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The properties of molecules depend on their chemical structure and thus structure–property relations help design
molecules with desired properties. Few-state models are often used to interpret experimental observations of non-
linear optical properties. Not only the magnitude, but also the relative orientation of the transition dipole moment
vectors is needed for few-state models of the non-linear optical properties. The effect of the relative orientation of the
transition dipole moment vectors is called dipole alignment and this effect has previously been studied for multiphoton
absorption properties. However, so far no such studies are reported for the first hyperpolarizability. Here we present a
generalized few-state model for the static and dynamic first hyperpolarizability β , accounting for the effect of dipole
alignment. The formulae derived in this work are general in the sense that they can be used for any few-state model, i.e.
two-state model, three-state model or in general an n-state model. Based on the formulae, we formulate minimization
and maximization criteria for the alignment of transition dipole moment vectors. We demonstrate the importance of
dipole alignment by applying the formulae to the static first hyperpolarizability of ortho-, meta- and para-nitroaniline.
The formulae and the analysis provide new ways to understand structure–property relationship for β and can hence be
used to fine-tune the magnitude of β in a molecule.

I. INTRODUCTION

State-of-the-art photonic applications such as bio-
imaging,1 photodynamic therapy,2,3 electro-optical devices,4

and three-dimensional data storage5 depend on the non-linear
optical properties of the electronic (atomic/molecular/ionic)
systems involved. A system exhibits non-linear optical prop-
erties when the applied electric field is sufficiently strong so
that the corresponding polarization no longer varies linearly
with the strength of the field.6,7 The first hyperpolarizability
(β ) is related to the second-order susceptibility and quantifies
the change in the dipole moment induced by an electric field.
Being a second-order non-linear optical property, β vanishes
for centro-symmetric systems. A static electric field can be
used to break the inversion symmetry of the macroscopic
system and allow β to be measured in electric-field induced
second-harmonic generation (EFISHG) experiments.8–10

In general, β involves three different frequencies, two of
which are the frequencies of the incident optical fields and
the remaining one is the frequency of the resulting optical
field. Hence β is written as β (−ω3;ω1,ω2) subject to the
condition ω1 +ω2 = ω3. In the static case, all three frequen-
cies are zero and hence βstatic ≡ β (0;0,0). Depending on
the incident frequencies, several properties related to β have
been realized experimentally7 such as sum-frequency gener-
ation (SHG)11 [β (−ω1 − ω2;ω1,ω2)], difference-frequency
generation12 [β (−ω1+ω2;ω1,−ω2)], electro-optical Pockels
effect13 [β (−ω;ω,0)], optical rectification14 [β (0;ω,−ω)],
and second-harmonic generation15 [β (−2ω;ω,ω)]. The cur-
rent interest in systems that have non-linear optical properties
focuses on the development of systems with large values of β

a)Electronic mail: mehboob@iitbhilai.ac.in
b)Electronic mail: kenneth.ruud@uit.no

as well as on fine-tuning β in different systems. Several exper-
imental and theoretical works have contributed to these goals.
For example, the effect of π−conjugation,16–18 bond-length
alternation,19–21 and solvent22,23 have been explored experi-
mentally and/or theoretically.

Sum-over-states (SOS) expressions are often used for the
theoretical calculations of β 24–31 and can be extracted from
time-dependent perturbation theory for exact states.32,33 This
approach defines different components of β in terms of transi-
tion dipole moment vectors (TDMVs) and excitation energies
of all excited states of the system and is thus computationally
expensive. In addition to excitation energies and ground- to
excited-state transition dipole moments (TDMs), the approach
also requires TDMs for excitations between different excited
states. In many cases, however, only a few states contribute
strongly to the observed non-linear optical response, and the
full SOS expression is often truncated to a few essential states,
giving rise to so-called few-state models. The popularity of
few-state models is due to their simplicity and their ability
to reproduce the experimental results qualitatively. Few-state
models are especially useful for push-pull π-conjugated sys-
tems with one dominant charge transfer direction. One of the
limitations of the few-state or SOS models, however, is that
the direction of the TDMVs does not appear in the expressions
that are usually used. Thus, the effect of the relative orienta-
tion of the TDMVs — also called dipole alignment — on β

cannot be explicitly studied using standard SOS and few-state
models. Since the relative orientation of TDMVs are directly
related to the structure of the molecules (e.g. to the position
of electron-attracting or electron-donating groups), the explo-
ration of the effect of these orientations on β can provide new
ways to understand the corresponding structure-property rela-
tionships. The effect of the relative orientation of TDMVs on
the two-, three- and in general multiphoton absorption prop-
erties has been explored by Cronstrand et al.34 and Alam et
al.35–38 Alam et al. have also studied the effect of solvent and
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geometry on the orientation of the TDMVs in multiphoton
absorption properties.39–41 These studies have demonstrated
the importance of dipole alignment in multiphoton absorption
processes. Even though the vector nature of the TDMVs has
been taken into account in some works,42,43 no such explicit
studies have been performed for β as far as we know. We
here fill this gap by presenting generalized few-state model
formulae including the effect of dipole alignment on the static
and dynamic β . We apply the derived formulae on the well-
known simple molecules ortho-, meta- and para-nitroaniline
to demonstrate the importance of dipole alignment.

The manuscript is organized as follows: in Section II, the
basic theory and formulae for β are described. In Section III,
the generalized few-state model formulae for different types
of β are derived. This is followed by some explicit expres-
sions for different few-state models in Section IV. The ap-
plication of the derived formulae is illustrated in Section VI
followed by concluding remarks in Section VII.

II. BASIC THEORY FOR β

β can be defined in terms of the response of the energy to
an externally applied electric field as44,45

E(F) = E(0)−∑
i

µiFi−
1
2! ∑

i, j
αi jFiFj

− 1
3! ∑

i, j,k
βi jkFiFjFk−

1
4! ∑

i, j,k,l
γi jklFiFjFkFl− . . . , (1)

where E(F),µi(F),αi j(F),βi jk and γi jkl are the energy of the
system, the i-th component of the dipole moment vector, the
i j-th element of the second-rank polarizability tensor, the i jk-
th element of the third-rank first hyperpolarizability tensor,
and the i jkl-th element of the fourth-rank second hyperpolar-
izability tensor, respectively, in the presence of an external
electric field (F). The components of the electric field are
represented by Fi,Fj,Fk,Fl . Descriptions of different conven-
tions and definitions used for defining β can be found in the
literature.44,46,47

The general SOS expression for the i jk-th component of
the electronic β (−ωξ ;ω1,ω2) can be derived from time-
dependent perturbation theory and is given as24

βi jk(−ωξ ;ω1,ω2) = ∑P−ξ ,1,2 ∑
′

P,Q

µ0P
i µ̄

PQ
j µ

Q0
k(

E0P−Eξ

)
(E0Q−E2)

,

(2)
where ω1,ω2 and ωξ are the frequencies of the three opti-
cal fields involved, Ei = h̄ωi (i = 1,2,ξ ) and ∑P−ξ ,1,2 rep-
resents the summation over all the permutations of the pairs
(i,−ωξ ),( j,ω1) and (k,ω2). Thus, ∑P−ξ ,1,2 represents a
sum of six terms. The prime over the double summation ( ∑

P,Q

′)

indicates the omission of the ground state from the summa-
tion, i.e., P 6= 0, Q 6= 0. EPQ and µ̂

PQ
k are the excitation energy

and the k-th component of the TDMV, respectively, for transi-
tion |P〉 → |Q〉. Finally, µ̄ = µ−µ00. Using the components
βi jk, one can define the total β (βtot) as,

βtot =
√

β 2
x +β 2

y +β 2
z =

√
∑

i=x,y,z
β 2

i , (3)

with

βi =
1
5 ∑

j=x,y,z

(
βi j j +β ji j +β j ji

)
. (4)

One can also define the vector quantity βvec, which is the vec-
tor component of β in the direction of the dipole moment.
This quantity is useful in comparing the value of β obtained
in EFISHG experiments8–10 on polar molecules and is given
as

βvec = ∑
i=x,y,z

µiβi

|µ|
, (5)

where |µ| is the ground-state dipole moment of the system

with µ =
√

∑
i=x,y,z

µ2
i and βi is defined in Eq. 4. The isotrop-

ically averaged parallel (β‖) and perpendicular (β⊥) β s are
given as

β‖ =
1
5 ∑

i, j

(
βi j j +β ji j +β j ji

)
µ̄

00
i (6a)

β⊥ =
1
5 ∑

i, j

(
2βi j j−3β ji j +2β j ji

)
µ̄

00
i , (6b)

where µ̄00
i represents the ground-state dipole unit in the direc-

tion of the ground-state dipole moment. It is equal to µ00
i

µ00 , µ00
i

being the i-th component of the ground-state dipole moment
vector. Thus, βvec = β‖.

From Eq. 2 one can observe that each component of β in-
volves three TDMVs. Since these TDMVs are vector quan-
tities, both βijk and β depend not only on the magnitudes of
these vectors but also on their relative orientation. However, in
the final expressions for β (Eqs. 5, 6a and 6b), only the mag-
nitudes of the different components of (βijk) and hence those
of the TDMVs are used. The value of β calculated using the
above equations has been reported in several instances,24–31

but the vector nature of the TDMVs have never been explored.
In the next section, we derive the contributions from the rela-
tive orientations of TDMVs on the expressions for β .

III. DERIVATION OF GENERALIZED FEW-STATE
MODEL FOR β : EFFECT OF DIPOLE ALIGNMENT

The first step in the derivation of a generalized few-state
model for β is to expand the permutation operator P−ξ ,1,2 in
Eq. 2, giving an expression for βi jk with six terms as
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βi jk
(
−ωξ ;ω1,ω2

)
= ∑

′

P,Q

[
µ0P

i µ̄
PQ
j µ

Q0
k

(E0P−Eξ )(E0Q−E2)
+

µ0P
i µ̄

PQ
k µ

Q0
j

(E0P−Eξ )(E0Q−E1)
+

µ0P
j µ̄

PQ
i µ

Q0
k

(E0P +E1)(E0Q−E2)
+

µ0P
j µ̄

PQ
k µ

Q0
i

(E0P +E1)(E0Q +Eξ )
+

µ0P
k µ̄

PQ
i µ

Q0
j

(E0P +E2)(E0Q−E1)
+

µ0P
k µ̄

PQ
j µ

Q0
i

(E0P +E2)(E0Q +Eξ )

]
.

(7)

In the next step, the expanded form of βi jk (Eq. 7) is placed in βi (Eq. 4). The different components appearing in Eq. 4, i.e.,
βi j j,β ji j and β j ji, are given as

βi j j
(
−ωξ ;ω1,ω2

)
= ∑

′

P,Q

[
µ0P

i µ̄
PQ
j µ

Q0
j

(E0P−Eξ )(E0Q−E2)
+

µ0P
i µ̄

PQ
j µ

Q0
j

(E0P−Eξ )(E0Q−E1)
+

µ0P
j µ̄

PQ
i µ

Q0
j

(E0P +E1)(E0Q−E2)
+ (8a)

µ0P
j µ̄

PQ
j µ

Q0
i

(E0P +E1)(E0Q +Eξ )
+

µ0P
j µ̄

PQ
i µ

Q0
j

(E0P +E2)(E0Q−E1)
+

µ0P
j µ̄

PQ
j µ

Q0
i

(E0P +E2)(E0Q +Eξ )

]
,

β ji j
(
−ωξ ;ω1,ω2

)
= ∑

′

P,Q

[
µ0P

j µ̄
PQ
i µ

Q0
j

(E0P−Eξ )(E0Q−E2)
+

µ0P
j µ̄

PQ
j µ

Q0
i

(E0P−Eξ )(E0Q−E1)
+

µ0P
i µ̄

PQ
j µ

Q0
j

(E0P +E1)(E0Q−E2)
+ (8b)

µ0P
i µ̄

PQ
j µ

Q0
j

(E0P +E1)(E0Q +Eξ )
+

µ0P
j µ̄

PQ
j µ

Q0
i

(E0P +E2)(E0Q−E1)
+

µ0P
j µ̄

PQ
i µ

Q0
j

(E0P +E2)(E0Q +Eξ )

]
,

β j ji
(
−ωξ ;ω1,ω2

)
= ∑

′

P,Q

[
µ0P

j µ̄
PQ
j µ

Q0
i

(E0P−Eξ )(E0Q−E2)
+

µ0P
j µ̄

PQ
i µ

Q0
j

(E0P−Eξ )(E0Q−E1)
+

µ0P
j µ̄

PQ
j µ

Q0
i

(E0P +E1)(E0Q−E2)
+ (8c)

µ0P
j µ̄

PQ
i µ

Q0
j

(E0P +E1)(E0Q +Eξ )
+

µ0P
i µ̄

PQ
j µ

Q0
j

(E0P +E2)(E0Q−E1)
+

µ0P
i µ̄

PQ
j µ

Q0
j

(E0P +E2)(E0Q +Eξ )

]
.

Adding these three components, we get

βi j j +β ji j +β j ji = ∑
′

P,Q

1
EPQ

[
µ

0P
i µ̄

PQ
j µ

Q0
j +µ

0P
j µ̄

PQ
i µ

Q0
j +µ

0P
j µ̄

PQ
j µ

Q0
i

]
, (9)

where
1

EPQ
=

1
(E0P−Eξ )(E0Q−E2)

+
1

(E0P−Eξ )(E0Q−E1)
+

1
(E0P +E1)(E0Q−E2)

+
1

(E0P +E1)(E0Q +Eξ )
+

1
(E0P +E2)(E0Q−E1)

+
1

(E0P +E2)(E0Q +Eξ )
.

(10)

We can now use Eqs. 9 and 10 in the different expressions for β to identify the contributions from dipole alignment.

A. Dipole alignment in βtot

To extract the dipole alignment contribution to βtot, we write βx,βy and βz explicitly and put the square of these quantities in
Eq. 3. After arranging the terms in the form of z scalar product of two vectors, we get

βi =
1
5 ∑

′

P,Q

1
EPQ

[
µ

0P
i µ̄

PQ
x µ

Q0
x +µ

0P
x µ̄

PQ
i µ

Q0
x +µ

0P
x µ̄

PQ
x µ

Q0
i +µ

0P
i µ̄

PQ
y µ

Q0
y +µ

0P
y µ̄

PQ
i µ

Q0
y +µ

0P
y µ̄

PQ
y µ

Q0
i +

µ
0P
i µ̄

PQ
z µ

Q0
z +µ

0P
z µ̄

PQ
i µ

Q0
z +µ

0P
z µ̄

PQ
z µ

Q0
i

]
=

1
5 ∑

′

P,Q

1
EPQ

[
µ

0P
i

(
~̄µPQ ·~µQ0

)
+ µ̄

PQ
i

(
~µOP ·~µQ0)+µ

Q0
i

(
~µ0P ·~̄µPQ

)]
, (11)

and

β
2
i =

1
25 ∑

′

P,Q,R,S

1
EPQERS

[
µ

0P
i

(
~̄µPQ ·~µQ0

)
+ µ̄

PQ
i

(
~µOP ·~µQ0)+µ

Q0
i

(
~µ0P ·~̄µPQ

)]
×
[
µ

0R
i

(
~̄µRS ·~µS0

)
+ µ̄

RS
i
(
~µOR ·~µS0)+µ

S0
i

(
~µ0R ·~̄µRS

)]
. (12)
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4

In Eq. 12, the prime over the summations indicates that none of the four indices (P,Q,R, or S) can be the ground state. Inserting
Eq. 12 in Eq. 3, we get

βtot =
√

β 2
x +β 2

y +β 2
z

=
1
5

(
∑
′

P,Q,R,S

1
EPQERS

(
~µ0P ·~µ0R)(~µQ0 ·~̄µPQ

)(
~µS0 ·~̄µRS

)
+
(
~µ0P ·~̄µRS

)(
~µQ0 ·~̄µPQ

)(
~µ0R ·~µS0)+

(
~µ0P ·~µS0)(~µQ0 ·~̄µPQ

)(
~µ0R ·~̄µRS

)
+
(
~µ0R ·~̄µPQ

)(
~µ0P ·~µQ0)(~µS0 ·~̄µRS

)
+
(
~̄µRS ·~̄µPQ

)(
~µ0P ·~µQ0)(~µ0R ·~µS0)+(

~µS0 ·~̄µPQ
)(

~µ0P ·~µQ0)(~µ0R ·~̄µRS
)
+
(
~µQ0 ·~µ0R)(~µ0P ·~̄µPQ

)(
~µS0 ·~̄µRS

)
+
(
~µQ0 ·~̄µRS

)(
~µ0P ·~̄µPQ

)(
~µ0R ·~µS0)+(

~µQ0 ·~µS0)(~µ0P ·~̄µPQ
)(

~µ0R ·~̄µRS
))1/2

. (13)

Eq.13 can be rewritten as a dipole alignment expression by separating the dot products of the TDMVs into magnitudes and
angles as

βtot =
1
5

(
∑
′

P,Q,R,S

µ0Pµ̄PQµQ0µ0Rµ̄RSµS0

EPQERS

{
cosθ

0R
0P cosθ

PQ
0Q cosθ

RS
0S + cosθ

RS
0P cosθ

PQ
0Q cosθ

0S
0R + cosθ

0S
0P cosθ

PQ
0Q cosθ

RS
0R+

cosθ
PQ
0R cosθ

0Q
0P cosθ

RS
0S + cosθ

PQ
RS cosθ

0Q
0P cosθ

0S
0R + cosθ

PQ
0S cosθ

0Q
0P cosθ

RS
0R + cosθ

0R
0Q cosθ

PQ
0P cosθ

RS
0S +

cosθ
RS
0Q cosθ

PQ
0P cosθ

0S
0R + cosθ

0S
0Q cosθ

PQ
0P cosθ

RS
0R

})1/2
, (14)

where µAB represents the magnitude of the TDMV ~µAB and θCD
AB represents the angle between the TDMVs ~µAB and ~µCD. βtot

can be written in terms of its elements β
PQRS
tot as

βtot =
1
5

√
∑
′

P,Q,R,S
β

PQRS
tot , (15)

where β
PQRS
tot represents everything within the summations in Eq. 14. Thus, βtot can be considered as the sum of n4 number of

different β
PQRS
tot terms, where n is the number of excited states considered in the calculations. For an m-state system, n = m−1

(as one of the states would be the ground state), there would be (m−1)4 number of β
PQRS
tot elements.

The expression in curly brackets (angle term) in Eq. 14 is the contribution from the relative orientations of different TDMVs
on βtot. The angle term of βtot can be positive or negative depending on the alignment of the TDMVs. The maximum value of
the angle term (+9) is obtained when the TDMVs ~µ0P, ~µ0Q, ~̄µPQ, ~µ0R, ~µ0S and ~̄µRS are all aligned parallel or when two of them
are aligned parallel to each other and anti-parallel to the four remaining TDMVs. An example of the latter is when ~µ0Q and ~µ0S

are aligned anti-parallel to ~µ0P, ~̄µPQ, ~µ0R and ~̄µRS. The minimum value of the angle term (-9) is obtained when one or three
TDMVs are aligned anti-parallelly to all others, such as when ~µ0P, ~µ0Q and ~̄µPQ are parallel to each other and anti-parallel to
~µ0R, ~µ0S and ~̄µRS.

Comparing Eq. 14 with the generalized few-state model formula35,37 for two-photon absorption (2PA) or three-photon absorp-
tion (3PA), it is clear that at a molecular level, the expression for β is much more complicated than the corresponding expressions
for a multiphoton absorption process. Since there is no final state in the case of β , the number of dipoles involved is much larger
and hence also the number of orientation terms.

If the two transition channels 0→ P→ Q→ 0 and 0→ R→ S→ 0 are the same (P = R and Q = S), the expression for βtot is
considerably simplified:

β
P=R,Q=S
tot =

1
5 ∑

′

P,Q

µ0Pµ̄PQµQ0

EPQ

√
6cosθ

0Q
0P cosθ

PQ
0P cosθ

PQ
0Q + cos2 θ

0Q
0P + cos2 θ

PQ
0P + cos2 θ

PQ
0Q . (16)

B. Dipole alignment in β‖

In order to derive the dipole alignment formula for β‖, we insert Eq. 9 into Eq. 6a. This gives

β‖ =
1
5 ∑

i, j
∑
′

P,Q

1
EPQ

[
µ

0P
i µ̄

PQ
j µ

Q0
j +µ

0P
j µ̄

PQ
i µ

Q0
j +µ

0P
j µ̄

PQ
j µ

Q0
i

]
µ00

i
µ00 . (17)
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5

On expanding over the Cartesian coordinates (i.e., over the indices i and j), we get

µ
00

β‖ =
1
5 ∑

′

P,Q

1
EPQ

[
3µ

0P
x µ̄

PQ
x µ

Q0
x µ

00
x +µ

0P
x µ̄

PQ
y µ

Q0
y µ

00
x +µ

0P
y µ̄

PQ
x µ

Q0
y µ

00
x +µ

0P
y µ̄

PQ
y µ

Q0
x µ

00
x +µ

0P
x µ̄

PQ
z µ

Q0
z µ

00
x +

µ
0P
z µ̄

PQ
x µ

Q0
z µ

00
x +µ

0P
z µ̄

PQ
z µ

Q0
x µ

00
x +µ

0P
y µ̄

PQ
x µ

Q0
x µ

00
y +µ

0P
x µ̄

PQ
y µ

Q0
x µ

00
y +µ

0P
x µ̄

PQ
x µ

Q0
y µ

00
y +3µ

0P
y µ̄

PQ
y µ

Q0
y µ

00
y +

µ
0P
y µ̄

PQ
z µ

Q0
z µ

00
y +µ

0P
z µ̄

PQ
y µ

Q0
z µ

00
y +µ

0P
z µ̄

PQ
z µ

Q0
y µ

00
y +µ

0P
z µ̄

PQ
x µ

Q0
x µ

00
z +µ

0P
x µ̄

PQ
z µ

Q0
x µ

00
z +µ

0P
x µ̄

PQ
x µ

Q0
z µ

00
z +

µ
0P
z µ̄

PQ
y µ

Q0
y µ

00
z +µ

0P
y µ̄

PQ
z µ

Q0
y µ

00
z +µ

0P
y µ̄

PQ
y µ

Q0
z µ

00
z +3µ

0P
z µ̄

PQ
z µ

Q0
z µ

00
z

]
=

1
5 ∑

′

P,Q

[(
~µ0P ·~µ00)(~̄µPQ ·~µQ0

)
+
(
~µ0P ·~̄µPQ

)(
~̄µQ0 ·~µ00

)
+
(
~µ0P ·~µQ0)(~̄µPQ ·~µ00

)]
. (18)

Eq. 18 can be rewritten as a dipole alignment expression by separating the dot products of the TDMVs into magnitudes and
angles as

β‖ =
1
5 ∑

′

P,Q

µ0Pµ̄PQµQ0

EPQ

{
cosθ

00
0P cosθ

0Q
PQ + cosθ

PQ
0P cosθ

00
0Q + cosθ

0Q
0P cosθ

00
PQ

}
, (19)

or in terms of its components β
PQ
‖ as

β‖ =
1
5 ∑

′

P,Q
β

PQ
‖ . (20)

The angle term of β‖ (the term in curly brackets in Eq. 19) can be positive or negative depending on the alignment of the

TDMVs. The maximum value of the angle term (+3) is obtained when the TDMVs ~µ00, ~µ0P, ~µ0Q and ~̄
µPQ are all aligned

parallel or when two of them are aligned parallel to each other and anti-parallel to the two remaining TDMVs. The minimum
value of the angle term (-3) is obtained when one of the four TDMVs involved is anti-parallel to the other three, such as when
~µ00 is anti-parallel to ~µ0P, ~µ0Q and ~̄µPQ.

β‖ equals the sum of n2 number of β
PQ
‖ terms, where n is the number of excited states in the system. Eq. 19 clearly indicates

that the expression for the contribution of dipole alignment on β‖ is much simpler than the corresponding expression for βtot
(Eq. 14). Indeed, β‖ is only the vector component of β along the ground-state dipole moment. Each term in Eq. 19 involves at
most three different TDMVs, which is half as many as appearing in Eq. 14. The magnitude of the ground-state dipole moment
does not appear in Eq. 19, but its direction is needed to evaluate the angle term.

C. Dipole alignment in β⊥

Similar to the case for β‖, the dipole alignment formula of β⊥ can be derived by inserting Eqs. 8a, 8b and 8c into Eq. 6b.
A closer inspection of the resulting expressions reveals that the summation (2βi j j−3β ji j +2β j ji) gives an equation similar to
Eq. 9:

2βi j j−3β ji j +2β j ji = ∑
′

P,Q

1
E ′PQ

[
µ

0P
i µ̄

PQ
j µ

Q0
j +µ

0P
j µ̄

PQ
i µ

Q0
j +µ

0P
j µ̄

PQ
j µ

Q0
i

]
, (21)

where E ′PQ is given as

1
E ′PQ

=
2

(E0P−Eξ )(E0Q−E2)
+

2
(E0P−Eξ )(E0Q−E1)

− 3
(E0P +E1)(E0Q−E2)

− 3
(E0P +E1)(E0Q +Eξ )

+

2
(E0P +E2)(E0Q−E1)

+
2

(E0P +E2)(E0Q +Eξ )
.

(22)

The dipole alignment expression for β⊥ is thus given as

β⊥ =
1
5 ∑

′

P,Q

µ0Pµ̄PQµQ0

E ′PQ

{
cosθ

00
0P cosθ

0Q
PQ + cosθ

PQ
0P cosθ

00
0Q + cosθ

0Q
0P cosθ

00
PQ

}
, (23)
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6

or in terms of its components β
PQ
⊥ as

β⊥ =
1
5 ∑

′

P,Q
β

PQ
⊥ . (24)

The only difference between the dipole alignment expressions for β‖ (Eq. 19) and β⊥ (Eq. 23) is the energy term, which is given
by Eq. 10 for β‖ and by Eq. 22 for β⊥. Thus, the angle term (the term in curly brackets in Eq. 23) can assume values between
−3 and +3 with the same maximization and minimization conditions as for β‖.

D. General expression

The dipole alignment expressions of βtot,β‖ and β⊥ can be
written in a general form as

β =
1
5

(
∑
′ dipole term
energy term

× angle term
)y
, (25)

where the exponent y is 1/2 for βtot and 1 for β‖ and β⊥. The
summation is over four indices for βtot and over two indices
for β‖ and β⊥. The dipole term is a product of the magnitude
of the six TDMVs involved in β

PQRS
tot and the three TDMVs in-

volved in β
PQ
‖ and β

PQ
⊥ . Hence, the dipole term is always pos-

itive. The dipole term in βtot represents two transition chan-
nels viz. 0→ P→ Q→ 0 and 0→ R→ S→ 0 because of
the involvement of quadratic terms such as β 2

i . The corre-
sponding angle term represents the interference between the
two channels. This interpretation is equivalent to the channel
interference picture of multiphoton absorption processes.37 β‖
and β⊥, on the other hand, do not contain any quadratic term
and thus the corresponding dipole term represents only one
transition channel.

IV. FEW-STATE MODELS BASED ON DIPOLE
ALIGNMENT EXPRESSIONS

The dipole alignment expressions derived in the previous
section involve summations over all the excited states in the
system. In practical calculations, this summation is not feasi-
ble except for some very simple systems. Therefore, one has
to truncate the summation in the expressions, giving rise to
so-called few-state models. Few-state models for any given
number of states can be derived from the expressions in the
previous section. We will here derive explicit expressions for
few-state models with two and three states.

A. Two-state model

The simplest of the few-state models is the two-state model
(2SM). In a 2SM, the indices of the summation are either the
ground state |0〉 or a particular excited state that we will here
denote as |P〉. Since the summation indices cannot be the
ground state in the dipole alignment expressions derived in the
previous section, all summation indices take the value of the
excited state |P〉. Therefore, the 2SM expressions for βtot,β‖

and β⊥ are

β
2SM
tot =

1
5

(
µ0P
)2

µ̄PP

EPP

√
8cos2 θ PP

0P +1, (26)

β
2SM
‖ =

1
5

(
µ0P
)2

µ̄PP

EPP

{
2cosθ

00
0P cosθ

PP
0P + cosθ

PP
00

}
, (27)

β
2SM
⊥ =

1
5

(
µ0P
)2

µ̄PP

E ′PP

{
2cosθ

00
0P cosθ

PP
0P + cosθ

PP
00

}
, (28)

where µ̄PP = |~µPP −~µ00|. Several interesting observations
can be made by evaluating these formulae. First, β 2SM

tot de-
pends on only one angle, namely the angle θ PP

0P between ~µ0P

and ~̄µPP, whereas β 2SM
‖ and β 2SM

⊥ depend on all three possible
angles θ 0P

00 ,θ
PP
0P and θ PP

00 . The angle term in β 2SM
tot is always

positive and reaches its maximum value when ~µ0P and ~̄µPP

are parallel or anti-parallel. The angle term in β 2SM
‖ and β 2SM

⊥
can be either positive or negative. The maximum value of +3
is obtained when ~µ00, ~µ0P and ~̄µPP are all aligned in parallel
or when ~µ00 and ~̄µPP are aligned parallel to each other and
anti-parallel to ~µ0P. The minimum value of -3 is obtained
when ~µ00 and ~̄µPP are aligned anti-parallel to each other with
~µ0P parallel to either ~µ00 or ~̄µPP. β 2SM

tot and β 2SM
‖ only dif-

fer in the angle term. In all maximization and minimization
conditions for β 2SM

‖ , β 2SM
tot only has a component in the di-

rection of the dipole moment. Thus, β 2SM
tot = β 2SM

‖ when the
maximization conditions hold and β 2SM

tot = −β 2SM
‖ when the

minimization conditions hold. Finally, the ratio of isotropi-
cally averaged parallel and perpendicular β , within the 2SM,
is equal to the inverse ratio of the corresponding energy terms,
i.e.,

β 2SM
‖

β 2SM
⊥

=
E ′PP
EPP

(29)

B. Three-state model

The three-state model (3SM) expressions for βtot,β‖, and
β⊥ are obtained by considering the ground state and two dif-
ferent excited states in the summations in Eqs. 14, 19 and 23.
Calling the excited states A and B, i.e., P,Q,R,S = A,B, we
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7

can write

β
3SM
tot =

1
5

(
β

AAAA
tot +β

AAAB
tot +β

AABA
tot +β

AABB
tot +

β
ABAA
tot +β

ABAB
tot +β

ABBA
tot +β

ABBB
tot +

β
BAAA
tot +β

BAAB
tot +β

BABA
tot +β

BABB
tot +

β
BBAA
tot +β

BBAB
tot +β

BBBA
tot +β

BBBB
tot

)1/2
,

(30)

β
3SM
‖ or ⊥ =

1
5

(
β

AA
‖ or ⊥+β

AB
‖ or ⊥+β

BA
‖ or ⊥+β

BB
‖ or ⊥

)
. (31)

Each term in these equations (Eqs. 30 and 31) can be obtained
from the respective expressions in Eqs. 14, 19 and 23. Terms
such as β AAAA

tot or β AA
‖ or ⊥, i.e., those having only one type of

index, appear also in the 2SM. The expression for the simplest
non-2SM term for β 3SM

tot is given below as an example

β
AAAB
tot =

(µ0A)3µ0Bµ̄AAµ̄AB

EAAEAB
×
(
3cosθ

AA
0A cosθ

AB
0B

+ cosθ
AA
AB cosθ

0B
0A + cosθ

AA
0B cosθ

AB
0A

+4cosθ
AB
0A cosθ

AA
0A cosθ

0B
0A
)
.

(32)

In general, β AAAB
tot = β AABA

tot = β ABAA
tot = β BAAA

tot . The ex-
pressions for β AB

‖ or ⊥ are already given in Eqs. 19 and 23 as

β
PQ
‖ or ⊥.

V. DIPOLE ALIGNMENT EXPRESSIONS FOR THE
STATIC β

In all the above treatment, we have not mentioned the val-
ues of the three frequencies or energies Eξ ,E1 and E2. There-
fore, the expressions derived in the previous sections are valid
for both static as well as dynamic β s. The static case has a
much simpler expression for the energy term, which is ob-
tained by putting Eξ = E1 = E2 = 0 in Eqs. 10 and 22. Thus,

1
Es

PQ
=

6
E0PE0Q

and
1

Es,′
PQ

=
2

E0PE0Q
, (33)

where he superscript ‘s’ refers to the static case. All the other
terms remain unchanged.

Since β‖ (Eq. 19) and β⊥ (Eq. 23) only differ in the energy
term, their static counterparts differ by a factor of three as

β
s
‖ = 3β

s
⊥. (34)

Expressions for β s in a 2SM are obtained by inserting
Eq. 33 into Eqs. 26–28 and are given as

β
s,2SM
tot =

6
5

(
µ0P
)2

µ̄PP

E2
0P

√
8cos2 θ PP

0P +1, (35)

β
s,2SM
‖ =

6
5

(
µ0P
)2

µ̄PP

E2
0P

{
2cosθ

00
0P cosθ

PP
0P + cosθ

PP
00

}
, (36)

β
s,2SM
⊥ =

2
5

(
µ0P
)2

µ̄PP

E2
0P

{
(2cosθ

00
0P cosθ

PP
0P + cosθ

PP
00

}
.

(37)

FIG. 1. Vacuum-phase optimized geometries of o-, m- and p-
nitroaniline

We note that the energy terms in Eq. 33 are always positive
for static β s. Thus, β

s,2SM
tot is always positive and only the

angle term can contribute to a negative component in β
s,PQ
tot ,

β
s,PQ
‖ or β

s.PQ
⊥ .

VI. ILLUSTRATION OF DIPOLE ALIGNMENT IN O-, M-
AND P-NITROANILINE (ONA, MNA, AND PNA)

We have applied the derived expressions (Eqs. 14, 19 and
23) to investigate the contribution of dipole alignment on
static β s of o-, m-, and p-nitroaniline (ONA, MNA, and
PNA). The ground-state geometries were optimized at the
B3LYP/aug-cc-pVDZ level of theory using Gaussian16.48

Optimized geometries are shown in Figure 1.
Excitation energies as well as TDMVs for ground-state to

excited-state and excited-state to excited-state transitions were
calculated for 50 excited states at the time-dependent density
functional theory level of theory49 using CAMB3LYP/aug-cc-
pVDZ as implemented in the LSDalton50,51 program package.
βtot,β‖ and β⊥ were calculated with different few-state mod-
els using a computer code that has been developed to treat
the equations derived in this work. The code is available as
open source.52 Results for β s are shown in Figure 2. It is
important to mention here that few-state models can be con-
structed in different ways, e.g. a four-state model can be con-
sidered by including states 0,1,2,3 or 0,1,2,4, etc. Here an
n-state model is constructed by considering all consecutive
states from the ground state to excited state n− 1. Response
theory results were calculated at the same level of theory in
LSDalton for βtot,β‖ and β⊥ for reference, and are given in
Table I and as horizontal lines in Figure 2.

ONA MNA PNA
βtot 281.670 296.265 834.100
β‖ 268.139 280.827 829.583
β⊥ 89.380 93.609 276.528

TABLE I. Response theory results for βtot,β‖, and β⊥ for ONA,
MNA, and PNA.

The few-state model results converge reasonably well to the
response theory results: to within 25% for ONA and MNA
and to within 2.5% for PNA with 50 excited states. After the
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FIG. 2. β s
tot,β

s
‖ and β s

⊥(βperp) for ONA, MNA and PNA calculated
with n-state models from n= 2 to n= 50. The response theory results
are shown as horizontal lines.

20th state, no single excited state has a large impact on the
SOS results. Contributions to β s can be positive or negative.
Since the dipole term and energy term are always positive for
β s, it is the sign of the angle term that determines whether the
contribution to β s is positive or negative.

Interestingly, the values of β s
tot and β s

‖ are similar for ONA
and MNA and almost the same for PNA. β s

⊥ is exactly one
third of β s

‖ as is always the case for β s (Eq. 34). In order to
demonstrate the importance of dipole alignment, we have also
computed few-state model results assuming that all TDMVs
are parallel to each other, i.e., assuming that each cosine in
the angle term is 1. The results are plotted in Figure 3. The
angle term is in this case 9 for β s

tot (Eq. 14) and 3 for β s
‖ and

β s
⊥ (Eqs. 19 and 23). The results in Figure 3 show no sign
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FIG. 3. Convergence of βtot,β‖, and β⊥(βperp) with few-state mod-
els in ONA, MNA and PNA, when each cosine in the angle term is
assumed to be 1.0. In this particular case, βtot = β‖. The response
theory results are shown as horizontal lines.

of convergence and the values are significantly overestimated
compared to the response value results. Indeed, convergence
is not possible because all contributions to β s are positive.
Large negative contributions to β s such as when including
state number 20 (Figure 2) are large positive contributions in
Figure 3. This clearly shows that it is important to include the
effect of dipole alignment in the SOS expression of β . Note
that the values of βtot and β‖ are the same when the two tran-
sition channels in βtot do not interact through the angle term.
The component β

PQRS
tot reduces to the square of the component

β
PQ
‖ giving equivalent values for βtot (Eq. 15) and β‖ (Eq. 20).
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VII. CONCLUSIONS

Non-linear optical properties such as multiphoton absorp-
tion and β involve more than one TDMV and hence these
properties depend not only on the magnitude but also on the
relative orientation of these vectors. In this work, we have
derived the generalized few-state model formulae for quan-
tifying the importance of the relative orientation of different
TMDVs on β s—βtot and the isotropically averaged parallel
(β‖) and perpendicular (β⊥)—in line with out previous work
on multiphoton absorption. Our derivations are general in the
sense that they can be used to generate any few-state model
formula and applied to frequency-dependent as well as static
β s. We have applied the derived formulae to illustrate the im-
portance of relative orientations of different TDMVs on β s
in o-, m-, and p-nitroaniline. This work opens new ways to
understand β and allows to establish structure–property rela-
tionship between the TDMV orientations and different β s. An
extension of the generalized few-state model of β to coupled-
cluster theory will be published in a forthcoming work.

VIII. SUPPLEMENTARY MATERIAL

The optimized Cartesian coordinates for the ground state
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are provided as supplementary material.
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