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Here we demonstrate how to reconstruct force profiles with an amplitude-modulation AFM 

operated in in standard tapping mode. Our example is based on the Cypher scanning probe 

microscope from Asylum Research. The method is based on Sader and Katan’s algorithm, but 

we have implemented an experimental set-up that allows for robust reconstruction. We discuss 

the details here.  

 
Brief introduction of the force reconstruction method 
The use of AFM has also been exploited in force spectroscopy wherein one reconstructs the 

nanoscale force profile from experimental observables to recover the force as a function of tip-

sample separation distance (d)1-26 (Figure 1). 

 
 

Figure 1: Force vs Distance curve. 

In dynamic AFM, the integral form of the equation of motion can be reduced to a standard driven 

harmonic oscillator with damping and the addition of the tip-sample force that introduces the 

non-linearities. Here, the method used to reconstruct the force-distance curves (FDCs) is the 

Sader-Jarvis-Katan formalism20,27,28, which is a derivation of the results obtained via the Laplace 

transform. The FDCs are reconstructed by considering variations in cantilever amplitude (A) and 

phase (P) as a function of variations in separation distance d. Noted that the free amplitude of 

tip oscillation A0 is a key parameter to achieve a smooth transition to the repulsive regime, i.e., 

avoiding bistability and discontinuity in the amplitude-phase-distance curves29,30. Usually, A0 is 

set to 3 times higher than the critical amplitude AC value31-33, which is the minimum free 

amplitude A0 required to reach the repulsive regime.   
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Steps to collect the raw data to reconstruct force profiles 

1. First, approach the tip as discussed 
in the previous article. 

 

2. Perform a force-distance curve 
once while setting the force 
distance to 30 - 50 nm (Figure 2). 

 
Figure 2 

3. Perform the Thermal test again. 
After the thermal test, copy the 
frequency on the thermal tab and 
paste it in the main tab of the 
master panel (Figure 3). 

 
Figure 3 

4. Next, find the AC as discussed in 
the previous article. 

 

5. Run a force-distance curve again 
while setting the force distance to 
150-200 nm (Figure 4). 

 
Figure 4 
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6. Set the free amplitude to 3-5 
times of the critical 
amplitude value, and the 
trigger point to 95% of the 
free amplitude value (Figure 
5). 

 
Figure 5: Amplitude (yellow) can be adjusted from the drive's 
amplitude button(red). The value can also be tuned from the 
wheel knob. 

7. Adjust the force distance to 
10-25 nm depending on the 
tip-sample interaction 
(Figure 6). 

 
Figure 6 
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8. Adjust the trigger point 
according to the phase channel. 
Allow the phase lag to reach ~ 
80° (Figure 7). 

 
Figure 7 

9. After all the parameters are 
set, click “Continuous” to 
collect the data (Figure 8). 

 
Figure 8 

 

 

 

Steps to process the raw data 

Note: R studio needs to be installed and add to the path. All the source codes can be found here. 

1. Copy the IBW files into the 
UNPACKIGOR\FILES folder and run 
the Matlab file: 
UnpackAND_ShuffleName_IgorFiles 
(Figure 9). 

 

Figure 9 
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2. NEW_TXT folder will be generated 
when the code finishes running 
and renames the folder if needed 
(Figure 10). 

 

Figure 10: Copy the new test from this directory. 

3. Copy the NEW_TXT (or rename) 
folder into 
FORCE_AMAFM_2015APRIL\DATA
_SET folder and run the Matlab 
file: Forces_Paralel_2015March24 
(Figure 11). 

 
Figure 11 

4. Spring constant, Q factor, and 
Amplitude inVolts can be changed 
according to the calibration results 
(Figure 12). 

 
Figure 12 

5. PROCESSED_SETS.mat file will be 
generated when the code finishes 
running and renames the file if 
needed (Figure 13). 

 

Figure 13 
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6. Copy the PROCESSED_SETS.mat or 
the renamed file into 
STATS2015APRIL24 folder and run 
the Matlab file: 
MainStatistics2015MAY12 (Figure 
14).  

Figure 14 

7. ALL_DATA_STATS.mat will be 
generated when the code finishes 
running and renames the file if 
needed (Figure 15).  

Figure 15 
 

 

Examples of force reconstruction  
 
 
The procedure just discussed leads us to an experimentally reconstructed tip-surface 
force profile that is an average of several experimental amplitude versus phase distance 
curves. An example is shown in Figure 16 as reproduced from Ref. 18. In this work we 
were looking at carbonate formation layers on calcite. The histograms show two phases 
on the surface, one where the carbonate layers have formed and the other where it has 
not. This provides us with a marker to study the formation.  
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Figure 16.  Force profiles for both phases on plane 1. (b) Histogram of FAD for the 1st and 

2nd phase one plane 1. (c) Reconstructed force curves on plane 2. (d) FAD histogram for 

both phases on plane 2. Blue and green dots represent for experimental data while the 

continuous lines stand for averaged force curves. 

 

 
Figure 17. AFM phase images for 2 calcite cleavage planes. Scale bar: 500 nm 
corresponding to the forces in Figure 16. (Ref. 18)  
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Brief summary of the theory of conservative forces in 
AFM 
 
 
 
In the paper “Spatial horizons in amplitude and frequency modulation atomic force 
microscopy”34, and many several others, we discuss long range and short range 
conservative forces. These forces vary as a function of tip-surface distance and cover an 
area of interaction. This means that these forces do not affect an infinitesimal point in 
space. This is shown in Figure 18 as reproduced form the paper.  
 

 
 

Figure 18. (a) Scheme of a tip vibrating in the non-contact mode where dmin>a0 and 

δ=0. The Spatial Horizon (SH) is thus affected by long range forces only. The interactions 
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occurring between the tip and the sample's atoms lying beyond the boundary 

established by the SH do not sufficiently affect the dynamics of the cantilever for the 

feedback to detect them. (b) Scheme of a tip vibrating in the repulsive regime where 

intermittent mechanical contact occurs dmin>a0 and δ>0. The SH in this case is affected 

by both short range and long range forces. 

 

 

 

Molecularly or atomically, these forces can be understood as atomic interactions 

between atoms as described in Ref. 21. 

 

 
Figure 19. a-d) Illustrations representing electron and spatial configuration of atoms in 

a tip and a sample. The scheme describes the phenomena that might be involved during 
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induced mutual tip-sample intermolecular and intermolecular interactions as the tip 

approaches and retracts from the sample. A scheme illustrating the evolution of the 

interaction energy E during a full oscillation period is shown at the bottom. In the same 

article we discuss the way in which the raw curves in AM AFM, that is, the phase and 

amplitude, vary with the different forces. In the article we discuss both dissipative and 

conservative forces.  

 

 

 

We would also like to inform the reader that in the presence of water on surfaces, in 

ambient AFM, several other forces should be considered. An illustration of this 

phenomenon is shown in Figure 20 as reproduced from “Capillary and van der Waals 

interactions on CaF2 crystals from amplitude modulation AFM force reconstruction 

profiles under ambient conditions”35. You can see how nanometric water layers form 

both on the tip and the sample and this can have effects on topography has shown in 

the figure.  
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Figure 20. Schemes showing the different interaction regimes, non-contact (nc), 

intermittent contact (ic) and mechanical contact (mc) on (a) a hydrophilic surface (i.e., 

mica) and (b) hydrophobic stearic SAM (top) and hydrophilic mica (bottom) as it has 

been considered in the simulations. Water layers are considered to exist only on the 

mica and the tip surface. Water neck formation (capillary) is only considered on the mica 

surface when under high RH conditions. 

 

 

 

 

The sharpness of the tip also affects the forces as shown in the illustration in Figure 21 

as reproduced from the paper “Size Dependent Transitions in Nanoscale Dissipation”36.  

 

 

 
Figure 21.  Scheme of the possible interactions occurring between an AFM tip and a 

surface when (a) the tip is very sharp and (b) when it becomes blunter. 
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