that value from both
Xs and joining their respective dots with a union operation.

5.4 dots crdt 41

1 def read (%{ value : va lues }) do
2 Map. keys (va lues)
3 end
4
5 def read (%{ value : va lues } , subse t) when i s _ l i s t (subse t) do
6 read (%{ value : Map . take (values , subse t) })
7 end
8
9 def read (crdt , key) do

10 read (crdt , [key])
11 end

Listing 5.9: TFAWSet Read

With this implementation the read function is quite simple. Listing 5.9 shows
the implementation. It consists of three functions, where it is possible to read
a single value, a subset of values or the whole set. The appropriate function
will be called depending on the input. Both the function which reads a single
value and the function which reads a subset will call the last function, but
with modified input, hence the last function can be seen as the ’main’ read
function.

5.4.2 ORSet

ORSet is a second CRDT discussed in this thesis. ORSet is implemented from a
definition in [15]. This CRDT layer is made as an Elixir module, containing a
data structure and a set of functions.

1 defmodule Del taCrdt . DotsCrdt . ORSet do
2 de f s t r u c t dots : MapSet . new() ,
3 value : %{}
4
5 . . .

Listing 5.10: ORSet Module and Struct

Listing 5.10 show the ORSet module and its struct. It has two fields, dots
which is a MapSet, and value which is a Map.

42 chapter 5 implementation

1 def add(key , i , s t a t e) do
2 de l t a_do t s =
3 case Map . f e t ch (s t a t e . value , key) do
4 : e r ro r −> MapSet . new([Dots . next_dot (i , s t a t e . dots)])
5 { : ok , {d , d}} −> MapSet . new([Dots . next_dot (i , s t a t e .

dots)])
6 end
7
8 %ORSet{
9 dots : de l ta_dots ,

10 value : Map . put (Map . new() , key , { de l ta_dots , MapSet . new() }
)

11 }
12 end

Listing 5.11: ORSet Add

Listing 5.11 show the implementation of add. It takes a key, an identifier and
a state as input. With these parameters, it performs a Map.fetch after the
given value in the state. If given an :error, it knows that the value does not
already exist; thus, it generates the next dot and returns a X containing the
new dot and the new value.

If the Map.fetch returns {:ok, {d, d}}, it means that it found the value
and that it has been previously removed. This is because the ORSet stores val-
ues in the following format %{value => {add-dots, remove-dots}}.
Furthermore, when Elixir tries to match something in the following format
{d, d} it looks for a tuple of two values where both are the same. As such,
when that condition matches, it means that both the add-dots and the remove-
dots are equal. This, in turn, means that we know that the value has previously
been removed. In this case, it will re-add the element by generating the next
dot and return a X containing the new dot and value.

1 def remove (key , s t a t e) do
2 {a , r } = Map. get (s t a t e . value , key , {MapSet . new() , MapSet .

new() })
3
4 %ORSet{
5 dots : MapSet . new() ,
6 value : Map . put (Map . new() , key , {MapSet . new() , MapSet .

d i f f e r en c e (a , r) })
7 }
8 end

Listing 5.12: ORSet Remove

Listing 5.12 show the implementation of remove. It takes a key and state as

5.4 dots crdt 43

input. It performs a Map.get on the state, with the key in question. The last
argument to Map.get is a default value which is returned if the key is not
found. Notice that the default value is the same format as the entries stored in
state, thus if the key is not found Map.get will essentially return an empty
entry. Afterwards, it generates a X with the key and appropriate dots dependent
on if the key existed or not.

1 def j o i n (%{ dots : d1 , value : v1} , %{ dots : d2 , value : v2}) do
2 dots = Dots . union (d1 , d2)
3
4 v =
5 Map. merge (v1 , v2 , fn _key , {a1 , r1 } , {a2 , r2 } −>
6 {MapSet . union (a1 , a2) , MapSet . union (r1 , r2) }
7 end)
8
9 %ORSet{

10 dots : dots ,
11 value : v
12 }
13 end

Listing 5.13: ORSet Join

ORSet’s join function can be seen in Listing 5.13. It takes two Xs as input. It will
join both their dot-maps through a union. Afterwards, it does a Map.merge,
which will automatically merge entries which are not present in both maps.
Entries which are present in both maps will call the given merge function. The
merge function will receive two tuples, the first one is the add-dots and the
remove-dots for the entry in the first X , whereas the second tuple is the add-dots
and the remove-dots for the entry in the second X . With this information, it will
create a new entry-tuple. The new tuple consists of the union of the add-dots
and the union of the remove-dots. Finally, the join function returns the new
state for the ORSet.

44 chapter 5 implementation

1 def read (%{ value : v}) do
2 Enum. reduce (v , MapSet . new() , fn {k , {a , r }} , acc −>
3 i f MapSet . subse t ?(a , r) do
4 acc
5 e l s e
6 MapSet . put (acc , k)
7 end
8 end)
9 end

10
11 def read (crdt , keys) when i s _ l i s t (keys) do
12 new_values = Map. take (c rd t . value , keys)
13 read (Map . put (crdt , : value , new_values))
14 end
15
16 def read (crdt , key) do
17 read (crdt , [key])
18 end

Listing 5.14: ORSet Read

The read function for the ORSet can be seen in Listing 5.14. It consists of
three different functions; a function to read a single value, a subset of values
or the whole set. Elixir will call the appropriate function depending on the
input it receives. Both the function which reads a single value and the function
which reads a subset will call the last function, but with modified input, hence
the last function can be seen as the ’main’ read function. The function will
perform a reduction on the state, where it enumerates through the value
map, and accumulates entries only where the add-dots are not a subset of the
remove-dots.

5.4.3 MVMap

MVMap is implemented in a way that it is just the basis for other CRDTs.
What this means in practice is that MVMap is almost fully implemented, and
it requires the user to create a separate module which then implements a
resolve function for the MVMap.

5.4 dots crdt 45

1 defmodule Del taCrdt . DotsCrdt . GenericMVMap do
2 defmacro __using__ (_opts) do
3 quote do
4 import unquote (GenericMVMap)
5
6 de f s t r u c t dots : MapSet . new() ,
7 value : %{} ,
8 f : n i l
9 . . .

10
11 end
12 end
13 end
14
15 defmodule Del taCrdt . DotsCrdt .MaxMap do
16 use Del taCrdt . DotsCrdt . GenericMvMap
17
18 defp r e so l v e (%{vs : vs }) do
19 Enum.max(vs , fn −> n i l end)
20 end
21 end

Listing 5.15: MVMap Module, Struct and MaxMap Resolve

Listing 5.15 shows how the MVMap module is created, and how a module called
MaxMap is using the MVMap to implement a resolve function which picks
out the maximum entry. The MVMap struct has three fields; dots which is a
MapSet, value which is a Map, and f which is a function. f will be further
explained later.

1 def add(key , value , i , %{ dots : dots , value : kdv} = s t a t e) do
2 dot = Dots . next_dot (i , dots)
3 dv = Map. get (kdv , key , %{})
4
5 %{ s t a t e | value : %{key => %{dot => value }} , dots : MapSet .

new([dot | Map . keys (dv)]) }
6 end

Listing 5.16: MVMap Add

Furthermore, MVMap module still has the standard CRDT layer API. Listing
5.16 show the implementation of add. Notice that MVMap is a map CRDT,
which means that it takes a value as input, in addition to the key, identifier and
state. add generates the next dot and does a Map.get to see if the given key
has any existing dots. Either way, the key-value pair is added, in the format
%{key => %{dot => value}}. This is also the reason for the variable
name kdv which means key-dot-value. If there were an existing dot for the

46 chapter 5 implementation

given key, it is stored in the dots MapSet. This way, the CRDT can know that
this dot has previously been seen. The returned value is a delta, containing a
new value and any already existing dots for the entry.

1 def remove (key , %{ value : kdv} = s t a t e) do
2 dots = Map. get (kdv , key , %{}) |> Map. keys () |> MapSet . new()
3 %{ s t a t e | value : %{} , dots : dots }
4 end

Listing 5.17: MVMap Remove

The remove function can be seen in Listing 5.17. It takes just a key and state
as input. It performs a Map.get for the given key, to get the corresponding
dots. It returns a X containing the dots it found.

1 def j o i n (s1 , s2) do
2 %{dots : c1 , value : kdv1} = s1
3 %{dots : c2 , value : kdv2} = s2
4
5 {common1 , only1 } = Map. s p l i t (kdv1 , Map . keys (kdv2))
6 {common2 , only2 } = Map. s p l i t (kdv2 , Map . keys (common1))
7
8 new_common =
9 Map. merge (common1 , common2 , fn _key , dv1 , dv2 −>

10 j o in_dv (dv1 , c1 , dv2 , c2)
11 end)
12
13 new_only1 = jo in_kdv (only1 , c2)
14 new_only2 = jo in_kdv (only2 , c1)
15
16 new_kdv = new_common |> Map. merge (new_only1) |> Map. merge(

new_only2)
17
18 %{s1 | dots : Dots . union (c1 , c2) , value : new_kdv}
19 end

Listing 5.18: MVMap Join

Listing 5.18 show the implementation of join. It starts by finding all entries
which are common in both Xs and all entries which are unique for both.
Afterwards, the common entries’ maps are merged. This merge function merges
the dot-values for each key using a join_dv function. This function does
intersection- and difference-operations on dots to make sure every relevant dot
is retrieved and saved. Also, since this CRDT is a multi-value CRDT, join_dv
will include multiple values if the same keys are present in both Xs. The result
is that dots from both Xs are merged into one big set of common keys and
all their corresponding dots. The unique entries for both Xs are also merged

5.4 dots crdt 47

together with a join_kdv function. This function enumerates through each
entry. For each key, it accumulates all dots which are not known to the other
context. It does this with the help of Dots.difference. All these different
maps can now easily be merged with Map.merge since there should be no
conflicts, hence no merge function has been given to Map.merge. Finally, the
join returns the new state.

1 def read (c rd t) do
2 Enum. reduce (c rd t . value , %{} , fn {k , dvs } , acc −>
3 Map. put (
4 acc ,
5 k ,
6 r e so l v e (%{vs : Map . va lues (dvs) , f : c rd t . f })
7)
8 end)
9 |> Enum. f i l t e r (fn {_k , v} −> v != [] end)

10 |> Map. new()
11 end
12
13 def read (crdt , keys) when i s _ l i s t (keys) do
14 new_values = Map. take (c rd t . value , keys)
15 read (Map . put (crdt , : value , new_values))
16 end
17
18 def read (crdt , key) do
19 read (crdt , [key])
20 end

Listing 5.19: MVMap Read (resolve)

The read function of MVMap is where resolve takes effect. Listing 5.19
shows three different read functions. They will get called depending on which
input is given, but as can be seen, they end up calling the ’main’ read function
either way. The ’main’ read function performs a reduction,where it accumulates
the result of resolve. We saw an example implementation of a resolve
function in Listing 5.15.

The resolve function receives each key’s value and resolves it based on which
type of CRDT the user chose to create. The value given to resolve can either
be a single value, or a list of values. In cases when using CRDTs such as MapMap
or a ReduceMap, the resolve function enumerates and performs operations on
each value. For this reason, MVMap keeps a function f stored in state. f is
passed on to the resolve function, which calls the function on each element.
Results from resolve which yields empty lists are removed.

48 chapter 5 implementation

1 defmodule Del taCrdt . DotsCrdt . AvgMap do
2 use Del taCrdt . DotsCrdt . GenericMvMap
3
4 defp r e so l v e (%{vs : vs }) when i s _ l i s t (vs) do
5 Enum. sum(vs) / length (vs)
6 end
7 end
8
9 defmodule Del taCrdt . DotsCrdt .SumMap do

10 use Del taCrdt . DotsCrdt . GenericMvMap
11
12 defp r e so l v e (%{vs : vs }) do
13 Enum. sum(vs)
14 end
15 end
16
17 defmodule Del taCrdt . DotsCrdt . ReduceMap do
18 use Del taCrdt . DotsCrdt . GenericMvMap
19
20 defp r e so l v e (%{vs : vs , f : f }) when i s _ f un c t i on (f) do
21 Enum. reduce (vs , [] , f)
22 end
23 end
24
25 defmodule Del taCrdt . DotsCrdt .MvMap do
26 use Del taCrdt . DotsCrdt . GenericMvMap
27
28 defp r e so l v e (%{vs : vs }) do
29 vs
30 end
31 end

Listing 5.20: MVMap - Resolve Examples

Listing 5.20 show some more examples of MVMap resolve modules. It is es-
sentially a straightforward design, which only requires the user to specify
which type of CRDT they want, and possibly provide a function f dependent
on which type of CRDT they made. Afterwards, just reading the CRDT will
execute resolve and yield the result.

5.5 Simple CRDT

The CLSet CRDT has a different synchronization layer (crdt.ex) than the
dots CRDTs, since it does not utilize dots. For this reason, it can be simplified a
fair bit, hence the name, ’simple’. The file, crdt.ex, looks similar to the dots

5.5 simple crdt 49

counterpart in regards to also being a GenServer, with several functions doing
the same type of work. The GenServer has a state containing a list of neighbours
and a queue of outstanding synchronizations. It will perform operations, store
changes as outstanding synchronizations and then synchronize the changes to
its neighbours in intervals.

1 def handle_ info (: sync , s t a t e) do
2 new_state =
3 case length (s t a t e . queue) > 0 do
4 t rue −>
5 Enum. each (s t a t e . queue , fn de l t a = %Delta { to : t } −>
6 Enum. each (t , &send (&1 , { : de l ta , de l t a }))
7 end)
8
9 Map. put (s t a t e , : queue , [])

10
11 f a l s e −>
12 s t a t e
13 end
14
15 Process . s end_a f t e r (s e l f () , : sync , s t a t e . s yn c _ i n t e r v a l)
16 { : noreply , new_state }
17 end

Listing 5.21: Simple CRDT Synchronization Phase

Listing 5.21 show the synchronization phase for the simple CRDT. Similar to
the dots CRDT, it is first invoked in the GenServer initialization by sending a
message to itself containing the :sync event. The GenServer will receive the
:sync message in handle_info. It behaves like a loop since it will keep
sending a new message to itself continuously with Process.send_after.
The benefit of sendingmessages to itself is that the implementation is consistent
in only using GenServer built-in functionality. Also,we forgo any race conditions
as the GenServer keeps a message queue internally, andmessages are processed
synchronously. The synchronization phase is where we enumerate through the
queue, which is kept in state. The queue consists of X ’s. The deltas are created
during the operation phases, where one of the CRDTs mutators are called.
Each item in the queue contains a X and a list of recipients. It then enumerates
through each recipient and sends a message to them. Afterwards, the queue is
cleared, and the process sends a new :sync message to itself.

50 chapter 5 implementation

1 def hand le_ca l l ({ : operat ion , { func , data }} , _from , s t a t e) do
2 { : reply , : ok , do_operat ion (func , data , s t a t e) }
3 end
4
5 defp do_operat ion (func , data , s t a t e) do
6 { del ta , c r d t _ s t a t e } = apply (s t a t e . crdt_module , func , data

++ [s t a t e . c r d t _ s t a t e])
7
8 s t a t e
9 |> append_queue (s t a t e . neighbours , de l t a)

10 |> Map. put (: c rd t _ s t a t e , c r d t _ s t a t e)
11 end

Listing 5.22: Simple CRDT Operation Phase

Whenever the GenServer receives calls, it looks for a handle_call with
matching parameters. Listing 5.22 show the implementation of the :opera-
tion event, also called the operation phase. As mentioned in Section 5.3, the
user does a mutation through the delta CRDT API, where one of the input
parameters is the function name in the form of an atom. This function name
is then received here and stored in func. During initialization, the CRDT has
stored which CRDT module it should use in state.crdt_module. With this
information, it can call the Elixir built-in function apply which takes a module,
a function, a set of arguments as input. The result of calling the function will
yield a X and the new CRDT state. The X is appended to the queue, and the
new CRDT state is put into the GenServer state.

1 def handle_ info ({ : de l ta , %Del ta { from : f , data : d}} , s t a t e) do
2 c r d t _ s t a t e =
3 Enum. reduce (d , s t a t e . c rd t _ s t a t e , fn {k , v} , acc −>
4 s t a t e . crdt_module . j o i n (%{k => v} , acc)
5 end)
6
7 new_state = Map. put (s t a t e , : c r d t _ s t a t e , c r d t _ s t a t e)
8 { : noreply , new_state }
9 end

Listing 5.23: Simple CRDT Receive Delta

After a synchronization phase and the Xs have been sent out, they will be
received in handle_info with the :delta event. In addition to the event
tag, there is a X . The GenServer will enumerate in-case it contains multiple
changes, for each change, it will call join on the CRDT layer’s module and
accumulate the state after each join. Afterwards, the GenServer state is updated
with the new CRDT state.

5.5 simple crdt 51

5.5.1 CLSet

CLSet is a new CRDT first mentioned in [17] and it was also presented on the
PaPoC Workshop 2020 [13]. It is not a dots CRDT, thus using its own simple
CRDT synchronization layer. It is created in the same way as the other CRDT
discussed earlier.

1 defmodule Del taCrdt . SimpleCrdt . CLSet do
2
3 def new() , do : %{}
4
5 . . .

Listing 5.24: CLSet Module

Listing 5.24 show the implementation of the CLSet module and how new
instances are created. Since CLSet does not utilize dots, the only thing CLSet
needs to keep track of is its entries, which it does by using a normal map.

1 def add(key , s t a t e) do
2 case Map . get (s t a t e , key , 0) do
3 0 −>
4 {%{key => 1} , Map . put (s t a t e , key , 1)}
5
6 l −>
7 case rem(l , 2) do
8 0 −>
9 {%{key => l + 1} , Map . put (s t a t e , key , l + 1)}

10
11 1 −>
12 {%{} , s t a t e }
13 end
14 end
15 end

Listing 5.25: CLSet Add

The CLSet add function can be seen in Listing 5.25. It takes a key and the
CRDT state as input. Firstly, it tries to get the key from the state with Map.get,
specifying that it wants 0 as the default value. If the Map.get returns 0 it
knows that the key does not exist in the CRDT, and proceeds by returning a
tuple containing the X and the new state. The data stored in the CRDT is in
the format %{key => length}, where length is the causal length of the key;
thus the first time the key is added it will have a causal length of 1.

If Map.get returns something that is not 0, the CRDT layer knows that the key

52 chapter 5 implementation

exists. At this point, it checks whether the causal length is odd or even. If the
causal length is even, it means the key has been removed. If it is odd instead,
it means that the key has not been removed. The reason for this is since the
causal length starts at 0 and the key is not in the CRDT. Then after the first
add, the causal length is incremented to 1 (odd). Whenever it is removed, the
causal length gets incremented to 2 (even), next time it is added the causal
length gets incremented to 3 (odd), et cetera.

1 def remove (key , s t a t e) do
2 case Map . get (s t a t e , key , 0) do
3 0 −>
4 {%{} , s t a t e }
5
6 l −>
7 case rem(l , 2) do
8 0 −>
9 {%{} , s t a t e }

10
11 1 −>
12 {%{key => l + 1} , Map . put (s t a t e , key , l + 1)}
13 end
14 end
15 end

Listing 5.26: CLSet Remove

CLSet remove, shown in Listing 5.26 is very much like add. It does a Map.get
with a default value of 0, to get the causal length. If it results in 0, the key does
not exist. The function returns an empty X along with the unchanged state.
If it were to result in something other than 0, the key does exist, so it checks
whether the causal length is odd or even. If it turns out to be even, it means
that the key is removed, so the function returns an empty X along with the
unchanged state. If it instead turned out to be odd, it means that the key is
not removed, so the causal length is incremented, and the X and the new state
is returned.

1 def j o i n (s1 , s2) do
2 Map. merge (s1 , s2 , fn _key , l1 , l2 −>
3 max(l1 , l2)
4 end)
5 end

Listing 5.27: CLSet Join

Listing 5.27 show the CLSet join function. The function takes two Xs as input
and performs a Map.merge. Unconflicting keys get merged automatically, and

5.5 simple crdt 53

conflicting keys get merged by simply doing a max where the highest value
is returned. This means that the highest causal length gets to join the CRDT,
whenever there are conflicting keys.

1 def read (c rd t) do
2 Enum. reduce (crdt , MapSet . new() , fn {key , l } , acc −>
3 case rem(l , 2) do
4 0 −> acc
5 1 −> MapSet . put (acc , key)
6 end
7 end)
8 end
9

10 def read (crdt , keys) when i s _ l i s t (keys) do
11 read (Map . take (crdt , keys))
12 end
13
14 def read (crdt , key) do
15 read (crdt , [key])
16 end

Listing 5.28: CLSet Read

Listing 5.28 show the implementation of CLSet read. This read function, like
the other CRDT implementations, consists of three different functions, each
accepting different input. One function reads only one key, the second read
function reads a subset of keys, and the final one reads all keys. The arguments
decide which read function is called. Two of the read functions alter the
input in such a way that it can use the ’main’ read function to do the actual
reading. The ’main’ read function performs a reduction on the CRDT state. The
reduction accumulates and returns all keys whose causal length is odd, i.e. not
removed.

6
Experiments & Results
There are four different CRDTs implemented in this thesis, TFAWSet, ORSet,
MVMap and CLSet. In this chapter, we are going to look at their performance
through some experiments. The experiments are written in Elixir as Benchee
benchmarks. From Benchee’s GitHub:

Library for easy and nice (micro) benchmarking in Elixir. Benchee
allows you to compare the performance of different pieces of code at
a glance. It is also versatile and extensible, relying only on functions.
There are also a bunch of plugins to draw pretty graphs and more!
Benchee runs each of your functions for a given amount of time after
an initial warmup, it then measures their run time and optionally
memory consumption. It then shows different statistical values like
average, standard deviation etc [2].

Benchee can wrap around functions making benchmarking specific scenarios
relatively simple. The benchmarks are written in Elixir 1.9 (OTP 22), and run
on a Macbook Pro 2019 with MacOS Catalina 10.15.5. The machine has the
following hardware: Intel Core i5 1.4Ghz Quad-Core CPU, 8GB 2133Mhz DDR3
RAM. All CRDTs are run in a single Elixir process, so the number of CPU cores
does not matter between the different CRDTs.

MVMap and all its different variations (MinMap,AvgMap,ReduceMap,et cetera)
is not part of the performance testing. The MVMap CRDT is about convenience
since it can automate operations such asmin, max, avg, reduce, map through the

55

56 chapter 6 experiments & results

read query. So this is why MVMap has not been compared to the other CRDTs
in this section; it is a convenience CRDT and not a performance CRDT.

The first experiment is a benchmark where we study how well the CRDTs
perform updates and joins. For each CRDT, we set up ten instances that are
initiated with 1000 elements. The sets may have up to 2000 elements during
each execution (i.e., there are initially 1000 empty "slots"). For each execution,
we update the CRDTs in iterations. In every iteration, we perform concurrently
2 to 5 random updates locally at 2 to 5 randomly chosen CRDT instances. Then
all instances merge with these updates. The next iteration starts as soon as
the current one finishes. The execution finishes after 500 updates. We vary
the fraction of removal updates. To make the comparison fair, only mutations
which create a X are considered.

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0 0.2 0.4 0.6 0.8 1

M
u
ta

ti
o
n
 e

xe
cu

ti
o
n
 t

im
e
 (

m
ic

ro
se

co
n
d
s)

Fraction of mutations being remove-mutations

CLSet
TFAWSet

ORSet

Figure 6.1: Concurrent Mutations and Merge Time

Figure 6.1 show the average time spent to finish each execution. TFAWSet was
surprisingly slow, considering it has been altered to a set CRDT, and since it
is tombstone-free. However, there is a downwards trend whenever the ratio
of removal mutations increase. For ORSet its the other way around, it has an
upwards trend whenever the ratio for removal mutations increase, which is
understandable since ORSet is not tombstone-free and is storing data from
removed elements. CLSet is faster than both TFAWSet and ORSet in all cases,
which can be explained to CLSet not using dots for causal context, but instead
only a single integer.

57

Take note that the number of mutations applied on a single element is typically
few. The sizes of the dot sets in ORSet are therefore typically small in size,which
can change ORSet performance quite much. In the case of TFAWSet, the causal
context size is dependant on the number of CRDT instances (sites), which is
typically higher than the number of mutations on a single element; thus the
number of instances can change the TFAWSet performance quite much. CLSet
does not have any apparent drawbacks. It has a one-to-one ratio between the
number of elements stored and the amount of metadata stored, which is very
goodwhen dealing with a large number of elements. The graph shows the result
of this specific implementation, which means that the results might be more
even, with further performance improvements to the implementation.

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 0.2 0.4 0.6 0.8 1

M
e
m

o
ry

 u
sa

g
e
 (

M
B

)

Fraction of mutations being remove-mutations

CLSet
TFAWSet

ORSet

Figure 6.2: CRDT Memory Usage

The second experiment is studying memory consumption. The numbers are
frommemory usage during the first benchmark. The result can be seen in Figure
6.2. The memory consumption is very similar to the performance. TFAWSet
ends up consuming a large amount of memory because of its join function,
generating a significant amount of intermediate data. Since the benchmarks
are run for a relatively short duration, the allocated memory might not have
had a chance to be garbage collected yet, but even if it did, it would be at the
cost of performance as garbage collection uses CPU resources.

Both ORSet and CLSet consume almost a static amount of memory over all the
cases, but as ORSet is a dot CRDT, it has more context, and it will naturally
use more than memory then CLSet. On the other hand, TFAWSet gradually

58 chapter 6 experiments & results

uses less memory as more of the mutations are remove-mutations, this is since
TFAWSet is tombstone-free and removed elements are entirely removed from
context. There is probably a correlation between the results in the first and
second experiment. A CRDT is fast/slow since it uses a low/high amount of
memory.

 0

 50

 100

 150

 200

 250

 300

 350

 0 0.2 0.4 0.6 0.8 1

Q
u
e
ry

 e
xe

cu
ti

o
n
 t

im
e
 (

m
ic

ro
se

co
n
d

s)

Fraction of elements removed

CLSet
TFAWSet

ORSet

Figure 6.3: Query Execution Time

The last experiment is a benchmark to compare the execution time of the
all-query (read). We set up one of each CRDT, then add 1000 elements to each,
then gradually remove a bigger fraction of the elements before reading. The
result can be seen in Figure 6.3. To begin with, CLSet and ORSet perform
similarly, and TFAWSet is a fair bit slower. However, with 40% of the elements
removed, TFAWSet reaches the same performance as ORSet, but CLSet has
pulled ahead and is the fastest. At around 70% elements removed, TFAWSet
is on par with CLSet and ORSet is lagging a bit behind. At 100% elements
removed, TFAWSet’s CRDT is empty, thus reaching a query speed of 0, whereas
ORSet and CLSet both still have the context and metadata of removed elements
in the state making them slower in this regard.

7
Conclusion
The contribution of this thesis is the CLSet CRDT and its performance experi-
ments, and also the MVMap CRDT. During the writing of this thesis, the CLSet
CRDT has been published in the PaPoC 2020 conference proceeding [17].

To summarize, we have taken a look at some of the theory behind CRDTs and
got an overview of different CRDT variations. We took a closer look at state-
based delta CRDT where we looked at some existing CRDT designs like GSet,
AWSet, TFAWSet, ORSet andMVReg. And then some new designs such as CLSet
and MVMap, where we took ideas from existing CRDTs and then try and bring
something new to the table. We looked at their respective implementations in
Elixir, and then put the CRDTs to the test through experiments using Benchee
benchmarks.

The results were interesting. Some observations were that CLSet performed
the best in both mutation execution time andmemory usage, whereas TFAWSet
performed the worst in these two areas. However when it comes to reading,
TFAWSet performed best when more than 70% of the elements are removed,
but at the same time, it performed the worst when less than 40% of the elements
are removed. The other CRDT implementations were in-between in the reading
experiment. Overall the results were good for CLSet, andMVMap as mentioned,
introduces a new convenience feature. This means that both CLSet andMVMap
serves their purpose and might have a place in real applications.

59

References
[1] Gonçalves R. Preguiça N. Fonte V. Almeida P.S. Baquero C. “Scalable

and Accurate Causality Tracking for Eventually Consistent Stores.” In:
Distributed Applications and Interoperable Systems. DAIS 2014. (2014).
url: https://link.springer.com/chapter/10.1007/978-3-662-43352-
2_6#citeas.

[2] Benchee, Benchmarking in Elixir. url: https://github.com/bencheeorg/
benchee.

[3] CAP theorem. url: https://www.ibm.com/cloud/learn/cap-theorem.
[4] Commutativity. url: https://dictionary.cambridge.org/dictionary/

english/commutative.
[5] Delta CRDT Implementation. url: https://github.com/derekkraan/

delta_crdt_ex.
[6] Elixir GenServer Documentation. url: https://hexdocs.pm/elixir/

GenServer.html.
[7] Elixir Programming Language. url: https://elixir-lang.org.
[8] Hasse Diagram. url: https://mathworld.wolfram.com/HasseDiagram.

html.
[9] Idempotence. url: https://ldapwiki.com/wiki/Idempotent.
[10] Martin Kleppmann. “Local-First Software:You Own Your Data, in spite

of the Cloud.” In: (2019). url: https://martin.kleppmann.com/papers/
local-first.pdf.

[11] Christopher Meiklejohn and Peter Van Roy. “Lasp: A Language for Dis-
tributed, Coordination-Free Programming.” In: Proceedings of the 17th
International Symposium on Principles and Practice of Declarative Pro-
gramming. PPDP ’15. Siena, Italy: Association for Computing Machinery,
2015, 184–195. isbn: 9781450335164. doi: 10.1145/2790449.2790525.
url: https://doi.org/10.1145/2790449.2790525.

[12] nLab authors. semilattice. http://ncatlab.org/nlab/show/semilattice.
Revision 17. Mar. 2020.

[13] PaPoC Workshop 2020. url: https : / / papoc - workshop . github . io /
2020/.

[14] Partially Ordered Set. url: https://ncatlab.org/nlab/show/partial+
order.

61

https://link.springer.com/chapter/10.1007/978-3-662-43352-2_6#citeas
https://link.springer.com/chapter/10.1007/978-3-662-43352-2_6#citeas
https://github.com/bencheeorg/benchee
https://github.com/bencheeorg/benchee
https://www.ibm.com/cloud/learn/cap-theorem
https://dictionary.cambridge.org/dictionary/english/commutative
https://dictionary.cambridge.org/dictionary/english/commutative
https://github.com/derekkraan/delta_crdt_ex
https://github.com/derekkraan/delta_crdt_ex
https://hexdocs.pm/elixir/GenServer.html
https://hexdocs.pm/elixir/GenServer.html
https://elixir-lang.org
https://mathworld.wolfram.com/HasseDiagram.html
https://mathworld.wolfram.com/HasseDiagram.html
https://ldapwiki.com/wiki/Idempotent
https://martin.kleppmann.com/papers/local-first.pdf
https://martin.kleppmann.com/papers/local-first.pdf
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/2790449.2790525
http://ncatlab.org/nlab/show/semilattice
http://ncatlab.org/nlab/revision/semilattice/17
https://papoc-workshop.github.io/2020/
https://papoc-workshop.github.io/2020/
https://ncatlab.org/nlab/show/partial+order
https://ncatlab.org/nlab/show/partial+order

[15] Carlos Baquero Paulo Sérgio Almeida Ali Shoker. “Delta State Replicated
Data Types.” In: Journal of Parallel and Distributed Computing, Volume
111, January 2018, Pages 162-173 (2016). url: https://arxiv.org/abs/
1603.01529.

[16] Preguiça N. M. Baquero C. Shapiro M. and M. Zawirski. “Conflict-Free
Replicated Data Types.” In: Stabilization, Safety, and Security of Dis-
tributed Systems. SSS 2011. (2011). url: https://pages.lip6.fr/Marc.
Shapiro/papers/RR-7687.pdf.

[17] Weihai Yu and Sigbjørn Rostad. “A Low-Cost Set CRDT Based on Causal
Lengths.” In: Proceedings of the 7thWorkshop on Principles and Practice
of Consistency for Distributed Data. PaPoC ’20. Heraklion, Greece: As-
sociation for Computing Machinery, 2020. isbn: 9781450375245. doi:
10.1145/3380787.3393678. url: https://doi.org/10.1145/3380787.
3393678.

https://arxiv.org/abs/1603.01529
https://arxiv.org/abs/1603.01529
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://pages.lip6.fr/Marc.Shapiro/papers/RR-7687.pdf
https://doi.org/10.1145/3380787.3393678
https://doi.org/10.1145/3380787.3393678
https://doi.org/10.1145/3380787.3393678

A Low-Cost Set CRDT Based on Causal Lengths
Weihai Yu and Sigbjørn Rostad
UIT - The Arctic University of Norway

Tromsø, Norway
weihai.yu@uit.no

Abstract
CRDTs, or Conflict-free Replicated Data Types, are data ab-
stractions that guarantee convergence for replicated data.
Set is one of the most fundamental and widely used data
types. Existing general-purpose set CRDTs associate every
element in the set with causal contexts as meta data. Manip-
ulation of causal contexts can be complicated and costly. We
present a new set CRDT, CLSet (causal-length set), where
the meta data associated with an element is simply a natu-
ral number (called causal length). We compare CLSet with
existing general purpose CRDTs in terms of semantics and
performance.

CCS Concepts: • Theory of computation → Distributed
computing models; • Computing methodologies→ Con-
current algorithms; • Information systems→ Data repli-
cation tools.

Keywords: state-based CRDT, replication, eventual consis-
tency, availability
ACM Reference Format:
Weihai Yu and Sigbjørn Rostad. 2020. A Low-Cost Set CRDT Based
on Causal Lengths. In 7th Workshop on Principles and Practice of
Consistency for Distributed Data (PaPoC ’20), April 27, 2020, Herak-
lion, Greece. ACM, New York, NY, USA, 6 pages. https://doi.org/10.
1145/3380787.3393678

1 Introduction
CRDTs, or Conflict-free Replicated Data Types, are abstrac-
tions for data replicated at different sites [10]. CRDT data are
guaranteed to be strongly eventually consistent [10]. A site
queries and updates its local replica without coordination
with other sites. When any two sites have applied the same
set of updates, they reach the same state, regardless of the
order in which the updates are applied.
Set is a fundamental and widely used data type. There

exist a number of general-purpose set CRDTs that allow
for concurrent addition and removal of elements. Common
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
PaPoC ’20, April 27, 2020, Heraklion, Greece
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7524-5/20/04.
https://doi.org/10.1145/3380787.3393678

to these set CRDTs, every element is associated with some
causal contexts as meta data. Manipulation of causal contexts
could be complicated. It could also be costly, for instance,
when there are many sites involved or the sites are dynamic.

We present a new general-purpose set CRDT, causal-length
set CLSet, based on an abstraction called causal length. For
every element, the associated meta data is simply a natural
number, namely the causal length of the element.
We discuss the semantics of different set CRDTs and run

some benchmarks to compare their performance.

2 CRDT Preliminary
There are two families of CRDT approaches, namely state-
based and operation-based [10]. We focus on state-based
CRDTs. The possible states of a state-based CRDT must form
a join-semilattice [6], which is a sufficient condition for con-
vergence. Briefly, the states form a join-semilattice if they
are partially ordered with ⊑ and a join ⊔ of any two states
always exists (s1 ⊔ s2 gives the least upper bound of s1 and
s2). State updates must be inflationary. That is, the new state
supersedes the old one in ⊑. The merge of two states is the
result of a join.

GSet(E) def
= P(E)

add(s, e) def
= {e} ∪ s

addδ (s, e) def
=

{
{e} if e < s
{} otherwise

s ⊔ s ′ def
= s ∪ s ′

in(s, e) def
= e ∈ s

all(s) def
= s

{a,b, c}

{a,b} {a, c} {b, c}

{a} {b} {c}

{}

Figure 1. GSet CRDT and Hasse diagram of states

Figure 1 (left) shows GSet, a state-based CRDT for grow-
only sets, where E is a set of possible elements, ⊑ def

= ⊆, ⊔ def
=

∪, add is a mutator (update operation), and in and all are
queries. Obviously, an update through add(s, e) is an infla-
tion, because s ⊆ {e} ∪ s . Figure 1 (right) shows the Hasse
diagram of the states in a GSet. A Hasse diagram shows only
the “direct links” between states.
As originally presented in [10], a message for an update

is the data state of the replica in its entirety. This could be
costly in practice. Delta-state CRDTs address this issue by

Appendix
.1 CLSet

PaPoC ’20, April 27, 2020, Heraklion, Greece Weihai Yu and Sigbjørn Rostad

only sending join-irreducible states [2, 5]. Basically, join-
irreducible states are elementary states and every state in
the join-semilattice can be represented as a join of some
join-irreducible state(s). In Figure 1, addδ is a delta-mutator
that returns join-irreducible states, which are singleton sets
(boxed in the Hasse diagram).

GSet is an example of an anonymous CRDT, since the
definitions of its mutators are not specific to the sites that
perform the updates. Two concurrent executions of the same
mutation, such as add({},a), fulfill the same purpose.

A CRDT for general-purpose sets with both addition and
removal operations can be designed as causal CRDTs [2]
such as ORSet (observed-remove set [4, 8, 9]). Report [9]
presented ORSet as an operation-based CRDT. Figure 2 is a
state-based ORSet based on [8]. Figure 5 shows the states of
a single element in ORSet. We describe the figure in more
detail in Section 5 where we compare ORSet with CLSet.

ORSet
def
= s : E ↪→ P(dots) × P(dots)

addi (s, e) def
= s{e 7→ ⟨fst(s(e)) ∪ {nexti }, snd(s(e))⟩}

addδi (s, e)
def
= {e 7→ ⟨{nexti }, {}⟩}

removei (s, e) def
= s{e 7→ ⟨fst(s(e)), snd(s(e)) ∪ fst(s(e))⟩}

removeδi (s, e)
def
= {e 7→ ⟨{}, fst(s(e))⟩}

s ⊔ s ′ def
= {(e 7→ ⟨fst(s(e)) ∪ fst(s ′(e)),

snd(s(e)) ∪ snd(s ′(e))⟩
| e ∈ dom(s) ∪ dom(s ′)}

in(s, e) def
= fst(s(e)) ⊃ snd(s(e))

all(s) def
= {e | e ∈ dom(s) : fst(s(e)) ⊃ snd(s(e))}

Figure 2. ORSet CRDT

Basically, every element is associated with two causal
contexts, in terms of a partial function1. A causal context is a
set of event identifiers, also known as dots. A dot is typically
represented as a pair of a site identifier and a site-specific
sequence number [1]. nexti generates a new dot at site i . An
addition or removal is achieved with inflationary updates
of the associated causal contexts. Using causal contexts, we
are able to tell explicitly which additions of an element have
been later removed. However, maintaining causal contexts
for every element can be costly, even though it is possible
to compress causal contexts into version vectors, especially
under causal consistency.
1Given a (total) function f : dom(f) → Y where dom(f) ⊆ X . A partial
function f : X ↪→ Y maps x to ⊥Y if x < dom(f), where ⊥Y is the bottom
element of Y . For natural numbers N, ⊥N = 0. For P(S) ordered with ⊆,
⊥P(S) = {}. Using partial function conveniently simplifies the specification
of some mutators and the join operation.

In the following, we design a new general-purpose set
CRDT. It is anonymous and is based on the abstraction of
causal length. Note that all causal CRDTs are named, i.e. not
anonymous.

3 Causal length
The key issue that a general-purpose set CRDT must address
is how to identify the causality between the different addition
and removal updates. We achieve this with the abstraction
of causal length, which is based on two observations.

First, the additions and removals of a given element occur
in turns, one causally dependent on the other. A removal is
an inversion of the last addition it sees. Similarly, an addition
is an inversion of the last removal it sees (or none, if the
element has never been added).

Second, two concurrent executions of the same mutation
of an anonymous CRDT fulfill the same purpose and there-
fore are regarded as the same update. Seeing one means
seeing both (such as the concurrent additions of the same
element in GSet). Two concurrent reversions of the same
update are also regarded as the same one.
Figure 3 shows a scenario where three sites A, B and C

concurrently add and remove element a. When sites A and
B concurrently add a for the first time, with updates a1A and
a1B , they achieve the same effect. Seeing either one of the
updates is the same as seeing both. Consequently, states s1A,
s2A, s

1
B and s1C are equivalent as far as the addition of a is

concerned.
Following the same logic, the concurrent removals on

these equivalent states (with respect to the addition of a)
are also regarded as achieving the same effect. Seeing one

Site A Site B Site C

{} s0A {} s0B {} s0C
a1A : add(s0A,a)

{a} s1A
a1B : add(s0B ,a)

{a} s1B
{a} s2A {a} s1C

a2A : remove(s2A,a)
{} s3A

a2B : remove(s1B ,a)
{} s2B
{} s3B
{} s4B

a2C : remove(s1C ,a)
{} s2C

a3B : add(s4B ,a)
{a} s5B

{a} s6B

{} s3C

{a} s4C
a4C : remove(s4C ,a)

{} s5C

Figure 3. A scenario of concurrent set updates

A Low-Cost Set CRDT Based on Causal Lengths PaPoC ’20, April 27, 2020, Heraklion, Greece

Table 1. States of set element a

states as equivalence classes scl all(scl)
s0A {} {} {}
s1A {{a1A}} {⟨a, 1⟩} {a}
s2A {{a1A,a1B }} {⟨a, 1⟩} {a}
s3A {{a1A,a1B }, {a2A}} {⟨a, 2⟩} {}
s0B {} {} {}
s1B {{a1B }} {⟨a, 1⟩} {a}
s2B {{a1B }, {a2B }} {⟨a, 2⟩} {}
s3B {{a1A,a1B }, {a2B }} {⟨a, 2⟩} {}
s4B {{a1A,a1B }, {a2A,a2B }} {⟨a, 2⟩} {}
s5B {{a1A,a1B }, {a2A,a2B }, {a3B }} {⟨a, 3⟩} {a}
s6B {{a1A,a1B }, {a2A,a2B ,a2C }, {a3B }} {⟨a, 3⟩} {a}
s0C {} {} {}
s1C {{a1B }} {⟨a, 1⟩} {a}
s2C {{a1B }, {a2C }} {⟨a, 2⟩} {}
s3C {{a1B }, {a2B ,a2C }} {⟨a, 2⟩} {}
s4C {{a1A,a1B }, {a2A,a2B ,a2C }, {a3B }} {⟨a, 3⟩} {a}
s5C {{a1A,a1B }, {a2A,a2B ,a2C }, {a3B }, {a4C }} {⟨a, 4⟩} {}

of them is the same as seeing all. Therefore, states s3A, s
2
B , s

3
B ,

s4B , s
2
C and s3C are equivalent with regard to the removal of a.

Now we present the states of element a as the equivalence
classes of the updates, as shown in Table 1. The concurrent
updates that see equivalent states and achieves the same
effect are in the same equivalent classes. For example, up-
dates a1A and a1B are in the same equivalent class because
they see equivalent states s0A and s0B and achieve the same
effect, i.e. adding element a into the set. In [11], we made a
more rigorous description of the equivalence classes in the
context of support for concurrent undo.

Given this representation, we can observe the following:

• Performing a new local update adds a new equivalence
class that contains only the new local update.

• Merging two states is the same as the union of the
equivalent classes.

• A site determines whether an element is in the set
by counting the number of equivalence classes that
the site currently observes, rather than the specific
updates contained in the classes.

Due to the last observation, we can represent the state of
an element with a single number, the number of equivalence
classes. We call that number the causal length of the element.
The scl column of Table 1 lists the states of element a in
terms of causal lengths.

CLSet(E) def
= E ↪→ N

add(s, e) def
=

{
s{e 7→ s(e) + 1} if even

(
s(e))

s if odd
(
s(e))

addδ (s, e) def
=

{
{e 7→ s(e) + 1} if even

(
s(e))

{} if odd
(
s(e))

remove(s, e) def
=

{
s if even

(
s(e))

s{e 7→ s(e) + 1} if odd
(
s(e))

removeδ (s, e) def
=

{
{} if even

(
s(e))

{e 7→ s(e) + 1} if odd
(
s(e))

(s ⊔ s ′)(e) def
= max

(
s(e), s ′(e))

in(s, e) def
= odd

(
s(e))

all(s) def
= {e | odd(s(e))}

Figure 4. CLSet CRDT

4 CLSet CRDT
Figure 4 shows the CLSet CRDT. Notice that the state s is a
partial function: s(e) = ⊥N = 0 when an element e has never
been added and thus not in the domain of s .

An element e is in the set when its causal length is an odd
number. A local addition has effect only when the element is
not in the set. Similarly, a local removal has effect only when
the element is actually in the set. A local addition or removal
simply increments the causal length of the element by one.
For every element e in s and/or s ′, the new causal length of e
after merging s and s ′ is the maximum of the causal lengths
of e in s and s ′.

5 Comparison with existing set CRDTs
CLSet is a direct application of our earlier work on undo sup-
port for CRDTs [11]. It is obvious that addition and removal
are inverse (i.e. undo) updates of one another. One reason for
us to exercise this particular application to set here is that
set is such a fundamental and versatile data type. Another
reason is that we would like to make comparison to existing
general-purpose set CRDTs in some detail.

Figure 5 shows the states of a single element in ORSet (de-
scribed in Section 2 and Figure 2). In the figure, 1A, 2A, . . . are
the dots corresponding to the addition instances originated
at site A. The states in the same shaded area correspond to
the states with the same causal length.

ORSet and CLSet handle the states in red color in Figure 5
differently. For the concurrent addition and removal of the
same element in these states, ORSet applies the add-wins
semantics [3], which is different from CLSet. An alternative
semantics of set CRDTs is remove-wins. For the blue states

PaPoC ’20, April 27, 2020, Heraklion, Greece Weihai Yu and Sigbjørn Rostad

⟨{2A, 2B }, {1A, 1B }⟩

⟨{1A, 2B }, {1A, 1B }⟩⟨{2A, 1B }, {1A, 1B }⟩

⟨{1A, 2B }, {1B }⟩⟨{2A, 1B }, {1A}⟩

⟨{2B }, {1B }⟩⟨{2A}, {1A}⟩

⟨{1A, 1B }, {1A, 1B }⟩

⟨{1A, 1B }, {1B }⟩⟨{1A, 1B }, {1A}⟩

⟨{1B }, {1B }⟩⟨{1A}, {1A}⟩

⟨{1A, 1B }, {}⟩

⟨{1B }, {}⟩⟨{1A}, {}⟩

⊥

Figure 5. States of a single element in ORSet

in Figure 5, a remove-wins set has different effects from both
an add-wins set and a CLSet.

Add-wins sets and remove-wins sets handle addition and
removal updates in an asymmetric way (as their names in-
dicate). In an add-wins set, a remove operation regards ev-
ery individual addition update as distinct and only cancels
the effects of the addition updates it sees at the time of
the removal. On the other hand, an add operation handles
the set of concurrent removal updates as indistinguishable
and cancels all their effects. For example, the addition up-
date represented with the state ⟨2A, 1A⟩ in Figure 5 cancels
the effects of removal updates represented with the states
⟨{1A}, {1A}⟩, ⟨{1B }, {1B }⟩, ⟨{1A, 1B }, {1A, 1B }⟩, and eventu-
ally also future removal updates such as (not shown in the
figure) ⟨{3B }, {3B }⟩ etc.
Although different semantics may all be acceptable in

a concurrent system, we argue that the CLSet semantic is
more appropriate, as it “neutralizes” add-wins and remove-
wins semantics and handles add and removal operations in
a symmetric manner.
LWW-Element-Set2 [9] is another general-purpose set

CRDT that allows concurrent addition and removal of ele-
ments3. It associates every element with two timestamps,
one for addition and one for removal. The updates of a single-
element state are inflationary on the timestamps. The (add

2LWW stands for Last Writer Wins.
3AWLWWSet and RWLWWSet in [2] are similar variations.

⟨2, 2⟩, {2A, 2B }

⟨1, 2⟩, {2B }⟨2, 1⟩, {2A}

⟨1, 2⟩, {1A, 2B }⟨2, 1⟩, {2A, 1B }

⟨0, 2⟩, {2B }⟨2, 0⟩, {2A}

⟨1, 1⟩

⟨1, 1⟩, {1A}⟨1, 1⟩, {1B }

⟨0, 1}⟩⟨1, 0⟩

⟨1, 1⟩, {1A, 1B }

⟨0, 1⟩, {1B }⟨1, 0⟩, {1A}

⊥

Figure 6. States of a single element in TFAWSet

or remove) operation with a greater timestamp wins. Similar
to CLSet, LWW-Element-Set is an anonymous CRDT and
the size of the meta data associated with each element is
constant. The semantics of set operations depend on the
semantics of the timestamps. For example, with hybrid logic
clock [7], if event e1 happens before event e2, their corre-
sponding clock values t1 and t2 have the property t1 < t2.
Thereby, a removal update cancels the effects of all the addi-
tion updates it sees (similar to add-wins) together with a few
more concurrent addition updates with smaller clock values.
Similarly, an addition update cancels the effects of all the re-
moval updates it sees (similar to remove-wins) together with
a few more concurrent removal updates with smaller clock
values. Apparently nodes with faster clocks tend to have a
higher chance to win the competition. LWW-Element-Set
with hybrid logic clock “mixes” in a sense the semantics of
add-wins and remove-wins.

Tombstones are the metadata associated with the elements
that have been removed from the set. Report [4] presented
a tombstone-free set CRDT. It is based on the causality be-
tween a removal and the additions it observed. Such causality
can be captured with a set-wise (i.e. shared by all elements)
version vector. More specifically, an addition of an element
is considered to be removed if the element is absent in the
set but the addition instance is covered by the version vector.
Figure 6 shows the Hasse diagram of the states of an element
in a tombstone-free add-wins set (TWAWSet). Here a state is

A Low-Cost Set CRDT Based on Causal Lengths PaPoC ’20, April 27, 2020, Heraklion, Greece

TFAWSet
def
= (E ↪→ P(dots)) × P(dots)

addδi (⟨m, c⟩, e)
def
= ⟨{e 7→ d},d⟩ where d = {nexti (c)}

removeδi (⟨m, c⟩, e)
def
= ⟨{},m(e)⟩

⟨m, c⟩ ⊔ ⟨m′, c ′⟩ def
= ⟨{e 7→ d ′′ | e ∈ dom(m) ∪ dom(m′)

∧ d ′′ , {}},
c ∪ c ′⟩

where d =m(e),d ′ =m′(e) and
d ′′ = (d ∩ d ′) ∪ (d − c ′) ∪ (d ′ − c)

in(⟨m, c⟩, e) def
= e ∈ dom(m)

all(⟨m, c⟩) def
= dom(m)

Figure 7. TFAWSet delta-state CRDT

represented as a pair of a set-wise version vector and a set of
dots for the addition instances that have not been removed.
The shape of the Hasse diagram is exactly the same as that
of the ORSet CRDT (Figure 5).

The report [4] adopted a mixed operation-based and state-
based approach. Figure 7 shows TFAWSet presented in [2]
(where it is named AWSet). The states of a TFAWSet is rep-
resented as a pair of a partial function and a dot set (known
as a causal context). For two TFAWSet states (m(e), ce) and
(m′(e), c ′e) concerning element e , the partial order is defined
as (m(e), ce) ⊏ (m′(e), c ′e) def

= (ce ⊂ c ′e) ∨ (ce = c ′e ∧m(e) ⊃
m′(e)). This is somewhat counter-intuitive: the partial order
⊏ is defined with the ⊃ rather than the ⊂ relation on the
dot sets of addition instances. This ordering is enforced by
the join operation, which removes the dots of the addition
instances observed by subsequent removal updates. In Fig-
ure 6, the ⊏ order between the states with same version
vector value ⟨1, 1⟩ are decided by the ⊃, not ⊂, relation of
the dots of the addition instances of the same element.
When the system enforces causal message delivery, the

causal contexts can be compressed into version vectors. The
CRDT is thereby tombstone-free.

Compared to CLSet, TFAWSet requires causal delivery for
tombstone elimination, which is a stronger requirement. It
could outperform CLSet if the vast majority of elements are
removed. The elements that remain in the set are associated
with more metadata than CLSet. The actual amount depends
on the number of additions that have not been removed.

6 Performance
We have run some experiments to study the performance of
three set CRDTs, namely CLSet, ORSet and TFAWSet. We

25
30
35
40
45
50
55
60
65

0 0.2 0.4 0.6 0.8 1

Ex
ec
ut
io
n
tim

e
(m

s)

Fraction of removal updates

CLSet
TFAWSet

ORSet

Figure 8. Time for concurrent updates and merges

have implemented CLSet and ORSet in Elixir, and adapted
an open source implementation for TFAWSet.4
We ran the benchmarks using the Benchee5 library with

Elixir 10.1 (OTP 22.2) on Ubuntu Linux 18.04. The computer
has an Intel Xeon CPU E3-1245 v5 at 3.50GHz and 32GB Ram.
Since we ran all the benchmarks in a single Erlang process
(thread), the number of CPU cores does not play any role.

We first study how well the three CRDTs perform updates
and merges. For each CRDT, we set up 10 instances that are
initiated with 1000 elements. The sets may have up to 2000
elements during each execution (i.e, there are initially 1000
empty “slots”). For each execution, we update the CRDTs in
iterations. In every iteration, we perform concurrently 2 to
5 random updates locally at 2 to 5 randomly chosen CRDT
instances. Then all instances merge with these updates. The
next iteration starts as soon as the current one finishes. The
execution finishes after 500 updates. We vary the fraction of
removal updates.
To make the comparison fair, we do not allow existing

elements to be added into an ORSet or a TFAWSet (which
we believe is more appropriate than the original design in
Figures 2 and 7).

Figure 8 shows the average time spent to finish the bench-
mark executions. To our surprise, TFAWSet took longer time
to finish the executions than ORSet in all of the situations. It
turns out that computing d ′′ in Figure 7 contributed to the
longer execution time, at least with this current implementa-
tion. Notice that the number of updates applied on a single
element is typically very low. The sizes of the dot sets in
ORSet are therefore typically very small. On the other hand,
the sizes of the causal contexts in TFAWSet depends on the
number of CRDT instances (or nodes), which is typically

4We removed the “map” part of the AWLWWMap CRDT available at
https://github.com/derekkraan/delta_crdt_ex.
5https://github.com/bencheeorg/benchee

PaPoC ’20, April 27, 2020, Heraklion, Greece Weihai Yu and Sigbjørn Rostad

1.8
2

2.2
2.4
2.6
2.8
3

3.2
3.4
3.6

0 0.2 0.4 0.6 0.8 1

M
em

or
y
pe
ri
ns
ta
nc
e
(M

B)

Fraction of removal updates

CLSet
TFAWSet

ORSet

Figure 9.Memory consumption per CRDT instance

higher than the number of updates that have been applied
on a single element.

The memory consumption of the CRDTs (Figure 9) shows
a similar pattern as the execution time. TFAWSets consume
more memory because it generates significant amount of in-
termediate data while merging the updates. Since the bench-
marks are run intensively within a single Erlang process, the
intermediate data have not got the chance to be garbage col-
lected. Garbage collection may reduce the memory footprint
of TFAWSets at the cost of additional CPU cycles.
We have also run the benchmarks to see how well the

CRDTs perform the all query. We set up the CRDTs by first
adding 1000 elements and then removing a fraction of them.
We run the query benchmarks with these CRDTs.

Figure 10 shows the average time to perform the queries.
For all CRDTs, the execution time decreases with the increase
of the fraction of the elements that are removed. This is due to
the decreased sizes of the query results. As the consequence
of tombstone elimination, the execution time on TFAWSets
decreases much faster. Still, CLSet out-performs TFAWSet
when up to two thirds of the elements remain in the set.

7 Conclusion
We have presented CLSet, a general-purpose state-based set
CRDT. The only metadata associated with a set element is a
single natural number called causal length, which captures
the causality of concurrent set updates. CLSet has low run-
time overhead compared to existing general-purpose set
CRDTs.

Acknowledgments
The first author thanks the members of the COAST team
at INRIA-LORIA in France, in particular Claudia-Lavinia
Ignat and Victorien Elvinger, for inspiring discussions. The
authors also thank the anonymous reviewers for insightful
comments that help us make improving revisions.

0

50

100

150

200

250

300

350

0 0.2 0.4 0.6 0.8 1

Q
ue
ry

ex
ec
ut
io
n
tim

e
(µ
s)

Fraction of elements removed

CLSet
TFAWSet

ORSet

Figure 10. Time for performing the all query

References
[1] Almeida, P. S., Baqero, C., Gonçalves, R., Preguiça, N. M., and

Fonte, V. Scalable and accurate causality tracking for eventually con-
sistent stores. In 14th IFIP WG 6.1 International Conference Distributed
Applications and Interoperable Systems (DAIS) (2014), LNCS 8460,
Springer, pp. 67–81.

[2] Almeida, P. S., Shoker, A., and Baqero, C. Delta state replicated
data types. J. Parallel Distrib. Comput. 111 (2018), 162–173.

[3] Bieniusa, A., Zawirski, M., Preguiça, N. M., Shapiro, M., Ba-
qero, C., Balegas, V., and Duarte, S. Brief announcement: Seman-
tics of eventually consistent replicated sets. In 26th International Sym-
posium on Distributed Computing (DISC) (2012), LNCS 7611, Springer,
pp. 441–442.

[4] Bieniusa, A., Zawirski, M., Preguiça, N. M., Shapiro, M., Ba-
qero, C., Balegas, V., and Duarte, S. A optimized conflict-free
replicated set. Rapport de recherche 8083, INRIA, (October 2012).

[5] Enes, V., Almeida, P. S., Baqero, C., and Leitão, J. Efficient Synchro-
nization of State-based CRDTs. In IEEE 35th International Conference
on Data Engineering (ICDE) (April 2019).

[6] Garg, V. K. Introduction to Lattice Theory with Computer Science
Applications. Wiley, 2015.

[7] Kulkarni, S. S., Demirbas, M., Madappa, D., Avva, B., and Leone, M.
Logical physical clocks. In Principles of Distributed Systems (OPODIS)
(2014), LNCS 8878, Springer, pp. 17–32.

[8] Meiklejohn, C., and Van Roy, P. Lasp: a language for distributed,
coordination-free programming. In the 17th International Symposium
on Principles and Practice of Declarative Programming (2015), pp. 184–
195.

[9] Shapiro, M., Preguiça, N. M., Baqero, C., and Zawirski, M. A
comprehensive study of convergent and commutative replicated data
types. Rapport de recherche 7506, INRIA, (January 2011).

[10] Shapiro, M., Preguiça, N. M., Baqero, C., and Zawirski, M.
Conflict-free replicated data types. In 13th International Symposium on
Stabilization, Safety, and Security of Distributed Systems, (SSS) (2011),
pp. 386–400.

[11] Yu, W., Elvinger, V., and Ignat, C.-L. A generic undo support for
state-based CRDTs. In 23rd International Conference on Principles of
Distributed Systems (OPODIS2019) (2020), vol. 153 of LIPIcs, pp. 14:1–
14:17.

	Abstract
	List of Figures
	List of Listings
	List of Abbreviations
	1 Introduction
	1.1 Outline

	2 Theoretical Background
	2.1 Join-Semilattice
	2.1.1 Partially Ordered Set
	2.1.2 Hasse Diagram
	2.1.3 Semilattice

	2.2 Idempotence
	2.3 Commutativity
	2.4 Causality
	2.5 Conflict-free Replicated Data Types
	2.5.1 State-Based CRDTs
	2.5.2 Operation-Based CRDTs
	2.5.3 Other Variations of CRDTs

	2.6 Further Reading

	3 Existing CRDTs
	3.1 Grow-only Set
	3.2 Add-Wins Set
	3.3 Tombstone-Free Add-Wins Set
	3.4 Observed-Remove Set
	3.5 Multi-Value Register

	4 New CRDTs
	4.1 CLSet
	4.2 Multi-Value Map

	5 Implementation
	5.1 GenServer
	5.2 CRDT Layer API
	5.3 Delta CRDT API
	5.4 Dots CRDT
	5.4.1 TFAWSet
	5.4.2 ORSet
	5.4.3 MVMap

	5.5 Simple CRDT
	5.5.1 CLSet

	6 Experiments & Results
	7 Conclusion
	References
	Appendix
	.1 CLSet

