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Highlights 

• Lower mid-calf muscle density was associated with increased likelihood for multiple 

incident falls over 12 months 

• Muscle density was inconsistently associated with bone parameters at the hip, lumbar 

spine and proximal and distal radius 

• Muscle density was consistently positively associated with tibial bone parameters 

suggesting local effects on bone health  

• Moderate/vigorous physical activity was positively associated with mid-calf muscle 

density 

 

  



3 
 

Abstract 

Background: Lower skeletal muscle density, indicating greater infiltration of adipose tissue 

into muscles, is associated with higher fracture risk in older adults. We aimed to determine 

whether mid-calf muscle density is associated with falls risk and bone health in community-

dwelling older adults.   

Methods: 2,214 community-dwelling men and women who participated in the Healthy 

Ageing Initiative (Sweden) study at age 70 were included in this analysis. Mid-calf muscle 

density (mg/cm3) at the proximal tibia, and volumetric bone mineral density (vBMD) and 

architecture at the distal and proximal tibia and radius, were assessed by peripheral 

quantitative computed tomography. Whole-body lean and fat mass, lumbar spine and total hip 

areal bone mineral density (aBMD) were assessed by dual-energy X-ray absorptiometry. 

Participants completed seven-day accelerometer measurements of physical activity intensity, 

and self-reported falls data were collected 6 and 12 months later. 

Results: 302 (13.5%) participants reported a fall at the 6- or 12-month interview, and 29 

(1.3%) reported a fall at both interviews. After adjustment for confounders, each standard 

deviation decrease in mid-calf muscle density was associated with a trend towards greater 

likelihood of a fall (OR 1.13; 95% CI 1.00, 1.29) and significantly greater likelihood of 

multiple falls (1.61; 1.16, 2.23). Muscle density was not associated with total hip aBMD, and 

was associated with lower lumbar spine aBMD (B=-0.003; 95% CI -0.005, -0.001 per 

mg/cm3) and higher proximal cortical vBMD (0.74; 0.20, 1.28) at the radius. At the tibia, 

muscle density was positively associated with distal total and trabecular vBMD, and proximal 

total and cortical vBMD, cortical thickness, cortical area and stress-strain index (all P<0.05). 

Only moderate/vigorous intensity physical activity, not sedentary time or light activity, was 

associated with higher mid-calf muscle density (0.086; 0.034, 0.138). 
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Conclusions: Lower mid-calf muscle density is independently associated with higher 

likelihood for multiple incident falls and appears to have localised negative effects on bone 

structure in older adults. 

 

Keywords: muscle density, falls, bone density, osteoporosis, sarcopenia, physical activity 
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1.0 Introduction 

Low lower-limb skeletal muscle density has been associated with higher risk of 

fractures in older adults (1-5). Low muscle density is an indicator of higher amounts of intra- 

and intermuscular adipose tissue (IMAT) and can be assessed at the mid-calf in older adults 

using peripheral quantitative computed tomography (pQCT) (6). The relationship of low 

muscle density with greater risk of fractures is likely to be explained, at least in part, by its 

associations with poor physical performance (7-10), and also with higher likelihood of falls 

as reported in retrospective studies (11-13). However, there is currently a lack of prospective 

data on the contribution of low muscle density to incident fall risk in older adults.  

Another mechanism by which low skeletal muscle density may influence fracture risk 

in older adults is through its associations with bone health. Lower gluteus maximus and 

abductor muscle densities are associated with lower hip areal bone mineral density (aBMD) 

in hip fracture patients (14), and measures of ‘bone qualities’, such as peripheral volumetric 

BMD (vBMD) and bone geometry (15), also appear to be poorer in those with lower muscle 

density. Indeed, we recently reported that lower mid-calf muscle density is associated with 

lower proximal tibial cortical vBMD and area in older adults (16), and high relative lower-leg 

intra-muscular fat has also been associated with lower tibial bone content and area (17). The 

findings of these studies suggest a potential negative localised effect of lower skeletal muscle 

density on bone health in older adults, but no study has reported associations between muscle 

density and bone density and architecture at multiple anatomical sites. 

 Interventions which increase physical activity have been successful in reducing IMAT 

(18, 19), and low self-reported physical activity levels are associated with higher levels of 

IMAT in multiple patient populations (20-22). However self-reported estimates of physical 

activity are subject to recall bias (23). Accelerometers provide objective estimates of 

sedentary behaviour and intensity of physical activity but it is currently unclear whether 
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objectively-determined physical activity of different intensities have similar associations with 

mid-calf skeletal muscle density in older adults. 

 The primary aim of this analysis of a community-dwelling population of Swedish 

older adults was to determine the associations of mid-calf skeletal muscle density with 12-

month incident falls. The secondary aims were to determine cross-sectional associations of 

mid-calf muscle density with bone density and architecture at different anatomical sites, and 

with accelerometer-determined physical activity intensity.  
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2.0 Materials and Methods 

2.1 Study design and participants 

 This was an analysis of the Healthy Ageing Initiative (HAI) cohort study; an ongoing 

observational study of 70-year-old adults in the Umeå municipality in northern Sweden. The 

objectives of HAI are to investigate traditional and potentially novel risk factors for 

cardiovascular disease and injurious falls and fractures in 70-year-old men and women. Two 

eligibility criteria were applied: 1) Residence in the Umeå municipal area and, 2) 70 years of 

age at the time of testing. Using contact information drawn from population registers, all 

eligible individuals were sent written information about the study. A subsequent phone call 

was made, where individuals either accepted or declined to participate. The HAI participation 

rate was 69.5%. The study was approved by the Umeå University Research Ethics Committee 

and complied with the World Medical Association’s Declaration of Helsinki. All participants 

provided written informed consent. The current analysis included the first 2,214 participants 

with complete data for demographics, body composition and bone parameter, accelerometer-

determined physical activity, and 12-month incident falls.  

Participants attended the attended a hospital clinic near Umeå University for a 

baseline clinic appointment where they completed assessments detailed below and also had 

fasting blood tests from which plasma glucose (P-glucose) was analysed. Height and weight 

were assessed by stadiometer (Holtain Limited, Crymych, Dyfed, UK) and scales (Avery 

Berkel HL 120, Taiwan), respectively, and body mass index (BMI; kg/m2) was calculated. 

Participants also completed a questionnaire which assessed demographics, lifestyle and 

medical history characteristics, including past falls and fractures. Participants were asked if 

they had experienced a fracture any time in their life. If they answered yes, they were asked 

to explain the circumstances. A fracture was registered only if it was low-energy in nature, 

such as a fall, and not due to trauma such as high speed collisions. The timed up-and-go 
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(TUG) test assessed physical performance; participants were asked to rise unaided from an 

armchair and walk forward 3 meters, then to turn around and return to a seated position in the 

chair. Research nurses provided instructions and measured TUG time using a stopwatch.  

 

2.2 Bone parameters and body composition 

 aBMD (g/cm2) was measured at the lumbar spine (L1–L4) and non-dominant 

(determined by asking the participant if they considered themselves to be left- or right-

handed) total hip and femoral neck, and T-scores were estimated, using a Lunar iDXA (GE 

Healthcare Lunar, Madison, WI, USA). Whole-body soft-tissue composition (total fat and 

lean mass) was assessed using the same machine. The machine was calibrated using a 

phantom each morning before measurements were obtained. Coefficients of variation (CVs) 

for in-vivo measurements of the iDXA are 0.4% for the lumbar spine and 1.4% for the 

femoral neck (24).  

A peripheral quantitative computed tomography (pQCT) device (XCT-2000; Stratec 

Medizintechnik, Pforzheim, Germany) was used to measure total, cortical and trabecular 

vBMD (mg/cm3) and area (mm2), cortical thickness (mm), periosteal and endosteal 

circumferences (mm), and stress-strain index (SSI polar) of the non-dominant tibia and 

radius. Slice thickness was set at 2.0 mm, with a voxel size of 0.5 mm. Total and trabecular 

vBMD and area were measured at scan sites in the metaphysis located at 4% (distal site) of 

total tibial bone length in the distal–proximal direction, and cortical vBMD, area, thickness, 

periosteal and endosteal circumferences, and SSI polar were measured at diaphyseal scan 

sites located at 66% (proximal site) of total bone length in the same trajectory.  

Mid-calf skeletal muscle density (mg/cm3; density of tissue within the muscle 

compartment after removal of subcutaneous fat and bone areas) was determined from the 

scan performed at the proximal tibia, which is the region with the largest outer calf diameter 

with small variability across individuals (25). All mid-calf images were first checked by the 
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operator and repeated in the event of any motion artefacts. The manufacturer’s software was 

used to apply a filter (F03F05) to mid-calf images, and to perform automatic threshold-based 

iterative edge-detection-guided segmentation (3). Muscle was segmented from bone at a 

density threshold of 280 mg/cm3 (contour mode 1 and peel mode 2), and from subcutaneous 

fat at a threshold of 40 mg/cm3 (contour mode 3 and peel mode 1 ).  Reported CVs for the 

Stratec XCT-2000 pQCT device are 1.6% for trabecular density and 0.3% for cortical 

density, measured in-vivo (26). 

 

2.3 Accelerometer-determined physical activity 

 Participants wore a triaxial accelerometer (GT3X+; Actigraph, Pensacola, FL, USA) 

for seven days following the clinic appointment as described previously (27). This solid-state 

accelerometer measures acceleration with a dynamic range of ± 6g in the anterior–posterior 

(z), mediolateral (x), and vertical (y) axes. Participants were instructed to wear the 

accelerometer on their non-dominant hip and to remove it only when showering, swimming 

or in bed at night. They were also instructed to be normally active in accordance with their 

current lifestyle, to obtain representative accelerometer measurements. Participants who did 

not provide at least 4 days of at least 10 hours per day of valid measurements had 

accelerometer data excluded.  

 Accelerometer data were collected at a frequency of 30 Hz and data were 

transformed into “counts” of movement with an activity threshold of 100 counts per min 

(CPM). Collected data were downloaded using ActiLife 6.11.2 software (Actigraph, 

Pensacola, FL, USA) in epoch lengths of 60 seconds with subsequent wear time validation 

performed. Periods ≥60 min characterized by zero activity were marked as non-wear time, 

facilitating the exclusion of sleep time from further analyses. Sedentary time was classified as 

1 to 99 CPM, while physical activity was classified as light (100 to1951 cpm), moderate 
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(1952 to 5724 cpm), or vigorous (≥5725 cpm), as proposed by Freedson, et al. (28). Due to 

low amounts of vigorous intensity activity, moderate and vigorous intensity physical activity 

(MVPA) were combined into a single variable. Percentages of sedentary time, light activity 

and MVPA were calculated by dividing each value by total accelerometer wear time. 

 

2.4 Incident falls assessment 

Participants were contacted by a research nurse six and 12 months after the clinical 

appointment to determine incident falls since the appointment (29). Participants were asked: 

“During the past 6 months, have you experienced a fall at the same level?” This question was 

further clarified by explaining that qualifying falls were low energy, where the participant 

had unexpectedly come to rest on the ground by him/herself. 

 

2.5 Statistical Analyses 

 Descriptive data were presented as mean ± SD for continuous variables or frequencies 

for categorical variables. We initially compared differences in participant characteristics at 

baseline for included and excluded participants, and amongst included participants, by 

incident faller status (non-faller, single faller and multiple faller) at 12 months, using one-

way ANOVA (continuous variables) and Chi-square tests (categorical variables) with 

Bonferroni post-hoc tests and column proportion Z-tests, respectively, to determine between 

group differences. Scatterplots and Spearman correlations assessed associations between 

percentages of sedentary time, light activity and MVPA with mid-calf muscle density. 

Additionally, multivariable linear regression analyses investigated the independent 

associations of sedentary time, light activity and MVPA with muscle density after adjustment 

for confounders including sex, P-glucose, smoking status, TUG time and total fat mass.  
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Multivariable linear regression analyses, and binary logistic regression analyses, 

explored associations of mid-calf muscle density with bone density and geometry parameters, 

and incident falls, respectively. These analyses were adjusted for sex, fasting P-glucose, 

average daily MVPA, and total lean mass at baseline, and odds ratios for incident falls were 

presented per SD decrease in mid-calf muscle density. We further adjusted incident falls 

analyses for timed up-and-go scores to determine whether associations of mid-calf muscle 

density with falls were independent of physical performance. All statistical analyses were 

performed using SPSS Version 24 (IBM, USA) and P-values <0.05 or 95% confidence 

intervals (95% CI) not including the null point were considered statistically significant.
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3.0 Results 

 Of 3,633 participants recruited for this study, 14 and 573 did not complete DXA and 

pQCT at baseline, respectively. A further 195 participants did not provide complete 

accelerometer data, and 632 had incomplete falls reports over 12 months. Additionally, 

inspection of mid-calf muscle density box-plots identified 5 participants as extreme outliers 

(muscle density ≤50 or ≥100 mg/cm3) and these participants were also excluded from the 

analysis. Thus, a total of 2,214 participants were included in this analysis. Compared with 

excluded participants, included participants had lower BMI (27.1 ± 4.8 vs 26.2 ± 3.9 kg/m2; 

P<0.001) and timed up-and-go times (10.3 ± 3.0 vs 9.8 ± 2.1 s; P<0.001). There were no 

differences between included and excluded participants for mean mid-calf muscle density, 

daily MVPA, or total hip BMD (all P>0.05), and there were similar sex proportions (49.3 vs 

50.7% women; P=0.52). A total of 302 (13.5%) included participants reported a fall at the 6-

month or 12-month interview, while 29 participants reported a fall at both interviews. Table 1 

presents baseline characteristics for participants classified as non-fallers, single fallers or 

multiple fallers over 12 months. Multiple fallers were significantly more likely to be women 

than non-fallers, and had higher BMI and total fat mass, lower MVPA and slower TUG times 

compared with both non- and single fallers (all P<0.05). 

 Figure 1 presents individual scatterplots and Spearman correlations between physical 

activity intensity levels and mid-calf muscle density. Percentage of time spent in sedentary 

behaviour was negatively correlated with mid-calf muscle density, whereas percentages of 

light activity and MVPA demonstrated positive correlations with muscle density, with almost 

twice the magnitude of correlation observed for MVPA compared with light activity. 

  These findings were supported by multivariable regression analyses reported in Table 

2. After adjustment for sex (Model 1), sedentary time was negatively associated with muscle 

density, and light activity and MVPA demonstrated significant positive associations with 
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mid-calf muscle density. After further adjustment for fasting P-glucose, smoking status, TUG 

time and total body fat (Model 2), the associations of sedentary time and light activity with 

mid-calf muscle density were not significant. MVPA remained positively associated with 

mid-calf muscle density although the association was attenuated.  

 Table 3 reports multivariable linear regression coefficients for the association between 

mid-calf muscle density and bone parameters assessed by DXA at the hip and lumbar spine, 

and by pQCT at the proximal and distal tibia and radius. Mid-calf muscle density was 

negatively associated with lumbar spine aBMD but not associated with femoral neck or total 

hip aBMD. Amongst pQCT measures at the radius, muscle density was positively associated 

with cortical vBMD, but negatively associated with endosteal circumference, at the proximal 

site. For the distal tibia, muscle density was positively associated with total and trabecular 

density, although negative trends were observed for total and trabecular area (both P=0.056). 

Similarly, at the proximal tibia, muscle density was negatively associated with total area, and 

periosteal and endosteal circumferences, but positively associated with total and cortical 

vBMD, cortical area and thickness, and SSI polar. 

 Table 4 reports associations between mid-calf muscle density (per SD lower) and 

likelihood of falls over 12 months. Muscle density was not associated with likelihood of 

reporting a fall at six months, but in the fully adjusted model, a trend (P=0.053) was observed 

for higher likelihood of reporting a fall at 12 months with lower muscle density. Moreover, in 

unadjusted and adjusted models, each SD lower muscle density was associated with 68% and 

61%, respectively, higher likelihood of reporting a fall at both six and 12 months. 

Furthermore, the association of lower muscle density with multiple falls over 12 months 

remained significant after further adjustment for timed up-and-go time (odds ratio: 1.44; 95% 

CI 1.01, 2.05).   
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4.0 Discussion 

 In this cohort of community-dwelling Swedish older adults, lower mid-calf muscle 

density was independently associated with higher likelihood for multiple incident falls and 

appeared to have localised negative effects on bone structure at the tibia. Prospective studies 

are required to determine whether these associations explain previously observed effects of 

lower-limb skeletal muscle density on higher risk of fractures in older adults (1-5). 

A cross-sectional study of 147 Canadian women aged 60 years and older with 12-

month retrospective falls data reported that women with one or more falls had mid-calf 

muscle density around 2 mg/cm3 lower than non-fallers, whereas muscle area and TUG time 

were not associated with falls (11). This is consistent with the present study where we 

observed a trend approaching significance for increased likelihood of a fall over 12 months, 

and a significant increased likelihood of multiple falls over 12 months, after adjustments for 

confounders including lean mass and TUG. Similarly, a separate study of older men and 

women by Frank-Wilson et al., reported that higher mid-calf muscle density was 

independently associated with reduced likelihood of falls (odds ratio: 0.83; 95% CI 0.69-

0.99) in the past 12-months after adjustment for TUG (12). These studies suggest that 

increased falls risk in older adults with low muscle density are not wholly explained by poor 

physical performance. However, further research is required to determine whether the 

associations are mediated by other components of physical function, such as lower-limb 

power or balance. 

We observed that associations for mid-calf muscle density with bone health were 

most consistent at the tibia, as opposed to the radius, hip or lumbar spine. This finding 

suggests a potential localised effect of muscle density on bone and previous studies have 

indicated that higher fat infiltration of the mid-calf is associated with poorer tibial bone 

health. A previous small study of older women reported that higher relative lower-limb intra-
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muscular fat was generally negatively associated with bone content and area tibial sites (r =-

0.31 to -0.03), although these associations failed to reach significance (17). We also observed 

in obese older women that mid-calf muscle density was positively associated with proximal 

tibial cortical vBMD and area (B=2.91 mg/cm3; 95% CI 0.02, 5.80 and 2.71 mm2; 0.06, 5.33, 

per mg/cm3 higher muscle density, respectively) (16). A study of 178 osteoporotic women 

with hip fractures has further demonstrated that gluteus maximus (r=0.230) and abductor 

(r=0.221) muscle densities are positively correlated with hip BMD (14). It should be noted 

that the apparent effect sizes for associations between mid-calf muscle density and tibial bone 

parameters, whilst significant, were small in the present study; for example, the mean cortical 

vBMD value at the proximal tibia was 1089 mg/cm3, and a 1 mg/cm3 higher muscle density 

was associated with only 1.4 mg/cm3 higher cortical vBMD. This is consistent with the 

modest effects observed for physical activity on bone parameters in older adults (27). 

Therefore, the potential benefit of improvements in muscle density to local bone health need 

to be determined in further research. 

It might be expected that age-related fat infiltration of muscle would be consistent 

throughout the musculature, and therefore the deleterious associations observed at the tibia 

should similarly be observed at other anatomical sites. However, IMAT at the lower-leg and 

thigh regions have been demonstrated to be only marginally correlated (15). Individual 

lower-limb muscles also differ with the gluteus maximus demonstrating the lowest, and 

rectus femoris the highest, muscle density amongst older adult fallers and non-fallers (13). 

This may explain why muscle density at the mid-calf region was most consistently associated 

with tibial bone health, and not other sites, in the present study. 

Interestingly however, muscle density was negatively associated with proximal tibia 

total area, endosteal circumference at the proximal radius, and both periosteal and endosteal 

circumferences at the proximal tibia. The association of lower muscle density with greater 
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proximal tibial total area and periosteal circumference, but poorer cortical density, is 

consistent with the concept of periosteal apposition as a response to bone loss; it may be that 

cortical bone area declines at a faster rate in older adults with lower muscle density, resulting 

in greater loading being applied to the bone periphery and stimulating subperiosteal bone 

formation which increases total bone area (30). 

There are a number of mechanisms by which increasing IMAT may contribute to falls 

and poor bone health. IMAT is associated with increased lipotoxicity and local inflammation 

(31) which may compromise bone and muscle quality. Higher IMAT is linked with 

mitochondrial dysfunction (32) and impaired muscle blood flow (6), both of which may 

reduce muscle function. Furthermore, high levels of IMAT reduce muscle contractile tissue 

area and alter muscle fibre orientation and force capacity (33), and resulting reductions in 

contractile force may contribute to bone loss. Nevertheless, as described above, associations 

of low muscle density with falls were significant after adjustment for physical performance 

suggesting other factors may influence this relationship. 

We also examined relationships between objectively-determined physical activity 

intensities and mid-calf muscle density. We observed that sedentary time was negatively 

correlated, while both light activity and MVPA were positively correlated, with muscle 

density. However, only MVPA remained significantly associated with mid-calf muscle 

density after adjustment for potential confounders. A previous study of 384 adults with 

peripheral arterial disease assessed self-reported walking speed outside the home and total 

sedentary hours per day. Slower walking speed (perhaps a surrogate for MVPA) was 

associated with faster annual declines in calf muscle density, whereas no associations were 

observed between sedentary time and muscle density (22). Previous studies which have 

examined accelerometer-determined physical activity in older adults have consistently 

reported associations of MVPA with reduced body fat, and increased muscle mass and 
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function (34-36). Future studies should explore whether increasing MVPA in particular is the 

most effective strategy for improving muscle density. Exercise, combined with nutrition, 

interventions have been effective in reducing IMAT in older adult populations. In obese older 

women, six months of dietary restriction plus exercise reduced lower-limb IMAT, with 

decreases in the calf, but not thigh, IMAT associated with improvements in walking speed 

(18). In mobility-limited older adults, a nutritional supplement combined with a physical 

activity program for six months also improved thigh muscle density (37).  

 The strengths of this study include the large, well-defined cohort with objective 

assessment of physical activity, measurement of aBMD, vBMD and bone architecture at 

multiple sites and prospective follow-up of falls. However, several limitations should be 

acknowledged. Some muscle density values may have been influenced by motion streaks in 

pQCT images, although scans were re-acquired if substantial movement was observed, and 

motion streaks have been previously reported to have no influence on associations of muscle 

density with fractures (38). The associations described for muscle density with physical 

activity and bone health are cross-sectional only, and so causality cannot be determined. 

Moreover, there were relatively few fallers and multiple fallers in this study compared with 

other older adult cohorts internationally. This may be explained in part by the fact that our 

definition of falls included only low-energy falls resulting in coming to rest at ground level, 

rather than ground or other lower level as commonly defined in other studies. Lower 

likelihood of falls in 70-year olds residing in Umeå in the HAI study may also be related to 

high levels of physical activity and fitness; average accelerometer-determined MVPA was 

approximately 33 minutes per day for HAI participants, while older Australians achieve only 

around 16 minutes per day of MVPA (34). In this regard, the findings of the study may only 

be generalisable to relatively healthy 70-year olds. 

5.0 Conclusions 
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Lower mid-calf muscle density is independently associated with higher likelihood for 

multiple incident falls over 12 months and may have localised negative effects on bone 

structure at the tibia. Further studies are required to determine whether these associations 

persist over the long-term, and potentially contribute to the greater fracture risk previously 

observed in older adults with low muscle density. 
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Figure legend 

Figure 1. Spearman correlations for accelerometer-determined sedentary time, light activity 

and moderate/vigorous physical activity with mid-calf muscle density. 
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Table 1. Baseline characteristics for participants classified as fallers and non-fallers at 12 months.  

 
Non-faller 

(N=1912) 

Single Faller 

(N=273) 

Multiple Faller 

(N=29) 

P-value for trend 

Age (years) 70.0±0.1 70.00±0.1 70.0±0.0 0.726 

Women (%)* 49.8c 54.5 75.9a 0.009 

Current smoker (%)* 6.3 6.9 0 0.348 

Blood pressure medication (%)* 55.6 53.5 66.7 0.416 

Diabetes (%)* 7.6 9.5 13.8 0.301 

History of fracture (%)* 14.0 16.0 11.1 0.846 

Fasting P-glucose (mmol/L) 5.6±1.2 5.6±1.1 5.4±1.0 0.502 

BMI (kg/m2) 26.1±3.9c 26.6±4.0c 28.5±4.9a,b 0.001 

Total fat mass (kg) 26.7±8.3c 27.8±8.3c 32.3±10.7a,b <0.001 

Total lean mass (kg) 46.4±9.0 45.8±8.9 44.2±8.4 0.329 

Mid-calf muscle density (mg/cm3) 72.0±3.8 71.8±4.2 69.5±4.6 0.002 

Total hip aBMD (g/cm2) 0.94±0.15 0.94±0.15 0.94±0.15 0.953 

Lumbar spine aBMD (g/cm2) 1.14±0.21 1.15±0.22 1.15±0.25 0.979 
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MVPA/day (mins) 33.4±25.4c 34.7±27.2c 21.7±20.8a,b 0.035 

Timed up-and-go (s) 9.8±2.0c 9.9±2.2c 11.7±4.8a,b <0.001 

Note: ± standard deviation; all tests are one-way ANOVA, except * (Chi-square tests). adenotes significantly different to non-fallers; bdenotes 

significantly different to single fallers; cdenotes significantly different to multiple fallers (Bonferroni post-hoc tests). Abbreviations: P-glucose; 

plasma glucose, BMI; body mass index, aBMD; areal bone mineral density, MVPA; moderate/vigorous physical activity.



28 
 

Table 2. Multivariable linear regression coefficients for associations between 

accelerometer-determined activity levels (percentages) and mid-calf muscle density. 

 

Model 1 Model 2 

B (95% CI) 
Adjusted 

R2  
B (95% CI) 

Adjusted 

R2 

Sedentary 

time 
-0.056 (-0.076, -0.037) 0.019 -0.010 (-0.029, 0.008) 

0.169 

Light activity  0.029 (0.008, 0.051) 0.008 -0.001 (-0.020, 0.019) 0.169 

MVPA 0.234 (0.181, 0.286) 0.037 0.086 (0.034, 0.138) 0.173 

Note: Bold values are significant. Adjusted R2 is for the overall model. Model 1 adjusted for 

sex. Model 2 adjusted for sex, fasting P-glucose, timed up-and-go time, smoking status and 

total fat mass. Abbreviations: MVPA; moderate/vigorous physical activity. 
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Table 3. Multivariable linear regression coefficients for associations between mid-calf 

muscle density and bone health parameters.  

Outcome B (95% CI)* 

DXA  

Lumbar spine  

L1-L4 aBMD (g/cm2) -0.003 (-0.005, -0.001) 

Hip  

Femoral neck aBMD (g/cm2) 0.001 (-0.002, 0.001) 

Total hip aBMD (g/cm2) 0.001 (-0.002, 0.001) 

pQCT - Radius  

4% site   

Total area (mm2) 0.21 (-0.48, 0.91) 

Total vBMD (mg/cm3) 0.51 (-0.04, 1.06) 

Trabecular area (mm2) 0.10 (-0.22, 0.41) 

Trabecular vBMD (mg/cm3) 0.35 (-0.08, 0.77) 

66% site   

Total area (mm2) -0.24 (-0.56, 0.09) 

Total vBMD (mg/cm3) 0.98 (-1.55, 2.12) 

Cortical area (mm2) 0.09 (-0.07, 0.25) 

Cortical vBMD (mg/cm3) 0.74 (0.20, 1.28) 

Cortical thickness (mm) 0.01 (-0.01, 0.01) 

SSI polar (mm3) 0.70 (-0.22, 1.62) 

Periosteal circumference (mm) -0.03 (-0.07, 0.01) 

Endosteal circumference (mm) -0.06 (-0.11, -0.01) 
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pQCT – Tibia  

4% site  

Total area (mm2) -1.80 (-3.64, 0.05) 

Total vBMD (mg/cm3) 0.88 (0.42, 1.34) 

Trabecular area (mm2) -0.81 (-1.64, 0.02) 

Trabecular vBMD (mg/cm3) 0.76 (0.32, 1.20) 

66% site  

Total area (mm2) -2.25 (-3.28, -1.22) 

Total vBMD (mg/cm3) 2.30 (1.32, 3.28) 

Cortical area (mm2) 0.48 (0.01, 0.95) 

Cortical vBMD (mg/cm3) 1.35 (0.94, 1.76) 

Cortical thickness (mm) 0.02 (0.01, 0.02) 

SSI polar (mm3) 5.79 (0.80, 10.78) 

Periosteal circumference (mm) -0.15 (-0.23, -0.08) 

Endosteal circumference (mm) -0.25 (-0.35, -0.15) 

Note: *Adjusted for sex, fasting P-glucose, percentage MVPA, and total lean mass at 

baseline. Abbreviations: aBMD; areal bone mineral density, vBMD; volumetric bone mineral 

density; SSI; stress-strain index 
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Table 4. Odds ratios (95% CI) for falls per SD lower mid-calf muscle density. 

 
Faller in next six 

months 

Faller in next 12 

months 

Multiple faller in next 12 

months 

Unadjusted 1.03 (0.88, 1.21) 1.12 (1.00, 1.27) 1.68 (1.26, 2.26) 

Adjusted* 1.03 (0.87, 1.22) 1.13 (1.00, 1.29) 1.61 (1.16, 2.23) 

Note: *Adjusted for sex, fasting P-glucose, percentage MVPA, and total lean mass at 

baseline. 

 

 

 


