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Abstract  28 

Evaporative flux from soils in arid and semi-arid climates can be very high and may 29 

substantially reduce soil moisture retained between infrequent rainfall events. Direct 30 

measurement of the evaporative losses from soils is technically challenging; however, 31 

environmental tracers such as stable hydrogen and oxygen isotope composition can be used to 32 

calculate evaporation rates if the initial signature of the infiltrating rainwater is distinct from 33 

the signature of residual soil moisture. Large tropical cyclones typically result in rainfall events 34 

of large volume and very negative δ18O signatures that are significantly lower than the 35 

signatures of the usual precipitation. These very negative stable isotope signatures are retained 36 

in the soil and can be used to understand the depth of water infiltration, retention and 37 

subsequent rate of evaporation from the soil. At our study site in dry subtropical northwest 38 

Australia, we repeatedly sampled rainwater and soil moisture prior to, during and after tropical 39 

cyclones Heidi and Lua in 2012. Site inundation from Cyclone Heidi (rainfall 213 mm, δ18O -40 

17.6 ‰) replenished soil moisture in the unsaturated zone for several months, completely 41 

replacing soil moisture down to depths of ~3.5 m and contributing to groundwater recharge. 42 

The transient momentary evaporative losses from wet soil at the time of sampling (recalculated 43 

as an annual rate) varied between 76 and 220 mm×yr-1. During the prolonged dry period 44 

between cyclones, evaporative losses decreased to between 8 and 30 mm×yr-1. Consequently, 45 

mean long-term groundwater recharge for the study period was low (<6 mm×yr-1) and 46 

primarily driven by infrequent but high-volume cyclones that are an important source of soil 47 

moisture and therefore an essential water source for vegetation in the semi-arid environment. 48 

However, upscaling from a local to a regional scale model for ecological water demand would 49 

be challenging due to the high variability in δ18O observed in soil profiles, which varies with 50 

lithology, position in the landscape and time since the last inundation.  51 
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 52 

1. Introduction 53 

Soil moisture dynamics drive landscape hydrological regimes and determine water 54 

availability to ecosystems depending on the dominant evapotranspiration regime (Seneviratne 55 

et al. 2010; D’Odorico et al., 2012; Nicholson, 2000). Globally, direct evaporation from the 56 

soil (~20 %) and plant transpiration (~40 %) return most terrestrial precipitation to the 57 

atmosphere, while the remaining ~ 40 % contributes to groundwater recharge and runoff (Oki 58 

and Kanae, 2006). Some of the previous studies suggest even higher transpiration fluxes 59 

(Jasechko et al., 2013; Schlesinger and Jasechko, 2014) but with possibly with much higher 60 

uncertainty (Coenders-Gerrits et al., 2014). However, in arid and semi-arid climates, terrestrial 61 

evaporative flux is more substantial, even approaching 100 % in extreme conditions (e.g., in 62 

terminal basins; Skrzypek et al., 2016), which in turn limits runoff and recharge. In the arid 63 

tropics in particular, groundwater recharge occurs only occasionally, mostly in response to 64 

highly episodic tropical cyclones (TCs) or monsoonal low pressure systems (Abdalla and Al-65 

Abri, 2011; Dogramaci et al. 2015; Eastoe et al., 2015; Müller et al., 2016; Meredith et al., 66 

2018). These large and intense but generally infrequent rainfall events also replenish soil 67 

moisture in the vadose zone and are recognised as critically important for the maintenance and 68 

functioning of ecosystems (Bowman et al., 2010; Kam et al., 2013; Khouakhi et al., 2017). 69 

However, there have been a few direct observations of soil moisture dynamics in the 70 

unsaturated vadose zone in arid and semi-arid environments (e.g., Dubbert et al., 2013; Gaj et 71 

al. 2016; Oerter and Bowen, 2017).  72 

The quantification of evaporative loss from unsaturated soils remains a serious 73 

constraint to precise quantification of water budgets globally (e.g. Akbar and Gianotti 2018Gaj 74 

et al., 2016). In particular, there have been very few direct observations of infiltration depths 75 

of differing rainfall events, especially in dryland regions (Abdalla and Al-Abri, 2011; Rossi et 76 
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al., 2018). Infiltration depth associated with large rainfall events will likely be shallower when 77 

occurring after long dry periods than after the soil has been recently wetted. This occurs, in 78 

part, because wetting and drying cycles profoundly influence soil permeability and the capacity 79 

for water retention, particularly in clay-rich soils (Sprenger et al., 2017; Tollenaar et al., 2017). 80 

Therefore, soil moisture replenishment and groundwater recharge depend not only on the 81 

rainfall volume but also on the frequency of cyclonic rainfall and the antecedent soil moisture 82 

content. 83 

Similarly, soil water losses are affected by soil texture and mineralogy, vegetation 84 

including variable rooting depths among plant species, as well as climate conditions. The rate 85 

of evaporative water loss from the soil profile is governed by the depth of the boundary at 86 

which the vapour flux is greater than the liquid water flux. The position of this boundary is 87 

determined by the distribution of soil moisture across the profile, as driven by the infiltration 88 

depth (e.g. Tollenaar et al., 2017). Individual soil dry-down characteristics for any given site 89 

will thus be different and reflect varying atmospheric and vegetation conditions. Direct 90 

measurement of evaporative loss from soils and the variation in this loss with depth must 91 

account for large uncertainties in estimation of local water fluxes, and with partitioning 92 

evaporation from transpiration (e.g. Bakhtiari et al., 2010; Dijkema et al., 2017; Stumpp and 93 

Maloszewski, 2010). One approach is to use stable isotope techniques for indirect 94 

quantification of the evaporative loss of water from soils under field conditions (Gaj et al., 95 

2016, 2019; Oerter and Bowen, 2017). The stable isotope composition of soil moisture has also 96 

been used to trace water movement in the unsaturated zone (Barnes and Allison, 1988), as well 97 

as to estimate groundwater recharge (Allison et al., 1983, 1984, 1988; Cane and Clark, 1999; 98 

Sprenger et al. 2017). Thus, stable isotope methods are ideally suited for studying the dynamics 99 

of moisture in the unsaturated zone across wetting and drying events.  100 
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Most insitu observation of soil moisture dynamics based on stable isotope techniques 101 

have focussed on characterising isothermal and non-isothermal unsaturated zone processes, on 102 

trying to explain both steady-state and non-steady-state evaporation (see the recent review by 103 

Koeniger et al., 2016) or on quantification of the total evaporative loss from the top 50-100 cm 104 

of soil only (Gaj et al., 2016; Hasselquist et al., 2018; Haverd and Cubtz, 2010). Even though 105 

soils with unsaturated zones of 5–20 m are common, very few stable isotope profiles have been 106 

characterised at depths beyond 2 m (Barenes et al., 1988; Soderberg et al., 2011; Sprenger et 107 

al., 2017). Hence, the accurate estimation of evaporative losses from the whole unsaturated 108 

zone is a major constraint that prevents a precise quantification of water budgets in these 109 

dryland environments (e.g., Dogramaci et al., 2015; Harrington et al., 2002; Skrzypek et al., 110 

2016; Akbar and Gianotti 2018).  111 

In the present study, we sought to estimate the contributions of large volume and high-112 

intensity rainfall events to soil moisture in the semi-arid north-western region of Australia and 113 

to obtain a better understanding of the persistence and dynamics of rainwater in the soil profile 114 

during intervening dry periods. We first characterised the regional patterns in rainfall volumes 115 

and stable isotope compositions associated with two major cyclones, as well as several minor 116 

rainfall events, over a three-year period. Given that cyclone-associated rainfall tends to be 117 

highly 18O-depleted, primarily due to a massive rainout effect and convection (e.g. Dogramaci 118 

et al., 2012; Guan et al., 2013; Mook et al., 1974; Zwart et al., 2018), we expected that the 119 

stable oxygen isotope signatures (δ18O values) of different cyclones following different paths 120 

across the continent would result in rainfall that carries a distinctive ‘negative isotopic 121 

fingerprint’ (e.g., Good et al., 2014; Lawrence and Gedzelman, 1996, 1998; Zwart et al., 2016). 122 

We, therefore, hypothesised that the signatures of different cyclone events would be discernible 123 

in soil moisture profiles and that we could capture the infiltration depth of each event. We 124 

sampled the unsaturated zone for soil moisture and the water stable oxygen isotope composition 125 
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to gain an understanding of the patterns in soil moisture variability across the landscape after a 126 

prolonged drought. We then made repeated measures of profile responses to subsequent 127 

wetting and drying to estimate the cyclonic rainwater contribution to soil moisture and its 128 

retention time thereafter. We used these analyses as a context for interpreting temporal patterns 129 

in infiltration and evaporation after extended drought following recharge events aiming to 130 

understand soil moisture budget in a dry and warm climate where likely recharge is primarily 131 

driven by cyclonic events.  132 

 133 

 134 

2. Materials and methods 135 

2.1. Study site and regional context 136 

The study site was located within a topographic depression (~705 m asl, ~170 ha) at 137 

the base of Mount Bruce (1,234 m asl), in the Hamersley Ranges of the Pilbara region of 138 

northwest Australia. The site is located within Karijini National Park adjacent to the Marandoo 139 

mine site (Fig. 1). Vegetation overlaying deeper soils in the depression is open woodland 140 

dominated by Eucalyptus victrix L.A.S. Johnson & K.D. Hill (Coolibah) trees with a tussock 141 

grass understorey, but which transitions sharply to mulga (Acacia aptaneura Maslin & J.E. 142 

Reid) woodland on the shallow soil boundaries (Fig. 1). The site is an ephemeral wetland and 143 

sits within an internally draining basin where surface flows originate from direct rainfall and 144 

local surface runoff from the surrounding mountain ranges formed from low permeability 145 

formations (Brockman and Marra Mamba Iron Formations). Anecdotally, the woodland is 146 

known to flood only rarely, once or twice a decade and has no permanent surface water. Prior 147 

to the study, the last known flood was in 2006 (Wallace and Devereux, 2013). The extent of 148 

the flooded area in 2006 was ~8 km2 and surface water persisted for around 89 days. The 149 

groundwater table is ~18 m bgl (below ground level) and within the depression is overlain by 150 
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deep soils comprised primarily of colluvium containing red/brown colluvial clay and gravel 151 

with calcrete and dolocrete horizons down to ~12 m bgl and dolocrete horizons with some clays 152 

below this depth.  153 

The climate is hot with mean, maximum and minimum annual temperatures of 23.5 °C, 154 

31 °C and 17 °C, respectively (Tom Price; 1997-2011, site 5072). Mean annual precipitation 155 

is ~380 mm (Marandoo mine site; 2005-2016; www.bom.gov.au, site 5074). The mean 156 

potential annual pan evaporation (~3,000 mm) is approximately an order of magnitude greater 157 

than the average rainfall (www.bom.gov.au, site 005026). Most rainfall (~85 %) occurs during 158 

the cyclone season in the austral summer from December to March. However, the frequency 159 

and intensity of cyclones vary unpredictably both seasonally and among years (Rouillard et al., 160 

2015). Groundwater recharge across the Hamersley Basin is primarily associated with high-161 

volume rainfall events (Dogramaci et al., 2012). Annual recharge via main drainage lines can 162 

range from <1 mm×yr-1 to 13 mm×yr-1 based on estimates made using 14C dating and Cl mass 163 

balance calculations (Cook et al., 2016). However, at many sub-catchments recharge is 164 

estimated to be less than 5 mm×yr-1, reflecting large regional differences in rainfall distribution, 165 

geomorphology, and lithology (McFarlane, 2015).  166 

 167 

2.2. Soil sampling - the baseline for dry condition 168 

Soils were first sampled for moisture content and water stable isotope composition 169 

between 5th and 20th November 2010 using a sonic drilling system that allowed drilling without 170 

water using vibration and ultrasound (Boart Longyear™ LS 600 SONIC DRILL, head BL-171 

150). This first sampling occurred in one of the driest years on record (Rouillard et al., 2015), 172 

when only 7 mm of rainfall had fallen in the preceding 6 months (Fig. S1). Soils were sampled 173 

from ten locations along a transect across the woodland to capture variation in underlying 174 

lithology, soil depth and surface topography at the site (bores CB01-C10, Fig. 1). All 175 
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unsaturated soil profiles were sampled to a maximum depth of ~17 m once. Soil temperature 176 

was monitored, samples were collected immediately from each core and sealed into 50 mL pre-177 

weighed tins for soil moisture and in 150 mL Parafilm sealed vials for the soil moisture stable 178 

oxygen isotope composition.  179 

In addition to soil moisture, groundwater was also sampled from the piezometers 180 

installed in the selected locations adjunct to the study site. Groundwater was collected using an 181 

MPI pump, by first pumping out at least three volumes of the bore or until EC, pH and oxygen 182 

concentrations were stable to ensure that bores were sufficiently purged. All water samples 183 

were sealed in 20 mL glass vials and stored at 5°C until analyses on Picarro 1115-i system.  184 

The stable isotope and soil moisture concentrations on the 1.6 km long cross-sections 185 

were prepared based on 159 data points and interpolated using Point Kriging with linear 186 

variogram (Slope 1, Anisotropy 1, 0) using Golden Software Inc. Surface Mapping System 187 

Surfer 13.6. (Golden, Colorado, USA) (Goldsztejn and Skrzypek, 2004). 188 

 189 

2.3.  Assessment of responses of the soil profile to rainfall inputs from large events 190 

Owing to logistical and cost constraints that precluded access to the recently inundated 191 

sites, it was not possible to re-sample using a sonic drill rig. Thus, to investigate soil responses 192 

to wetting and subsequent drying, we sampled soils at ~20 cm intervals to a depth of 4 m from 193 

the lowest position in the woodland (CB05) with a manual auger (Fig. 1). The manual augering 194 

was conducted on 23 February 2012, approximately 6 weeks after TC Heidi (12 January 2012) 195 

and again on 17 May 2012 (to a depth of ~5 m) after TC Lua (17 March 2012). A final sampling 196 

of surface soils was conducted on 12 November 2013 (to a depth of ~2 m). Soils during this 197 

last sampling were extremely hard set and it was not possible to hand auger to greater depths. 198 

 199 

2.4. Rainwater sampling  200 
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Monthly rainwater samples were regularly collected following GNIP/IAEA guidelines 201 

at the Hope Downs weather station, 110 km SE from the focus study site. Composite rainfall 202 

samples were collected at the end of each month over a one-year period between February 2011 203 

and January 2012 (Fig. 2). These data were used to establish the Local Meteoric Water Line 204 

(LMWL), which was then used to verify the deviation of the cyclone stable isotope signature 205 

from usual long-term precipitation (Fig. 2). In addition, an informal professional network of 206 

hydrologists, hydrogeologists, and environmental scientists working at several mine sites at 207 

eight locations across Pilbara region of Western Australia collected rainwater samples during 208 

two major cyclones; Heidi (9-13 January 2012) and Lua (17 March 2012). Rainwater was 209 

collected at one to three-hour intervals for the duration of each cyclone event (Fig. 3). Cyclone 210 

paths were obtained from the Australian Bureau of Meteorology (BoM) Tropical Cyclone 211 

Database (www.bom.gov.au/cyclone/history). The spatial patterns of associated rainfall were 212 

developed using a 250 km radius buffer from daily cyclone tracks based on 0.05 × 0.05˚ 213 

resolution daily rainfall grids of the BoM (Jones et al., 2009; 214 

www.bom.gov.au/climate/austmaps/about-rain-maps). To match with the daily rainfall 215 

observations, the nearest daily position, i.e., TC progress as of 9:00 am was used. All 216 

processing of spatial data was conducted in ArcView, and the layers were converted to 217 

Geographic Datum Australia 1994 and projected onto the national Map Grid of Australia zone 218 

50 (Fig. 4). 219 

 220 

2.5. Soil moisture, chloride, and stable isotope analyses 221 

Gravimetric soil moisture content (%), pre and post-cyclone event, was determined for 222 

all soil samples. Fresh soil samples were weighed in the laboratory and oven-dried at 105 ºC 223 

for 5 days (or until constant weight) before being reweighed. Volumetric soil moisture content 224 
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could not be calculated as the soil structure could not be preserved during the sonic nor auger 225 

drilling process. 226 

The stable hydrogen and oxygen isotope composition (δ2H and δ18O) of water and soil 227 

moisture were analysed using an Isotopic Liquid Water Analyser Picarro L1115-i with a 228 

V1102-I vaporiser (Picarro, Santa Clara, California, USA) at the West Australian 229 

Biogeochemistry Centre (Skrzypek and Ford, 2014). Raw δ2H and δ18O values of the samples 230 

were normalized based on three laboratory standards calibrated against international reference 231 

materials (Skrzypek, 2013) provided by the International Atomic Energy Agency that 232 

determine the VSMOW2-SLAP2 scale (Coplen, 1996).  233 

Soil moisture δ18O and δ2H were analysed using the vapour headspace equilibration 234 

method modified after Wassenaar et al. (2008). Approximately 50-100 mL of soil sample was 235 

transferred to 0.5 L ZiplocTM bag filled with dry ultra-high purity nitrogen and sealed. The 236 

samples were equilibrated with headspace gas to achieve saturation over 72 hrs at 23 °C. Three 237 

laboratory soil moisture stable isotope standards and one control standard were analysed with 238 

each batch of soil samples. The soil moisture stable isotope standards were prepared using a 239 

sub-sample of field collected soil that was oven dried at 110 °C, before liquid water laboratory 240 

standards of known stable isotope composition were injected into 120 mL vials filled with dry 241 

soil and kept at a constant temperature of 23°C for 72 hrs. Soil standards were then transferred 242 

and equilibrated in ZiplocTM bags the same way as samples following the principle of the 243 

identical treatment. The combined analytical uncertainty (one standard deviation) for soil 244 

moisture samples was <0.30 ‰ for δ18O and <4.0 ‰ for δ2H. Due to large uncertainty of δ2H 245 

analyses and potential susceptibility for secondary effect as reported by Hendry et al. (2015), 246 

in this study, δ18O was used to describe spatial and temporaries changes in soil moisture stable 247 

isotope composition. The liquid rainwater and groundwater samples were analysed using the 248 

same laboratory standards as soil samples measured using equilibration, with all samples and 249 
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standards were analysed and directly as liquid water on a Picarro L1115-I, with analytical 250 

uncertainty <1.0 ‰ for δ2H and <0.10 ‰ for δ18O.  251 

The concentrations of chloride anions (Cl-) in groundwater samples were analysed by 252 

SGS laboratories Australia Pty. Ltd. in Perth, Western Australia, utilising Discrete Analyser 253 

Aquakem DA (method ref. APHA 4500). 254 

 255 

2.6.  Calculation of evaporative loss using isothermal evaporation model  256 

The evaporative losses from an unsaturated soil profile were quantified using the 257 

isothermal evaporation model summarized by Allison et al. (1988) (Eq. 1) where the depth of 258 

the evaporative front and its stable isotope composition is related to soils parameters.  259 

 260 

δ = δres + (δ0- δres)exp(-z/(z1+zv)  Eq. 1 261 

z1 = D*/E     Eq. 2 262 

zv = (α×σ×D*×N)/(E×p)   Eq. 3 263 

 264 

where D* is the effective diffusivity of the pore water, reflecting soil tortuosity, and varies 265 

usually between 1.5×10-9 to 2.3×10-9 m2 s-1 (Mills, 1973) 266 

Z – depth coordinate below the evaporative front, positive downwards (m) 267 

E – evaporation (mm×yr-1) 268 

N – water density  269 

p – density of liquid water 270 

α – temperature-dependent equilibrium fractionation factor (~0.99 for 20-40 °C) 271 

σ – humidity dependent kinetic fractionation factor (~4 at RH 70 %) 272 

δ0 – δ18O of the evaporative front 273 

δres – δ18O of the source water, e.g. water in the aquifer 274 
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 275 

 276 

3. Results  277 

3.1. Spatial variation in soil moisture and stable isotope composition of the unsaturated 278 

zone after a prolonged drought 279 

Based on the drilling profiles, topsoils at the site are chromosols, and the lithology 280 

consists of red/brown colluvial clay up to ~12 m thick, with varying amounts of ironstone 281 

gravel. This horizon often becomes more bleached with depth, with pods of cream/light brown 282 

hard impure calcretes and dolocretes. Below the colluvial clay, there was a calcareous horizon 283 

up to ~10 m thick, where clay soils are interspersed with lenses of cream and light brown 284 

dolocrete. A well-developed white and cream hard crystalline dolocrete layer was located in 285 

the central part of the cross-section (bores CB03, CB05, and CB06, Fig. 1). In November 2010, 286 

the groundwater table was observed at ~18 m below the ground surface and 3 m below the 287 

deepest sediment sampling point (position CB05). At ~20 m bgl, the dolocrete transitioned into 288 

hard red/brown clays with variable amounts of gravel resembling reddish-brown clays. 289 

At the initial sampling in November 2010, conducted during a prolonged dry period 290 

(Fig. S1), the soil moisture content and stable oxygen isotope composition were highly 291 

variable, both vertically and horizontally (Figs. 5, 6 and S2). As might be expected, the soils 292 

were extremely dry at the surface (between 8 and 13 % w/w at 0.4 m). Low moisture contents 293 

were also observed in the low porosity dolocrete layers that occurred at greater depths (min. 294 

~4.6 % w/w), including the large dolocrete clast in the central part of the cross-section ~8 m 295 

below CB05 and CB06 (695 m asl, 13 % w/w). The highest moisture contents (16–18 % w/w) 296 

were found in the colluvium at ~5 to ~8 m below the surface (698 m asl, Fig. 5). The wettest 297 

colluvium was located beneath the lowest positions in the landscape, and this horizon was 298 

continuous between sampling positions CB03 and CB08 (Figs. 1, 5). The highest soil moisture 299 
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content measured during the dry period (19 % w/w) was at ~12 m below CB05, which coincides 300 

with the lowest point in the landscape and the lithological contact between the colluvium and 301 

solid dolocrete layers (691 m asl, at Fig. 5).  302 

The stable oxygen isotope composition of soil moisture was largely decoupled from the 303 

soil moisture content and its distribution with depth and across the landscape (Fig. 5 and 6). 304 

The highest δ18O values were observed at the edge of the Coolibah Woodlands with the mulga 305 

(CB01–CB04) and the highest elevations (>1 ‰ in the top 0.4 m). By contrast, the lowest δ18O 306 

values (1 to -1.5 ‰) in the top layer (< 0.4 m) were observed in the central part of the woodland 307 

below the lowest position in the landscape (CB05–CB08, Fig. 6). Similarly, the range of the 308 

relative soil moisture variation with depth was lowest in the profiles collected at the edge of 309 

the Coolibah Woodlands and highest in the central part (Fig. 5). The δ18O value of soil moisture 310 

progressively decreased (i.e. became more depleted in the heavier 18O isotope) with depth, 311 

regardless of the lithological changes. However, the rate of decrease depended on the position 312 

in the landscape and the local lithology and therefore decoupled from moisture content. Near 313 

the surface low soil moisture content was usually associated with high δ18O, however, this was 314 

not always the case deeper below the ground. Therefore, the pattern of values distribution in 315 

Fig 5 and Fig.6 are different. The δ18O values of -9.0 ‰ extended up from the water table to 316 

approximately 688-689 m asl (~14–17 m bgl) and were consistent with the stable isotope 317 

composition of groundwater in the saturated zone below 685 m asl (-9.03±0.56 ‰) and chloride 318 

concentration between 130 and 171 mg×L-1 (Fig. 6).  319 

 320 

3.2.  Cyclone contributions to the regional surface water budget: tropical cyclones Heidi 321 

and Lua 322 

Two cyclones made landfall in the Pilbara in 2012, each delivering a different volume of 323 

rainfall along different paths (Fig. 4). Over the period of six months prior to TC Heidi, only 7 324 
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mm of rainfall were recorded at the study site. The centre of TC Heidi crossed the Pilbara coast 325 

at Port Hedland on 11 January at 20:00 (204 km×h-1 wind gust, Category 3), and the cyclone 326 

eye crossed over the study site (84 km×h-1 wind gust) on 12 January 2012 at 18:00 (Fig. 4). 327 

The total rainfall over land along the cyclone path in the 250 km radius from the eye of the 328 

cyclone was estimated in our study (see the procedure in 2.4.) at ~16,100 GL (~600 GL on 11 329 

Jan, ~6,800 GL on 12 Jan and ~8,700 GL on 13 Jan). A total of ~4,700 GL fell in the Upper 330 

Fortescue catchment, causing flooding on the Fortescue Marsh (484 km2, 276 GL). The highest 331 

rainfall inland (232 mm) was observed near the Lower Fortescue Marsh, approximately 60 km 332 

NNE of the study site, and 212 mm fell at the study site in the western Karijini National Park 333 

(Fig. 4). The centre of the second cyclone, TC Lua, made landfall on 17 Mar at 06:00 (222 334 

km×h-1 max wind gust; Category 3) and reached central Pilbara at 15:00 on the same day (~150 335 

km×h-1 wind gust) along a path 230 km westward from that of TC Heidi. Similar to TC Heidi, 336 

TC Lua delivered a large volume of rain over the landmass (16,600 GL). However, the spatial 337 

distribution of rainfall during TC Lua was much more widespread over the NW, while the bulk 338 

of the rainfall during TC Heidi was delivered within only ~100 km of the study site (Fig. 4). 339 

Specifically, during TC Lua, only ~1,100 GL fell in the Upper Fortescue River catchment, with 340 

the majority falling in the Lower Fortescue River catchment; by contrast, at the study site, only 341 

33 mm of rainfall were recorded. This is consistent with TC Lua’s maximum estimated mean 342 

radius of the outermost closed isobar (ROCI) over land being nearly classified as ‘large’ (556 343 

km), compared to the ‘very small’ (185 km) classification for TC Heidi.  344 

The woodland study site was flooded to <1 km2 in response to TC Heidi, but the exact 345 

area could not be calculated due to clouds obscuring Landsat satellite images (Wallace and 346 

Devereux, 2013). No surface water expression was evident after TC Lua. High temperatures 347 

during the austral summer (27 °C daily average for the Tom Price weather station) caused a 348 

very high evaporation rate and resulted in rapid drying of surface water and shallow soils. The 349 
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regional evaporation rate for March 2012 was estimated at 275 mm (in the scale of a year 350 

corresponding to 3,300 mm y-1), based on the analysis of the satellite pictures showing a 351 

progressive reduction of the flood extent of the Fortescue Marsh (Fig. S3).  352 

The massive rainout on the 270 km path of TC Heidi between the coast and central 353 

Pilbara resulted in a significant variation, both spatially and temporally, in the stable isotope 354 

composition of rainwater (Fig. 3). Rainwater closer to the coast tended to have less negative 355 

values, e.g., Western Creek (50 km, δ18O = -13.5 ‰ to -3.6 ‰) and Ti Tree (120 km, δ18O = -356 

10.0 ‰), when compared to more inland locations at Yandicoogina (280 km, δ18O = -12.9 to -357 

13.6 ‰) and the study site (220 km, δ18O = -13.7 to -19.3 ‰). However, the δ18O values also 358 

varied with the distance from the cyclone centre and the timing of rainfall. The study site, 359 

located almost directly in the path of TC Heidi (Fig. 4), received rainfall with the lowest δ18O 360 

signatures thus far recorded in the Pilbara (min. recorded -19.3 ‰). As a result of the generally 361 

more positive values for TC Lua and the larger distance of the cyclone eye from the study site, 362 

the δ18O values were more positive for the soil moisture contribution from TC Lua. At the 363 

rainwater sampling location closest to the cyclone path, Yandicoogina mine (110 km from 364 

study site westward) varied over time between 0.0 ‰ and -9.61 ‰ and at the B4 mine - closest 365 

to the studied location (90 km East of the study site) varied between -5.0 and -11.28 ‰ (Fig. 366 

3). These extremely low δ18O values also resulted in a low weighted-by-volume mean rainfall 367 

of -17.6 ‰ for TC Heidi and -11.6 ‰ for TC Lua at the study site. The surface floodwater 368 

collected at the Coolibah woodland study site ten days after TC Heidi still had very low δ18O 369 

values, between -13.4 ‰ and -16.4 ‰. These extremely low δ18O values were consistent with 370 

the very negative δ-values of the rainwater collected at the peak of the rainfall during TC Heidi. 371 

This suggests that the infiltration had occurred rapidly and the original signature of infiltrating 372 

water was preserved in the soil. Defuse recharge and associated high evaporation rates  would 373 

have resulted in much more positive δ18O values.  374 
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 375 

3.3. Changes in soil stable isotope composition in response to cyclone-driven rainfalls and 376 

subsequent drying 377 

We assessed the contribution of the successive cyclones Heidi and Lua to the soil moisture 378 

content by comparing the patterns in soil moisture and stable isotope composition between 379 

November 2010 and November 2013 at CB05, the lowest point in the landscape (Fig. 7). In 380 

dry conditions, the soil moisture (8 November 2010) was fairly uniform between 1 and 5 m 381 

depth, with a mean of 16.5±0.4 % w/w (Fig. 7), and was similar near the surface (12.2 % w/w, 382 

0.4 m depth). The soil moisture δ18O in the top 4–5 m was also fairly uniform, with a mean 383 

value of -3.7±0.5 ‰ (Fig. 8, red line). However, these conditions rapidly changed after TC 384 

Heidi occurring between 9 and 13 January 2012 and reflected a very negative δ18O of 385 

infiltrating floodwater. Six weeks after TC Heidi flooded the site, the soil δ18O was very 386 

negative, with the highest value of -6.7 ‰ recorded near the surface and the lowest value 387 

reaching -17.6 ‰ at ~3.5 m depth. This low δ18O value is consistent with rainfall arising from 388 

TC Heidi at the site (-17.6 ‰) (Fig. 8, blue line). Over the same period, the soil moisture 389 

content increased to 29.7 %, a value which is approximately equal to the maximum porosity 390 

expected for these types of sediment, indicating that the soils were saturated or nearly saturated 391 

to a depth of at least 4 m (Fig. 7, blue line). The second cyclone, TC Lua, modified the δ18O 392 

value of soil moisture again, and the minimum δ18O value of the moisture in the soil core 393 

collected 61 days after the cyclone (17/05/2012) was observed at ~2 m (-11.6 ‰, Fig. 8, green 394 

line). This value is consistent with the minimum δ18O signatures of TC Lua (-11.3 ‰) sampled 395 

during the peak of the rainfall at the Brockman 4 Mine Site (~90 km to the west of the study 396 

site). This change in the stable isotope composition accompanied the soil water content 397 

decrease from 29.7 % to 16.2 % (Fig. 7). At our final sampling in November 2013, the soil 398 

stable isotope composition (>-4.25 ‰ in upper 2 m) was similar to the initial δ18O values 399 
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observed in 2010. However, this last observation period also included some rainfall (a few 400 

negligible events of <20 mm and one of 60 mm), which could have contributed to infiltration 401 

during the wet summer season of 2012/2013 (Fig. S1). 402 

 403 

 404 

4. Discussion 405 

We were able to resolve the contributions of successive cyclones to soil moisture in the 406 

unsaturated zone by utilizing the unique δ18O signatures of rainfall associated with each 407 

cyclone. The very negative and distinct stable isotope signatures of cyclonic rainfall remained 408 

present in the deep soil profile for many months, even under hot and dry conditions, and were 409 

used to understand the depth of infiltration, retention and subsequent rate of evaporation from 410 

the soil.  411 

 412 

4.1. The range of spatial variation of δ18O in the unsaturated zone during dry conditions 413 

Similar to the range of δ18O values observed in this study (-10.5 ‰ to +8.9 ‰), a broad 414 

range of δ18O values has been reported previously in various soil profiles (e.g. Allison et al., 415 

1984; Gaj et al., 2016). However, none of the previous studies reported results on a sufficiently 416 

extensive spatial scale to allow construction of a stable isotope cross-section across the 417 

landscape, as conducted in the present study (Fig. 6). In this study, each of the individual δ18O 418 

profiles (Fig. S2 and S4, appendix) collected after a long dry period displayed typical drying-419 

out curves (Barnes and Allison, 1988). More positive δ18O values were recorded closer to the 420 

surface and more negative δ18O values, comparable to those of groundwater (δ18O -9.03 ‰, 421 

δ2H -65.9 ‰, d-excess 6.3), were recorded at the depth of 14–17 m (~689 m asl). A progressive 422 

decrease in δ18O values with depth was observed along the whole transect, regardless of the 423 

local changes in lithology. However, the rate of this decrease with depth varied widely in the 424 
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cores, from 0.28 ‰/m to 1.04 ‰/m (Fig. S4). Evaporation from the soil profiles differs from 425 

that of open water bodies because the free movement of vapours is restricted by the texture of 426 

the soil matrix (Gat, 2010). Therefore, the relative differences in the δ18O profiles primarily 427 

reflect the relative differences in active diffusivity (Allison et al., 1984, 1985), as well as the 428 

initial stable isotope signatures of water and the amount of recharge water entering the soils 429 

through the preferred infiltration zones.  430 

The most negative δ18O values closest to the surface were observed under the alluvial 431 

plain between CB06 and CB08, where surface water was most persistent after occasional 432 

flooding (Fig. 6). The observed distribution of δ18O with depth suggests that the soil moisture 433 

remained in a stable isotope equilibrium with the groundwater for up to ~4 m above the water 434 

table in the studied cores (i.e. 14-17 m bgl). The water flux through this section of the profile, 435 

mainly driven by physical processes such as the capillary rise or dispersion, was sufficiently 436 

high to outweigh the potential impact of 18O-enrichment resulting from evaporative flux from 437 

the soil in the upper part and d-excess in the bottom part of the soil cores remains high (e.g., 438 

8.6 at CB05; 8.1 at CB04). Therefore, the evaporative loss can be expected to impact δ18O only 439 

in the top 13–15 m of the soil profile after eight months of the very dry period in a hot climate. 440 

The soil moisture content varied between the saturated bottom parts of the profiles (~27 % vol) 441 

to the very dry soils on the surface (<5 % vol). However, in contrast to the δ18O values, soil 442 

moisture content did not show constant increases with depth, and it also varied across the 443 

landscape (Fig. 6). Although the water content in the central part of the unsaturated profile 444 

between 702 and 694 m asl (Fig. 5) varied in a relatively narrow range (12–17 %), it primarily 445 

reflected differences in the lithology, porosity and position in the landscape rather than the 446 

direct evaporative loss or the expected evaporative flux. Therefore, the soil moisture content 447 

and its δ18O were largely decoupled. Horizontal moisture diffusion and the stable isotope re-448 
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equilibration were likely negligible and unable to override the differences arising from 449 

evaporation and vertical water vapour fluxes, despite a prolonged dry period of eight months. 450 

Regional groundwater recharge can be roughly estimated based on δ18O of the soil 451 

moisture following the calculation algorithm proposed by Allison et al. (1984) and as presented 452 

by Clark and Fritz (1997). This approach has been used in several studies (e.g., Gaj et al., 2016, 453 

Walker et al., 1988), despite some methodological concerns (Herczeg and Leaney, 2011; 454 

Koeninger et al., 2016). Here, to minimalize the local variability, we used a large regional data 455 

set (Dogramaci et al., 2012) for fresh and brackish groundwater from central Pilbara to 456 

calculate the water line for groundwater (δ2H=6.13×δ18O-6.47, n=299) and the LMWL, as 457 

calculated in this study for Hope Down 4 mine site (δ2H=7.60×δ18O+7.76, Fig. 2), to calculate 458 

so-called δ2Hshift and δ18Oshift (Allison et al., 1984). The estimated regional recharge varied 459 

between 1.7 and 2.6 mm×yr-1 (average 2.1 mm×yr-1). However, the method used here did not 460 

take into account the evaporative losses from the surface prior to infiltration, and it reflected 461 

the evaporative loss from soil only. Despite the hot Pilbara climate (mean annual temperature 462 

23.5 °C, the average for Marandoo based on monthly means over 2005-2013), the mean 463 

evaporative losses from the surface prior recharge to groundwater are expected to be relatively 464 

low (Skrzypek et al., 2013) but still statistically significant. This is indicated by the statistically 465 

significant difference (p-value <0.01) between the slope of the groundwater line and the 466 

LMWL (Fig. 2). Evaporative losses from the surface water in the range of 17–20 % could 467 

entirely explain the observed difference between the δ18O of groundwater and rainwater 468 

(Skrzypek et al., 2013), without the need to include mixing and evaporation of soil moisture 469 

(Allison et al., 1983). Nevertheless, an estimated average recharge rate of ~2.1 mm×yr-1 is 470 

consistent with the results of a large regional study (McFarlane, 2015) that estimated the 471 

average groundwater recharge for Pilbara at ~1.5 mm×yr-1, and not exceeding 10 mm×yr-1. 472 
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The highly localised recharge of soil moisture in the unsaturated zone in the centre of 473 

the study site could be much higher than the estimated mean groundwater recharge rate for the 474 

region. Concentrations of chloride (130–171 mg×L-1) in deep groundwater bores (150–250 m 475 

bgl) indicated a recharge rate of between 4.7 and 6.1 mm×yr-1, which is within the values 476 

estimated for the region by McFarlane (2015). This value was calculated using a simple point 477 

scale chloride mass balance (Crosbie et al., 2018), mean annual precipitation of 380 mm 478 

(recorded at Marandoo over period 1999-2016) and a mean Cl concentration of 2.1 mg×L-1 479 

observed in rain (72 samples). A potential explanation for these higher recharge rates could be 480 

the presence of preferential infiltration paths beneath the ponded water that occurred in the 481 

lowest parts of the landscape. 482 

The influence of topography on localized recharge and vertical infiltration is a major 483 

factor governing the moisture distribution in the soil across the landscape beside lithology. In 484 

our study, the link between the topographic relief and soil moisture recharge was well reflected 485 

in the much more negative δ18O values closer to the surface under the alluvial plain between 486 

CB05 and CB08 (Fig. 8), where higher infiltration could be expected due to water ponding. In 487 

these central locations of the floodplain, the initial soil moisture was likely higher than in the 488 

external locations (e.g. CB01, CB02 or CB10). The relative differences in the evaporative 489 

losses from individual soil cores can be estimated from the soil drying profile and the vertical 490 

change of δ18O with the depth. The surface areas in Fig. S4 reflecting the progress of 491 

evaporation have been calculated for the triangles drawn between the regression line displaying 492 

a change in δ18O with depth and the surface (depth y=0 m) and the mean δ18O of groundwater 493 

in this location (-9.0 ‰). The slope of the regression line is increasing as the evaporation from 494 

the soil is increasing, and subsequently, soil moisture becomes 18O-enriched with depth, 495 

therefore, the size of the triangle area (calculated as m×‰), reflects the progress of evaporation 496 

from the soil column and the fraction of the total water lost to evaporation. These triangle areas 497 
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in the locations with the expected highest preferential infiltrations (CB06 17 m×‰ and CB04 498 

22 m×‰) and therefore the lowest relative evaporative losses are as much as two to five times 499 

lower than at locations outside of the centre of the alluvial plain, which are expected to 500 

experience less infiltration and higher relative evaporation (CB01 112 m×‰, CB02 46 m×‰, 501 

and CB10 43 m×‰).  502 

The evaporative losses from an unsaturated soil profile can be further quantified using 503 

the isothermal evaporation model summarized by Allison et al. (1988) (Eq. 1, 2, and 3). 504 

However, major uncertainties arise in the results obtained using this approach when the 505 

estimation of soil tortuosity and active diffusivity is difficult. In our study, the lithology was 506 

variable with depth and across the landscape. To address this variability, we used values that 507 

covered the entire range expected for the type of soils at our site, aiming instead to quantify the 508 

range of possible evaporation rates and to compare the relative differences among locations 509 

along the transect, rather than to estimate the exact evaporation losses. The total evaporative 510 

loss, calculated as mm×yr-1 at the time of the sampling after a long dry period, varied between 511 

8 and 30 mm×yr-1. The highest values (19–30 mm×yr-1) were estimated for the lowest positions 512 

in the landscape (CB06, CB07, and CB08), where more soil moisture was available and could 513 

be evaporated. By contrast, the lowest values (8–14 mm×yr-1) observed for the driest soils were 514 

located at the highest positions in the landscape (CB01 and CB10). These values will remain 515 

relatively constant (subject to seasonal variation) if the soil reaches a steady-state and if the 516 

values reflect the evaporative flux from the groundwater aquifer. If they still reflect a certain 517 

degree of moisture originating from the most recent recharge event, despite a long period since 518 

significant rainfall, these values may progressively decrease, as the soil moisture will dry out. 519 

These observation based on the isothermal evaporation model are consistent with conclusions 520 

based on calculated triangles (Fig. S4). The transects CB01 and CB10 had the lowest residual 521 

moisture and the highest δ18O values which imply the highest relative evaporative loss 522 
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comparing to the lowest locations (CB06, CB07, and CB08). However, in the term of total 523 

water flux at CB06, CB07 and CB08 the total volume of evaporating water likely was higher 524 

and relatively much more would need to evaporate to achieve the same relative evaporative 525 

enrichment as at CB01 and CB10. Therefore, the size of the triangles reflects the proportional 526 

relative evaporative loss of all available water while the isothermal evaporation model shows 527 

directly the total water volume lost to evaporation. 528 

 529 

4.2. Spatiotemporal patterns in stable isotope signatures of rainfall associated with cyclones 530 

and their importance for assessing regional water budgets  531 

The extremely negative δ2H and δ18O values of cyclone rainfall recorded during this 532 

study in a semi-arid subtropical region in northwest Western Australia were consistent with the 533 

results published for hurricanes from earlier studies in the United States (Gedzelman and 534 

Lawrence, 1982; 1990; Lawrence and Gedzelman, 1996) and Australia (Munksgaard et al., 535 

2015; Zwart et al., 2018). Nevertheless, the observed stable isotope composition was far below 536 

the typical range of δ18O values expected for the studied locations (Dogramaci et al., 2012; 537 

Fellman et al., 2011). The major driver of heavy isotope depletion in rainfall has been 538 

associated with a massive rainout effect arising from the progressive loss of moisture from 539 

clouds and an associated temperature-dependent equilibrium fractionation and convention 540 

(Dansgaard, 1964; Zwart et al., 2018). The vapours remaining in the clouds show a depletion 541 

of heavy isotopes along the cyclone pathway in proportion to the intensity of the rainfall. The 542 

spatial distribution of the stable isotope composition was also consistent with the previously 543 

observed gradual decrease in δ18O values inward toward the cyclone eyewall (Lawrence and 544 

Gedzelman, 1996, 1998). A similar observation was made by Good et al. (2014), who tracked 545 

Cyclone Sandy across the eastern part of the US and reported δ18O values as low as -23.3‰ 546 
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for short time intervals, as well as volume-weighted averages at different distances from the 547 

cyclone path that varied between -6.8 ‰ and -14.9 ‰.  548 

In our study, rainfall was characterised by a similarly large temporal variability in δ18O 549 

that ranged between -13.7 ‰ and -19.3 ‰ (TC Heidi at Marandoo), with higher values between 550 

0.1 ‰ and -9.6 ‰ (TC Lua at B4) with respect to the location of the sampling station in relation 551 

to the cyclone path (Fig. 4). The δ18O values closer to the cyclone path during TC Heidi (at 552 

Marandoo) were more negative when compared with the locations further from the cyclone 553 

path during TC Lua (at B4). Although a very large range of δ18O values was recorded locally, 554 

the mean volume-weighted δ18O signatures were close to the most negative values observed 555 

during the rainfall event at each location because the most intense rainfall delivering the largest 556 

rain volume had the most negative δ18O values (Mook et al., 1974). While the stable isotope 557 

composition of cyclone-associated rainfall was spatially and temporally variable, the Meteoric 558 

Water Lines (MWL) for each cyclone and location (e.g. the MWL for cyclone at Yandicoogina 559 

versus the annual LMWL for Hope Downs Fig. 2) did not differ significantly from a MWL 560 

based on all cyclone rainwater samples pooled together (δ2H=7.5×δ18O+8.6 for TC Heidi and 561 

δ2H=7.7×δ18O+11.7 for TC Lua, Fig. 3). Overall, the slope of the regression for the cyclones 562 

was not significantly different from that of the LMWL for Hope Downs (δ2H= 7.6×δ18O+7.8; 563 

Fig. 2), which is located 110 km SE of the study site. As a result, floodwaters with very negative 564 

δ18O values but close to the LMWL infiltrated into the soil and eventually contributed to the 565 

groundwater. However, the floodwater δ18O signatures were significantly more negative than 566 

the values observed in the groundwater at this location (-9.03±0.56 ‰) and in the Hamersley 567 

Basin in general (mean -8.0 ‰±1.0 ‰, Dogramaci et al., 2012; Skrzypek et al., 2013), allowing 568 

a separation of the cyclone-driven infiltration from the long-term mean groundwater.  569 

 570 

4.3.  Soil moisture response to subsequent cyclonic events 571 
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In the northern part of Western Australia, the δ18O of groundwater is linked to the negative 572 

δ18O signatures of the largest volume cyclonic rainfall events (Skrzypek et al., 2013) occurring 573 

during the Austral summer while winters are dry with negligible precipitation (Rouillard et al., 574 

2015). By contrast, the groundwater recharge in cold climates is often cold-season biased 575 

(Jasechko et al., 2017), because precipitation primarily occurs during cold seasons or is 576 

accumulated in the form of snow and ice and contributes to a delayed recharge during spring 577 

thawing. Hence, in cold climates, the δ18O value of groundwater reflects the winter 578 

precipitation and has a strong temperature effect (Rozanski et al., 1993). By contrast, the very 579 

negative values of δ18O for the rainfall from tropical cyclones in northwest Australia are 580 

associated with a rainout effect (Skrzypek et al., 2013). Nevertheless, in both cases, the 581 

groundwater stable isotope signature predominantly reflects the signature of the largest volume 582 

of precipitation.  583 

The vertical distribution of the soil moisture content and the soil moisture stable oxygen 584 

isotope composition can be used as proxies for the assessment of the progress of evaporation 585 

and the depth of water infiltration (Or et al., 2012; Soderberg et al., 2011). Both parameters 586 

can be significantly modified by large-volume rainfall events and extended periods of drought 587 

(Benettin et al., 2018; Koeniger et al., 2016). The depth of infiltration and the extent of potential 588 

groundwater recharge may depend on multiple factors, such as the volumes, frequency of 589 

rainfall, soil properties and initial soil moisture content (Xu et al., 2019). Similarly, the progress 590 

of evaporation depends on the soil texture, mineralogy and tension (Gaj et al., 2016; 2017, 591 

2019)  The stable isotope fractionation in the soil profile may also depend on soil chemical and 592 

physical properties (Gaj et al., 2017). However, in the studied case the organic contents (Chen 593 

et al., 2016) influence on fractionation is negligible due to extremely low concentrations <1 % 594 

of carbon (Rouillard et al., 2016). Also, silica influence (Lin and Horita, 2016; Lin et al., 2017) 595 

at this location was rather negligible as the content of silicates were very low in dolocrate 596 
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dominated environment (Mather et al., 2019). Potential secondary stable fractionations could 597 

be eventually associated with interactions with phyllosilicate clay minerals (Oerter et al., 2014) 598 

but the possible extent is unknown.  599 

In arid and semiarid climates, small rainfall events (e.g. <20 mm) have no long-term 600 

implications for soil moisture or groundwater recharge and therefore winter precipitation has a 601 

negligible influence on water budget (Dogramaci et al., 2012; Harrington et al., 2002). During 602 

this study, we did not observe any changes in the soil moisture at a depth of 95 cm (determined 603 

at the Koodaideri Weather station using permanently installed soil moisture probes), even after 604 

30 mm of daily rainfall events, provided that the events were separated by periods of drought 605 

(Fig. S4). By contrast, the response to large cyclonic events (e.g., ~112 mm) was very rapid, 606 

and the soil moisture at a depth of 95 cm increased from 8 % to 21 % (vol/vol) within 24 hrs 607 

(Fig. S5).  608 

 609 

4.3.1. Wet and drying of soil profiles visualised using “Polygon method” 610 

Similar to these differences registered by the data loggers, differences in the soil moisture 611 

contents and its δ18O signatures were also detected in the drilled soil cores with respect to the 612 

depth of cyclonic floodwater infiltration carrying unique negative δ18O signature. In order to 613 

visualise subsequent wetting and drying events, we proposed “a polygon method”. First, we 614 

plotted δ18O in relation to the depth of soil moisture sample at one of the sampling location 615 

drilled four times before (red, blue, green and purple lines), between and after two major 616 

cyclones (Fig. 8). Second, we added to the plot recorded signatures of infiltrating precipitation 617 

(black vertical dashed lines). Third, based on the δ18O vertical distribution we detected at what 618 

depth the unique δ18O signatures of the cyclones is observed. Fourth, we prepared a series of 619 

polygons reflecting the progress of evaporation between infiltration and sampling time 620 

comparing δ18O signatures of infiltrating water (X1, X2, X4, and X5). Plot X3 reflects mixing. 621 
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The TC Heidi occurred after an extended dry period (8 months). Its infiltrating floodwater 622 

completely replaced the soil moisture down to ~3.5 m and at this depth signature of -17.6 ‰ 623 

identical with mean TC Heidi precipitation was detected. The good agreement between d-624 

excess of the soil moisture at 3.5 m (17.7) and precipitation (mean 15.6, initial 16.8) 625 

additionally confirms a rapid infiltration of unevaporated precipitation replacing residual 626 

moisture in the soil. At the same time, the soil moisture increased in the whole depth profile 627 

from 16.2 to 29.7 %. The depth of the floodwater infiltration could have been greater than 3.5 628 

m, but the δ18O signatures below this depth were more positive and therefore were likely to 629 

represent mixing between the floodwater and residual moisture retained in the soil from 630 

previous events. In the upper section of the core >3.5 m, the deviation in the δ18O from the 631 

initial value of the cyclone-related rainfall (-17.6 ‰) reflected the progress of evaporation from 632 

the soil profile over the period of 41 days between the cyclone and the subsequent sampling. 633 

The magnitude of the evaporative loss is reflected in the size of the polygon X1 (Fig. 8), 634 

calculated as a triangular area between the vertical line marking the signature of the cyclone (-635 

17.6 ‰), the horizontal line at the shallowest sampling point (0.4 m) and the regression line 636 

for the upper part of the core (filled points). 637 

In contrast to the rainfall from TC Heidi (213 mm), the lower rainfall from TC Lua (33 638 

mm), occurring six weeks later, replaced the soil moisture down to lower depth (~2 m) and 639 

contributed to soil moisture down to ~3 m; at ~2.5 m bgl, the contributions from TC Lua and 640 

TC Heidi were about 50:50 (Fig. 8, middle of the polygon X3). These differences reflect both 641 

the volume of rainfall and the soil conditions, as TC Lua occurred when the soil was still 642 

relatively wet from TC Heidi. Polygon X2 (Fig. 8) reflects the progressive evaporation that 643 

occurred between TC Lua and the subsequent sampling on 17 May 2012. The slope B of the 644 

regression line (-0.50, top nine filled points), which describes the change in δ18O with depth, 645 

was fit to points at the depth of ≥2 m and was consistent with the slope observed for the previous 646 
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sampling after TC Heidi (slope B -0.45, fitted to points >3.5 m, filled blue points). The soil 647 

δ18O values consistently increased between ~2 m and ~3 m, reflecting the expected mixing 648 

between the soil moisture retained in the profile from TC Heidi and the water infiltrating from 649 

TC Lua. Below 3 m, the soil δ18O decreased again, primarily reflecting the signature of partially 650 

evaporated soil moisture from TC Heidi. The regression line fitted to the soil data below 3 m 651 

had a slope of -0.31 (green dashed line based on five open points, Fig. 8). The δ18O of soil 652 

water from TC Heidi would have been expected to fall along this line if TC Lua had not 653 

occurred (e.g., at 2 m, ~-5 ‰ would be expected, rather than -11.6 ‰). The polygon X3 (green 654 

line X3, Fig. 8), enveloped by the dashed vertical line for the signature of TC Lua (-11.6 ‰) 655 

and the regression line with the slope C (-0.31), reflects the relative contribution to soil 656 

moisture at different depths from the two cyclones, Heidi and Lua. The polygon X4 in the 657 

deeper section of the soil, enveloped by the signatures from TC Heidi (blue line) and TC Lua 658 

(green line), reflects the direct evaporative losses occurring over the three-month interval 659 

between 23/02/2012 and 17/05/2012 and is considered as not impacted by infiltration from 660 

Lua. The stable isotope composition of the top part of the soil profile (upper ~2 m) had almost 661 

returned to the values observed prior to Heidi after ~21 months (sampling 12 November 2013). 662 

The size of polygon X5 reflects the evaporative loss from the soil profile between the previous 663 

sampling after TC Lua (17/05/2012) and the final sampling (7/11/2013) (Fig. 8), however this 664 

polygon is just a conceptual approximation, as others not sampled small precipitation events 665 

occurred in the meantime (Fig. S1). 666 

 667 

4.3.2. Quantification of evaporative loses using “Isothermal evaporation model” 668 

The polygon method allows good visualisation of the significance of the major soil 669 

moisture budget drivers but applying the classical model proposed by Allison et al. (1983, 670 

1988), as per Equations 1–3, the actual evaporative losses before and after both events can be 671 
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estimated. By contrast, the evaporative loss from soil was much lower after an extended dry 672 

period, and it likely reflected a nearly steady-state condition, as it did not exceed 30 mm y-1 673 

across the drilling transect. All the δ18O in the soil can be seen as transient, but the cyclone 674 

δ18O reflects the original δ18O of the initial water undergoing evaporation in the upper part of 675 

the soil profile. Therefore, cyclone water, rather than groundwater, should be used for δres (Eq. 676 

1-3). In addition, active diffusivity at the deeper part of the soil profiles will be negligible due 677 

to the nearly saturated conditions that restrict diffusion from the groundwater table, but re-678 

equilibration in the liquid phase can still occur despite the absence of diffusion. The evaporative 679 

loss from the soil profile wetted by TC Heidi, as observed at the time of sampling on 680 

23/02/2012, was between 0.21 and 0.32 mm×day-1 (with respect to the assumed active 681 

diffusivity between 2.0 and 2.3 10-9 m2×s-1), which equals between ~77 and ~118 mm×yr-1. 682 

These momentary values are approximately two to four times higher than those seen during 683 

dry conditions. By contrast, the evaporative loss from the soil profile after TC Lua, as recorded 684 

on 17/05/2012, was much higher and varied between 0.38 and 0.60 mm×day-1 (140 and 220 685 

mm×yr-1). The evaporation from the soil depends not only on the soil properties and climatic 686 

parameters but primarily on the presence of moisture in the soil and its vertical distribution. 687 

Nevertheless, the highest average annual recharge (6.1 mm×yr-1) estimated for the study 688 

location is 1.3 to 4.9 times lower than the momentary evaporation after the extended dry period 689 

(8–30 mm×yr-1). This discrepancy will be a magnitude higher when compared to the extremely 690 

high evaporation from wet soil observed in the central part of the study site over the weeks 691 

directly following cyclone events.  692 

 693 

 694 

5. Conclusions 695 
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The stable oxygen isotope composition of cyclonic rainfall in a semi-arid climate provides 696 

a unique hydrological tracer that is distributed on a regional scale over a landmass and that can 697 

be successfully applied to study evaporative losses and moisture replenishment in soil profiles 698 

and groundwater recharge. We show that the soil moisture δ18O value varies within the top ~4 699 

m of soil profiles with respect to the time since the most recent large rainfall event. Thus, the 700 

δ18O of soil moisture reflects the progress of evaporation as well as the mixing that occurs 701 

between the residual soil moisture and the infiltration from previous rainfall events. In parallel, 702 

the groundwater δ18O primarily reflects the weighted-by-volume mean of infrequent but large-703 

volume recharge events. This δ18O signature of the recharge water persists in the soil moisture 704 

during infiltration only for several weeks following the recharge event. All the observed 705 

differences in the δ18O values between rainfall, soil moisture and groundwater can be explained 706 

by differences in the evaporation rates during different time intervals and the subsequent 707 

mixing with infiltrating water from subsequent rainfalls. Our study shows that large spatial 708 

variability exists on the scale from meters to hundreds of meters and that the position in the 709 

landscape plays a critical role in retention and replenishment of soil water; this needs to be 710 

considered while upscaling local data to global models.  711 
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Figure 1. Location of the soil sampling transect in the Coolibah Woodlands (Fig. 5 and 6), 
Karijini National Park (705 m asl, 22°38' S, 118°12' E). The nearest rainwater sampling station 
at Marandoo is located about 10 km to the South East. The blue outlines embrace the Coolibah 
Woodland patches.  
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Figure 2. Local Meteoric Water Line (LMWL) for Hope Downs (660 m a.s.l., 23° 8′ S, 119° 
34′ E) based on monthly sampling over the 2011-2012 period. The labels indicate the total 
monthly precipitation (mm). The weighed by volume annual means (blue cross symbol) were 
δ18O -7.6‰ and δ2H -47.4‰. 
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Figure 3. The stable isotope composition of precipitation collected at several locations across 
Pilbara during TC Heidi and TC Lua. The samples were collected continuously and δ18O 
plotted respectively to the time of the collection. Marandoo and B4 are the rainwater collection 
sites nearest to the soil-sampling site at the Coolibah Woodlands in the Karijini National Park. 
The regression equation for the δ2H-δ18O relationship for each of the sites separately and each 
cyclone is not different from the LMWL obtained for Hope Downs (Fig. 2) and close to GWML 
δ2H = 8 δ18O+10. 
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Figure 4. Total rainfall over NW Australia during the passage of TC Heidi (a) and TC Lua (b) 
on land in 2012 (compiled from 0.05˚ gridded BoM daily rainfall datasets; Jones et al., 2019), 
including hourly tracks (blue circles) of the cyclone centre (unless specified); catchment 
delineation (black outline) of the Upper Fortescue (29,800 km2) and Lower Fortescue (19,800 
km2); and the Fortescue Marsh at it's maximum extent (1,200 km2). 
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Figure 5. The baseline in dry conditions - soil water contents along the sampling transect in the 
Coolibah Woodlands in the Karijini National Park (Fig. 1). White dots represent soil-sampling 
depths. WT – water table. The interpolation range was restricted to the depth at 688 m asl.  
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Figure 6. The baseline in dry conditions - soil water stable isotope composition along the 
sampling transect in the Coolibah Woodlands, the Karijini National Park (Fig. 1) on November 
2010, white dots represent soil-sampling depths. WT – water table. Groundwater δ18O = -
9.03±0.56‰ (on December 2012). The interpolation range was restricted to the depth at 688 m 
asl. (raw detailed data are presented in Fig. S2 and S4).   
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Figure 7. The soil moisture content from repetitive drilling over a 3-year period at CB05 in the 
central part of the transect (Figs 1, 5 and 6) across the Coolibah Woodlands in the Karijini 
National Park. The moisture content is the lowest for sampling after a long dry period 
(November 2010, red line) and the highest for sampling shortly after the cyclone Heidi (blue 
line). The dashed lines represent mean soil moisture content for each sampling.   
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Figure 8. The δ18O value of the soil moisture from repetitive drilling over a 3-year period at 
CB05 (Fig. 1, 5 and 6) in the central part of the transect in the Coolibah Woodlands, the Karijini 
National Park. Sampling in November 2010 was conducted after a long dry period; dry soil 
conditions are reflected in the most positive δ18O values (red line). The size of the polygons 
X1-X5 reflects the evaporative loss from the soil profile (note overlap between X1 and X2).  

 

 


