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1 Introductory Chapter 

This volume collects three articles which constitute the bulk of my PhD research. The 

overarching theme of the volume is the role of attractors - a concept from dynamical systems 

theory – in the neural realization of phonological grammar. 

The motivation for this line of inquiry begins with the claim that the study of language should 

provide some insight into the workings of the human mind/brain. Indeed this is one of few 

mantras shared by linguists of the seemingly irreconcilable “Generative” and “Cognitive” 

schools (e.g. Chomsky 2002; Lakoff 1988). Given this apparent consensus then, it is perhaps 

surprising that no breakthrough in our understanding of the brain can yet be attributed to some 

insight from the study of language.  

An analysis and critique of this state of affairs is given by Poeppel & Embick (2005), who 

identify (amongst other things) that we currently have no way of relating the ontologies of 

linguistics and neuroscience. This Ontological Incommensurability Problem (OIP) can be 

resolved, they argue, by the use of a Linking Hypothesis, which spells out linguistic 

computations at the relevant level of algorithmic abstraction, such that the neuroscientist need 

only find the exact implementations of those algorithms in the brain. If such a hypothesis were 

sufficiently complete then it could, in principle, predict the kinds of neural configurations 

required for natural language processing, using linguistic theories as their starting point. In this 

way, we could finally realize the long sought-after goal of cashing in theories of language for 

understanding of the human brain. Simultaneously, a Linking Hypothesis also has the potential 

to unearth lower-level explanations for linguistic phenomena, for example where those 

explanations might depend on purely neurobiological notions (e.g. neuronal morphology, 

synaptic density, metabolic efficiency, etc.). 

1.1.1 Emergence as a Linking Hypothesis 
The specific approach to the OIP advocated by Poeppel & Embick treats the neurobiological 

level of analysis as something akin to a decomposition of a linguistic theory. That is, a linguistic 

theory can be reduced to individual processes (e.g. concatenation, linearization, etc.), and the 

problem of how to realise each process can be attacked individually. And, while this approach 

is certainly a logical possibility for resolving the OIP, it rests on assumptions which treat the 

brain as being fundamentally like a digital computer. Implicitly, it has borrowed from computer 

science the idea that the different levels of abstraction for which we might describe a cognitive 

function, are related to one another through a strict compositional semantics. That is, any 
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property at one level of abstraction can be neatly decomposed to some combination of 

properties at a lower level of abstraction (e.g. Block 1995). 

A full rebuttal of these assumptions is well beyond the scope of this introductory chapter. It is 

sufficient to note that this view is by no means the only starting point for constructing a Linking 

Hypothesis. The alternate approach offered here draws inspiration from the natural sciences, 

where the apparent incommensurability between different levels of abstraction is frequently 

resolved by treating the higher levels as epistemologically emergent1 from lower ones (e.g. 

Anderson 1972; Luisi 2002). According to this approach, the goal is not to decompose a macro-

level ontology to see how each component is “implemented” at the micro-level. Rather, the 

goal is to see what kinds of configurations at the micro-level give rise to a complex system 

whose behaviour is captured by the macro-level theory. 

Therefore, to claim that linguistics is emergent from neuroscience entails that linguistic 

properties do not separately decompose to neuroscientific properties, contra the way that the 

functions of a high-level computer language reduce to combinations of primitive operations. 

Instead, the relationship between linguistics and neuroscience would be analogous to (e.g.) the 

molecular theory of gasses2. Under this view, linguistic properties would be analogous to 

macro-level concepts like temperature or pressure, while neuroscientific properties are 

analogous to molecular explanations of these phenomena. The most relevant aspect of this 

analogy is that the properties present at each level of abstraction are quite different. So different, 

in fact, that the different levels of abstraction can seem metaphysically inconsistent. For 

example, while a notion such as pressure can be reduced to the average behaviour of all 

molecules in a system, no single molecule can be said to possess, explain, or cause pressure in 

                                                 

1 Alternatively: weakly emergent (Bedau 1997). Also note that this notion of emergence is 

strictly orthogonal to the notion of ontogenetic emergence employed in the study of language 

acquisition. Whether linguistic ontology is epistemologically/weakly emergent does not predict 

whether it is learned/innate/none of the above. 

2  Conceptually at least, this analogy is not a novel idea in phonology. The same basic 

assumptions underlie Smolensky’s Integrated Connectionist/Symbolic architecture and, by 

extension, Harmony theory and Optimality Theory (Prince and Smolensky 1997). 
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any meaningful sense. Pressure is simply a concept which exists at the macro-level, but not at 

the micro-level. Nor can pressure and temperature be decomposed separately (e.g. there are 

not two types of molecule which cause pressure and temperature independently), rather, the 

properties of the macro-level appear to emerge, fully-formed, once the micro-level analysis 

becomes sufficiently complex. In more general terms, there is some point in our analysis at 

which the collection of molecules ceases to be, and is a replaced by something radically 

different: a gas. 

Applying this analogy, if we allow that the relationship between the brain and phonology is one 

of emergence, rather than a strict compositional semantics, then a Linking Hypothesis should 

take the form of a complex dynamical system, and demonstrate the emergence of phonology-

like properties from some specific combination of brain-like elements 

1.1.2 Introducing Attractors 
The preceding argument leaves us with a well defined problem: What kind of dynamical system 

could possibly give us something like a phonological grammar? The first obstacle to answering 

this question is that, while formal grammars are defined over a set of discrete symbols, 

dynamical systems (such as the brain) are typically understood as being fundamentally 

continuous. This is where attractor dynamics are critical, because they allow us a way of 

realizing discrete behavior in an otherwise continuous system. Moreover, they are easily 

realizable in neural networks, making them a plausible candidate for a neural mechanism 

capable of underlying the discrete behaviour observable in phonological grammars. 

Like other artificial neural networks (ANNs), attractor networks consist of a number of simple 

units, which are interconnected with varying degrees of efficacy. Unlike other ANNs, attractor 

networks are characterized by symmetrical connections between units, which cause the network 

activity to settle on one of a number of asymptotically stable network states (i.e. attractor states). 

These stable states can be formally defined as local minima in an energy function and the 

behaviour of the network can be understood as analogous to the second law of thermodynamics: 

the entropy of the system increases over time, as the free energy decreases. This is sometimes 

visualised as a landscape of peaks and valleys (Figure 1), with the network always rolling down 

into the nearest valley. 
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Figure 1: Conception of a network state-space. The z-axis corresponds to the free energy of the network. The red 
dots are attractors. http://www.scholarpedia.org/article/Attractor_network 

The dynamics of attractor ANNs were popularized by Hopfield (1982), who noted that, if the 

attractor states are taken to represent pieces of information, then the network functions as a 

content addressable memory system. 

Crucially for linguists, these attractor-memories are effectively discrete pieces of information. 

This is even true in cases where the individual units of the network are functionally gradient 

(Hopfield 1984). Thus, attractor dynamics are arguably our best candidate for explaining how 

a grammar over discrete elements could emerge in a seemingly analogue system like the human 

brain. 

1.1.3 Overview of Introductory Chapter 
The rest of this introductory chapter is split into two parts: first, a brief summary of each of the 

three articles in this volume; and secondly, a collection of smaller comments and technical 

discussions which are of a more general and speculative nature than the articles themselves. 

These are intended to provide some theoretical background for the articles, as well identifying 

certain deeper issues for further discussion. 
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1.2 Summary of the Articles 

1.2.1 The Phonological Latching Network 
The first paper could be considered the primary contribution of this volume, and it represents 

by far the largest time commitment of the three articles. It contains an analysis of a model 

dubbed the Phonological Latching Network (PLN), which is an extension of earlier Potts 

latching networks. The key claim is that the model appears to reproduce certain quintessentially 

phonological phenomena, despite not having any of these phonological behaviours 

programmed or taught into the model. Rather, they appear to emerge spontaneously from the 

combination of a few basic “brain like” ingredients with a “phonology like” feature system. 

The significance of this can be interpreted from two angles: firstly, the fact that the model 

spontaneously produces natural language patterns can be taken as evidence of the model’s 

plausibility; and secondly, it provides a potential explanation for why these patters appear to 

frequently in natural language grammars. 

The PLN consists of a number of so-called “Potts” units, intended as effective models for small 

patches of cortex, which are linked via symmetrical, synapse-like connections of varying 

efficacy. The model belongs to a broader class of neural networks called attractor networks, 

which are noteworthy for their ability to store quasi-discrete memories as stable, distributed 

patterns of activity. The PLN is also capable of spontaneously producing strings of discrete 

elements as it “latches” between the memories stored in the network. The latching behavior is 

not prescribed by the experimenter, but rather emerges naturally under very specific 

configurations, due to the fatigue of active units in the network. Previous numerical analyses 

of latching behavior have shown that the probability of a latch between any two memories 

depends on the similarity of those memories’ representations (broadly: how many units their 

representations share; see paper for details). In linguistic terms, this notion of similarity can be 

thought of as shared features. Therefore, latching behavior is one of few explicit hypotheses for 

how an analogue system, such as the brain, can produce more complex structures of discrete 

elements, of the sort posited by linguists. 

The PLN represents an inventory of phones as distributed patterns of activity, which are split 

across “motor” and “auditory” subnetworks. Each phone is created algorithmically by 

superimposing the representations for a given number of phonological features, each of which 

is defined by a lowly correlated noise pattern. The representations for the phones are then 

encoded as synaptic efficacies in the network, using a Hebb-rule. Electrophysiological data on 
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the encoding of speech information in the Superior Temporal Gyrus and premotor areas shows 

a spacial asymmetry in encoding of place and manner features. Therefore, in the PLN, the 

features are weighted such that place features are more active in the “motor” sub-network, while 

manner features are more active in the “auditory” network. For the sake of simplicity, laryngeal 

features are excluded from the PLN. This is partly because laryngeal processes can often be 

treated as orthogonal to place and manner, but also because the current electrophysiological 

data give no clear insight into how laryngeal features should be incorporated into the model. 

As the network latches, it produces phonological words of varying length (e.g. Figure 2). By 

repeating the simulation with fixed variables, but randomly determined initial states, the PLN 

produces a corpus of data which can be taken to represent a single grammar. Each grammar can 

then be described using similar tools to those used to describe natural grammar. For the purpose 

of this study, each transition (or latch) produced by the PLN was characterized using 

phonological criteria (e.g. “do these two adjacent segments share a place feature?” etc.). These 

characterizations are then tallied, and then compared to chance level, i.e., a grammar in which 

the probability that any given segment will occur is equal for all segments, which in turn can 

be used to calculate the chance occurrence of given phonological feature. The extent to which 

the PLN grammars diverge from chance level can be taken as an indication of which properties 

(if any) emerge naturally from the implementation of phones (as defined by phonological 

features) in a latching network. 

The latching network was found to exhibit three types of “phonology-like” behavior. Firstly, 

the latching strings tend to obey the Sonority Sequencing Principle, which in turn leads to more 

typologically common syllables (e.g. CV, CVC, etc.). Secondly, the network is near-incapable 

of immediately repeating a segment, which in turn means that the network obeys the Obligatory 

Contour Principle (at least at the surface/segmental level – generalization to underlying and/or 

suprasegmental OCP remains a topic for future investigation). Thirdly, when compared to 

chance levels, adjacent segments exhibit a preference for place agreement. 

These results are striking insofar as the apparent naturalness of the strings produced by the PLN 

do not depend on stipulating any of these properties a priori. Rather they emerge spontaneously 

from the combination of a neurologically motivated model, with phonologically motivated 

representations. For this reason, the PLN presents not only a plausible hypothesis for why 

certain properties form a part of the phonological faculty, but also a first step towards 

understanding their neurological implementation in greater detail. More generally, the model 
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demonstrates the application of dynamical systems modelling as a way of relating formal 

linguistics to specific mechanisms for neural computation. 

  

1.2.2 Digital Grammar and Analogue Brains 
The second paper also features an attractor neural network, albeit a much simpler type than the 

PLN. The focus of this paper itself is far more conceptual in nature. The contribution is not so 

much a particular result, but rather an attempt to understand how formal theories of grammar 

should be understood in relation to “neural” models of cognition. The primary focus of the 

paper is the apparent incommensurability of digital formalisms with the view of the brain as an 

essentially analogue machine. Of course, this is not a new topic and many different stances on 

this issue can be gleaned from the philosophy of mind literature. Rather the rehashing the 

philosophy however, this paper applies an information theoretic method, Effective Information 

(EI), to an explicit “toy” phonological grammar, and an attractor neural network realization of 

that same grammar. EI is defined as the mutual information between the interventions on a 

system, and the effects of those interventions. In this way, EI provides a measure of the causal 

information conveyed by a scientific model. 

The attractor network demonstrates the emergence of discrete categories from an underlyingly 

gradient system. But it can also be proven that the formal phonological analysis has a higher 

Effective Information (EI) than the neural attractor model. I argue that this shows that discrete 

formalisms compatible with a gradient view of the brain, but also that they are causally 

Figure 2: Example of a latching string. The PLN produces /nof/. 
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emergent (Hoel 2017), and therefore necessary if we wish to have a complete explanation of 

natural grammar. 

The model itself focuses on the phenomenon of incomplete devoicing, which has been argued 

to be an example of phonetic gradience that discrete phonological models cannot explain (c.f. 

van Oostendorp 2008). Therefore, the toy phonological grammar consists of 6 possible phones 

– 3 places of articulation ([LABIAL], [CORONAL], [DORSAL]), each with a voiced and 

voiceless variant – and the capacity to distinguish coda and non-coda positions, as well as 

simple rule which devoices any voiced phone in a coda position. For the attractor network, the 

6 phones are encoded as attractor states in the network, while information about syllable 

structure is supplied to the network as a simple inhibitory signal, which is used to signal a coda-

position. Analysis of the network behavior shows that, when the network is told to retrieve a 

voiced phone in the presence of the inhibitory coda signal, 

the network spontaneously retrieves the voiceless 

counterpart. In this way, the model is implementing the 

devoicing rule of the formal model. 

Interestingly, however, the voiceless outputs which are 

derived from a voiced input can vary fractionally from 

those voiceless outputs which are underlyingly voiceless. 

This small variation is could be easily interpretable as a 

small, but consistent difference in the voicing of the phone 

during realization. In this way, this simple model is a proof 

of concept for how a discrete phonological system, when 

implemented in an underlyingly continuous system, can 

exhibit the sorts of gradience observed in phenomena such 

as incomplete devoicing. 

In order to compare the EI of the formal and attractor 

model we must understand both as kind of dynamics over 

a state space. The toy grammar can be understood as a 

system having n=12 possible states S={[b]#, [d]#, [g]#, 

[b], [d], [g], [p]#, [t]#, [k]#, [p], [t], [k]}. The dynamics of 

the system can be understood as an intervention over each 

state si, at time=t, and a resulting effect at time=t+1. With 

ID at time=t  t+1 ED 

<do(b#)>= 1

12
 [p]# <b#>=0 

<do(d#)>= 1

12
 [t]# <d#>=0 

<do(g#)>= 1

12
 [k]# <g#>=0 

<do(p#)>= 1

12
 [p]# <p#>= 2

12
 

<do(t#)>= 1

12
 [t]# <t#>= 2

12
 

<do(k#)>= 1

12
 [k]# <k#>= 2

12
 

<do(b)>= 1

12
 [b] <b>= 1

12
 

<do(d)>= 1

12
 [d] <d>= 1

12
 

<do(g)>= 1

12
 [g] <g>= 1

12
 

<do(p)>= 1

12
 [p] <p>= 1

12
 

<do(t)>= 1

12
 [t] <t>= 1

12
 

<do(k)>= 1

12
 [k] <k>= 1

12
 



 

9 

the formal system defined, we can then determine two probability distributions, Intervention 

Distribution (ID)  and Effect Distribution (ED), which can then be used to calculate the 

effectiveness of the system. This is slightly simpler than calculating the EI directly, but it stills 

allows to determine the relative EI of the formal and attractor models. The ID  is considered in 

the maximum entropy case, where ID(i)=n-1. and the ED is calculated by observing the effects 

of the interventions at time=t+1 (see table above). These values can then be used to determine 

the degeneracy of the system:  

𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦 =
𝐷𝐾𝐿(𝐸𝐷|𝐼𝐷)

𝑙𝑜𝑔2(𝑛)
= 𝑙𝑜𝑔𝑛(2)∑𝐸𝐷(𝑖)𝑙𝑜𝑔2

𝐸𝐷(𝑖)

𝐼𝐷(𝑖)
𝑖

 

This will then allow us to calculate the 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠 = [𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑚] − 𝑑𝑒𝑔𝑒𝑛𝑒𝑟𝑎𝑐𝑦. 

Since out toy grammar is strictly deterministic, the determinism is equal to 1. Crunching the 

numbers gives our toy grammar 𝑒𝑓𝑓 = ~0.93. 

We then repeat this process to determine the effectiveness for the attractor model. This is 

slightly more complicated because the state space is both continuous and intractably large. 

However, by using a simple approximation method (see paper), we can determine that 𝑒𝑓𝑓 =

~0.174 for the attractor model. 

These two values can be used to determine the relative EI, because it can be proven that a 

system is only causally emergent when the gain in information from increased EI outweighs 

the loss in information from the smaller state space at the coarser, or more “abstract” level of 

analysis. Given that the size of the state space is known for the both the toy formal model and 

the attractor network, it is easy to prove that the formal model must have a higher EI than the 

attractor network (see paper). 

Therefore, even when our discrete phonological representations are taken as emergent 

phenomena from an underlyingly gradient system, such as an attractor network, it is in fact the 

phonological model which has the highest EI, rather than the neurological model. Thus, the 

formal analysis of the grammar carries more information about the underlying causal structure 

of the system. This is argued to be the utility of formal linguistics within cognitive science more 

broadly. 

1.2.3 On the Language Specificity of Vowel Maps 
The third article focuses on attractor dynamics in the domain of speech perception. Specifically, 

the way a continuous acoustic space, such as the vowel space, can be perceived by speakers as 
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being composed of quasi-discrete objects, i.e. the vowel inventory. The paper gives the results 

from three different vowel perception experiments, carried out with the help of collaborators in 

several different countries. By comparing the results from participants with different L1s, we 

can see the way the perception of the vowel space depends on the participants native vowel 

inventories. Finally, a visualization method, developed by collaborator Zeynep Kaya allows us 

to generate a deformed map of the vowel space for each language tested.  

For our first experiment we tested speakers of Italian, Turkish, Spanish and Scottish English on 

their ability to discriminate ambiguous pairs of vowels. The experiment is designed around a 

confusability paradigm, whereby participants are played pairs of CV-syllables and asked to 

press a key if they believe the two vowels to be the same. The stimuli were generated first by 

recording a phonetically trained speaker, then using a morphing algorithm to generate new CV-

syllables with intermediate vowel qualities. This way, we could produce groups of four CV-

syllables whose vowel qualities are approximately evenly distributed along a small continuum 

within the vowel space. The perception results show definite, albeit small, differences between 

the language groups. 

The second experiment tested speakers of Italian, Norwegian and Turkish. For this experiment 

we extended the paradigm of the first experiment by generating new, intermediate stimuli. This 

allowed us to test participants perception over approximately the whole vowel space. In this 

case the result present a much clearer picture of the differences between the language groups. 

Moreover, we were able to use participants responses to generate deformed “maps” of the vowel 

space for each language. While this visualization method does result in some information loss, 

it nonetheless captures some important differences in vowel perception between the language 

groups. 

Finally, we conducted a variation of the second experiment using only (late-)bilingual 

Norwegian speakers of English. The paradigm remains the same as before, with the addition of 

language priming sessions for the participants. These were interspersed during the vowel 

discrimination test, in the form of aural short stories in either English or Norwegian. The results 

do not show any evidence that the priming affected participants vowel perception. This supports 

the hypothesis that L2 learners merge the vowels of the new language onto their existing “vowel 

map”, rather than developing a new map. These results also present an explanation for why the 

Norwegians exhibited better discrimination over English-like (but non-Norwegian) vowels in 
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the second experiment: their higher exposure to English compared to the other groups has left 

them with a vowel map which merges both English and Norwegian vowels. 

The subdivision of labour among the three co-authors is approximately as follows: 

Zeynep Kaya: Experimental design, coding experiment program, Turkish/Italian data 

collection, applying morphing algorithm. 

Joe Collins: Producing stimuli, Norwegian data collection, coding statistical analyses, writing 

up and analysis from a phonological perspective. 

Alessandro Treves: Supervision over all aspects, especially during experimental design and 

writing phases. 

With additional data collection by Simona Perrona. 
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