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22 Abstract 

23 We analyzed pumice from the February 11, 2010 Vulcanian explosion that immediately 

24 followed a large dome collapse at Soufrière Hills volcano. We obtained pre-explosive values of 

25 porosity, pressure, and depth by combining textural analyses and glass water content determinations. 

26 Our data suggest that the February 2010 explosion evacuated the upper 3 km of the conduit from the 

27 dense magma (≤10 vol.% porosity) it contained. The low porosity distribution in the volcanic conduit 

28 implies that the magma rising from the reservoir had time to extensively degas during emplacement. 

29 We use a conduit flow model to characterize the effects of permeability on ascent conditions. Model 

30 input parameters were fitted so as to match our pre-explosive porosity data, which yielded first-order 

31 constraints on conduit radius, mass flux, outgassing efficiency, and permeability. This parametric 

32 study suggests that efficient lateral gas escape is necessary to explain the low pre-explosive porosities. 

33 Steady-state solutions fitting the observed range of dome extrusion rate in the month preceding the 

34 February 11 event suggest permeabilities <10-13 m2 deeper than 500 m, which are values typical of 

35 crack-supported permeability. Conversely, solutions with parameters consistent with bubble-

36 supported permeability imply transient flow conditions prior to the February 11 event. The transient 

37 conditions imply that our data represent a snapshot of the porosity distribution within the conduit that 

38 does not preclude the temporary presence of much higher porosities in the conduit. Such unsteady 

39 conduit flow conditions are consistent with the irregular but active dome growth in the month prior to 

40 the February 11 event.

41

42 Keywords: fluid dynamics; magma porosity; magma permeability; textural analysis
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44 1. Introduction

45 Vulcanian explosions are short-lived but powerful events that evacuate parts of the magma 

46 present in a volcanic conduit. They often take place during dome eruptions, with little to no precursor 

47 signs (Clarke et al., 2015). Their occurrence and intensity is closely linked to magma decompression, 

48 degassing, and outgassing (Spieler et al., 2004; Mueller et al., 2011). The current eruption at Soufrière 

49 Hills volcano, Montserrat, is an ideal case to shed light on what conditions the occurrence of 

50 Vulcanian explosions. Soufrière Hills has produced over the last two decades a remarkable range of 

51 such events, from explosions series separated by a few hours to isolated explosions of variable 

52 intensity (Druitt and Kokelaar, 2002; Wadge et al., 2014a). Some explosions were closely following 

53 partial dome collapse, whereas others occurred in the absence of dome. Previous studies of pre-

54 explosive conduit conditions at Soufrière Hills volcano were done by Clarke et al. (2007), Burgisser et 

55 al. (2010), and Burgisser et al. (2011). They have shown that the magma filling the conduit prior to 

56 Vulcanian explosions consisted of a dense cap atop the conduit with a thickness of a few tens of 

57 meters, a 200–700 m thick region with heterogeneous vesicularities, and, at greater depth, a more 

58 homogeneous, low-porosity magma that was emplaced under partly open-system degassing. This 

59 conduit stratigraphy gives the vision of a strongly heterogeneous magma column immediately prior to 

60 its disruption. The data, however, was sampled among the products of a series of explosions that 

61 occurred in 1997, which yielded an average porosity distribution within the conduit. Here, we 

62 sampled a single Vulcanian event that occurred on February 11, 2010, to obtain a more accurate 

63 snapshot of the porosity distribution in the conduit just prior to explosion.

64 The February 11 event ended the fifth phase of lava extrusion since the beginning of the current 

65 eruption of Soufrière Hills volcano (Stinton et al., 2014a; Stinton et al., 2014b; Wadge et al., 2014b; 

66 Cole et al., 2014; Cole et al., 2015). This 4-month period of intense extrusive activity was marked by 

67 a succession of dome growth as lava lobes and spines followed by partial dome collapse. Five isolated 

68 Vulcanian explosions occurred near the end of this phase. The average extrusion rate during phase 5 
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69 was 7 m3/s with wide variations (Stinton et al., 2014a). A rate of 9 m3/s was measured over January 

70 12–14, shortly after the most voluminous Vulcanian explosion to date on January 8 (Cole et al., 

71 2014). A rate of 1.2 m3/s was measured over January 22–28, and a rate of 0.1 m3/s was measured from 

72 January 30 until February 5 when a Vulcanian explosion occurred (Stinton et al., 2014a). Another 

73 Vulcanian explosion took place on February 8. Lava extrusion soon resumed on the W side of the 

74 dome before changing direction to N a day before February 11, date at which the large Vulcanian 

75 explosion studied here took place during the last 20 minutes of the 107-min-long partial dome 

76 collapse (Stinton et al. 2014).

77 The triggering context of the February 11 event is noteworthy. There is a well-established link 

78 between magma ascent rate and the occurrence of Vulcanian explosion (Miwa et al., 2009; Degruyter 

79 et al., 2012; Cassidy et al., 2015). Despite changes in extrusion rate in the days leading to it, the 

80 February 11 event seems to have been driven more by shallow processes than by deeper changes such 

81 as an increase of ascent rate and/or of chamber pressure (Stinton et al., 2014b; Cole et al., 2015). This 

82 complex event started by generation of pyroclastic density currents that occurred in rapid succession 

83 as a result of the collapse of the large dome that was present. The pulsatory Vulcanian explosion 

84 ensued the gravitational triggering of the event as a probable result of the unloading of the magma 

85 column. This makes the February 11 event an ideal case study to test whether the pre-explosive 

86 column was in a state close to that expected for dome-forming, effusive activity and, more broadly, to 

87 characterize the state of the volcano prior to a Vulcanian explosion. There is a wealth of information 

88 that can be used to characterize such a state because quite a number of studies involving conduit flow 

89 modeling that have been conducted at Soufrière Hills focused on its effusive activity (e.g., Melnik and 

90 Sparks, 2002; Melnik and Sparks, 2005; Mason et al., 2006; Costa et al., 2007; Collombet, 2009; 

91 Kozono and Koyaguchi, 2010; Albino et al., 2011; Costa et al., 2012; Degruyter et al., 2012; Costa et 

92 al., 2013). These models have provided first-order constraints on the interplay between ascent rate, 

93 volatile exsolution, and outgassing.
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94 The transition between effusive behavior and explosive behavior is closely related to the way 

95 the gas phase separates itself from the rest of the ascending magma. There is a complex relationship 

96 between magma inflation by volatile exsolution and gas expansion and deflation by permeable flow 

97 and outgassing. One important step was to link the magma permeability to the structure and geometry 

98 of the bubble network (e.g., Klug et al., 2002; Rust and Cashman, 2004; Wright et al., 2006; Bouvet 

99 de Maisonneuve et al., 2009; Wright et al., 2009; Degruyter et al., 2010; Burgisser et al., 2017; 

100 Colombier et al., 2017; Vasseur and Wadworth, 2017). Extensive experimental work has shown that 

101 bubbles growing in response to decompression may connect each other and form a permeable network 

102 when a percolation threshold has been overcome. Such threshold occurs at 30–80 vol.% porosity (e.g., 

103 Lindoo et al., 2016). Recently, Burgisser et al. (2017) proposed a permeability relationship that 

104 includes a percolation threshold. It was built using experimentally decompressed natural melts and 

105 included samples bearing deformed bubbles. Natural samples, however, are permeable at porosities 

106 below this percolation threshold because the gas pathways are no longer made of interconnected 

107 bubbles. Below 10–15 vol.% porosity, the pathways are made of a network of cracks and permeability 

108 drops from ~10-14 to <10-17 m2 (Farquharson et al., 2015; Farquharson et al., 2016). While the 

109 presence of cracks has been confirmed at shallow depth (Heiken et al., 1988; Castro et al., 2012b; 

110 Lavallée et al., 2013; Kendrick et al., 2016), their existence at the depth of several kilometers is more 

111 speculative for intermediate and evolved magma compositions because the water dissolved in the melt 

112 lowers its viscosity and keeps the brittle behavior out of reach of reasonable strain rates (e.g., 

113 Edmonds et al., 2010; Cordonnier et al., 2012). Experiments on porous volcanic rock and magma 

114 have shown that ductile behavior can be expected even at shallow depths within the conduit (Heap et 

115 al., 2015; Heap et al., 2017).

116 The relationship between the creation of gas pathways by bubble connection or by brittle 

117 behavior of the melt has only started to be addressed (Kushnir et al., 2017). Permeability supported by 

118 bubbles is sensitive to the presence of crystals (e.g., Parmigiani et al., 2017) and shear can strongly 

119 reorganize the permeable network (e.g., Laumonier et al., 2011; Pistone et al., 2012). Relationships 
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120 describing permeability supported by cracks are not easily scaled up from laboratory to conduit 

121 characteristic sizes (Farquharson and Wadsworth, 2018). Another obstacle is that permeability has a 

122 hysteretic behavior that depends on whether it is being generated by expansion and exsolution of 

123 bubbles or by collapse (Rust and Cashman, 2004; Farquharson et al., 2016). In the case of collapse, 

124 porosity reduction can be accompanied by permeability reduction if the driving force is shear 

125 (Kolzenburg and Russell, 2014) or gravitation (Michaut et al., 2013). Such densification can also 

126 occur without significant reduction in permeability if the main mechanism is selective collapse of the 

127 smallest vesicles because of surface tension (Kennedy et al., 2016). The complexity of these 

128 interactions between crystal-bearing melt and networks of bubbles and cracks is such that there is 

129 currently no unified framework to describe magma outgassing at depth. 

130 We first present a combination of textural analyses and glass water content determinations of 

131 pumice emitted by the February 11, 2010 Vulcanian explosion that yields pre-explosive values of 

132 porosity, pressure, and depth. We then show that some permeability relationships calibrated for high 

133 (>15 vol.%) porosity can also be used to empirically represent the behavior of magma permeability at 

134 low porosity. We use one of these permeability relationships and a conduit flow model to characterize 

135 the pre-explosive conditions of the February 2010 event by fitting model outputs to our data on pre-

136 explosive porosities and pressures.

137 2. Methods

138 Twenty-three samples from the February 2010 eruption were collected for analysis (Table S1). 

139 Thirteen samples were from pumice-rich pyroclastic density current deposits in Farm River valley 

140 (AMO210 label prefix, pumice levee facies on Fig. 7.11 in Stinton et al., 2014b). Ten samples were 

141 pumices from fallout deposits at Harris Lookout, Spanish Point, and at White's Bottom Ghaut (WP 

142 label prefix, fallout deposits of Stinton et al., 2014b). All samples from fallout and some samples from 

143 levee that correspond to the “pumice boulders” of Cole et al. (2015) were texturally homogeneous 

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354



7

144 pumices. The other levee samples were texturally heterogeneous pumice with some clasts showing 

145 macroscopic banding with sharp to lobate or crenulate boundaries between the dense and vesicular 

146 parts (Farquharson and Wadsworth, 2018). Only one representative crystalline dense clast was 

147 analyzed (AMO210B) because such texture has been shown to originate from to the dome (Burgisser 

148 et al., 2010) and our focus was to characterize deeper sourced material.

149 Small cores ~2 cm3 were drilled in each pumice. The half of the core closest to the clast surface 

150 was discarded so as to avoid weathering effects, while the other half was cut in two, one being 

151 subjected to textural analysis and the other being used for H2O measurement. This procedure ensured 

152 that the various analyses characterize the same volume of sample. The size of this volume and the 

153 image analysis techniques we used imposed an upper limit to the vesicle size that could be 

154 characterized (~1 mm across). As in the 1997 deposits (Giachetti et al., 2010), most pumices produced 

155 by the February 11 event that are smaller than ∼ 30 cm lack radial gradients in vesicle abundance or 

156 size. Some vesicular blocks larger than this exhibit anastomosed regions with vesicles up to several 

157 cm, which is well above the sizes our method can measure. Such blocks were avoided in our study to 

158 ensure that we obtained representative vesicle size distributions of all analyzed clasts. Drawing from 

159 the observations done of the 1997 flows, where similar blocks were sampled closer to the dome to 

160 minimize transport-induced breakage (Giachetti et al., 2010), regions with large voids tend to be 

161 concentrated in the center of the clasts, which suggest a post-fragmentation origin (i.e. such large 

162 voids belong to the syn-explosive, coalesced vesicle population defined below). Avoiding sampling 

163 clasts with large voids does not affect the representativeness of our reconstruction of the magma 

164 column because the effect of post-fragmentation bubbles is removed by the procedure described 

165 below that converts pumice porosities to pre-explosive conditions (Burgisser et al., 2010).

166 The textural characterization of the samples was done by combining Scanning Electron 

167 Microscopy (SEM) and element mapping by Energy Dispersive Spectroscopy (EDS). Polished 

168 sections were imaged using a LEO STEREOSCAN 440 (LEICA) SEM operating at 20 kV 
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169 accelerating voltage (Université Savoie Mont Blanc) in backscattered electron mode (BSE) to which 

170 is attached an EDS probe QUANTAX EDS (Bruker AXS). Images were acquired using the BSE 

171 mode (Fig. 1A) and the elements Si, Fe, Mg, Al, and Ca at two different resolutions to ensure that the 

172 full range of object sizes was represented. The combination of resolutions was either one image at ×50 

173 and 2 to 3 images at ×1000 for the WP sample suite, or 1 to 2 ×50 images and 4 ×2000 images for the 

174 AMO sample suite. Images resolution was such that the respective pixel sizes at magnifications of 

175 either ×1000, or ×2000 were identical. The ×50 images of samples AMO210B, G, J, and L were 

176 composed by tiling 9 ×100 images, which added a reconstruction uncertainty of 2 vol.% on measured 

177 proportions. Instead of SEM images, the ×50 images of samples AMO210D, F, H, and Q were 2D 

178 slices of 3D volumes with voxel edge-length of 7–10 µm obtained by X-ray tomography (Phoenix 

179 Nanotom 180 at ISTO, Université d’Orléans) following the procedure described in Castro et al.  

180 (2012a). In these four samples, oxides and plagioclases were segmented manually from the 

181 ferromagnesian minerals based on X-ray attenuation level (Supplementary Fig. S1) and the respective 

182 proportions of ferromagnesian minerals were assumed constant at the values provided by Murphy et 

183 al. (2000). Images were used to quantify in each sample the amounts of phenocrysts, microlite, 

184 vesicles, and glass (Table 1) following the resolution assembly procedure of Giachetti et al. (2010) 

185 and the quantification method described in Drignon et al. (2016) (Supplementary Text S1 and Fig. 

186 S2). 

187 Glass water contents of the 20 samples listed in Table 2 were measured by using the Flash 2000 

188 elemental analyzer (ISTO, Université d'Orléans). Samples were crushed with an automatic grinder 

189 without removing phenocrysts to obtain ~7 mg of powder <30 μm. Following the procedure outlined 

190 in Drignon et al. (2016), tin capsules containing the powders were placed in a furnace where they 

191 were heated to ~1800°C in the presence of O2. A helium flux transported the liberated H in H2O form, 

192 which was discriminated from other volatiles by chromatography and analyzed by thermal 

193 conductivity. We used the certified standard PYRO (5 wt.% H2O by Karl Fisher titration, Burgisser et 
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194 al., 2010). Total amounts of H given by the elemental analyzer were converted to bulk H2O content 

195 using H and O molar masses (Table 2). Each sample was analyzed three times in order to quantify 

196 measurement error. The resulting relative uncertainty is comparable to that of the standard that was 

197 analyzed at regular intervals during a measurement day. 

198 Vesicles were subdivided in four populations using the criteria of Giachetti et al. (2010) (Fig. 

199 S2). Large, deformed vesicles of equivalent size >300 μm across and circularity <0.2 were divided 

200 into two populations. One population was composed of large angular voids existing between crystal 

201 fragments that are similar to those observed in the 1997 Vulcanian pumices (Fig. 1B, Giachetti et al., 

202 2010). We assumed that these voids were formed in response to the decompression accompanying the 

203 Vulcanian explosion. The other population was composed of the remaining large vesicles, which were 

204 considered as pre-explosive vesicles. The third population was composed of small, isolated, and 

205 rounded vesicles of equivalent size <50 μm across and circularity >0.4. The fourth population was 

206 composed of all the remaining vesicles, which were often interconnected. These last two populations 

207 have been interpreted by Giachetti et al. (2010) as having nucleated, grown, and coalesced in a syn-

208 explosive fashion. As our automatic process cannot discriminate between the two first populations, 

209 the voids belonging to the first population were visually identified thanks to their association to 

210 broken crystals. They were manually assigned to the syn-explosive, connected vesicle population by 

211 removing them one by one from the automatically segmented images (Table 2).

212 The bubble-free vesicles and oxide number densities (i.e. number of objects per unit volume of 

213 melt plus crystal) were obtained from the SEM and tomography images using the stereological 

214 transformations from Cheng and Lemlich (1983) as explained in Giachetti et al. (2010). Having only 

215 two levels of magnifications yields size distributions with artifacts around the cut-off length scale 

216 (Supplementary Text S2 and Fig. S4). Total number densities reported in Table 2, however, are 

217 dominated by small vesicles and oxides that are below the cut-off scale. As a result, they are not 

218 sensitive to such artifacts.
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219 As in Drignon et al. (2016), two physical models were successively used to convert variables 

220 measured in the pumice to pre-explosive conditions (Table 3). The first model uses the vesicularities 

221 and interstitial glass water contents to estimate pre-explosive pressures and porosities (Burgisser et al., 

222 2010). It has four free parameters (two related to bubble populations, one related to the quench 

223 pressure, and one related to outgassing), which combined yield 11 sets of pre-explosive pressures and 

224 porosities. The set with the reference values (see Results section) of the free parameters was kept as 

225 the average set and the two sets with the largest and smallest porosity values at any pressure were kept 

226 as extrema to characterize model uncertainty. Analytical uncertainties for each sample were calculated 

227 with an additional four sets of outputs that used the average values of the free parameters and the 

228 respective minimum and maximum values of glass water content and vesicularity.

229 Pre-explosive pressures were then converted into pre-explosive depths thanks to the second 

230 model (Burgisser et al., 2011). Briefly, each sample is assumed to represent a slice of the magma 

231 column and the slice thickness is adjusted so that the pressure at its base due to the overlying load 

232 equals that determined by the first model. As in Drignon et al. (2016), two end-members scenarios 

233 were considered. The first assumes that pressure is magma-static, i.e. that the pressure in the magma 

234 column is created by the sole weight of magma because conduit walls are fully rigid. In the second 

235 scenario pressure is lithostatic, which implies that the conduit walls are not rigid. The pressure 

236 distribution within the conduit during eruption is, however, expected to be controlled dynamically. 

237 The higher the porosity is in the magma, the more the dynamic pressure deviates from a linear trend. 

238 Conversely, gas-poor conditions limit dynamic effects. Magma- and lithostatic pressure gradients 

239 frame most dynamic pressure distributions in gas-rich conditions (Burgisser et al., 2011). Here, we 

240 use the a posteriori argument that the conduit was mostly filled by low-porosity magma to linearly 

241 relate pressure and depth. 

242 2.1. Conduit flow modeling

243 Two permeability relationships were used to quantify gas–melt separation during magma 
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244 ascent:

245 (1)𝑘𝐾 = 𝑎𝐾𝜙𝑏𝐾
𝑐

246 (2)𝑘𝐵 =
𝜙2.73

𝑐 𝑑2

800

247 where aK and bK are fitting constants, d is the bubble equivalent diameter in m, and c is the connected 

248 porosity, which is volume of interconnected bubbles that span the entire sample from side to side, 

249 divided by the total sample volume. Equation (1) is from Klug and Cashman (1996) and Eq. (2) is 

250 from Burgisser et al. (2017) when neglecting bubble deformation and thus assuming spherical 

251 bubbles. The bubble equivalent diameter is given by:

252 (3)𝑑3 =
6𝜙𝑡

𝜋𝑁𝑇(1 ‒ 𝜙𝑡)

253 where t is the total porosity and NT is the number of bubble per unit volume of melt and crystals. The 

254 connected porosity is given by (Burgisser et al., 2017):

255 (4)𝜙𝑐 =
𝜙𝑡

1 + 𝑒𝑥𝑝[𝑐1(1.5 × 106𝑑(𝜙 ‒ 1 3
𝑡 ‒ 1)𝑓 ‒ 0.128 ‒ c2)]

256 where c1=0.342, c2= 33.2, and f is the ratio of the standard deviation of the bubble size distribution 

257 over d, which is a measure of the degree of polydispersity of the bubble population1. The percolation 

258 threshold is modeled by setting c=0 when the total porosity is below the percolation porosity, p:

259 (5)𝜙𝑝 = [1 +
𝑐2 + 𝑐3

1.5 × 106𝑑
𝑓0.128] ‒ 3

260 where c3=6.

261 Kozono and Koyaguchi (2010) provided a simple algebraic equation that relates pressure and 

1 The equation 19 in Burgisser et al. (2017) should read:  𝜙𝑐 =
𝜙𝑡

1 + 𝑒𝑥𝑝[ ‒ 𝑐𝜙(1.5𝑑𝑎(𝜙 ‒ 1 3
𝑡 ‒ 1)𝑓 ‒ 0.128 ‒ 𝑐𝑝)]
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262 porosity in a volcanic conduit and that approximates a steady state solution of a popular 1D, two-

263 phase conduit flow model (Kozono and Koyaguchi, 2009a; Kozono and Koyaguchi, 2009b; Degruyter 

264 et al., 2012; Burgisser et al., 2017). For simplicity, we refer to this simplified formula as the 0D model 

265 (Kozono and Koyaguchi, 2010):

266  (6)1 ‒
𝑛𝜌𝑚𝑐𝑅𝑇(1 ‒ 𝜙𝑡)

(1 ‒ 𝑛)𝑃𝜙𝑡
(1 ‒ 𝐸𝑤) + Π +

1 ‒ 𝜙𝑡

1 ‒ 𝑛 Θ = 0

267  (7)Π =
8𝜇𝑚𝑐𝑘𝑗

𝜇𝑔𝑟2
𝑐𝜙𝑡

268   (8)Θ =
𝑘𝑗𝜌 2

𝑚𝑐𝑔(1 ‒ 𝜙𝑡)𝜋𝑟2
𝑐

𝜇𝑔𝑄𝜙𝑡

269 where n is the gas mass-flow rate fraction, g=2×10-5 Pa s is the gas viscosity, rc is the conduit radius 

270 in m, g=9.81 m/s2 is the gravity acceleration, mc is the bulk (liquid and crystal) suspension viscosity 

271 in Pa s, mc is the bulk (liquid and crystal) density in kg/m3, T is the temperature in K, P is the 

272 pressure in Pa, R=462 J/K kg is the specific gas constant for H2O gas, kj is either of kB or kK, and Q is 

273 the mass flux in kg/s. The parameter Ew is defined as (Kozono and Koyaguchi, 2010):

274 (9)𝐸𝑤 =
𝜋𝑟2

𝑐𝑞𝑤

𝑛𝑄

275 where qw is the flow rate of gas escaping laterally. The gas mass-flow rate fraction is:

276 (10)𝑛 =
𝑛0 ‒ 𝑠 𝑃

1 ‒ 𝑠 𝑃

277 where the initial water content, , is a function of the conduit length, L, of the solubility 𝑛0 = 𝑠 𝜌𝑤𝑔𝐿

278 constant, s, and of wallrock density, w=2600 kg/m3. For comparison purposes, we converted mass 

279 fluxes to representative ascent rates by using bubble-free magma density and assuming a constant 

280 conduit radius of 15 m (e.g., Wadge et al., 2014b) except where mentioned.

281 Fitting of five free parameters (Q, rc, Ew, NT, and f) was done by minimizing the sum of squared 

282 differences between the measured porosities and those given by Eq. (6) for the 19 pre-explosive 
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283 pressures determined from sample analysis. The parameter combinations having squared difference 

284 falling within the 95% level confidence were considered as plausible solutions. If Si is the sum of 

285 squared differences for a given combination of the free parameters and Sm is the minimum sum of 

286 squared differences of the entire parametric sweep, the 95% level of confidence is given by:

287 (11)𝑆𝑖 ≤ 𝑆𝑚(1 +
𝑝

𝑜 ‒ 𝑝𝐹𝑝,𝑜 ‒ 𝑝
1 ‒ 𝛼 ) = 1.1858 𝑆𝑚

288 where p=5 is the number of parameters, o=19 is the number of observations, =0.95 is the level of 

289 confidence, and F is the (1-) quantile of the F distribution with p and (o-p) degrees of freedom.

290 We set the temperature, T, to 850 °C (Barclay et al., 1998; Murphy et al., 2000) and the liquid 

291 phase is considered as a single-phase suspension of silicate melt and crystals with a density, mc, of 

292 2450 kg/m3 (Burgisser et al., 2011). The effect of dissolved water on melt viscosity followed the 

293 relationship by Hess and Dingwell (1996) and the effect of crystals on bulk suspension viscosity, mc, 

294 was calculated using Krieger and Dougherty (1959) with a maximum packing of 0.65 and an Einstein 

295 coefficient of 2.5. The crystal content was set to 55 vol.% based on our data (Text S3, Fig. S5). Such a 

296 high value implies that magma rheology is non-Newtonian. Robust rheological relationships of 

297 realistic mixtures of phenocrysts and highly elongated microlites are currently not available, but 

298 various non-Newtonian approximations of the behavior of crystal-rich suspension have been proposed 

299 (e.g., Caricchi et al., 2007; Costa et al., 2009; Mader et al., 2013). In our case, the 0D approximation 

300 assumes a Newtonian liquid–wall friction that neglects such effects. This choice is motivated by the 

301 fact that our modeling focuses on the effusive regime with low gas volume fraction, which limits the 

302 upward acceleration within the conduit. 

303 3. Results

304 Our samples from the February 11 event have bulk vesicularities of 44–78 vol.% and vesicle-

305 free glass contents of 23–73 vol.%, except AMO210B that has 7.5±2.4 vol.% glass (Table 1). Isolated 
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306 syn-explosive vesicles, connected syn-explosive vesicles, and connected pre-explosive vesicles are 

307 present in the respective proportions of 1±1.1:87±7.0:12, where the uncertainties have been attributed 

308 to the first two bubble populations and the percentage of the last population is such that the three sum 

309 to 100% of the total vesicle volume fraction. The pre-explosive vesicles are large, deformed and 

310 coalesced. Such textures can be due to deflation occurring either pre-explosively, or syn-explosively. 

311 The dominant population of syn-eruptive vesicles, however, displays convex surfaces that suggest net 

312 inflation. Many fallout pumices also suggest net inflation because of their bloated shapes. Glass water 

313 contents range from 0.4 to 2.2 wt.%, except again AMO210B that has 7.4±2.4 wt.% water (Table 2). 

314 The outlier values of AMO210B are due to the very low amount of bulk glass content, 3.6±1.1 vol.%. 

315 Considering that glass content is deduced by subtraction, which makes the quantification of small 

316 amounts of glass difficult and that AMO210B has a large (14 vol.% bulk) amount of unclassified 

317 mineral phases, we decided to leave AMO210B out of the analysis, which then comprises 19 samples. 

318 This is consistent with the fact that 7.4 wt.% glass water is much higher than the amount of water 

319 thought to be contained in the magmatic reservoir (4.6 wt.%, Barclay et al., 1998).

320 In using the model that converts vesicularities and interstitial glass water contents to pre-

321 explosive pressures and porosities, a magma temperature of 850 °C and a bubble-free magma density 

322 of 2450 kg/m3 (i.e., melt plus crystals) is assumed (Burgisser et al., 2010). The two free parameters 

323 linked to bubble populations were constrained by the proportions of the three vesicle types and their 

324 uncertainties. The model assumes that only the pre-explosive vesicles existed in the conduit prior to 

325 the explosion and thus that the gas contained in the syn-explosive vesicles was either dissolved in the 

326 melt or has been outgassed during the explosion. Following Burgisser et al. (2010), the parameter 

327 constraining the amount of overpressure that clasts can sustain was set to the reference value of . 1 ‒ 0.5
+ 1

328 The parameter that quantifies outgassing is the ratio between the amount of gas lost by outgassing 

329 during magma fragmentation and the total amount of gas present during the explosion. The upper and 

330 lower values of this parameter were chosen so that the maximum total water content is <4.6 wt.%, 

331 which corresponds to a saturation pressure of 130 MPa (Barclay et al., 1998), and so that all clasts had 
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332 net syn-explosive inflation, as suggested by textural observations. These conditions imply that 

333 between 10 and 76% of the gas present syn-explosively was outgassed, with an assumed reference 

334 value of 50% for this poorly constrained parameter that has a modest effect on pre-explosive 

335 pressures.

336 Figure 2 shows the pre-explosive pressures as a function of the pre-explosive porosities. Clasts 

337 originated from 8–70 MPa with porosities from 1 to 10 vol.%. Uncertainties on the porosities are 

338 dominated by model assumptions whereas uncertainties in pre-explosive pressures reflect the natural 

339 variability of glass content in the samples. The number of samples is large enough to give a 

340 representative pressure-porosity distribution but too small to yield a reliable estimate of the upper pre-

341 explosive pressure limit (Drignon et al., 2016). The right vertical axis of Fig. 2 shows approximate 

342 pre-explosive depths that suggest a drawdown depth of ~3 km. Depths were estimated thanks to two 

343 end-member scenarios of overpressure (magma- and litho-static) in the conduit. There are only small 

344 differences between these two scenarios because of the low pre-explosive porosities (Table 3), so a 

345 single depth axis with an intrinsic uncertainty of ±5% is used in Fig. 2.

346 Overall, our data indicate that the single Vulcanian event of February 11 evacuated at least the 

347 upper 3 km of a conduit that was filled by a low-porosity, high-crystallinity magma. To have ≤10 

348 vol.% porosity suggests that the magma rising from the reservoir had time to extensively degas during 

349 emplacement. One possibility is that the magmatic column was significantly permeable to gas, but 

350 such low porosities are generally associated with low permeability values. Another is that magma 

351 porosity varied rapidly, which implies that our data captures only a snapshot of the conduit state just 

352 prior to explosion. In both cases, there must have been specific conditions that allowed the magma to 

353 quickly develop significant permeability while its porosity was increasing in response to 

354 decompression and ascent from the magmatic reservoir.

355 Most bubble-supported permeability relationships depend on magma porosity to first order, and 

356 tend towards impermeability when extrapolated at low porosity for natural products of effusive 
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357 eruptions (e.g., Mueller et al., 2005; Rust and Cashman, 2011). Figure 3A illustrates that trend for a 

358 representative suite of natural samples from dome-forming eruptions at Soufrière Hills volcano and 

359 Colima volcano, Mexico (Farquharson et al., 2015; Farquharson et al., 2016; Farquharson and 

360 Wadsworth, 2018). There are several reasons for the scatter in the data at a given porosity value. One 

361 reason is the 1–2 orders of magnitudes of permeability variation as a function of sample orientation 

362 the permeable network is anisotropic. Another reason is the transition from crack-supported 

363 permeability at low connected porosity to vesicle-supported permeability at connected porosities 

364 larger than ~10 vol.%. Finally, samples have heterogeneities that are large compared to sample size. It 

365 has been shown that these two types of permeabilities can be represented with two distinct sets of 

366 power-law coefficients (Farquharson et al., 2015; Heap and Kennedy, 2016; Kushnir et al., 2016). The 

367 wide data scatter, however, drove us to select the broader approach of representing both types with a 

368 single relationship.

369 Figure 3A shows how the two permeability relationships, kB and kK, fit the entire range of the 

370 natural data. The relationship kK is a power law depending on c with coefficients that are not directly 

371 related to characteristics of the bubble network (aK =1.1×10-11 m2 and bK=3.35). The relationship kB 

372 includes information about the bubble network, namely the bubble number density, NT, and a measure 

373 of the spread of the bubble size distribution, f. It yields a good fit of all the data when f is allowed to 

374 exceed natural bounds (the best-fit value is f=1010.2 with NT =1012.4 m-3). Both relationships can thus 

375 empirically represent the behavior of magma permeability at low porosity, regardless of geometry (by 

376 bubble connections or by brittle behavior of the melt) or generation mechanism (by dilatation or by 

377 collapse). 

378 The percolation threshold occurs when c/t =0.114, which is obtained by setting p=t in Eqs. 

379 (4–5). As the maximum value of t is 1, the maximum value of c for bubble percolation is 11.4 

380 vol.%, which corresponds approximately to the boundary between crack- and bubble-supported 

381 regimes (Fig. 3A). This threshold does not affect the best-fits of kK and kB (i.e. t is always >p) but it 
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382 limits the possibility of reaching permeabilities much higher than those best-fits curves (e.g., t<p in 

383 most of the gray region of Fig. 3A). If, however, Eq. (5) is neglected (i.e. if c is given by Eq. (4) even 

384 if t<p), the whole span of values covered by the data (and the gray region of Fig. 3A) can be 

385 represented by kK or kB, regardless of permeability type. Here we focus on kB because it has been 

386 calibrated jointly with c, but similar conclusions can be drawn by using the simpler form of kK. The 

387 full range of permeabilities covered by the data of Fig. 3A can be represented by kB when 

388 108≤NT≤1019 m-3, 10-1≤f≤1012, and the percolation threshold is neglected. When used in a conduit flow 

389 model as closure relationship, kK helps characterizing magma ascent dynamics. We fitted outputs of a 

390 simplified conduit model to our data of Fig. 2 to provide first-order constraints on the type of 

391 permeability and other important parameters such as mass flux and conduit radius. 

392 The 0D model relates conduit pressure to magma porosity and depends on the initial (basal) 

393 water content, n0. Two combinations of conduit length, L, and solubility constant, s, were used so as 

394 to obtain n0≈4.6 wt.% (s=4.11×10-6 Pa-1/2, L=5 km and s=3.4×10-6 Pa-1/2, L=6 km, respectively). The 

395 first combination is consistent with previous work on conduit flow modeling at Soufrière Hills 

396 volcano (Collombet, 2009; Degruyter et al., 2012) and the second combination is a fit of s to the Liu 

397 et al. (2005) solubility relationship that was used in the processing of our data to reconstruct pre-

398 explosive pressures and porosities (Fig. 2). For a given pair of L and s, five free parameters were 

399 selected for a grid search: the mass flux, Q, the conduit radius, rc, the ratio of lateral gas flow rate to 

400 the vertical gas flow rate, Ew, the bubble number density, NT, and the spread of the bubble size 

401 distribution, f. This choice is motivated by the fact that all the other variables of the model, such as T 

402 or mc, are known much more accurately than these five parameters. The parameter Ew quantifies how 

403 efficiently the gas is evacuated through the conduit walls into the wallrock versus how the gas is 

404 transported vertically within the conduit (Kozono and Koyaguchi, 2010). Vanishing Ew values thus 

405 imply conduit wall impermeability and large Ew imply high wallrock permeability. The ranges of 10-

406 3≤Q≤105 kg/s, 1≤rc≤50 m, 0≤Ew≤1, 108≤NT≤1019 m-3, and 10-1≤f≤1012 were chosen so as to ensure 
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407 solutions with a wide gamut of mass fluxes at the vent, conduit wall permeability, and magma 

408 permeabilities that cover the data range shown in Fig. 3A. Eleven values were used for each 

409 parameter, yielding 1.6×105 unique combinations. Another 11-value sweep was done with a narrower 

410 range for Ew (0.8≤Ew≤1) to gain accuracy on this parameter because Ew<0.8 systematically yielded 

411 poor fits. Parameter combinations that verified Eq. (11) were considered solutions that fit our data 

412 (Fig. 2) within the 95% level of confidence.

413 The grid search results are very similar for the two conduit lengths explored, so we only report 

414 those with L=5 km and s=4.11×10-6 Pa-1/2 for conciseness. The sum of squared differences at the 95% 

415 level of confidence are 1.7×10-3, which is well above the sum of squared differences of the data 

416 uncertainties, ~10-6, and below that of the reconstruction model uncertainties, ~10-2. The range of 

417 solutions we select as best fits thus produce porosity–pressure curves that are within the range of 

418 model uncertainties shown in Fig. 2. All solutions fall within a very narrow range of Ew values (0.9–

419 0.94), which implies that conduit walls must be permeable to gas flow. The four other parameters 

420 have more scattered values, except NT and Q that have strongly correlated values. Figure 4A shows 

421 the number of solutions sharing the same pairwise values of NT and Q. There are, for instance, 53 

422 combinations of rc, Ew, and f that fit our data within the 95% level of confidence with NT = 1014.6 m-3 

423 and Q = 100.2 kg/s, which is represented by a circle of size 53 on Fig. 4A. The solutions parallel a 

424 power law, Q~NT
-2/3, that stems from Eq. (6) and that is made visible because these two parameters are 

425 varied over several orders of magnitude. Figure 4B shows the number of solutions sharing the same 

426 pairwise values of NT and f. The presence of a percolation threshold was ignored during the grid 

427 search. If such a threshold is taken into account, all the solutions lying below the dashed line of Fig. 

428 4B are no longer valid because gas escape is impossible.

429 Typical measured densities are 1010– 3×1016 m-3 for isolated, syn-explosive bubbles and 2×108–

430 4×1010 m-3 for pre-explosive bubbles (Fig. S6). The pre-explosive population represents the lowest 

431 expected number densities in the magma column just prior to explosion because it results from the 
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432 growth and coalescence of bubbles transported from (and/or nucleated in) the magma reservoir. The 

433 syn-explosive population is a reasonable upper estimate of the highest bubble number densities 

434 expected to occur in the magma column prior to explosion because it results from the sudden 

435 decompression of the column by the explosion, which occurred at a rate larger than that 

436 accompanying magma ascent from the reservoir.

437 The full range of measured NT is indicated on Fig. 4A, as well as the range of observed 

438 extrusion rates, from 104.3 kg/s over January 12–14, to 103.5 kg/s over January 22–28, and to 102.4 kg/s 

439 over January 30–February 5. Solutions fitting the observed range of extrusion rate, 102.4–104.3 kg/s, 

440 comprise a narrow range of NT (1010.2–1011.3 m-3) and large f values (106.8–1012, Fig. 4B). Such f values 

441 are orders of magnitude above natural vesicle distributions (0.1–10; Burgisser et al., 2017). 

442 Conversely, solutions that have NT values within the observed range, f values within the natural range, 

443 and that would be compatible with a percolation threshold correspond to very low mass fluxes (10-2.2–

444 100.67 kg/s, Fig. 4A). There are thus two sets of remarkable solutions: one high-flux set that fits 

445 observed extrusion rates and that has permeability behavior inconsistent with gas bubbles, and a low-

446 flux set that has Q values well below those observed and that has NT and f values consistent with 

447 bubble-supported permeability.

448 Each solution defines a curve of porosity vs. permeability. Figure 3A shows the permeability 

449 behavior of the high-flux solutions and Fig. 3B shows the permeability behavior of the low-flux 

450 solutions. The high-flux set covers the field occupied by most samples, whereas the low-flux set 

451 comprises permeabilities that are systematically lower than their natural counterparts at any values of 

452 connected porosity.

453 Conduit evacuation and replenishment must occur on a time scale faster than the travel time 

454 stemming from the mass fluxes from the 0D model to be consistent with the model assumption of 

455 steady state. The January 8 explosion and the associated conduit evacuation were large enough to 

456 disturb the upward flow of magma feeding the dome because it is the largest single Vulcanian 
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457 explosion to date (Cole et al., 2014). Steady-state conditions could thus only occur within the month 

458 preceding the February 11 explosion. Within that period, the timing of conduit replenishment depends 

459 on the observed dome growth rate and on conduit radius.

460 Observations indicate that lava extrusion was occurring irregularly during the month preceding 

461 the explosion (Stinton et al., 2014a). Several studies have suggested that the conduit feeding the 

462 current eruption at Soufrière Hills volcano is cylindrical in its upper part but takes the shape of a dike 

463 at depth (Costa et al., 2007; Costa et al., 2012). The commonly admitted geometry is a 15-m radius 

464 cylinder that extends from the vent down to 2 km to a dike of 5 by 400 m that extends from 2 km 

465 down to the reservoir at ~5 km depth. Ascent speed is proportional to conduit area and the dike area is 

466 equivalent to a 25-m radius cylinder. The largest suggested value of conduit radius is 40 m from 

467 volumetric strain data measured during the 29 July 2008 Vulcanian explosion (Young and Gottsmann, 

468 2015). Figure 5 shows the distance that a parcel of magma could have covered from January 8 to 

469 February 11 at the observed rates of extrusion when conduit radii of 15, 25, and 40 m are considered. 

470 A conduit of 5 km in length would have been fully replenished within ~15 days after the January 8 

471 explosion for a radius of 15 m, whereas ~12% of the conduit (760 m) would have been replenished 

472 during the month between the two explosions for a 40-m radius. The two minor Vulcanian explosions 

473 that occurred in the few days before February 11 caused negligible additional vertical movement. 

474 Because strong temporal variations of the flux were likely during that period (Odbert et al., 2014), the 

475 information conveyed by Fig. 5 is an order-of-magnitude estimate of the conduit replenishment rate.

476 Conduit evacuation and refilling estimates are helpful to decide which solutions calculated by 

477 the 0D model are compatible with steady-state conditions. Notwithstanding the strong dependence on 

478 conduit radius, Fig. 5 suggests that ascent times shorter than 2–4 weeks are necessary to ensure steady 

479 state. Figure 6 shows the predicted ascent time as a function of conduit radius for the span of high- 

480 and low-mass flux solutions, respectively. Both solutions sets comprise the full range of explored 

481 conduit radii, but only a small fraction of the 0D model solutions are compatible with steady-state 
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482 conditions. These solutions all belong to the high mass flux set and correspond to Q>103.5 kg/s and 

483 rc<25 m.

484 In summary, low mass flux solutions are calculated assuming steady-state conditions that are 

485 incompatible with the natural observations but have permeability parameters (NT and f) consistent 

486 with bubble-supported permeability. Conversely, high mass flux solutions assume steady-state 

487 conditions that could be compatible with natural observations but have permeability parameters 

488 inconsistent with bubble-supported permeability.

489 4. Discussion

490 Our data suggest that the February 11 explosion took place while the magmatic column was 

491 dense and that it evacuated the upper 3 km of the conduit. The extensively outgassed magmatic 

492 column just prior to the explosion can be compared with similar data collected from the 1997 

493 Vulcanian explosion series (Fig. 7). Drawdown depths from 2010 are comparable with the 2.5–3.5 km 

494 values inferred for 1997 (Druitt et al., 2002; Burgisser et al., 2011). Porosities deeper than 1 km are 

495 <10 vol.% in both cases, but the distribution of shallow porosities differ. The larger porosities, up to 

496 60 vol.%, of the 1997 explosion at shallow level complicate the conversion between pre-explosive 

497 pressures and depths, which depend strongly on the presence of overpressures in the conduit. 

498 Comparing instead pre-explosive pressures removes the need to assume overpressure mechanisms. 

499 The high porosity 1997 data correspond to pressures <10 MPa with a few low-porosity samples <2 

500 MPa, whereas our 2010 data has only one, 10 vol.% sample at <10 MPa. The absence of low porosity 

501 cap reflects a sampling bias, as the only dense sample was an outlier left out of our analysis. The 

502 absence of >10 vol.% porosity samples in 2010 can be due to a combination of three factors. First, the 

503 number of samples is smaller for the 2010 event than for the 1997 events. Second, the 2010 data 

504 sampled one explosion, whereas the 1997 data was a random sampling of several explosions. Finally, 

505 the shallow parts of the magmatic column could have been more outgassed in 2010 than in 1997.
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506 Several studies have suggested that the conduit feeding the current eruption at Soufrière Hills 

507 volcano is cylindrical in its upper part but takes the shape of a dike at depth (see discussion in Wadge 

508 et al., 2014b). The sampling depth of both the 1997 explosions (Burgisser et al., 2011) and the 2010 

509 event is 2.5–3.5 km, which is comparable to that of the conduit-dyke junction (~2 km, Wadge et al., 

510 2014b). This geometrical change may adversely affect the kinematics of the decompression front that 

511 feeds the Vulcanian explosions, thereby interrupting conduit evacuation.

512 Dense magmatic columns prior to explosive eruptions have also been inferred at Merapi 

513 volcano, Indonesia (Fig. 7). Drignon et al. (2016) suggested low-porosity distributions of <10 vol.% 

514 deeper than 1 km prior to the opening and paroxysmal stages of the 2010 Merapi eruption. The 

515 drawdown depth is more variable at Merapi (4–10 km) than at Soufrière Hills volcano, but both 

516 volcanoes display extensive outgassing at depth. At Soufrière Hills, this creates a puzzling situation 

517 because the release of CO2 during dome growth points to the existence of gas pathways that transfer 

518 the gas from the deeper parts of the magmatic system to the surface (Edmonds et al., 2010). The 

519 percolation of CO2 through a poorly vesicular magmatic column is difficult to reconcile with the fact 

520 that large permeabilities are promoted in magmas where bubbles are numerous and large enough to 

521 form permeable networks (e.g., Burgisser et al., 2017).

522 In an attempt to quantify how low permeabilities have to be to produce such dense magmatic 

523 columns, we used the fact that bubble-based permeability relationships recover to first order the 

524 behavior of crack-supported permeability. We focused on kB and assumed no lower limit for 

525 percolation. This relationship recovers the full range of a representative suite of eruptive products. 

526 These products, however, correspond to magmas that have undergone decompression, degassing, and 

527 outgassing. They are thus are not directly representative of the permeable network at depth. The kB 

528 relationship has been shown to represent the bubble-supported permeability of experimental melts at 

529 high pressure (Burgisser et al., 2017). It has not, however, been tested on bubble-supported 

530 permeability of crystal-bearing melts (Okumura et al., 2012; Parmigiani et al., 2017) or on crack-
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531 supported permeability under high pressure conditions (Kushnir et al., 2017) because of scaling issues 

532 (e.g., Farquharson and Wadsworth, 2018). As a result, we cannot exclude that magma permeability at 

533 depth deviates from the trend depicted in Fig. 3. Our first-order approach would thus benefit from 

534 future progress on the nature of magma permeability at depth. 

535 The 0D model fits of our pressure and porosity data point to a fairly narrow range of values for 

536 the ratio of horizontal to vertical gas flux (0.9≤Ew≤0.94). This is consistent with the expectation that 

537 lateral gas escape favors porosity reduction (e.g., Kozono and Koyaguchi, 2012). The importance of 

538 wallrock permeability in controlling outgassing has long been pointed out (Jaupart and Allegre, 1991; 

539 Taisne and Jaupart, 2008; Farquharson et al., 2015). Recently, Chevalier et al. (2017) have refined this 

540 view by suggesting that the lowest of wallrock permeability and horizontal magma permeability 

541 controls lateral gas loss. If magma permeability is supported by the bubble network, bubble 

542 elongation has the potential to reduce the horizontal permeability to very low values (Klug et al., 

543 2002; Wright et al., 2006; Degruyter et al., 2010; Burgisser et al., 2017), which opens the possibility 

544 that such permeability reduction exerts a control on the amount of lateral outgassing that exceeds that 

545 of wallrock permeability.

546 Our model outputs suggest that outgassing of a bubble network can be efficient at low 

547 permeabilities provided that magma ascent is slow enough. This general result is consistent with 

548 findings from other conduit flow model studies (Kozono and Koyaguchi, 2010; Degruyter et al., 

549 2012). Although such combination of low permeability and ascent rate can explain the pre-explosive 

550 porosity distribution within the conduit, it is inconsistent with the extrusion rates and the course of the 

551 eruption during the month prior to the February 11 event. Whether due to transient magma flow and 

552 to the fact that permeability was not supported by a bubble network, this mismatch make it impossible 

553 to obtain an estimate of the number density of the bubbles that nucleated during ascent from the 

554 reservoir or, more likely, that were inherited from the reservoir (Edmonds et al., 2014; Edmonds et al., 

555 2015; Edmonds et al., 2016). The only constraint brought by our work is thus that measured number 
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556 densities of pre-explosive bubbles (108–1010 m-3) mark the upper limit of actual number densities 

557 because bubbles are expected to rarefy during ascent as coalescence and outgassing proceeds (e.g., 

558 Gardner, 2007; Martel and Iacono-Marziano, 2015).

559 Fits of the 0D model with permeabilities expected from connected gas bubbles feature very 

560 small discharge rates that suggest near stalling of the magmatic column just prior to the February 11 

561 explosion. These fits cannot be used quantitatively because the steady state conditions assumed by the 

562 model are not consistent with the observations. This opens the possibility that our data represent a 

563 snapshot of a transient state of the conduit, such as relatively brief and multiple stalling of the 

564 ascending magma (Lensky et al., 2008). Seismic record shows sub-daily activity cycles in the days 

565 before February 11 (Stinton et al., 2014b), the last activity peaks before dome collapse occurring 

566 every 7–8 h. The last magma stalling could not have occurred over more than a couple of hours before 

567 the explosion. Magma outgassing is thus efficient enough to occur in less than a few hours, which is 

568 consistent with observations (Rodgers et al., 2016) done over the whole course of the Soufrière Hills 

569 eruption. After dome collapse, for instance, outgassing decays in hours to a few days (Edmonds et al., 

570 2003). Hour-long, large outgassing events have been measured (Edmonds and Herd, 2007). These 

571 considerations suggest that unsteady flow was likely, which implies that rapid redistribution of 

572 porosity can occur over timescales of hours or less. A fruitful research direction would thus be to 

573 develop 2D, transient conduit flow models where the processes of degassing and outgassing are fully 

574 coupled to test whether the feedbacks between porosity reorganization and permeability development 

575 can be that fast.

576 The high mass flux (>103.5 kg/s) fits of the 0D model with conduit radii <25 m are compatible 

577 with steady-state flow within the conduit in the days to weeks prior to February 11 (Stinton et al., 

578 2014a). Calculated permeabilities are <10-13 m2 deeper than 500 m (Figs. 2–3), which are values 

579 typical of crack-supported permeability. Cracks have been shown to occur by magma brittle failure, 

580 which leads to shear bands (Hale and Wadge, 2008) or stick-slip motion (Costa et al., 2012; Costa et 
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581 al., 2013). Such cracks, however, are only likely to occur shallowly (Kendrick et al., 2013). 

582 Considering the high crystal volume fraction in the Soufrière Hills magma (Murphy et al., 2000) and 

583 the presence of gas in the reservoir, one possibility to explain permeability development at depth and 

584 at very low gas volume fraction is the interaction of bubbles and crystals (Parmigiani et al., 2017) in a 

585 shearing environment (Laumonier et al., 2011). In the absence of more conclusive evidence, we 

586 speculate that this scenario is less likely than that involving transient porosity redistribution.

587 5. Conclusions

588 We analyzed pumices from the February 11, 2010 Vulcanian explosion that immediately 

589 followed a large dome collapse at Soufrière Hills volcano. We obtained pre-explosive values of 

590 porosity, pressure, and depth by combining textural analyses and glass water content determinations. 

591 Our data suggest that the February 11 explosion evacuated the upper 3 km of the conduit from the 

592 dense (≤10 vol.% porosity) magma it contained. Such drawdown depth is comparable to that inferred 

593 for the 1997 Vulcanian explosion series (Burgisser et al., 2010). The low porosity distribution in the 

594 volcanic conduit suggests that the magma rising from the reservoir has had time to extensively degas. 

595 We used a conduit flow model to characterize conditions allowing the magma to develop 

596 significant permeability and outgassing that counteract the increase in porosity caused by ascent and 

597 decompression. We used permeability relationships that were calibrated for high (>15 vol.%) porosity 

598 but that also empirically represent the behavior of magma permeability at low porosity, regardless of 

599 geometry (by bubble interconnection or by melt fracturing) and generation mechanism (by inflation or 

600 by collapse). The conduit flow model is an algebraic equation relating pressure and porosity (Kozono 

601 and Koyaguchi, 2010) that approximates steady-state solutions of a 1D two-phase conduit flow model 

602 (Kozono and Koyaguchi, 2009b; Degruyter et al., 2012). Model input parameters were fitted so as to 

603 match our pre-explosive porosity data, which yielded first-order constraints on conduit radius, mass 

604 flux, outgassing efficiency, and permeability.
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605 Model fits point to high ratios of horizontal to vertical gas flux (0.9≤Ew≤0.94). Efficient lateral 

606 gas escape is thus necessary to explain the low pre-explosive porosities. Solutions fitting the observed 

607 range of lava extrusion rate in the month preceding the February 11 event assume steady-state 

608 conditions that could be compatible with natural observations but have permeability parameters 

609 inconsistent with bubble-supported permeability. Conversely, solutions with permeability parameters 

610 (NT and f) consistent with bubble-supported permeability are associated to mass fluxes so low that the 

611 steady-state assumption is incompatible with the natural observations. 

612 Our modeling suggests two possible scenarios to explain the low pre-explosive porosities. The 

613 first possibility is that fast ascent prior to February 11 ensured steady-state conditions, in which case 

614 our modeling suggests permeabilities <10-13 m2 deeper than 500 m. These values typical of crack-

615 supported permeability (Farquharson et al., 2015; Farquharson et al., 2016) bring an additional 

616 confirmation of the gas pathways at depth that have been inferred from gas measurements at the vent 

617 (Edmonds et al., 2003), but the empirical nature of our permeability relationship leaves their genesis 

618 unexplained. The second possibility is that transient flow conditions prevailed prior to the February 11 

619 event, in which case our data are a snapshot of the porosity distributions within the conduit that does 

620 not preclude much higher porosities to have existed in the conduit. This scenario is consistent with the 

621 irregular but active dome growth in the month prior to the February 11 event. In particular, near 

622 stalling of the magmatic column and extensive outgassing could have happened at most a couple of 

623 hours before dome collapse. Taking into account observations on the degassing patterns over the 

624 whole course of Soufrière Hills eruption, this suggests that porosity redistribution can occur over 

625 timescales of hours or less.
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894 Figure Captions

895 Fig. 1: Representative pumice from the 2010 event. A) SEM image (BSE) with a red frame 

896 surrounding the region selected for textural analysis to avoid corners affected by the 

897 vignetting sometimes occurring at ×50 magnification. B) Analyzed region showing the 

898 different analyzed objects: oxides (red), plagioclases (green), orthopyroxenes (cyan), 

899 clinopyroxenes and amphiboles (blue), matrix (yellow), vesicles with circularity <0.2 and 

900 equivalent size >300 m (grey), and other vesicles (black). All objects were 

901 discriminated by chemical (EDS) mapping except the large, deformed vesicles that were 

902 manually outlined.

903 Fig. 2: Pre-explosive magmatic columns represented by porosity as a function of pressure and 

904 depth. Triangles indicate the average model outputs for each sample, grey areas cover the 

905 ranges of outputs of the 10 parametric model runs, and error bars represent the combined 

906 effects of natural variability and analytical uncertainty on each sample. The solid black 

907 curve indicates closed-system degassing if the pure water saturation pressure is 130 MPa.

908 Fig. 3: Permeability as a function of connected porosity for various input parameters of two 

909 relationships (kB and kK). Data are from natural products of dome-forming eruptions at 

910 Colima volcano (diamonds, Farquharson et al., 2015; Farquharson et al., 2016) and 

911 Soufrière Hills (triangles, Farquharson and Wadsworth, 2018). Black-filled symbols 

912 indicate permeability values in the direction parallel to gas channels (vesicles or cracks), 
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913 white-filled symbols indicate permeabilities perpendicular to gas channels, and gray-

914 filled symbols indicate permeabilities measured regardless of orientation. The limit 

915 between crack- and bubble-supported permeability is from Farquharson et al. (2015) and 

916 Kushnir et al. (2016). It also corresponds approximately to the percolation threshold (see 

917 text). A) The grey area covers the span of curves that correspond to high mass flux 

918 solutions. It is bounded by curves with the highest (dashed line) and lowest (solid line) 

919 values of bubble number density (NT), respectively. The thick continuous curve is the 

920 best-fit of all the data for kK and the dotted curve is the best-fit for kB. B) The grey area 

921 covers the span of curves that correspond to low mass flux solutions. It is bounded by 

922 curves with the highest (dashed line) and lowest (solid line) values of bubble number 

923 density (NT), respectively.

924 Fig. 4: Solutions of the five-parameters sweep that fall within the 95% level of confidence. 

925 Circle sizes are proportional to the number of solutions that have identical values for the 

926 parameter pairs represented by graph axes but different combinations of the three other 

927 parameters. Circles are colored according to whether they represent high-flux solutions 

928 (102.4–104.3 kg/s, black), low-flux solutions (10-0.6–10 kg/s, white), or other solutions 

929 (grey) that fit neither the observed extrusion rates nor the measured values of NT and f.  

930 A) Bubble number density (NT) as a function of mass flux (Q). Grey bars indicate the 

931 range of values measured by photogrammetry (x-axis) and by textural analysis (y-axis). 

932 The dashed line indicates the slope of the relationship between Q and NT given by Eq. 

933 (6). B) Bubble number density (NT) as a function of the spread in bubble sizes (f). The 

934 dashed line marks the limit between solutions that are compatible with a percolation 

935 threshold (“yes”) and the solutions that ignore the percolation threshold (“no”). 

936 Fig. 5: Distance covered by a parcel of magma between the explosions of January 8 and 

937 February 11. Curves are calculated by linear interpolation between the observed average 
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938 rates of extrusion (Stinton et al., 2014a) and assuming various constant conduit radii (15, 

939 25, and 40 m). Stars mark explosion times, and the horizontal dashed line is set at the 

940 inferred conduit length of 5 km.

941 Fig. 6: Magma ascent time from the reservoir to the surface as a function of conduit radius. 

942 Curves are labeled according to the value of mass flux. The dark grey area covers the 

943 ascent rates that are compatible with steady-state conduit replenishment. Light grey areas 

944 span combinations of mass fluxes and conduit radius that are solutions of the 0D model. 

945 Cases of high and low mass flux solutions are indicated by the labels “high Q” and “low 

946 Q”, respectively. 

947 Fig. 7: Comparison of different pre-explosive magmatic columns represented by porosity as a 

948 function of pressure. Merapi data are from Drignon et al. (2016). Soufrière Hills Volcano 

949 (SHV) data are from Clarke et al. (2007) as reanalyzed by Burgisser et al. (2010) and 

950 from Burgisser et al. (2010) (label “1997a”), from Williamson et al. (2010) (label 

951 “1997b”), and this study (label “Feb. 11, 2010”).
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952

953 Tables

954 Table 1: Sample phase proportions in vol.%. Values in parenthesis are one standard deviation, 

955 not analyzed is “n.a.”, and not detected is “n.d.”. Abbreviations OPx, CPx+A, and Plag respectively 

956 mean orthopyroxene, clinopyroxene plus amphibole, and plagioclase. 

957

Sample Vesicle Oxide a OPx a CPx+A a Plag a Glass a Quartz a Other a

AMO210A 65.3 (1.0) 1.5 (0.9) 5.3 (0.8) 8.9 (0.1) 38.6 (5.5) 45.6 (6.8) n.d. n.d.
AMO210B 51.8 (1.6) 3.5 (0.8) 10.1 (0.7) 5.1 (0.4) 38.3 (1.6) 7.5 (2.4) 7.3 (2.4) 28.3 (1.7)
AMO210C 67.8 (1.4) 1.2 (1.5) 2.9 (1.0) 8.4 (7.7) 46 (12) 45 (12) n.d. n.d.
AMO210D 54.5 (3.1) 1.9 (1.2) 2.3 (1.0) b 4.9 (2.1) b 30.3 (3.5) 60.7 (4.8) 0 b 0 b

AMO210E 71.0 (0.2) 3.9 (2.2) 20.3 (0.8) 7.4 (4.6) 36.2 (3.8) 31.2 (4.0) n.d. n.d.
AMO210F 61.5 (1.1) 2.2 (0.4) 4.8 (1.1) b 10.0 (2.3) b 48.7 (5.3) 34.4 (1.9) 0 b 0 b

AMO210G 43.5 (5.2) 1.8 (0.1) 7.7 (2.7) 4.7 (1.9) 26.6 (4.9) 37.4 (6.7) 1.1 (0.1) 20.7 (1.2)
AMO210H 55.6 (4.2) 2.8 (1.6) 5.9 (1.3) b 12.4 (2.8) b 43.4 (5.6) 35.5 (6.5) 0 b 0 b

AMO210I 59.7 (1.4) 2.4 (2.8) 11.7 (1.0) 3.9 (0.8) 53.8 (9.9) 27.9 (9.3) n.d. n.d.
AMO210J 60.1 (2.0) 6.0 (1.1) 4.4 (3.6) 16.0 (0.1) 35.4 (1.9) 23.4 (1.5) 0.2 (0.1) 14.5 (1.0)
AMO210K 73.6 (0.7) 4.1 (4.5) 1.9 (1.2) 1.8 (0.3) 53 (11) 39.2 (7.5) n.d. n.d.
AMO210L 63.5 (2.0) 4.0 (0.3) 5.7 (1.2) 8.5 (1.3) 39.5 (4.1) 23.2 (3.9) 0.3 (0.2) 18.7 (0.8)
AMO210Q 69.8 (0.9) 1.3 (0.4) 1.5 (0.7) b 3.1 (1.5) b 34.2 (5.9) 59.9 (4.5) 0 b 0 b

WP1.095A 71.7 (0.3) 2.0 (0.1) 5.1 (2.0) 5.4 (3.3) 39.3 (1.1) 48.2 (0.9) n.d. n.d.
WP1.095B 56.6 (0.1) 2.4 (0.5) 7.4 (0.7) 4.3 (3.6) 44.6 (4.1) 41.2 (6.7) n.d. n.d.
WP1.108A 62.9 (0.2) 3.0 (1.0) 3.1 (0.5) 1.7 (0.3) 44.1 (5.0) 47.9 (4.7) n.d. n.d.
WP1.108B 77.4 (0.8) 1.1 (0.1) 2.3 (0.1) 5.2 (0.4) 39.5 (1.2) 51.7 (3.0) n.d. n.d.
WP2.200A 77.1 (0.2) 1.2 (0.04) 10 (10) 7.6 (0.1) 44.5 (6.1) 36.6 (3.6) n.d. n.d.
WP2.200B 74.5 (0.5) 3.6 (1.0) 1.6 (0.1) 2.2 (0.4) 34.6 (0.6) 57.9 (2.8) n.d. n.d.
WP2.201A 76.7 (0.1) 1.5 (1.4) 2.0 (0.7) 3.0 (3.5) 52.2 (3.7) 41.3 (3.7) n.d. n.d.
WP2.201B 77.8 (0.1) 0.3 (0.4) 3.1 (1.6) 4.0 (2.7) 43.5 (0.4) 49.2 (4.8) n.d. n.d.
WP2.329A 58.4 (0.7) 2.2 (1.0) 4.3 (1.8) 11.2 (0.3) 9.0 (3.6) 73.2 (5.7) n.d. n.d.
WP2.329B 70.6 (1.1) 2.5 (0.7) 37.3 (0.4) 4.3 (0.4) 20.6 (1.3) 34.7 (2.4) n.d. n.d.

958 a Bubble-free values.

959 b Small magnification image was a slice from a tomography scan. Values were determined by 

960 assuming that all the segmented minerals minus plagioclases and oxides were ferromagnesian 

961 minerals and using the ratio (CPx+A)/(CPx+A+OPx) =0.68 and OPx/(CPx+A+OPx) =0.32 (Murphy 

962 et al., 2000).
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964 Table 2: Sample glass water contents and textural characteristics. Values in parenthesis are one 

965 standard deviation. Columns “Syn isol”, “Syn conn”, and “Pre conn” respectively represent the 

966 proportions (to 100%) of syn-explosive and isolated vesicles, syn-explosive and connected vesicles, 

967 and pre-explosive and connected vesicles. Not analyzed is “n.a.” and NT are bubble-free number 

968 densities.

969

Sample H2O bulk
(wt.%)

H2O glass
(wt.%)

Syn 
isol

Syn 
conn

Pre 
Conn

Bubble NT
(m-3)

Oxide NT
(m-3)

AMO210A 0.89 (0.049) 1.64 (0.33) 0.9 91.0 8.1 3.6×1015 (1.2×1014) 2.1×1018 (5.3×1016)
AMO210B 0.56 (0.031) 7.43 (2.44) 1.3 94.0 4.7 1.2×1016 (4.6×1014) 1.1×1017 (3.7×1015)
AMO210C 1.03 (0.057) 1.97 (0.83) 1.2 87.1 11.7 1.5×1016 (4.0×1014) 1.1×1016 (5.0×1014)
AMO210D 0.55 (0.030) 0.75 (0.14) 2.1 94.3 3.6 1.5×1016 (4.2×1014) 1.3×1017 (4.4×1015)
AMO210E 0.70 (0.077) 2.03 (0.59) 0.4 82.0 17.6 2.0×1016 (6.2×1014) 1.1×1017 (4.5×1015)
AMO210F 0.69 (0.049) 1.47 (0.29) 1.5 92.3 6.2 2.2×1016 (6.2×1014) 1.1×1017 (4.4×1015)
AMO210G 0.74 (0.041) 1.99 (0.46) 2.1 89.2 8.7 1.2×1016 (3.3×1014) 1.1×1017 (4.0×1015)
AMO210H 0.52 (0.029) 0.73 (0.31) 1.0 83.4 15.6 3.8×1016 (7.7×1014) 2.4×1017 (6.5×1015)
AMO210I n.a. n.a. n.a. n.a. n.a. 2.3×1016 (6.0×1014) 1.9×1017 (5.9×1015)
AMO210J n.a. n.a. n.a. n.a. n.a. 3.2×1016 (8.2×1014) 3.7×1017 (1.0×1016)
AMO210K n.a. n.a. n.a. n.a. n.a. 1.3×1016 (3.5×1014) 1.2×1017 (4.1×1015)
AMO210L 0.55 (0.030) 1.88 (0.41) 0.2 92.2 7.6 1.6×1016 (4.2×1014) 4.9×1017 (1.8×1016)
AMO210Q 1.00 (0.055) 1.63 (0.22) 0.4 86.1 13.5 7.7×1015 (1.8×1014) 3.2×1017 (9.4×1015)
WP1.095A 0.55 (0.030) 0.95 (0.20) 0.5 89.8 9.6 1.9×1016 (4.4×1014) 3.9×1016 (1.6×1015)
WP1.095B 0.44 (0.024) 0.89 (0.29) 0.9 82.8 16.2 2.1×1016 (5.3×1014) 5.3×1016 (2.0×1015)
WP1.108A 0.66 (0.019) 1.41 (0.18) 0.7 88.8 10.5 1.5×1016 (3.9×1014) 2.5×1017 (6.8×1015)
WP1.108B 1.12 (0.027) 2.05 (0.15) 0.3 67.0 32.7 1.4×1016 (3.1×1014) 8.9×1016 (2.4×1015)
WP2.200A 0.56 (0.031) 1.16 (0.29) 0.3 92.5 7.3 1.5×1016 (4.3×1014) 2.9×1017 (8.8×1015)
WP2.200B 0.65 (0.023) 1.11 (0.08) 0.2 92.2 7.6 3.1×1016 (4.9×1014) 6.1×1015 (3.1×1014)
WP2.201A 0.54 (0.035) 1.20 (0.28) 0.2 87.6 12.2 2.7×1016 (5.6×1014) 3.8×1016 (1.4×1015)
WP2.201B 1.09 (0.11) 2.16 (0.39) 0.1 88.1 11.8 2.0×1016 (4.2×1014) 6.1×1015 (2.3×1014)
WP2.329A 0.56 (0.004) 0.43 (0.07) 0.3 73.0 26.7 4.7×1016 (7.0×1014) 1.2×1017 (3.4×1015)
WP2.329B 0.55 (0.005) 1.59 (0.13) 0.1 89.6 10.3 2.6×1016 (4.2×1014) 9.5×1016 (2.9×1015)
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972 Table 3: Results on the pre-explosive conduit conditions. Values in parenthesis are one 

973 standard deviation and the plus and minus signs indicate positive and negative errors. Total gas is the 

974 total amount of syn-explosive gas. Depths are measured from the vent down and are considering 

975 respectively magma-static (Magm. depth) and litho-static (Lith. depth) conduit pressure gradient.

976

Sample Melt H2O 
(wt%)

Pressure
(MPa)

Porosity
(vol.%)

Total gas 
(wt%)

Magm. depth
(km)

Lith. depth
(km)

AMO210A 2.27 (0.32) 38.7 (+9.3,-10.3) 2.818 (0.027) 0.73 1.7 1.5
AMO210C 2.65 (0.82) 50.8 (+24.7,-30.7) 2.331 (0.038) 0.79 2.2 2.0
AMO210D 1.23 (0.14) 12.7 (+2.5,-2.8) 6.243 (0.061) 0.55 0.6 0.5
AMO210E 2.79 (0.58) 55.6 (+18.9,-21.8) 2.370 (0.007) 0.88 2.4 2.2
AMO210F 2.04 (0.29) 31.9 (+7.8,-8.6) 3.070 (0.028) 0.66 1.4 1.2
AMO210G 2.37 (0.45) 41.7 (+13.2,-15.1) 1.603 (0.049) 0.44 1.8 1.6
AMO210H 1.22 (0.31) 12.5 (+5.2,-6.4) 6.505 (0.081) 0.57 0.6 0.5
AMO210L 2.48 (0.41) 45.3 (+12.5,-14.1) 2.300 (0.047) 0.69 2.0 1.8
AMO210Q 2.36 (0.22) 41.4 (+6.6,-7.1) 3.029 (0.029) 0.84 1.8 1.6
WP1.095A 1.73 (0.19) 23.7 (+4.6,-5.0) 5.504 (0.006) 0.89 1.1 0.9
WP1.095B 1.40 (0.29) 16.1 (+5.6,-6.7) 5.258 (0.002) 0.58 0.7 0.6
WP1.108A 2.00 (0.18) 30.7 (+4.7,-5.1) 3.290 (0.005) 0.68 1.4 1.2
WP1.108B 3.02 (0.15) 64.0 (+5.4,-5.6) 2.637 (0.033) 1.12 2.8 2.5
WP2.200A 2.12 (0.29) 34.3 (+7.9,-8.8) 4.756 (0.006) 1.11 1.5 1.3
WP2.200B 1.98 (0.08) 30.3 (+2.2,-2.3) 4.821 (0.015) 1.00 1.4 1.2
WP2.201A 2.15 (0.28) 35.2 (+7.8,-8.6) 4.570 (0.004) 1.09 1.6 1.4
WP2.201B 3.15 (0.38) 68.8 (+14.0,-15.2) 2.508 (0.005) 1.15 3.0 2.7
WP2.329A 0.96 (0.07) 8.0 (+1.0,-1.1) 10.436 (0.003) 0.60 0.4 0.3
WP2.329B 2.34 (0.12) 40.8 (+3.8,-3.9) 3.154 (0.035) 0.86 1.8 1.6
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Supplementary Information 

This Supplementary Information includes text providing additional details on the textural analysis and the 
conduit flow modeling (Text S1–S5), one table with GPS coordinates of the sampling locations (Table S1), and 
6 figures (Figs. S1–S6).
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Supplementary Text S1. 
Weight fractions of water in the glass, Xgl, were calculated by neglecting the weight of the vesicles:

(S1)𝑋𝑔𝑙 =
𝑋𝑏𝑢𝑙𝑘∑𝑖𝑉𝑖𝜌𝑖 ‒ 𝑋𝑎𝐶 𝑉𝑎 + 𝑐𝑝𝑥𝜌𝑎

𝑉𝑔𝑙𝜌𝑔𝑙

where Xbulk is the bulk H2O weight fraction, Xa = 0.02 is the H2O weight fraction in amphibole, C = 0.95 is the 
assumed constant ratio between the volume fraction of amphibole and that of amphibole plus clinopyroxene 
(Murphy et al., 2000), Vi are volume fractions, and i are densities. The sum is ∑𝑖𝑉𝑖𝜌𝑖 = 𝑉𝑜𝑝𝑥𝜌𝑜𝑝𝑥 + 𝑉𝑎 + 𝑐𝑝𝑥

 and the subscripts opx, a+cpx, gl, ox, qz, plg, oth, 𝜌𝑎 + 𝑐𝑝𝑥 + 𝑉𝑔𝑙𝜌𝑔𝑙 + 𝑉𝑜𝑥𝜌𝑜𝑥 + 𝑉𝑞𝑧𝜌𝑞𝑧 + 𝑉𝑝𝑙𝑔𝜌𝑝𝑙𝑔 + 𝑉𝑜𝑡ℎ𝜌𝑜𝑡ℎ
and a mean orthopyroxene, amphibole plus clinopyroxene, glass, oxide, quartz, plagioclase, other, and 
amphibole, respectively and where densities are ρopx = ρa+cpx = ρa = ρoth =3300 kg/m3, ρgl = 2380 kg/m3, ρox = 
4720 kg/m3, ρqz = 2650 kg/m3, and ρplag = 2570 kg/m3. Uncertainties on Xgl were calculated by error propagation 
(Drignon et al., 2016). The mineral separation procedure from Drignon et al. (2016) was adjusted to the phases 
present in our samples (Fig. 1B). Let Fj be the final binary images with the additional subscripts ves and m+gl 
being vesicles and matrix plus glass, respectively. Let Ik be the segmented elemental images per zoom level with 
k = Al, Si-m, Si-h, Fe-h, Fe-m, Mg, and Ca (X-m and X-h are medium and high threshold levels). The series of 
Boolean manipulations to obtain the final images reads:

Fves = Ives OR NOT(IAl OR ICa OR IFe OR IMg OR ISi-h OR ISi-m OR IFe-h OR IFe-m)
Fox = IFe-h
Ji = Ii - Fves - Fox
Fa+cpx = JCa AND JMg
Ki = Ji - Fa+cpx
Fopx = KFe-m AND KMg
Li = Ki - Fopx
Fplg = LCa AND LAl
Mi = Li - Fplg
Fqz = MSi-h
Ni = Mi – Fqz
Fm+gl = NCa OR NFe-m OR NMg OR NSi-m OR NSi-h OR NAl
Foth = 100% - Fves - Fox - Fa+cpx - Fopx - Fplg - Fqz - Fm+gl (S2)

The sign minus implies image subtraction so that A-B corresponds to A AND NOT B in Boolean notation, 
and 100% corresponds to a full image area. Figure S2 illustrates the steps summarized by Eq. (S2)

Supplementary Text S2. 
Figure S4 shows how bubble and oxide number densities were calculated by combining two image 

magnifications for sample AMO210A. This sample features a strong mismatch of size distribution between the 
two magnifications around 30 m. The reconstruction procedure smooths this mismatch and creates a break in 
slope that translates into an apparent bimodality of the distribution across that length scale. The bubble-free 
number density reported in Table 2, however, is a cumulative sum of the distribution shown in Fig. S4. The 
cumulative sum is not sensitive to this artifact because it affects a number of bubbles much smaller (typically by 
2–3 orders of magnitude) than that of the sum.

Supplementary Text S3. 
Figure S5 shows bubble-free crystal content as a function of pre-explosive pressure. The natural 

variability far exceeds the trend calculated by a fit based on experimental data of crystal growth kinetics in the 
Soufriere Hills Volcano magma (Kozono and Koyaguchi, 2010), so we opted for a constant, average value of 
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crystal content.

Table S1: Sample locations in standard UTM zone 20N coordinates.

Location Easting Northing Elevation (m) Location

AMO210 589338 1852498 24 Farm River valley

WP1.095 588597 1851421 259 Harris Lookout

WP1.108 590487 1851591 33 Spanish Point

WP2.200 589696 1850761 116 White's Bottom Ghaut

WP2.201 590067 1850532 94 White's Bottom Ghaut

WP2.329b 588373 1851291 279 Harris Lookout
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A) B) C)

Figure S1: Representative tomographic slice of sample AMO210Q. Each image spans 1.34 cm horizontally. A) 
Grayscale image of X-ray attenuation levels. B) Same image as A) but with a color scheme highlighting the 
different mineral phases to aid automatic and manual segmentations. C) Segmented image. Analyzed objects are 
oxides (pale yellow), plagioclases (green), other minerals (red to dark yellow shades), matrix (dark shades of 
blue), vesicles with circularity <0.2 and equivalent size >300 m (orange), and other vesicles (light blue).
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Figure S2: Mineral phase quantification by EDS for sample AMO210C (same image as that of Fig. 1). Images 
A)–F) correspond to the successive steps summarized in Eq. (S2) that result in the composite image on Fig. 1B.
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A)

B)

Figure S3: Representative pumice WP1.059B from the 2010 event. Minerals and glass are white. A) Composite 
grayscale ×50 image spanning 7 mm horizontally that contains parts of three of the four vesicle populations. 
Large vesicles >300 μm across and circularity <0.2 are divided into two populations. Population 1 (light grey) is 
composed of large, syn-explosive angular voids existing between crystal fragments that were segmented by 
hand. Population 2 (dark grey) is composed of the remaining large vesicles, which are classified as pre-
explosive. The coarse part of population 3 (black) is composed of all the vesicles that do not belong to the first 
two populations. B) Composite grayscale ×1000 image spanning 436 m horizontally that contains parts of 
populations 3 and 4. Black vesicles compose the fine part of population 3. Population 4 (grey) is composed of 
rounded, syn-eruptive vesicles <50 μm across and circularity >0.4. 
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A) B) 

Figure S4: Bubble size distribution reconstruction of sample AMO210A following the method by Giachetti et 
al. (2010). A) Number of all vesicles per m2 of glass for each magnification used (1: ×2000 and 2: ×50). B) 
Combination of the 2 magnifications with a cut-off of 30 m followed by 3D conversion obtained using 2D data 
and stereological transformations from Cheng and Lemlich (1983). The number density reported in Table 2 for 
AMO210A is the cumulative sum of the distribution in B).
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Figure S5: Sample crystal contents (squares) as a function of pre-explosive pressure (P). The vertical line 
indicates the average value of 55 vol.% that we chose in our simulations. The dotted line corresponds to the fit 
based on experimental data of crystal growth kinetics for the Soufriere Hills Volcano magma used by Kozono 
and Koyaguchi (2010). 
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Figure S6: Bubble size distributions of samples listed in Table 2. Vertical boundaries roughly correspond to 
vesicle origin (pre- or syn-explosive). These boundaries are only indicative because the origin discrimination is 
made on the joint basis of size and circularity.




