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Abstract

Nowadays, reducing energy consumption and improving energy efficiency of computing systems

become ones of the main research topics in computer science. In order to improve energy efficiency,

it is important to understand how computing systems consume energy and to characterize their

energy consumption when running applications. Power and energy models are the essential tools to

provide the prediction of the power and energy consumption of computing systems and insight into

how they consume power and energy.

Devising models which can provide an accurate prediction of energy consumption requires the

detailed understanding of the underlying platform and the communication and computation patterns

of the considered application. Therefore, it is challenging to build accurate power and energy models

that can be used for general devices and general applications.

This thesis addresses the above challenge by developing three approaches of devising power and

energy models, varying from homogeneous systems including one type of devices (e.g., CPU, GPU,

Ultra Low Power embedded system) to heterogeneous systems including several types of devices

with different architectures.

• The thesis developed new fine-grained power models supporting architecture-application co-

design by considering both platform and application properties. The models were trained

and validated with data from a set of micro-benchmarks and application kernels on Movidius

Myriad, an ultra-low power embedded system. The model predicted power consumption within

12% deviation from the real power consumption. We also proposed and validated a framework

predicting when to apply race-to-halt (RTH) strategy to a given application.

• The thesis devised ICE, new energy complexity models for parallel (multi-threaded) algorithms

that were validated on real multicore platforms and applicable to a wide range of parallel al-

gorithms. We presented two case studies using the complexity models to characterize and

compare the energy consumption of sparse matrix-vector multiplication and matrix multi-

plication kernels according to the three aspects: different algorithms, different input matrix

types and different platforms. The experimental results regarding which algorithm consumes

more energy with different inputs on different platforms confirmed the prediction by the new
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models. The study also provided the platform parameters of the ICE models for eleven plat-

forms including HPC, accelerator and embedded platforms to improve the model usability and

accuracy.

• The thesis proposed REOH, the holistic tuning approach to choose the most energy-efficient

configurations for heterogeneous systems including several types of devices with different ar-

chitectures (e.g., CPUs, GPUs). REOH uses probabilistic network to predict the most energy-

efficient configuration (i.e., which platform and its setting) of a heterogeneous system for

running a given application. Based on the REOH approach, we developed an open-source

energy-optimizing runtime framework for selecting an energy efficient configuration of a het-

erogeneous system for a given application at runtime.
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Chapter 1

Introduction

Along with performance optimization, energy efficiency is one of the main concerns of computing

systems. Reducing energy consumption of computing systems, varying from homogeneous systems

such as embedded systems, CPUs, GPUs to heterogeneous systems including different devices with

different architectures becomes one of the top challenges in computer science.

Significant efforts have been focused on architectural energy-saving techniques. To further reduce

the energy consumption of future computing systems, the co-design of software and hardware consid-

ering both applications and systems is essential to exploit both software and hardware energy-saving

techniques [42].

One of the key research directions to improve energy efficiency is to understand how much energy

a computing system consumes and characterize their energy consumption. By characterizing the

energy consumption of computing systems, researchers and practitioners can design and implement

new approaches to reduce the energy consumed by a certain algorithm on a specific platform.

The energy and power consumption of computing systems can be either measured by integrated

sensors or external multi-meters or estimated by models. Energy and power measurement equipment

and sensors are not always available and can be costly to deploy and set up. Therefore, energy and

power models are the alternative and convenient methods to estimate the energy consumption of an

application on a computing system [67]. Devising power and energy models is also crucial to gain

insights into how a computer system consumes power and energy.

1.1 Research Questions

1.1.1 Research Question 1

Significant efforts have been devoted to devising power and energy models of computing systems,

resulting in several seminal papers in the literature, such as [41, 53, 55, 10, 19, 18, 46, 47, 39, 63, 73]

1
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modeling power of architectures or applications.

Jacobson et al. [41] proposed accurate power modeling methodologies for POWER-family pro-

cessors while GPUWattch and McPAT are robust power models for GPUs and CPUs. Alonso et

al. [10] proposed energy models for three key dense-matrix factorizations. Roofline model of energy

[19, 18] considers both algorithmic and platform properties. However, the Roofline model does not

consider the number of cores running applications as a model parameter (i.e., coarse-grained mod-

els). Theoretical models by Korthikanti et al. [47, 46] were based on strong theoretical assumptions

and are not yet validated on real platforms. Koala model [73] requires the system supported dynamic

voltage and frequency scaling (DVFS) and short frequency switching delay in order to gain energy

saving from its methodology. However, only two x86-based platforms among 10 validated platforms

gained energy saving results which are presented in the paper. Imes et al. [39] provided a portable

approach to make real-time decision and run the chosen configuration to minimize energy consump-

tion. However, the approach requires systems supporting hardware resource (e.g., model-specific

register) to expose energy data to the software during run-time. Mishra et al. [63] used a proba-

bilistic modeling approach to find the most energy-efficient configuration by combining online and

offline machine-learning approaches. This approach requires a significant amount of data collected

to feed to its probabilistic network.

Recently, novel and specific-purpose systems such as ultra-low power (ULP) embedded systems

have become popular in the scientific community and industry, especially in media and wearable

computing. ULP embedded systems have different architectures from the general-purpose architec-

tures (e.g., CPU and GPU). As a result, the approach to model the power of ULP systems needs

to be customized for their architecture. ULP systems can achieve low energy per instruction down

to a few pJ [9]. Alioto [9] mentioned that techniques such as pipe-lining, hardware replication,

ultra-low-voltage memory design, and leakage-reducing make a system ultra-low power. In order to

model ULP systems where energy per instruction can be as low as few pJ, more accurate fine-grained

approaches are needed. For instance, the dynamic power P dyn of operations in Table 3.2, which is

as low as 13 mW, cannot be measured by using the prior coarse-grained approaches [19, 18].

For embedded systems which has real-time constraint and limited energy supply, two of the

most popular strategies to reduce the energy consumption are Dynamic Voltage and Frequency

Scaling (DVFS) [51] and race-to-halt (RTH) (i.e, systems run at higher frequency to finish as soon

as possible, and then put certain hardware parts to sleep to save energy) [13]. These two techniques

are explained in Chapter 2. For new embedded systems which do not support DVFS features such

as Movidius Myriad [40], RTH is one of the remaining choices for saving energy. RTH theory is used

to let the CPU work at the highest performance levels then go back to a low energy-draw state.

The process is repeated multiple times during program execution. In fact, Myriad supports a power

management feature to power on/off individual cores. However, to the best of our knowledge, there

is no fine-grained power model that supports investigating the trade-off between performance and
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energy consumption on ULP embedded systems and whether the RTH strategy that is widely used

in high-performance computing (HPC) systems is still applicable to ULP embedded systems.

The first part of this thesis work investigates the modeling methodology to answer the research

question: ”RQ1: How to accurately model and estimate the power and energy consumptions and

support energy-efficient co-design of ultra-low power embedded systems?”

1.1.2 Research Question 2

The models which are able to estimate absolute values of power and energy consumption from RQ1

however, requires a significant detailed understanding of the targeted platform and its components

to develop a set of micro-benchmarks. For other domains such as algorithm design, the absolute

values of energy consumption estimation are not required. Instead, an analysis tool to provide an

understanding of how an algorithm consumes energy as the input grows is more essential. In the

next work of this thesis, we aim to provide the understanding of how an algorithm consumes energy

via energy complexity models.

Understanding the energy complexity of algorithms is crucially important to improve the energy

efficiency of algorithms [82, 81, 83, 49] and reduce the energy consumption of computing systems

[80, 77, 50].

However, there are no analytic models for multithreaded algorithms that are both applicable

to a wide range of algorithms and comprehensively validated yet (cf. Table 1.1). The existing

parallel energy models are either theoretical studies without validation or only applicable for specific

algorithms. Modeling energy consumption of parallel algorithms is difficult since the energy models

must take into account the complexity of both parallel algorithms and parallel platforms. The

algorithm complexity results from parallel computation, concurrent memory accesses and inter-

process communication. The platform complexity results from multicore architectures with a deep

memory hierarchy.

The existing models and their classification are summarized in Table 1.1 by three aspects: i)

ability to analyze the energy complexity of parallel algorithms (i.e. Energy complexity analysis

for parallel algorithms), ii) applicability to a wide range of algorithms (i.e., Algorithm generality),

and iii) model validation (i.e., Validation). To the best of our knowledge, the energy model that

covers all three aspects: Energy complexity analysis for parallel algorithms, Algorithm generality

and Validation is missing.

The second study of this thesis answers the energy complexity question: ”RQ2: Given two

parallel algorithms A and B for a given problem, how to identify which algorithm consumes less

energy analytically?”
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Table 1.1: Energy Model Summary

Study Energy complexity Algorithm Validation
analysis for generality
parallel algorithms

LEO [63] No General Yes
POET [39] No General Yes
Koala [73] No General Yes
Roofline [19, 18] No General Yes
Energy scalability [46, 47] Yes General No
Sequential energy complexity [70] No General Yes
Alonso et al. [10] Yes Algorithm-specific Yes
Malossi et al. [62] Yes Algorithm-specific Yes

To the best of our knowledge, the ICE model is the first validated model that supports energy
complexity analysis for general multithreaded algorithms.

1.1.3 Research Question 3

So far, both the research questions RQ1 and RQ2 addresses the energy modeling questions for accu-

rate models and complexity models conducted on homogeneous systems including one type of devices

(e.g., embedded systems, CPU or GPU). Modeling the energy consumption of applications running

on heterogeneous systems including different types of devices are more complex and challenging. In

the next modeling approach, we want to estimate the energy consumption of an application running

on heterogeneous systems and identify the system configurations to run the application to achieve

the most energy efficiency.

The factors that have impacts on the application performance, energy-efficiency and its opti-

mization strategies are algorithm design, implementation (i.e., control flow, memory types, memory

access pattern, and instruction count), and its execution configuration [24]. When an application

runs on a heterogeneous system, one of the strategies to reduce energy consumption is to run the

application with an appropriate system configuration.

Several attempts [60, 92, 38, 63, 17, 6, 65, 61, 29, 58, 85] have been made to find the best con-

figurations to run an application to achieve energy efficiency. However, available tuning approaches

are mostly conducted for homogeneous systems while little research considers heterogeneous systems

including several platform components (e.g., CPUs and GPUs) with different types of processing

units and different architectures.

Table 1.2 summarizes the studies to optimize energy efficiency by choosing an appropriate con-

figuration of computing systems for a given application. Table 1.2 lists the related works according

to the four aspects: the optimization goal (i.e, Optimization), whether the optimization object is
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configuration or code variant (i.e., Object), whether the targeted system is homogeneous or hetero-

geneous (i.e., System), and whether the approach is applicable to general or specific applications

(i.e., Application). The details of the related work are described in Section 5.5.

The main goal of existing tuning approaches is to improve energy-efficiency. However, the existing

models are mostly built for homogeneous systems, which has only one type of devices such as GPU

[17, 6, 65, 29, 61, 85] or CPU [38, 92, 63]. There are also a set of studies [72, 91, 90] for heterogeneous

systems (i.e., APUs) but they mainly focus on improving performance instead of energy-efficiency.

The existing heterogeneous approaches in the Table 1.2 are either for specific applications (i.e.,

iterative applications that can be divided to several iterations where execution time of the next iter-

ation can be predicted based on the current iteration) [58, 59] or for finding a heterogeneous balance

of datacenter [30] where the configuration at datacenter level is a mix of CPUs or microprocessors.

Among the available tuning approaches, probabilistic model-based approaches have their advan-

tages of not requiring prior knowledge on the targeted application or the throughout understanding

of system components like other approaches [65, 29]. By finding the similarity between a targeted

application from sampling data and previously observed applications from training data, it can

quickly provide the accurate estimation of energy consumption for the targeted application.

The previous probabilistic model-based approaches are only applicable to homogeneous systems

(i.e., CPUs). Heterogeneous systems have complex structures containing different platform archi-

tectures (e.g., CPUs, GPUs, FPGAs, ASICs) where each platform has its own sets of settings and

methods to change its configurations. Applying the probabilistic model-based approach [63] on each

individual platform of a heterogeneous system requires the analysis of the available settings and a

new configuration data for each platform. In the other words, it requires separated sets of training

and sampling data, and separated runs of prediction for each platform. This results in more sam-

pling runs than doing one prediction for a heterogeneous system with only one whole set of training

and sampling data. Therefore, the probabilistic model based approaches for heterogeneous systems

requires the analysis of the available settings of all included platforms within a heterogeneous system

and finding the setting equivalence of one platform to another platform. The third part of this the-

sis aims to address the research question: ”RQ3: How to identify the most energy-efficient system

configurations (i.e., platform and its setting) of a heterogeneous system containing platforms with

different architectures to run the application?”

1.2 Research Contributions

This thesis tackles the above three research questions by investigating and developing the three

modeling approaches:

• Accurate Power Models Supporting Energy Efficient Co-design for Ultra-low Power Embedded

Systems
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Table 1.2: Auto-Tuning Framework

Study Optimization Object System Application

OSKI [84] Time Code variant Homogeneous Specific
(i.e., CPU) (i.e., Sparse kernels)

Nitro [64] Time Code variant Homogeneous General

PowerCap Timeliness Configuration Homogeneous General
[92] Energy- (i.e., CPU)

efficiency

POET [38] Energy- Configuration Homogeneous General
efficiency (i.e., CPU)

LEO [63] Time Configuration Homogeneous General
Energy- (i.e., CPU)
efficiency

HPC runtime Energy- Configuration Homogeneous General
framework [17] efficiency (i.e., CPU)

GPU models [6] Power Configuration Homogeneous General
(i.e., GPU)

CRISP [65] Energy Configuration Homogeneous General
(i.e., GPGPU)

MPC [61] Energy- Configuration Homogeneous General
efficiency (e.g., GPGPU)

GreenGPU [58, 59] Energy- Workload division Heterogeneous Specific
efficiency Frequency (e.g., CPU and GPU) (i.e., Iterative

applications)

GPGPU DVFS models [29] Energy- Configuration Homogeneous General
efficiency (i.e., GPGPU)

GPGPU SVR models [85] Energy- Configuration Homogeneous General
efficiency (i.e., GPGPU)

Market mechanism Service quality High-level Heterogeneous General
[30] Energy- configurations (e.g., CPUs

efficiency (i.e., Datacenters) and microprocessors)
efficiency (e.g., CPU and GPU)



CHAPTER 1. INTRODUCTION 7

• Energy Complexity Models for Multithreaded Algorithms

• Runtime Energy Optimization for Heterogeneous Systems

In the remaining of this section, the brief descriptions of solutions and results to each of the three

modeling approaches are described. The full details of the three modeling approaches can be found

in Chapters 3, 4 and 5, respectively.

1.2.1 RQ1: Accurate Power Models Supporting Energy Efficient Co-

design for Ultra-low Power Embedded Systems

In order to estimate the absolute power consumption of an application on ULP embedded system and

investigate RTH strategy, we propose new RTHpower models which support architecture-application

co-design by considering both platform and application properties. The RTHpower models are

application-general since they characterize applications by their arithmetic intensity [87] which can

be extracted from any application. The RTHpower models are also practical since they are built and

validated on Movidius platform using application kernels. The main contributions of this modeling

approach are three-fold as follows:

• We propose new application-general fine-grained power models (namely, RTHpower) that pro-

vide insights into how a given application consumes power and give hints to investigate the

trade-offs between performance and power consumption on ULP embedded systems. The

RTHpower models support co-design on ULP systems by considering three parameter groups:

platform properties, application properties (e.g., arithmetic intensity and scalability) and ex-

ecution settings (e.g., the number of cores executing a given application) (cf. Section 3.2).

• We validate the new RTHpower models on an ultra-low power embedded system, namely

Movidius Myriad. The models are trained and validated with power data from different sets of

micro-benchmarks, two computation kernels from Berkeley dwarfs [12] and one data-intensive

kernel from Graph500 benchmarks [74]. The three chosen application kernels are dense matrix

multiplication (Matmul), sparse matrix vector multiplication (SpMV) and breadth first search

(BFS). The model validation has percentage error at most 8.5% for micro-benchmarks and

12% for application kernels (cf. Section 3.3).

• We investigate the RTH strategy on an ultra-low power embedded platform using the new

RTHpower models. We propose a framework that is able to predict when to and when not to

apply the RTH strategy in order to minimize energy consumption. We validate the framework

using micro-benchmarks and application kernels. From our experiments, we show real scenarios

when to use RTH and when not to use RTH. We can save up to 61% energy for dense matrix

multiplication, 59% energy for SpMV by using RTH and up to 5% energy for BFS by not using

RTH (cf. Section 3.4).



CHAPTER 1. INTRODUCTION 8

1.2.2 RQ2: Energy Complexity Models for Multithreaded Algorithms

The energy complexity model ICE proposed in this modeling approach is for general multithreaded

algorithms and validated on three aspects: different algorithms for a given problem, different input

types and different platforms. The proposed model is an analytic model which characterizes both

algorithms (e.g., representing algorithms by their work, span and I/O complexity) and platforms

(e.g., representing platforms by their static and dynamic energy of memory accesses and computa-

tional operations). By considering work, span, and I/O complexity, the new ICE model is applicable

to any multithreaded algorithms.

Since the new ICE energy model focuses on analyzing the energy complexity of algorithms,

the model does not give the estimation of absolute energy consumption. The new model, instead,

provides the algorithm designers with the understanding of how an algorithm consumes energy and

give insight into how to choose one algorithm over the others for different input types and platforms.

The new ICE model is designed for analyzing the energy complexity of algorithms and therefore

the model does not provide the estimation of absolute energy consumption. Hence, the details of

underlying systems (e.g., runtime and architectures) are abstracted away to keep the ICE model

simple and suitable for complexity analysis. O-notation represents an asymptotic upper-bound on

energy complexity.

In this work, the following contributions have been made.

• Devising a new general energy model ICE for analyzing the energy complexity of a wide range

of multithreaded algorithms based on their work, span and I/O complexity (cf. Section 4.2).

The new ICE model abstracts away possible multicore platforms by their static and dynamic

energy of computational operations and memory access. The new ICE model complements

previous energy models such as energy roofline models [19, 18] that abstract away possible

algorithms to analyze the energy consumption of different multicore platforms.

• Conducting two case studies (i.e., SpMV and matmul) to demonstrate how to apply the

ICE model to find energy complexity of parallel algorithms. The selected parallel algo-

rithms for SpMV are three algorithms: Compressed Sparse Column(CSC), Compressed Sparse

Block(CSB) and Compressed Sparse Row(CSR)(cf. Section 4.3). The selected parallel al-

gorithms for matmul are two algorithms: a basic matmul algorithm and a cache-oblivious

algorithm (cf. Section 4.4).

• Validating the ICE energy complexity model with both data-intensive (i.e., SpMV) and computation-

intensive (i.e., matmul) algorithms according to three aspects: different algorithms, different

input types and different platforms. The results show the precise prediction on which validated

SpMV algorithm (i.e., CSB or CSC) consumes more energy when using different matrix input

types from Florida matrix collection [23] (cf. Section 4.5.6). The results also show the precise

prediction on which validated matmul algorithm (i.e., basic or cache-oblivious) consumes more
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energy (cf. Section 4.5.7). The model platform-related parameters for 11 platforms, including

x86, ARM and GPU, are provided to facilitate the deployment of the ICE model. Moreover,

the ICE models can also be applied to theoretical exascale systems and enable their energy

complexity analysis.

1.2.3 RQ3: Using Probabilistic Network for Runtime Energy Optimiza-

tion of Heterogeneous Systems

This study proposes holistic tuning approach based on probabilistic network to predict the most

energy-efficient configuration of heterogeneous systems for a given application. Based on the appli-

cation communication and computation patterns (i.e., Berkeley dwarfs [12], we choose the Rodinia

benchmarks [4] for the experiments and devise a training data set. The objectives when choosing

the benchmarks are to devise a training data set that covers a wide range of application patterns

and characteristics.

In this modeling approach, we propose a way to unify the configurations of different platforms

on a heterogeneous system in order to perform the prediction only once as compared to the previous

approach for homogeneous systems. This way we save energy of the sampling runs. Even though

we evaluate our probabilistic model-based approach (i.e., REOH) on a system containing CPU and

GPU only, REOH is general for heterogeneous systems which contain any architectures (e.g., CPUs,

GPUs, FPGAs, ASICS) where we can identify and change their configurations (i.e., the combination

of number of cores, memory and frequency) in runtime.

We also provide an open-source energy-optimizing runtime framework to choose which configura-

tion of a heterogeneous system to run a given application at runtime. Even though the open-source

is for the experimented system including only one CPU and one GPU, the code is available and

can be adjusted to heterogeneous systems containing other types of platforms as long as changing

platform configurations during runtime is supported.

This study is for applications that run on one platform (e.g., CPU or GPU) at a time. The

application has different executable files for different platforms (e.g., CPU or GPU) that can be

chosen during runtime. For example, Rodinia benchmarks suite [4] supports programming models

such as OpenCL which can provide different executable files of the same benchmark. This approach,

however, can also apply to applications that can be divided to several phases. Each phase is wrapped

in an executable file and can be considered as one application in REOH approach. Therefore, each

phase of such applications only runs on one platform but the whole execution with different phases

runs on several platforms.

The contributions of this study are as follows.

• Devise a new holistic tuning approach for heterogeneous systems using a probabilistic modeling

approach, which is called REOH. In this study, we propose a method to unify the configurations
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of different platform types (e.g., CPU and GPU), consider the total energy of both static and

dynamic energy and devise a training data set containing 7074 samples by running a selected

set of 18 applications based on the knowledge of application patterns from Berkeley dwarfs on

a total of 393 system configurations.

• Validate the REOH approach on a heterogeneous system consisting of CPU and GPU, showing

that REOH approach achieves the close energy consumption (i.e., within 5% different) to the

optimal energy consumption by the brute-force approach when choosing the most energy-

efficient system configuration for the applications while saving 17% number of sampling runs

than the existing probabilistic network approaches [63].

• Develop an open-source energy-optimizing runtime framework for selecting an energy efficient

configuration of a heterogeneous system for a given application at runtime. The framework

takes as the input the executable files that the users want to run on a targeted heterogeneous

system. Then the framework will choose an appropriate configuration of the targeted hetero-

geneous system to run the executable files energy-efficiently. This tool is provided as an open

source for scientific research purposes.

1.3 Thesis Roadmap

The content of this thesis is organized as follows. Chapter 2 explains the background and important

concepts mentioned in this thesis. The details of the three modeling approaches are reported in

Chapter 3, 4 and 5. Chapter 3 describes the power models that provide the exact power estimation

to support energy efficient co-design on ultra-low-power embedded systems. Chapter 4 presents the

energy-complexity models to analyze the energy consumption of multithreaded algorithms. Chapter

5 explains the runtime energy optimization approach and framework to predict the most energy-

efficient configurations for heterogeneous systems. Chapter 6 concludes the thesis and discusses the

future work.



Chapter 2

Background

In this chapter, we give the descriptions of the concepts that the thesis work concerns. First, we

explain the general concepts related to energy modeling including power, energy, energy efficiency,

and the roles of energy models in Section 2.1. Second, the energy and power management techniques

(i.e., DVFS and RTH) discussed in RQ1 are introduced in the Section 2.2. Then, the concepts related

to parallel computing (i.e., multithreaded algorithms and application patterns) and used in RQ2 are

described in Section 2.3. Finally, the concepts of homogeneous and heterogeneous computing systems

mentioned in RQ3 are explained in Section 2.4.

2.1 Energy Modeling

2.1.1 Power, Energy and Energy Efficiency

Power in science is defined as the rate at which work is done per unit time and usually measured

in watts. Power can be defined as P = W
T , with P denotes power, W denotes work and T denotes

time.

Energy is measured in watt-hour (Wh) when the power of one watt running for one hour. Energy

is defined as E = P × T where T is the period of time a power runs for.

Energy efficiency, according to the EU Energy Efficiency Directive, means ”the ratio of output of

performance, service, goods or energy, to input of energy” [76]. Examples of the mentioned output

can be thermal comfort in a building; transport service of persons or of information as a service;

and a smart phone as a good.

Since energy cost has increased dramatically and negatively impact the economy and ecology

[93], improving energy efficiency is clearly a research emphasis.

11
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2.1.2 Energy Models

For mobile and portable embedded systems, power and energy consumption is a major design con-

straint, where efficient power management affects the lifetime of battery. For high performance

computing system, performance is also affected by energy-aware design.

Reducing energy consumption of computing systems has become one of the main research topics.

Reducing energy consumption can be gained by thermal-aware hardware design or power-aware

software design or the combination of both [76]. Energy-aware hardware design involves various

levels from different hardware components such as memory hierarchies, interconnects and processor

architecture, etc. Energy-aware software design also involves various levels, from operating systems

to compiler and applications layers.

In order to improve energy efficiency and reduce the energy cost of computing systems, we need

to understand how a computer system consumes energy when running different workloads. This

understanding requires analysis tools to estimate how much energy a system consumes. Analysis

tools can be performance or energy counter which are not always available. Modeling power and

energy consumption is another alternative approach to estimate power and energy consumption.

The models not only provide the estimation of power and energy cost, but also the understanding

of how computing systems consume power and energy and the insight into how to reduce them.

2.2 Energy and Power Management Techniques

Traditionally, the power consumption of a CMOS integrated circuit is accounted by dynamic power

and static leakage power consumption [51]. The dynamic power consumption is computed by Equa-

tion 2.1, where C is the capacitance of the transistor gates, f is the operating frequency and V is the

operating voltage.

P = C × f × V 2 + Pstatic (2.1)

2.2.1 Dynamic Voltage and Frequency Scaling

Dynamic voltage and frequency scaling (DVFS) reduce the operating frequency or the operating

voltage of the processors in order to consume less power. In frequency scaling, the processor clock

rate is reduced so that the processor consumes less power at the expense of reduced performance.

When a frequency is reduced, the number of instructions run by processors per unit of time is

reduced and therefore, performance decreases. In dynamic voltage scaling, the operating voltage

is reduced so that the power consumption is also reduced. Frequency scaling and dynamic voltage

scaling often work in conjunction since adjusting the operating frequency is related to the operating

voltage. Voltage scaling is more advantageous because power consumed by a processor is directly

proportional to the square of voltage values as in Equation 2.1.
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Since there is static leakage power consumption, the reduced performance from reducing fre-

quency or voltage increases static energy consumption. Therefore, DVFS is usually used when the

workload is not CPU-bound. Previous research has proposed to use DVFS to reduce the energy

consumption of processors [73, 88]. However, the energy advantage of using DVFS are diminish-

ing in modern architectures due to several factors such as better memory performance, advanced

idle/sleep modes and complexity of multi-core processors [51].

2.2.2 Sleep states/ Race-to-halt

Race-to-halt is another power management approach where workloads are run as fast as possible to

finish earlier, then some parts of the hardware (e.g., processor, caches, DRAM) are put into sleep

states or its lowest operating frequency to save energy. This process can repeat multiple times during

a workload execution. That means the systems runs with its highest setting to finish the task, and

then wait for another job without being halt. Race-to-halt aims to reduces the static leakage energy.

DVFS is usually used for memory-bound workload while Race-to-halt is used for CPU-bound

workload. However, which power management approach is better depends on both workload patterns

and the underlying hardware.

2.3 Parallel computing

A parallel computing system is a system containing and using multiple processors simultaneously to

solve a computational problem by splitting a computing task into several subtasks and assign each

processor (e.g., CPU or core) to solve each subtask.

In the scope of parallel computing, there are important concepts that are mentioned in this thesis,

including multithreaded algorithms, application patterns, data-intensive and computation-intensive

applications.

2.3.1 Multithreaded Algorithms

Multithreaded algorithms are algorithms that are designed for a computing system with multiple

processors (e.g., CPU or core) and a shared memory. Multithreaded computation can be modeled by

a computation DAG (Directed Acyclic Graph) represented by G = (V,E) where V is a set of nodes

represented for operations/instructions and E is a set of edges represented for the dependencies of

the nodes [21]. Along with the definition of DAG, there are concepts of two metrics: work and span,

which are the indications of the theoretical efficiency of a multithreaded algorithm. The work is

the total time to execute the whole computation on one processor. The span is the time to execute

the longest or the critical path in the DAG. The parallelism of the multithreaded computation is

computed as the ratio of its work to its span.
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2.3.2 Application Patterns

Asanovic et al.[12] have introduced classes (dwarfs) of computational methods which captures com-

putation and communication common patterns of applications. They are the most common patterns

in diverse sets of domains such as machine learning, graphics, database, etc. The classes are defined

by the similarity in computation and data movement. Each dwarf is the high level of abstractions

across a class of applications. The dwarfs and their example applications are as below:

• Dense Linear Algebra (E.g., Body Tracking, Kmeans)

• Sparse Linear Algebra (E.g., Support vector machines, quadratic programming)

• Spectral Methods (E.g., spectral clustering, FFT)

• N-Body Methods (E.g., Molecular dynamics)

• Structured Grids (E.g., GemsFDTD, Maxwell EM)

• Unstructured Grids (E.g., Belief propagation, Global illumination)

• Map Reduce (E.g.,Monte Carlo, Ray tracer)

• Combinational Logic (E.g., Hashing, IP Packet, Route Lookup)

• Graph Traversal (E.g., Bayesian networks, Decision trees)

• Dynamic Programming (E.g., Query optimization, SPEC Integer: Go)

• Backtrack and Branch+Bound (E.g., Kernel regression, 2D Path finding library)

• Construct Graphical Models (E.g., Hidden Markov models, Viterbi Decode)

• Finite State Machine (E.g., EEMBC Networking: QoS, SPECT Integer: text processing (perl-

bench))

Understanding whether the dwarfs are limited by computation or by memory is essential to make

use of the architecture. This insight also helps to develop future architectures.

The applications can also be classified as data-intensive or compute-intensive. The applications

considered as data-intensive when a limit factor of CPU power is the amount of data, the complexity

of data and its changing speed [37]. An example of data-intensive application is sparse matrix mul-

tiplication which has a high demand for data transfer from memory. Compute-intensive applications

are applications demanding high computation such as matrix multiplication.

2.4 Computing Systems

This section discusses the definitions of homogeneous and heterogeneous systems.
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2.4.1 Homogeneous Systems

According to Lastovetsky et.al [8], there are three types of homogeneity:

• Homogeneous machine: a hardware whose each processor ensure the same storage presentation

and guarantees the same results of operations on floating-point numbers.

• Homogeneous network: a collection of homogeneous machines where the communication layer

among all processors ensures the exact transmittal of the floating-point values.

• Homogeneous computing environment: a platform where the softwares on each processor en-

sure the same storage representation and the same results of operations on floating-point

numbers.

2.4.2 Heterogeneous Systems

Heterogeneous systems refer to the systems that include different types of computational units or

processors and do not satisfy the homogeneity. E.g., the differences can come from unlike instruction

set architectures, communication layer among processors, operation systems or compilers. The

combinations of many different kinds of hardware and software aim to solve computation problems

more efficiently. Heterogeneous systems exploit the advantages of each included hardware by using

specialized processing capabilities for particular tasks and increases their performance and energy

efficiency. Heterogeneous systems have more complex architectures and therefore, is more challenging

to understand and model their performance and energy consumption.
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Conclusion

The energy consumed by worldwide computing systems increases annually and becomes a major

concern in information technology society. In order to tackle this issue, the scientific community

and industry have proposed several approaches to reduce the energy consumption of computing

systems. Modeling energy consumption of applications running on computing systems providing the

understanding of how applications consume energy and the insight into how to improve its energy

efficiency.

This thesis presents three modeling approaches for energy consumption of computing systems

varying from homogeneous to heterogeneous systems. The three approaches complement each other

by targeting different types of computing systems such as homogeneous systems (e.g., embedded

system, CPU or GPU) and heterogeneous systems (e.g., containing both CPU and GPU) and ac-

complishing different research objectives such as estimating absolute energy values, analyzing energy

complexity of multithreaded algorithms and choosing the most energy-efficient configurations in run-

time.

In the first study, we propose new application-general fine-grained power models (namely, RTH-

power) that are able to investigate the trade-offs between performance and power consumption on

ULP embedded systems. The RTHpower models consider both platform and application properties.

We validate the new RTHpower models on Movidius Myriad, an ultra-low-power embedded system

by developing different sets of micro-benchmarks and three application kernels such as dense ma-

trix multiplication (Matmul), sparse matrix vector multiplication (SpMV) and breadth first search

(BFS). We investigate the RTH strategy on an ultra-low power embedded platform using the new

RTHpower models. We propose and validate a framework to predict when to use the race-to-halt

(RTH) strategy to minimizes energy consumption for a given application.

In the second study, we devise a new general energy model ICE to provide an analysis tool to

identify the energy complexity of a wide range of multithreaded algorithms on high-performance

platforms based on their work, span and I/O complexity. We conduct two case studies (i.e., SpMV
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and matmul) to demonstrate how to apply the ICE model to find energy complexity of parallel

algorithms. The validation results show the precise prediction regarding which validated SpMV

algorithm (i.e., CSB or CSC) consumes more energy when using different matrix input types from

Florida matrix collection. The results also show the precise prediction on which validated matmul

algorithm (i.e., basic or cache-oblivious) consumes more energy.

In the third study, we develop REOH, a new holistic tuning approach for heterogeneous sys-

tems. The approach uses a probabilistic network, a machine learning technique to predict energy

consumption of an application on all possible configurations of the heterogeneous systems. In order

for REOH to provide the energy estimation on heterogeneous systems, we propose a method to

unify the configurations of different platform types (e.g., CPU and GPU) and devise a training data

set with a set of applications based on the knowledge of application characteristics from Berkeley

dwarfs. REOH can predict the energy consumption of all possible configurations of a heterogeneous

system and identify the most energy-efficient configuration. REOH approach has its energy con-

sumption close to the optimal energy consumption by the Brute Force approach while saving the

number of sampling runs by running one prediction for the whole heterogeneous system instead of

running separate predictions for every individual device in the heterogeneous system. Based on the

approach, we also develop an energy-optimizing runtime framework as an open-source that is able

to select an energy-efficient configuration of a heterogeneous system to run a given application at

runtime.

6.1 Future Work

In this thesis, a machine learning technique (e.g., probabilistic network) has been used for modeling

energy consumption of heterogeneous systems. For future computing systems containing more com-

plex architectures, modeling energy consumption of large-scale systems becomes more challenging.

Therefore, machines learning techniques are essential to be able to learn from available energy data

to predict the energy consumption of such large-scale systems and suggests suitable system configu-

rations to achieve the most energy efficiency. The accuracy of the modeling approaches can also be

improved by identifying the most suitable techniques in a given context.

One of our future directions is to apply different machine learning techniques to model energy

consumption, identify the most energy-efficient configuration and develop a more portable runtime

framework. The probabilistic network approach used in this thesis requires a training data set

obtained in advance for each considered system. When changing the underlying system, the training

data set need to be collected again. This reduces the portability of the approach. In the context

where energy training data can not be obtained in advance, investigating how to estimate energy

consumption in runtime by using other machine learning techniques (e.g. reinforcement learning) is

potential to improve both energy-efficiency and approach applicability.
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Moreover, with heterogeneous systems, an application can be run coordinately by a task scheduler

on multiple platforms simultaneously in the same execution. The modeling approaches presented

in this thesis can be further developed to support a runtime scheduler to distribute the tasks of

applications to different platforms in a heterogeneous system. By increasing the utility of each

individual device in a heterogeneous system, we aim to reduce the static energy consumption and

improve their energy efficiency.
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