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1 Introduction
Let q ∈ (1, +∞), r ∈ (0, +∞) and α ∈ R. Moreover, let Lq,r(log L)α denote the Lorentz–
Zygmund space, which consists of all measurable functions f on [0, 1] such that

‖f ‖q,r,α :=
{∫ 1

0

(
f ∗(t)

)r(1 + | ln t|)αr · t
r
q –1 dt

} 1
r

< +∞,

where f ∗ is a nonincreasing rearrangement of the function |f | (see e.g. [1]).
If α = 0, then the Lorentz–Zygmund space coincides with the Lorentz space:

Lq1,q2 (log L)α = Lq1,q2 . If α = 0 and q1 = q2 = q, then Lq1,q2 (log L)α space coincides with
the Lebesgue space Lq[0, 1] (see e.g. [2]) with the norm

‖f ‖q :=
(∫ 1

0

∣∣f (x)
∣∣q dx

) 1
q

, 1 ≤ q < +∞.

Moreover, L∞[0, 1] denotes the space, which consists of all measurable function on [0, 1]
such that

‖f ‖∞ := ess sup
x∈[0,1]

∣∣f (x)
∣∣ < ∞.

We consider an orthogonal system {ϕn} in L2[0, 1] such that

‖ϕn‖s ≤ Mn, n ∈N, (1)
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and

μn = sup

{∥∥∥∥∥
n∑

k=1

ckϕk

∥∥∥∥∥
s

:
n∑

k=1

c2
k = 1

}
, ρn =

( ∞∑
k=n

|ak|2
) 1

2

, (2)

for some s ∈ (2, +∞]. Here Mn ↑ and Mn ≥ 1 (see [3], [4, p. 313]).
An orthonormal system {un} is called uniformly bounded if there is a constant M > 0

such that ‖un‖∞ ≤ M, ∀n ∈ N . Note that any uniformly bounded system {un} satisfies
condition (1) but the reversed implication is false.

For one variable function Marcinkiewicz and Zygmund [4] proved the following theo-
rems.

Theorem A (see [4]) Let the orthogonal system {ϕn} satisfy the condition (1) and 2 ≤ p < s.
If the real number sequence {an} satisfies the condition

∞∑
n=1

|an|pM(p–2) s
s–2

n n(p–2) s–1
s–2 < +∞,

then the series

∞∑
n=1

anϕn(x)

converges in Lp to some function f ∈ Lp[0, 1] and

‖f ‖p ≤ Cp,s

( ∞∑
n=1

|an|pM(p–2) s
s–2

n n(p–2) s–1
s–2

) 1
p

.

Theorem B (see [4]) Let the orthogonal system {ϕn} satisfy the condition (1), and s
s–1 =

μ < p ≤ 2. Then the Fourier coefficients an(f ) of the function f ∈ Lp[0, 1] with respect to the
system {ϕn} satisfy the inequality

( ∞∑
n=1

∣∣an(f )
∣∣pM(p–2) s

s–2
n n(p–2) s–1

s–2

) 1
p

≤ Cp,s‖f ‖p.

Nowadays there are several generalizations of Theorems A and B for different spaces
and systems (see e.g. [5–8] and the corresponding references).

Here we just mention that Flett [8] generalized this to the case of Lorentz spaces and
that Maslov [5] proved generalizations of Theorem A and Theorem B in Orlicz spaces.

The problem concerning the summability of the Fourier coefficients by bounded or-
thonormal system with functions from some Lorentz spaces were investigated e.g. by Stein
[9], Bochkarev [10], Kopezhanova and Persson [11] and Kopezhanova [12] (cf. also Persson
[13]).

Moreover, Kolyada [6] proved the following improvement of Theorem A.
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Theorem C (see [6]) Let an orthogonal system {ϕn} satisfy the condition (1), let the se-
quence {an} ∈ l2 and ρn = (

∑∞
k=n |ak|2) 1

2 , 2 < q < s ≤ +∞. If

�q(a) =

[ ∞∑
n=1

μ
(q–2)s

s–2
n

(
ρq

n – ρ
q
n+1

)] 1
q

< +∞,

then the series
∑∞

n=1 anϕn(x) converges in the space Lq to some function f ∈ Lq and the
following inequality holds: ‖f ‖q ≤ Cq,s�q(a).

This result was further generalized by Kirillov [7] as follows.

Theorem D (see [7]) If 2 < q < s, r > 0, δ = r(q–2)s
q(s–2) and the sequence {an} ∈ l2 satisfies the

following condition:

�q,r(a) =

( ∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

) 1
r

< ∞
(

μn ≡ μ(s)
n , ρn =

( ∞∑
k=n

|ak|2
) 1

2
)

,

then the series
∑∞

n=1 anϕn(x) converges in space L2[0, 1] to some function f and the inequal-
ity ‖f ‖q,r ≤ Cq,r,s�q,r(a) holds. (Here μn and ρn are defined by (2).)

The following well-known lemma is used in our proofs.

Lemma E Let 0 < p < ∞, and {ak}∞k=0 and {bk}∞k=0 are non-negative sequences.
(i) If

∞∑
n=k

an ≤ Cak , k = 0, 1, 2, . . . , (3)

then

∞∑
n=0

an

( n∑
k=0

bk

)p

≤ Cpp
∞∑

n=0

anbp
n.

(ii) If

k∑
n=0

an ≤ Cak , k = 0, 1, 2, . . . , (4)

then

∞∑
n=0

an

( ∞∑
k=n

bk

)p

≤ Cpp
∞∑

n=0

anbp
n,

where C is a positive number independent of n.

In this paper we both generalize and complement the statements in Theorems A–D in
various ways and always to the case with Lorentz–Zygmund spaces involved. In partic-
ular, in Sect. 2 such a generalization of Theorem D (and, thus, of Theorems A and C) is
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proved (see Theorem 2.1). In Sect. 3 such a complement of Theorem B to the case q < 2 is
given (see Theorem 3.1). Finally, in Sect. 4 we present and prove some further results for
uniformly bounded systems and give some concluding remarks. In particular, we compare
our results with some other recent research. For the reader’s convenience we also include
a proof of Lemma E in the Appendix.

2 Generalization of Theorem D
In this section we state and prove the following generalization of Theorem D.

Theorem 2.1 Let 2 < q < s ≤ +∞, α ∈R, r > 0 and δ = rs(q–2)
q(s–2) . If {an} ∈ l2 and

�q,r,α(a) =

{ ∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr
} 1

r

< +∞,

where ρn and μn are defined by (2), then the series

∞∑
n=1

anϕn(x)

with respect to an orthogonal system {ϕn}∞n=1, which satisfies the condition (1), converges to
some function f ∈ Lq,r(log L)α and ‖f ‖q,r,α ≤ C�q,r,α .

Corollary 2.2 For the case α = 0, Theorem 2.1 coincides with Theorem D.

Proof Since the sequence {μn} is increasing, let us define the sequence {νn} in the following
way (see [7]):

ν1 = 1, νn+1 = min{k ∈ N : μk ≥ 2μνn}, n = 1, 2, 3, . . . .

Then μνn+1 ≥ 2μνn , μνn+1–1 < 2μνn , n = 1, 2, . . . .

Let tn = μ
– 2s

s–2
n ,

uj(x) =
νj+1–1∑

k=νj

akϕk(x),

Sn(x) =
n∑

k=1

uj(x) and Rn(x) = f (x) – Sn(x).

Since tn ↓ 0 for n → +∞, by the property of nonincreasing rearrangement of the function
(see [14, p. 83]), we get

‖f ‖r
q,r,α =

∞∑
n=1

∫ tn

tn+1

(
f ∗∗(t)

)r(1 + | ln t|)αrt
r
q –1 dt

≤ C

[ ∞∑
n=1

∫ tn

tn+1

(
S∗∗

n (t)
)r(1 + | ln t|)αrt

r
q –1 dt

+
∞∑

n=1

∫ tn

tn+1

(
R∗∗

n (t)
)r(1 + | ln t|)αrt

r
q –1 dt

]
:= C[I1 + I2] (5)
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and, moreover,

S∗∗
n (t) ≤ 1

t

n∑
j=1

∫ t

0
u∗

j (y) dy.

By applying Hölder’s inequality we obtain

∫ t

0
u∗

j (y) dy ≤ t1– 1
s ρνjμνj+1–1.

Therefore,

S∗∗
n (t) ≤ t– 1

s

n∑
j=1

ρνjμνj+1–1.

By using this estimate we find that

I1 ≤
∞∑

n=1

∫ tn

tn+1

( n∑
j=1

ρνjμνj+1–1

)r(
1 + | ln t|)αrtr( 1

q – 1
s )–1 dt

≤ C
∞∑

n=1

( n∑
j=1

ρνjμνj+1–1

)r(
1 + | ln tn|

)αr(t
r( 1

q – 1
s )

n – t
r( 1

q – 1
s )

n+1
)
.

Thus, by taking into account the definition of tn, we can conclude that

I1 ≤
∞∑

n=1

( n∑
j=1

ρνjμνj+1–1

)r(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νn . (6)

Since for any ε > 0 the function t–ε ln t ↓ 0 for t → +∞, according to the definition of the
numbers νn, we see that

∞∑
k=n

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νk

≤
(1 + | 2s

s–2 lnμνn |
με

νn

)αr

μ
–r( 2(s–q)

q(s–2) –εα)
νn

∞∑
k=n

2–(k–n)r( 2(s–q)
q(s–2) –εα).

Now choose the number ε such that 2(s–q)
q(s–2) – εα > 0. Then

∞∑
k=n

2–(k–n)r( 2(s–q)
q(s–2) –εα) ≤

∞∑
l=0

2–lr( 2(s–q)
q(s–2) –εα) < +∞.

Hence,

∞∑
k=n

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νk ≤ C

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νn .
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Therefore, by Lemma E, we have

∞∑
n=1

( n∑
j=1

ρνjμνj+1–1

)r(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νn

≤ C
∞∑

n=1

(ρνnμνn+1–1)r
(

1 +
∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μ
–r 2(s–q)

q(s–2)
νn .

Thus, from (6) it follows that

I1 ≤ C
∞∑

n=1

(ρνnμνn )r
(

1 +
∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μδ
νn , (7)

where δ = r 2(s–q)
q(s–2) . Since ρn → 0 for n → +∞, it yields ρr

νn =
∑∞

k=n(ρr
νk

– ρr
νk+1

). Therefore,
by changing the order of summation, we get

∞∑
n=1

ρr
νn

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μδ
νn =

∞∑
k=1

(
ρr

νk
– ρr

νk+1

) k∑
n=1

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μδ
νn . (8)

Since δ > 0 and μνn+1 ≥ 2μνn , we have
∑k

n=1 μδ
νn ≤ Cμδ

νk
. Hence, by again using Lemma E,

from (8) it follows that

∞∑
n=1

ρr
νn

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn

∣∣∣∣
)αr

μδ
νn ≤ C

∞∑
k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

. (9)

By now combining inequalities (7) and (9) we obtain

I1 ≤ C
∞∑

k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

. (10)

Next we estimate I2. By using Hölder’s inequality we find that R∗∗
n (t) ≤ Ct– 1

2 ‖Rn‖2. There-
fore,

I2 ≤ C
∞∑

n=1

∥∥Rn
∥∥

2

∫ tn

tn+1

(
1 + | ln t|)αrtr( 1

q – 1
2 )–1 dt

≤ C
∞∑

n=1

∥∥Rn
∥∥

2

(
1 + | ln tn|

)αr
∫ tn

tn+1

tr( 1
q – 1

2 )–1 dt

≤ C
∞∑

n=1

ρr
νn+1

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn+1

∣∣∣∣
)αr

μδ
νn+1 . (11)

Next, by repeating the proof of Eq. (9) we obtain

∞∑
n=1

ρr
νn+1

(
1 +

∣∣∣∣ 2s
s – 2

lnμνn+1

∣∣∣∣
)αr

μδ
νn+1 ≤ C

∞∑
k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

. (12)
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By combining the inequalities (11) and (12) we have

I2 ≤ C
∞∑

k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

. (13)

Moreover, in view of inequalities (10) and (13), from (5) it follows that

‖f ‖r
q,r,α ≤ C

∞∑
k=1

ρr
νk

(
1 +

∣∣∣∣ 2s
s – 2

lnμνk

∣∣∣∣
)αr

μδ
νk

(14)

in the case α > 0. Since α > 0 and μn ↑, we see that

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

=
∞∑

k=1

νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

≥
∞∑

k=1

μδ
νk

(
1 +

2s
s – 2

lnμνk

)αr νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)

=
∞∑

k=1

μδ
νk

(
1 +

2s
s – 2

lnμνk

)αr(
ρr

νk
– ρr

νk+1

)
.

Hence, from the inequality (14) it follows that

‖f ‖r
q,r,α ≤ C

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

(15)

in the case α > 0.
Let α < 0. Then, for any number ε > 0, the function yε(1 + ln y)rα increases on (1,∞).

Therefore, by taking into account that μn ↑, we obtain

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

=
∞∑

k=1

νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

≥
∞∑

k=1

με
νk

(
1 +

2s
s – 2

lnμνk

)αr νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)
μδ–ε

n . (16)

Choose ε > 0 such that δ – ε > 0. Since μδ–ε
n ↑, according to the inequality (16), we have

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

≥
∞∑

k=1

μδ
νk

(
1 +

2s
s – 2

lnμνk

)αr νk+1–1∑
n=νk

(
ρr

n – ρr
n+1

)

in the case α < 0. Therefore (15) holds also for case α < 0 and the proof is complete. �
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Corollary 2.3 Let {ϕn}∞n=1 be an uniformly bounded orthogonal system and let 2 < q < +∞,
α ∈ R and r > 0.

If

�q,r(a) =

( ∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr

) 1
r

< ∞,

where ρn are defined by (2), then the series
∑∞

n=1 anϕn(x) converges to some function f ∈
Lq,r(log L)α and ‖f ‖q,r,α ≤ C · �q,r,α .

Proof Since {ϕn}∞n=1 is an uniformly bounded orthogonal system, we have s = +∞. There-
fore

lim
s→+∞

rs(q – 2)
q(s – 2)

=
r(q – 2)

q
.

Now, given that Mn ≤ M, μn ≤ √
nM, n ∈N, we have

∞∑
n=1

(
ρr

n – ρr
n+1

)
μδ

n

(
1 +

2s
s – 2

lnμn

)αr

≤ C
∞∑

n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr (17)

if α ≥ 0.
If α < 0, then we choose a number ε such that 0 < ε < (q–2)

q . Then, by considering the
function (1 + ln t)αtε ↑ on [1, +∞), we can verify that the inequality (17) holds also for
α < 0. Consequently, by Theorem 2.1, the statement is true. �

3 A complement of Theorem B. The case q < 2
In this section we prove a result which was formulated but not proven in [15]. It may be
regarded as a complement of Theorem B relevant for a more general situation.

Theorem 3.1 Let s ∈ (2, +∞], s
s–1 < q < 2, r > 1, α ∈ R and δ = r(q–2)s

q(s–2) . If f ∈ Lq,r(log L)α ,
then the inequality

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

] 1
r

≤ C‖f ‖q,r,α

holds, where μνn are defined by (2) and an(f ) denote the Fourier coefficients of f with respect
to an orthogonal system {ϕn}∞n=1 satisfying condition (1).

Remark 3.2 Theorem 3.1 was formulated, but not proved, in [15]. Here we present the
details of the proof.

Proof Choose an increasing sequence {νn} of natural numbers such that ν1 = 1, νn+1 =
min{k : μk ≥ 2μνn}, n = 1, 2, 3, . . . . Then μνn+1 ≥ 2μνn , μνn+1–1 < 2μνn . Since the system
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{ϕn} is orthogonal we have

∣∣∣∣
∫ 1

0
f (x)g(x) dx

∣∣∣∣ =

∣∣∣∣∣
∞∑

k=1

ak(f )bk(g)

∣∣∣∣∣

for any function g ∈ Lq′ ,r′ (log L)–α , 1
r + 1

r′ = 1 and 1
q + 1

q′ = 1. Let

bk :=

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

]– 1
r′

×
(

νn+1–1∑
k=νn

∣∣ak(f )
∣∣2

) r–2
2

(1 + logμνn )rαμδ
νn ak(f ) (18)

for k = νn, . . . ,νn+1 – 1, n = 1, 2, . . . , and consider a function g ∈ Lq′ ,r′ (log L)–2 with Fourier
coefficients bk(g) = bk . Then

∣∣∣∣
∫ 1

0
f (x)g(x) dx

∣∣∣∣ =

∣∣∣∣∣
∞∑

n=1

νn+1–1∑
k=νn

ak(f )bk(g)

∣∣∣∣∣

=

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

] 1
r

. (19)

Taking into account that rr′ = r + r′, by Theorem 2.1 and (18), we have

‖g‖q′ ,r′ ,–α ≤ C

{ ∞∑
n=1

(
νn+1–1∑
k=νn

b2
k(g)

) r′
2

(1 + logμνn )–r′αμ

s(q′–2)
(s–2)q′ ·r′
νn

} 1
r′

= C

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

]– 1
r′

×
{ ∞∑

n=1

(
νn+1–1∑
k=νn

a2
k(f )

) r′
2
(

νn+1–1∑
k=νn

a2
k(f )

) r′
2 (r–2)

× (1 + logμνn )–r′αμ

s(q′–2)
(s–2)q′ ·r′
νn (1 + logμνn )rr′αμ

s(q–2)
(s–2)q rr′
νn

} 1
r′

= C

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

]– 1
r′

×
[ ∞∑

n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

(1 + logμνn )rαμδ
νn

] 1
r′

= C.
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Thus, the function g0 := C–1g ∈ Lq′ ,r′ (log L)–α and ‖g0‖q′ ,r′ ,–α ≤ 1. Next, by the property of
the norm in the Lorentz–Zygmund space and using equality (19), we get

‖f ‖q,r,α � sup
g∈Lq′ ,r′ (log L)–α

‖g‖q′ ,r′ ,–α≤1

∣∣∣∣
∫ 1

0
f (x)g(x) dx

∣∣∣∣ ≥
∣∣∣∣
∫ 1

0
f (x)g0(x) dx

∣∣∣∣

= C–1

[ ∞∑
n=1

(
νn+1–1∑

k=νn

a2
k(f )

) r
2

μδ
νn

] 1
r

.

The proof is complete. �

4 Further results and concluding remarks
In this section we first prove some results which are closely related to but not covered
by the results in the previous sections (Propositions 4.1 and 4.2). After that, we present
some results of a similar kind (see [11, 12] and Theorem F) and in remarks we point out
how these results can be compared with our results in some special cases when such a
comparison is possible.

Proposition 4.1 Let {ϕn}∞n=1 be an uniformly bounded orthogonal system and 2 < q < +∞,
α ∈ R and r > 1. If

�q,r,α(a) =

( ∞∑
n=1

|an|rnr(1– 1
q – 1

r )(1 + ln n)αr

) 1
r

< ∞,

then the series
∑∞

n=1 anϕn(x) converges to some function f ∈ Lq,r(log L)α and ‖f ‖q,r,α ≤
C�q,r,α(a).

Proof Since ρn ↓ 0 when n → +∞, we can choose numbers n1 = 1,

nk+1 = min

{
n ∈N : ρnk+1 ≤ 1

2
ρnk

}
, k = 1, 2 . . . .

Therefore, if α ≥ 0, it yields

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr =

∞∑
k=2

(nk – 1)
r(q–2)

2q (1 + ln nk)αr(ρr
nk–1

– ρr
nk

)
. (20)

For any numbers k = 2, 3, . . . , the following inequality holds:

ρr
nk–1

– ρr
nk

≤ ρr
nk–1

≤ 2r(ρ2
nk –1

) r
2 . (21)

Since ρnk+1 ≤ 1
2ρnk ≤ 1

2ρnk –1, we have

ρ2
nk –1 – ρ2

nk+1
≥ ρ2

nk –1 –
(

1
2
ρnk –1

)2

=
3
4
ρ2

nk –1. (22)
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By using (21) and (22), we can obtain the following inequality:

ρr
nk–1

– ρr
nk

≤ 2r
(

4
3

) r
2
(nk+1–1∑

n=nk –1

|an|2
) r

2

. (23)

Therefore, from (20) it follows that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr ≤ Cr

∞∑
k=2

(nk – 1)
r(q–2)

2q (1 + ln nk)αr

(nk+1–1∑
n=nk –1

|an|2
) r

2

(24)

when α ≥ 0.
If α < 0, then we can choose a number ε which satisfies 0 < ε < q–2

2q . We note that (1 +
ln n)αnε ↑ and we obtain the following inequality:

nk –1∑
n=nk–1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr

=
nk –1∑

n=nk–1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q –rε((1 + ln n)αnε

)r

≤ (nk – 1)
r(q–2)

2q –rε((1 + ln(nk – 1)
)α(nk – 1)ε

)r
nk –1∑

n=nk–1

(
ρr

n – ρr
n+1

)

= (nk – 1)
r(q–2)

2q
(
1 + ln(nk – 1)

)αr(
ρr

nk–1
– ρr

nk

)
. (25)

By now combining the inequalities (20), (23) and (25), we conclude that (24) holds also for
the case α < 0.

If r > 2, then, by using Hölder’s inequality with θ = r
2 , 1

θ
+ 1

θ ′ = 1, we obtain

nk+1–1∑
n=nk –1

|an|2 ≤
(nk+1–1∑

n=nk –1

|an|rnr(1– 1
q )–1

) 2
r
(nk+1–1∑

n=nk –1

nθ ′( 1
θ

–2(1– 1
q ))

) 1
θ ′

. (26)

Since 2 < q, we have 1 + θ ′( 1
θ

– 2(1 – 1
q )) = θ ′( 2

q – 1) < 0. Therefore,

nk+1–1∑
n=nk –1

nθ ′( 1
θ

–2(1– 1
q )) ≤ Cr,q

∫ nk+1

nk –1
tθ ′( 1

θ
–2(1– 1

q )) dt

≤ Cr,q

θ ′(2(1 – 1
q ) – 1

θ
) – 1

(nk – 1)1+θ ′( 1
θ

–2(1– 1
q )) (27)

for k = 2, 3, . . . . From inequalities (26) and (27), we can derive the following inequality:

nk+1–1∑
n=nk –1

|an|2 ≤ C(nk – 1)
1
θ ′ + 1

θ
–2(1– 1

q )

(nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1

) 2
r

(28)

for k = 2, 3, . . . , in the case of 2 < r < ∞.
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Now, by combining (26) and (28), we obtain the following inequality:

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr

≤
∞∑

k=2

(nk – 1)
r(q–2)

2q (1 + ln nk)αr(nk – 1)
r
2 (1–2(1– 1

q ))
nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1 (29)

in the case of 2 < r < ∞, 0 < α < ∞.
Since

r(q – 2)
2q

+
r
2

(
1 – 2

(
1 –

1
q

))
= 0,

it follows from (29) that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr ≤ C

∞∑
k=2

nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1(1 + ln n)αr (30)

in the case 2 < r < ∞, 0 < α < ∞.
Furthermore,

∞∑
k=2

nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1(1 + ln n)αr

≤
∞∑

k=2

nk –1∑
n=nk–1

|an|rnr(1– 1
q )–1(1 + ln n)αr +

∞∑
k=2

nk+1–1∑
n=nk

|an|rnr(1– 1
q )–1(1 + ln n)αr

≤ 2
∞∑

n=1

|an|rnr(1– 1
q )–1(1 + ln n)αr (31)

in the case 2 < r < ∞, 0 < α < ∞.
If α < 0, then we choose a number ε which satisfies 0 < ε < q–2

2q . By using the Hölder
inequality, we obtain (θ = r

2 , 1
θ

+ 1
θ ′ = 1)

nk+1–1∑
n=nk –1

|an|2 ≤
(nk+1–1∑

n=nk –1

|an|rnr(1– 1
q )–εθ–1

) 2
r
(nk+1–1∑

n=nk –1

nθ ′( 1
θ

–2(1– 1
q )+ε)

) 1
θ ′

. (32)

According to the choice of the number ε it shows that

1 + θ ′
(

1
θ

– 2
(

1 –
1
q

)
+ ε

)
= θ ′

(
2
q

– 1 + ε

)
< 0.

Therefore (as in the case of α > 0) we obtain the following inequality:

nk+1–1∑
n=nk –1

nθ ′( 1
θ

–2(1– 1
q )+ε) ≤ Cr,q

∫ nk+1

nk –1
tθ ′( 1

θ
–2(1– 1

q )+ε) dt

≤ Cr,q

θ ′(2(1 – 1
q ) – 1 – ε)

(nk – 1)1+θ ′( 1
θ

–2(1– 1
q )+ε) (33)
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for k = 2, 3, . . . . Thus, in view of (32) and (33), the following inequality holds:

nk+1–1∑
n=nk –1

|an|2 ≤ C(nk – 1)1+θ ′( 1
θ

–2(1– 1
q )+ε)

(nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–εθ–1

) 2
r

for the case of 2 < r < ∞, α < 0. Hence, we can consider the function (1 + ln n)αn ε
2 ↑, and

from the inequality (24), we obtain the following inequality:

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr

≤ C
∞∑

k=2

(
1 + ln(nk – 1)αr(nk – 1)

r
2 ε

) nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1

≤ C
∞∑

k=2

nk+1–1∑
n=nk –1

|an|rnr(1– 1
q )–1(1 + ln n)αr (34)

for the case of 2 < r < ∞, α < 0. Thus, it follows from inequalities (30), (31) and (34) that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + ln n)αr ≤ C

∞∑
n=1

|an|rnr(1– 1
q )–1(1 + ln n)αr

and the proof is complete. �

Our next result reads as follows.

Proposition 4.2 Let {ϕn}∞n=1 be an uniformly bounded orthogonal system, 2 < q < +∞, α ∈
R and r > 0. If |an| ↓ 0, n → ∞, {an} ∈ l2 and

∞∑
n=1

|an|rnr(1– 1
q )–1(1 + ln n)αr < +∞,

then the series
∑∞

n=1 anϕn(x) converges to some function f ∈ Lq,r(log L)α and

‖f ‖q,r,α ≤ C

{ ∞∑
n=1

|an|rnr(1– 1
q )–1(1 + ln n)αr

} 1
r

.

Proof It is easy to see that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + log n)αr

≤ C
∞∑

k=1

2k r(q–2)
2q (1 + k)αr(ρr

2k–1 – ρr
2k

)

= C
∞∑

k=1

2k r(q–2)
2q (1 + k)αr

( ∞∑
ν=k

2ν–1∑
l=2ν–1

|al|2
) r

2

. (35)
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Since 2 < q < ∞, we have

ν∑
k=1

2k r(q–2)
2q (1 + k)αr ≤ C2ν

r(q–2)
2q (1 + ν)αr , ν = 1, 2 . . . .

Therefore, by Lemma E, we obtain

∞∑
k=1

2k r(q–2)
2q (1 + k)αr

( ∞∑
ν=k

2ν–1∑
l=2ν–1

|al|2
) r

2

≤
∞∑

k=1

2k r(q–2)
2q (1 + k)αr

( 2k –1∑
l=2k–1

|al|2
) r

2

. (36)

Moreover, since |an| ↓ 0, n → ∞, it yields

( 2k –1∑
l=2k–1

|al|2
) r

2

≤ (
2k–1) r

2 |a2k–1 |r , k = 1, 2, . . . .

Thus,

∞∑
k=1

2k r(q–2)
2q (1 + k)αr

( 2k –1∑
l=2k–1

|al|2
) r

2

≤ C
∞∑

k=1

2kr(1– 1
q )(1 + k)αr|a2k–1 |r . (37)

Furthermore, since the sequence {|an|} is monotonic, we can easily verify that

2k–1–1∑
n=2k–2

|an|rnr(1– 1
q )–1(1 + n)αr ≥ C|a2k–1 |r2kr(1– 1

q )(1 + k)αr , k = 2, 3, . . . .

Therefore, it follows from inequality (37) that

∞∑
k=1

2k r(q–2)
2q (1 + k)αr

( 2k –1∑
l=2k–1

|al|2
) r

2

≤ C

{
|a1|r +

∞∑
n=1

|an|rnr(1– 1
q )–1(1 + n)αr

}
. (38)

Now, from the inequalities (35), (36), and (38) we can deduce that

∞∑
n=1

(
ρr

n – ρr
n+1

)
n

r(q–2)
2q (1 + log n)αr ≤ C

∞∑
n=1

|an|rnr(1– 1
q )–1(1 + n)αr .

Therefore, in view of Corollary 2.3, the statement in the proposition holds. �

Remark 4.3 We may ask wether it is possible to generalize the results obtained in
this paper to more general Lorentz–Zygmund type spaces by replacing the weight
(1 + | ln t|)αrtr/q–1 by a more general weight λ(t). Of course, we must still have some con-
trol of the growth properties of the weight. Below we will just briefly describe one such a
possibility namely the quasi-monotone weights, used in recent work of Kopezhanova and
Persson (see [11, 12]).
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Let 0 < r < ∞, 0 < β < ∞ and λ = λ(t) be a positive function defined on (0,∞). Consider
all functions f for which

‖f ‖�β (λ) :=
{∫ 1

0

(
f ∗(t)tλ

(
1
t

))β dt
t

} 1
β

< +∞.

Note that if λ(y) = y1– 1
q (log(2y))α , α ∈ R, then, for t ∈ (0, 1], the function tλ( 1

t ) = t
1
q (1 +

log 1
t )α . Therefore

‖f ‖�β
=

{∫ 1

0

(
f ∗(t)

)β t
β
q

(
1 + log

1
t

)αβ dt
t

} 1
β

so that �β is just the Lorentz–Zygmund space Lq,β (log L)α .
We consider the following classes of functions B =

⋃
δ>0 Bδ and A =

⋃
δ>0 Aδ :

Bδ =
{
λ : λ(y)y– 1

2 –δ ↑ and λ(y)y–1+δ ↓ on [1,∞)
}

,

Aδ =
{
λ : λ(y)y– 1

2 –δ ↑ and λ(y)y–1+δ ↓ on [1,∞)
}

.

The following result was proved by Kopezhanova and Persson (see [11, Theorem 2] and
[12, p. 45]).

Theorem F Let 0 < β < ∞, and assume that the orthonormal system 
 = {ϕk}∞k=1 is uni-
formly bounded.

(a) If λ(t) belongs to the class A, then

( ∞∑
n=1

(
a∗

nλ(n)
)β 1

n

) 1
β

≤ c1‖f ‖�β (λ),

where {a∗
n} is the nonincreasing rearrangement of the sequence {|ak|}∞k=1 of Fourier

coefficients of f with respect to the system 
.
(b) If λ(t) belongs to the class B and f a.e.=

∑∞
n=1 anϕn, then

‖f ‖�β (λ) ≤ c2

( ∞∑
n=1

(
a∗

nλ(n)
)β 1

n

) 1
β

. (39)

Here the constants c1 and c2 do not depend on f .

In the case of λ(y) = y1– 1
q (log(2y))α , α ∈ R, from part (b) of Theorem F we obtain the

following assertion.

Corollary 4.4 Let 0 < β < ∞, and assume that the orthonormal system 
 = {ϕk}∞k=1 is
bounded. If 2 < q < ∞, 0 < β < ∞, and f a.e.=

∑∞
n=1 anϕn, then

‖f ‖q,β ,α ≤ C

( ∞∑
n=1

(
a∗

n
)βnβ(1– 1

q )–1(1 + ln n)αβ

) 1
β

.
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Proof For the function λ(y) = y1– 1
q (log(2y))α ∈ B there exists a number δ > 0 such that

λ(y) ∈ Bδ . If 1
2 – 1

q – δ > 0, then λ(y)y– 1
2 –δ = y

1
2 – 1

q –δ(1 + log y)α ↑ on the interval [1,∞).
Hence 2 < q < ∞.

Further, the function λ(y)y–1+δ = yδ– 1
q (1 + log y)α ↓ on the interval [1,∞) if δ – 1

q < 0.

Thus, there is a number δ ∈ (0, min{ 1
q , 1

2 – 1
q }) such that the function λ(y) = y1– 1

q (1 +
log y)α ∈ Bδ . Therefore, by using (39), we see that the statement holds. �

Remark 4.5 Obviously, Proposition 4.2 is more general than Corollary 4.4. We also note
that in the case when the sequence {an}∞n=1 is non-negative and decreasing the assertions
of Proposition 4.2 and Corollary 4.4 coincide.

Remark 4.6 In [12] (see Theorem 2.1, Theorem 2.3), theorems on the convergence of se-
ries of the Fourier coefficients of a function from the generalized Lorentz space �β (λ)
with respect to regular systems are proved. It is known that a regular system is uniformly
bounded (see [16, p. 117]). Therefore, the assertions of Theorem 2.1 and Theorem 3.1
of this paper do not follow from the results of [12]. Since ‖f ‖s ≤ ‖f ‖∞, for the functions
f ∈ L∞[0, 1], if orthogonal system {ϕn} satisfies the condition (1), then {ϕn} is uniformly
bounded.

Appendix: Proof of Lemma E
The proof of Lemma E is a consequence of a well-known inequality of Leindler [17]. For
the reader’s convenience we present a proof which is similar to but simpler than that in
the research report [18] by Johansson.

(i) If 0 < p < 1, then

( n∑
k=0

bk

)p

≤
n∑

k=0

bp
k .

By using this inequality, changing the order of summation and taking into account the
condition (3) we get

∞∑
n=0

an

( n∑
k=0

bk

)p

≤
∞∑

n=0

an

n∑
k=0

bp
k =

∞∑
k=0

bp
k

∞∑
n=k

an ≤ C
∞∑

k=0

akbp
k ,

in the case 0 < p < 1.
Let 1 ≤ p < ∞. The following inequalities are proved in [17]:

∞∑
n=0

an

( n∑
k=0

bk

)p

≤ pp
∞∑

n=0

a1–p
n

( ∞∑
k=n

ak

)p

bn, (40)

∞∑
n=0

an

( ∞∑
k=n

bk

)p

≤ pp
∞∑

n=0

a1–p
n

( n∑
k=0

ak

)p

bn. (41)

Now it is easy to verify that condition (3) and inequality (40) imply statement (i) also in
the case of 1 ≤ p < ∞.
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(ii) If 0 < p < 1, then

( ∞∑
k=n

bk

)p

≤
∞∑

k=n

bp
k .

Using this inequality, changing the order of summation and taking into account the con-
dition (4), we obtain

∞∑
n=0

an

( ∞∑
k=n

bk

)p

≤
∞∑

n=0

an

∞∑
k=n

bp
k =

∞∑
k=0

bp
k

k∑
n=0

an ≤ C
∞∑

k=0

akbp
k

in the case 0 < p < 1.
If 1 ≤ p < ∞, then statement (ii) follows from (4) and (41).

Acknowledgements
We thank the referees and Professors Dag Lukkasson and Annette Meidell for some good advice which improved the final
version of the paper. Moreover, the first author is grateful for the support of this work given by the Russian Academic
Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of
the Russian Federation and Ural Federal University).

Funding
Not applicable.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors contributed equally to the writing of this paper. All authors approved the final version of the manuscript.

Author details
1Department of Fundamental Mathematics, L.N. Gumilyov Eurasian National University, Astana, Republic of Kazakhstan.
2Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg, Russia. 3Department of
Computer Science and Computational Engineering Campus Narvik, The Artic University of Norway, Narvik, Norway.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 6 February 2019 Accepted: 30 May 2019

References
1. Sharpley, R.: Counterexamples for classical operators on Lorentz–Zygmund spaces. Stud. Math. 58, 141–158 (1980)
2. Nikol’ski, S.M.: Approximation of Classes of Functions of Several Variables and Embedding Theorems. Nauka, Moscow

(1977)
3. Zygmund, A.: Trigonometric Series, vol. II. Izdat. “Mir”, Moscow (1965)
4. Marcinkiewicz, J., Zygmund, A.: Some theorems on orthogonal systems. Fundam. Math. 28, 309–335 (1937)
5. Maslov, A.V.: Estimates of Hausdorff–Young type for Fourier coefficients. Vestnik Moscow Univ. Ser. I Mat. Mekh. 3,

19–22 (1982) (Russian)
6. Kolyada, V.I.: Some generalizations of the Hardy–Littlewood–Paley theorem. Mat. Zametki 54(3), 48–71 (1993)

(Translation in Math. Notes 51(3–4), 908–922 (1992))
7. Kirillov, S.A.: Norm estimates of functions in Lorentz spaces. Acta Sci. Math. 65(1–2), 189–201 (1999)
8. Flett, T.M.: On a theorem of Pitt. J. Lond. Math. Soc. 2(7), 376–384 (1973)
9. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)
10. Bochkarev, S.V.: The Hausdorf–Young–Riesz theorem in Lorentz spaces and multiplicative inequalities. Tr. Mat. Inst.

Steklova 219, 103–114 (1997) (Translation in Proc. Steklov Inst. Math. 219(4), 96–107 (1997))
11. Kopezhanova, A.N., Persson, L.-E.: On summability of the Fourier coefficients in bounded orthonormal systems for

functions from some Lorentz type spaces. Eurasian Math. J. 1(2), 76–85 (2010)
12. Kopezhanova, A.: Summability of Fourier transforms of functions from Lorentz spaces. Ph.D. thesis, Department of

Engineering Sciences and Mathematics, Luleå University of Technology (2017)
13. Persson, L.-E.: Relation between summability of functions and their Fourier series. Acta Math. Acad. Sci. Hung.

27(3–4), 267–280 (1976)



Akishev et al. Journal of Inequalities and Applications        (2019) 2019:171 Page 18 of 18

14. Krein, S.G., Petunin, Y.I., Semenov, E.M.: Interpolation of Linear Operators. Nauka, Moscow (1978)
15. Mustahaeva, V.M., Akishev, G.: On the Fourier coefficients in Lorentz–Zygmund space. In: Modern Methods of the

Theory of Functions and Problems, Voronezh, pp. 155–156 (2013)
16. Nursultanov, E.D.: On the coefficients of multiple Fourier series from Lp-spaces. Izv. Ross. Akad. Nauk, Ser. Mat. 64(1),

95–122 (2000) (Russian) (Translation in Izv. Math. 64(1), 93–120 (2000))
17. Leindler, L.: Generalization of inequalities of Hardy and Littlewood. Acta Sci. Math. 31, 279–285 (1970)
18. Johansson, H.: Embedding of Hω

p in some Lorentz spaces. Research Report 6, Department of Mathematics, Umeå
University, 36 pp. (1975)


	Some Fourier inequalities for orthogonal systems in Lorentz-Zygmund spaces
	Abstract
	MSC
	Keywords

	Introduction
	Generalization of Theorem D
	A complement of Theorem B. The case q < 2
	Further results and concluding remarks
	Appendix: Proof of Lemma E
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


