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A B S T R A C T

Objectives: This study delineated the clonal lineages, antibiotic resistome and plasmid replicon types in
multidrug-resistant K. pneumoniae isolates from a teaching hospital in Ghana.
Methods: Identification and antibiotic susceptibility testing were done using the MALDI-TOF MS and
Vitek-2 automated system. Genomic DNA extraction was carried out using the NucliSens easyMAG1
(BioMérieux) kits and the DNA was subjected to whole genome sequencing (WGS) using the Illumina
MiSeq platform.
Results: Of the 200 isolates obtained, 37 were identified as K. pneumoniae of which 9 were resistant to all
second and third-generation cephalosporins. These 9 isolates selected for further genomic analysis were
characterized by the presence of 8 diverse sequence types (STs), capsular polysaccharide serotypes (K
types and wzi allelic types) and multiple genes encoding resistance to β-lactams (blaCTX-M-15, blaSHV-11,
blaTEM-1B, blaOXA-1), aminoglycosides (aac(3)-IIa, strB, strA, aadA16), fluoroquinolones/quinolones (qnrB66,
oqxA, oqxB) and other antibiotic classes. Resistance genes were associated with plasmids, predominantly
IncFIB(K) and ColRNAI. Multiple and diverse mutations in quinolone resistance-determining regions of
gyrA (S83Y, D87A) and parC (S80I, N304S) in isolates resistant to ciprofloxacin (MIC � 4 mg/mL) were
found. Global phylogenomic analysis affirmed the diverse clonal clustering and origin of these isolates.
Conclusions: The varied clonal clusters and resistome identified in the multidrug-resistant K. pneumoniae
isolates is a major threat to the management of infections in Ghana. The molecular characterization of
antibiotic resistance is thus imperative to inform strategies for containment.
© 2019 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

nc-nd/4.0/).
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Introduction

The mechanisms of β-lactam antibiotic resistance employed by
Gram-negative bacteria including K. pneumoniae involve the
expression of β-lactamases with/without other non-enzymatic
resistance mechanisms such as efflux and/or, outer protein
membrane or porin reduction rendering the agents ineffective
(Alekshun and Levy, 2007; Lau et al., 2014; Wilson, 2014). The
resistance may be intrinsically expressed or acquired. Saravanan
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and colleagues 2018 reported high rates of resistance to β-lactam
antibiotics, particularly second and third generation cephalospor-
ins among Enterobacteriaceae, ranging from 12% to 82.8% in
hospital settings in a systematic review on prevalence and drug
resistance pattern of extended spectrum β–lactamases (ESBLs)
producing Enterobacteriaceae in Africa (Saravanan et al., 2018).
ESBL encoding plasmids are commonly associated with genes
mediating resistance to other antibiotic classes including fluo-
roquinolones and aminoglycosides, facilitating the dissemination
of multidrug-resistant bacteria in hospital settings. The swift
acquisition of plasmid-borne extended-spectrum β-lactamases
(ESBLs), especially those belonging to the TEM, SHV and CTX-M
β-lactamase families produced by Enterobacteriaceae including
iety for Infectious Diseases. This is an open access article under the CC BY-NC-ND
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K. pneumoniae with high preference for oxyimino-cephalosporin
hydrolysis is increasing globally (Bonnet, 2004; Gibold et al., 2014;
Zhao and Hu, 2013). Plasmids of the IncF group represent one of the
most common plasmid types contributing to the spread of
antibiotic resistance genes in Enterobacteriaceae with CTX-M-
15-positive IncFIIK plasmids commonly characterized in
K. pneumoniae (Dolejska et al., 2012; Johnson and Nolan, 2009).
The spread of these resistant bacteria has compromised the use of
β-lactams, considered as safest and most easily available anti-
biotics for treatment of infections in many parts of the world,
including Ghana.

Studies conducted in Ghana have reported K. pneumoniae as a
major pathogen responsible for UTI (Gyasi-Sarpong et al., 2014). A
laboratory-based nationwide surveillance of antimicrobial resis-
tance in Ghana by Opintan and co-workers reported that K.
pneumoniae represented 1.06% of all bacterial infections and 1.4% of
Gram-negative bacilli (Opintan et al., 2015). Agyepong et al. (2018)
indicated an increased K. pneumoniae resistance of 19% (37/200) of
Gram-negative bacteria in their study on MDR bacterial infections
in a teaching hospital in Ghana. In spite of the threat posed by
multidrug resistant Gram-negative bacteria in health care settings
in Ghana, there is paucity of molecular epidemiology studies. This
study, which forms part of a broader study on the molecular profile
of Gram-negative ESKAPE pathogens in a Ghanaian teaching
hospital, delineates the clonal lineages, antibiotic resistome and
plasmid replicons of a sub-set of K. pneumoniae with resistance to
the second and third-generation cephalosporins using whole
genome sequencing (WGS).

Materials and methods

Ethical approval and voluntary informed consent

Ethical clearance was granted by the Joint Committee of Human
Research Publications and Ethics, School of Medical Sciences,
Kwame Nkrumah University of Technology, Research and Devel-
opment Unit of the Hospital Administration (ref: CHRPE/AP/015/
15) and the Biomedical Research Ethics Committee of University of
Kwa-Zulu Natal (ref: BE 494/14). Voluntary, informed consent was
obtained from all participants and from parents or guardians for
minors in written form either signed or by a thumb print after
explaining the procedure and purpose of the study, using an
interpreter as appropriate.

Study setting

The study was conducted between February and August 2015 in
Komfo Anokye Teaching Hospital (KATH) in Kumasi, in the Ashanti
region of Ghana. The facility is a 1000-bed tertiary care
government hospital. The average daily primary care and specialist
outpatient attendance was 169 and 954 patients respectively
during the period of study. The population of the region is
concentrated in a few districts, with the Kumasi metropolis
accounting for nearly one-third of the region’s population of
4,780,380 (Owusu and Oteng-Ababio, 2015). KATH is the only
regional and referral hospital that takes care of about 80% of both
emergencies and regular medical cases in the region and serves as
referral hospital for parts of Brong Ahafo, Western, Eastern and the
Northern regions of Ghana.

Bacterial selection and identification

The K. pneumoniae isolates included in this study was a subset
from a larger collection of 200 clinical, non-duplicate Gram-
negative bacterial samples (Agyepong et al., 2018). Of the 200
isolates, 37 were identified as K. pneumoniae, nine were resistant to
all second and third-generation cephalosporins and thereby
selected for genomic characterization by whole genome sequenc-
ing (WGS). Seven of these isolates were obtained from urine and
one each from gastric lavage and tracheal aspirate. Eight of the nine
isolates were obtained from in-patients and one from an out-
patient. Date of collection, diagnosis, sex, age and ward type were
obtained from patient records (Information on all 37 isolates
appear in the Table S1).

Bacterial identification and antibiotic susceptibilities were
determined by the Vitek-2 (BioMérieux, France) automated
system. Identity and MICs were further confirmed by using
MALDI-TOF MS (Bruker Daltonic Gmbh, Bremen, Germany) broth
micro-dilution in accordance with European Committee on
Antimicrobial Susceptibility Testing (EUCAST) guidelines respec-
tively (Testing). K. pneumoniae ATCC700603 was used as the
control strain.

DNA extraction and genome sequencing

DNA extraction was carried out using the NucliSens easyMAG1
(BioMérieux) kits according to the manufacturers’ instructions.
The genomic DNA libraries were generated using the Nextera1 kit
(Illumina) followed by sequencing on an Illumina MiSeq platform
at the Genomics Resource Center at the University of Tromso, the
Arctic University of Norway. Raw sequence reads were adaptor and
quality-trimmed using Trimmomatic (Bolger et al., 2014). Assem-
bly using SPAdes 3.9.1 (Bankevich et al., 2012), quality scores were
assessed by QUAST version 4.6.0 software (Bankevich et al., 2012).
The assembled reads were annotated using the Bacterial Analysis
Pipeline (BAP) of software revision 4.2 and National Center for
Biotechnology Information (NCBI) Basic Local Alignment Search
Tool (BLAST) searches (https://www.ncbi.nlm.nih.gov/genome/
annotation_prok/). The antibiotic resistance genes and plasmids
were identified by mapping the sequence data to an online
database using ResFinder (Zankari et al., 2012) and PlasmidFinder
(Carattoli et al., 2014) respectively. Comparative genomic analysis
was further performed using K. pneumoniae ATCC 13883
(PRJNA244567) as reference strain to elucidate the chromosomal
mutation resulting in quinolone resistance. Multi-locus Sequence
Typing (MLST) was also determined from the assembled genomes
(https://github.com/tseemann/mlst) which also predicted the
allelic profiles of the 7 housekeeping genes, gapE, infB, mdh, pgi,
phoE, rpoB, and tnoB of K. pneumoniae. The reference Klebsiella
WGS data online platform tool, Kaptive-web (http://kaptive.
holtlab.net/) was used to infer the serotypes (K types and wzi
allelic types) of the isolates.

Phylogenetic analyses

A genome-wide gene-by-gene comparison approach was used
to assess the genetic relatedness between isolates within and
across wards. The core genes were determined from the annotated
genome assemblies, predicted coding regions were extracted and
converted into protein sequences. A phylogeny was drawn for
K. pneumoniae using Rapid large-scale prokaryote pangenome
analysis (Roary; https://sanger-pathogens.github.io/Roary/) to
estimate the tree for the core genome. The genome of
K. quasipneumoniae strain P27-02 (accession number:
NXHG00000000.1) served as the outgroup to root the tree to
enable easy configuration of the phylogenetic distance between
the strains on the branches. Altogether, 3,492 core genes were
extracted with an alignment length of 3,484,711 bp shared by the
nine K. pneumoniae genomes. The allelic distance from the cgMLST
was visualized using Figtree v1.4.3 (https://tree.bio.ed.ac.uk/
sofware/figtree/) in a maximum likelihood phylogenetic tree using
optimized parameters as follows: nucleotide substitution model,

https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
https://www.ncbi.nlm.nih.gov/genome/annotation_prok/
https://github.com/tseemann/mlst
http://kaptive.holtlab.net/
http://kaptive.holtlab.net/
https://sanger-pathogens.github.io/Roary/
https://tree.bio.ed.ac.uk/sofware/figtree/
https://tree.bio.ed.ac.uk/sofware/figtree/


N. Agyepong et al. / International Journal of Infectious Diseases 85 (2019) 117–123 119
Jukes-Cantor; transition/transversion ratio, 2; estimate substitu-
tion rate, yes; number of substitution rate, 4; perform bootstrap
analysis, yes; replicates, 1,000. A metadata (including isolate name,
ward, ST, K type and wzi allelic type) were imported to provide a
comprehensive analysis of the generated phylogenetic tree.

To investigate the global phylogeny of the K. pneumoniae
isolates, genome assembly datasets including metadata were
downloaded from the Pathosystems Resource Integration Center
(PATRIC) database (https://www.patricbrc.org/). Genomes with
less than 400 contigs and with MLST and isolation country
available were selected and run through parsnp (software designed
for intraspecific or core genome alignment for high quality
assemblies) v.1.2 (Treangen et al., 2014) with “–c” -flags enabled
to include all the selected genomes in the phylogenetic tree, and
random reference selection among the included samples. FigTree
(https://tree.bio.ed.ac.uk/software/figtree/) and R-ape package
(v5.1) were used to visualize and edit the phylogenetic trees.

Accession numbers

The raw read sequences and the assembled whole genome
contigs have been deposited in GenBank. The data is available
under project number PRJNA411997.

Results

The clinical data indicated that K. pneumoniae was frequently
implicated in UTI. Antibiotic susceptibility profiles showed that all
the isolates were resistant to cefuroxime, cefotaxime and ceftazi-
dime but sensitive to imipenem, ertapenem, meropenem, amikacin
and colistin. Seven of the nine isolates were additionally resistant to
gentamicin, nitrofurantoin and trimethoprim-sulfamethoxazole
and six were sensitive to ciprofloxacin (Table 1). WGS analysis
revealed that all the isolates were predominantly characterized by
the presence of multiple resistome encoding for resistance within
and between antibiotic classes. The isolates carried 3-5 β-lactamase
genes, 3-6 aminoglycoside resistance genes, 2-5 fluoroquinolone
resistance genes in different permutations and combinations
(Table 2). blaCTX-M-15 and blaTEM-1B), (aac(3)-IIa-like, aph(3')-Ia and
aac(6')Ib-cr) and (oqxA-like, oqxB-like, qnrB10-like and qnrB2) were
the most common β-lactam, aminoglycoside and fluoroquinolone
Table 1
Antibiotic susceptibility profiles of the MDR K. pneumoniae (n = 9).

Isolate
code

Demographics Susceptibility profile - MICs (mg/L

Date SPM Diagnosis WT AMC TZP CXM FOX CTX C

P27-01
[20]

06/06/
2015

Urine UTI O&G �32 �64 �64 4 �64 1

P26-62
[70]

13/06/
2015

Urine UTI Surg. �32 16 �64 16 �64 1

P26-63
[76]

02/06/
2015

Urine UTI CH �32 32 �64 �4 32 1

P26-66
[117]

11/03/
2015

Urine UTI O&G 16 32 �64 �4 �64 1

P26-71
[155]

14/09/
2015

Gastric
lavage

Gastritis CH 16 �64 �64 �64 16 1

P26-75
[183]

01/07/
2015

Urine UTI CH 16 �64 �64 16 �64 1

P26-78
[201]

19/03/
2015

Aspirate Sinusitis ICU �32 32 �64 �4 �64 1

P26-79
[202]

11/03/
2015

Urine UTI OPD �32 128 �64 �4 �64 1

P26-81
[206]

14/03/
2015

Urine UTI Med 16 32 �64 16 �6 1

Resistant MICs breakpoint (EUCAST, 2017) >8 >16 >8 NA >2 >

AMC- Amoxicillin-Clavulanate, TZP- Piperacillin Tazobactam, CXM-Cefuroxime, FOX-Ce
Imipenem, MRP-Meropenem, AMK- Amikacin, GEN-Gentamicin, CIP-Ciprofloxacin, TET-
zole, Fluoro- Fluoroquinolones, Tet- Tetracycline, CH- Child Health, O&G-Obstetrics and
resistance genes observed respectively. The isolates also carried
resistance genes for other antibiotic classes including sul2, fosA,
dfrA14 and catB7-like encoding resistance for sulphonamide,
fosfomycin, trimethoprim and phenicol respectively. MLST analysis
showed a high variation among the strains identifying 8 different
sequence types including; ST2171, ST2816, ST17, ST152, ST397,
ST1788, ST798 and ST101 (Table 2 and Figure 1) evident by the
different allelic profiles of the 7 housekeeping genes between the
isolates (Table 3). This indicates the circulation of multiple
K. pneumoniae sequence types in a single hospital. The high
diversity was confirmed by the epidemiological typing scheme via
the Kaptive database which also predicted 8 different capsular
polysaccharide serotypes (KL15-wzi50, KL30-wzi122, KL155-
wzi173, KL149-wzi110, KL158-wzi475, KL2-wzi2, KL18-wzi18 and
KL17-wzi137) (Table 2 and Figure 1) for the isolates. IncFIB(K) and
ColRNAI were the most prevalent plasmid replicon types among
K. pneumoniae isolates (Table 2).

cgMLST analysis using K. quasipneumoniae strain P27-02 as the
outgroup collaborated the high genetic variation in the strains. The
tree was divided into many subclades showing the differentiation
of the isolates (Figure 1). Phylogenetics coupled with metadata
analysis provided a deeper insight into the diversity of the clones
between the wards in the hospital (Figure 1). Specifically, three
different clonal types (ST101-KL17-wzi137, ST17-KL155-wzi173 and
ST397-KL158-wzi475) were found in the child health ward whiles
two other clones (ST152-KL149-wzi110 and ST2171-KL15-wzi50)
were identified in the obstetrics and gynaecology ward. Phyloge-
nomic analyses including the genomes from this study (n = 9) and
from a global strain collection (n = 1158, including 20 South African
isolates) were performed to ascertain clustering and the likely
origins the isolates from our study showed a dispersed or wider
distribution on the global tree (Figure 1). As visualized, the two
ST101-isolates from Ghana (P26-75 and P26-81) are closely related
to each other and belong to the same distinct phylogenetic cluster
as the South African lineage of ST101. Moreover, isolates P26-71
(ST397) and P26-66 (ST152) are closely related to the South African
ST14 and South African ST323 isolates, respectively. As shown,
most branches constitute isolates from diverse geographic origin.
The branch A isolates, P27-01 and P26-63 are closely related to
each other and to ST17-isolates from the USA. In branch B, P26-71
clusters with isolates (mainly ST14) from eight countries, including
)

AZ CFP ETP IMP MEM AMK GEN CIP TET NIT COL SXT

6 8 �0.5 �0.25 �0.25 �2 �16 �0.2 1 64 �0.5 �320

6 16 �0.5 �0.25 �0.25 �2 �16 �0.25 2 64 �0.5 �320

6 2 �0.5 �0.25 �0.25 �2 �16 �0.25 1 128 �0.5 �320

6 2 �0.5 �0.25 �0.25 �2 �16 �4 4 �128 �0.5 �320

6 2 �0.5 �0.25 �0.25 �2 �16 �0.25 1 �16 �0.5 �320

6 2 �0.5 �0.25 �0.25 �2 �16 �4 4 >256 �0.5 �320

6 2 �.5 �.25 �.25 �2 �16 �.25 �1 �16 �0.5 �320

6 2 �0.5 �0.25 �0.25 �2 �16 �0.25 �0.5 32 �0.5 �320

6 2 �0.5 �0.25 �0.2 �2 �16 �4 �0.5 �512 �0.5 �320

4 >4 >1 >8 >8 >16 >4 >0.5 >2 >64 >2 >4

foxitin CTX- Cefotaxime, CAZ- Ceftazidime, CFP- Cefepime, ETP- Ertapenem, IMP-
 Tetracycline, NIT- Nitrofurantoin, COL-Colistin, SXT- Trimethoprim-sulfamethoxa-

 Gynaecology, Med-Medicine, Surg- Surgery, WT-Ward type, SPM-Specimen.
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Table 2
Genomic characterizations of multidrug-resistant K. pneumoniae isolates from WGS Analysis.

Isolate
code

WGS in-silico typing Plasmid replicons Antibiotic classes/resistance genes Chromosomal
mutation

MLST K
type

Wzi
type

β-lactamases Aminoglycosides Fluoroquinolones/
Quinolones

Other resistance gyrA gyrB parC

P27-01
[20]

ST2171 KL15 wzi50 IncFIA(HI1),IncFIB(K),IncFII
(K),IncR

blaTEM-1B,
blaCTX-M-15,
blaSHV-11

aac(3)-IIa, strB,
strA

oqxA, oqxB fosA, sul2, tet(D),
dfrA14

-1 - -

P26-62
[70]

ST2816 KL30 wzi22 IncFIA(HI1),IncFIB(K),IncFII
(K),IncR,ColRNAI

blaTEM-1B,
blaCTX-M-15,

strA, aac(3)-IIa,
strB,

oqxA, oqxB fosA, catA2, sul2,
tet(D), dfrA14

- - -

P26-63
[76]

ST17 KL155 wzi173 IncFIA(HI1),IncFIB(K),IncFII
(K),Col(MGD2),IncR,
ColRNAI

blaCTX-M-15,
blaTEM-1B

strA, aac(3)-IIa,
strB,

oqxA, oqxB, fosA, catA2, sul2,
tet(D), dfrA14,

- - -

P26-66
[117]

ST152 KL149 wzi110 IncFIB(K),IncFII(K),ColRNAI blaCTX-M-15,
blaOXA-1,

aac(6')Ib-cr, aac
(3)-IIa, aac(6')Ib-
cr,

oqxB, oqxA, qnrB66 fosA, catB4, sul2,
tet(A), dfrA14

S83F
D87A

NM2 S80I

P26-71
[155]

ST397 KL158 wzi475 IncFIB(pKPHS1),IncFIB(K),
IncFII(K),ColRNAI

blaTEM-1B,
blaCTX-M-15

aac(6')Ib-cr, aac
(3)-IIa, strB, strA,

oqxB, oqxA fosA, catB4, sul2,
dfrA14

- - -

P26-75
[183]

ST101 KL17 wzi137 IncFIA(HI1), IncFII,IncFIB(K),
ColRNAI

blaCTX-M-15,
blaOXA-1

aac(6')Ib-cr, aac
(3)-IIa, strA, strB

qnrB66, oqxA, oqxB, fosA, catB4, sul1,
sul2, dfrA14,
dfrA5

S83Y
D87A

NM S80I,
N304S

P26-78
[201]

ST1788 KL2 wzi2 IncFIB(pKPHS1),IncFIB(K),
IncFII(K),ColRNAI

blaCTX-M-15, like,
blaTEM-1B

aac(3)-IIa,strA,
strB

oqxA, oqxB FosA sul2 dfrA14 - - -

P26-79
[202]

ST789 KL18 wzi18 IncFIA(HI1),IncFIB(K),IncFII
(K), Col(MGD2),IncR,
ColRNAI

blaCTX-M-15,
blaTEM-1B

aac(3)-IIa,
aadA16-strA,strB

oqxA, oqxB fosA sul1,sul2 tet
(D) dfrA14 catA2

- - -

P26-81
[206]

ST101 KL17 wzi137 IncFIA(HI1),IncFII,IncFIB(K),
ColRNAI

blaCTX-M-15,
blaOXA-1,
blaTEM-1B

aac(3)-IIa-strA,
strB

oqxA-like,oqxB-
like,qnrB66 aac(6')
Ib-cr

fosA sul1,sul2
dfrA14 dfrA5

S83Y
D87A

NM S80I,
N304S

Unless otherwise stated in the footnote, K. pneumoniae ATCC 13883 (PRJNA244567) was used as reference strain in the comparative genomic analysis. MLST-multi locus
sequence typing, K typing-Klebsiella surface polysaccharide capsule characterization and wzi type- wzi allelic typing scheme.

1 Susceptible to ciprofloxacin.
2 NM-No mutation.

Figure 1. A phylogeny based on core genome multilocus sequence typing genes of the 9 K. pneumoniae genomes. The K. quasipneumoniae strain P27-02 (accession number:
NXHG00000000.1) was rooted and used as the outgroup in the tree. The following information is provided for each isolate: name/reference, ward, MLST (ST types), K type and
wzi allelic type. The tree was divided into many subclades showing the differentiation of the isolates in the phylogenetic tree. The colour codes depict the diversity of the
isolates on the phylogenetic tree. The bootstrap values (%) for the nodes has been indicated on the tree. The scale bar represents one nucleotide substitution per 1000 sequence
positions.
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Table 3
A table showing the diversity of MLST (ST types) and allelic profiles of the 7
housekeeping genes in the multidrug-resistant K. pneumoniae isolates (n = 9).

Isolate MLST gapE infB mdh pgi phoE rpoB tnoB

P27-01 [20] ST2171 2 6 1 1 4 4 4
P26-62 [70] ST2816 7 40 169 26 1 1 398
P26-63 [76] ST17 2 1 1 1 4 4 4
P26-66 [117] ST152 2 3 2 1 1 4 56
P26-71 [155] ST397 2 1 1 1 21 44 9
P26-75 [183] ST101 2 6 1 5 4 1 6
P26-78 [201] ST1788 2 6 160 1 226 111 299
P26-79 [202] ST789 25 10 1 1 20 1 22
P26-81 [206] ST101 2 6 1 5 4 1 6
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South Africa. In branch C, P26-79 relates to isolates from UK and
Norway (diverse STs), and in branch D, P26-78 is most closely
related to isolates of ST493 from the Netherlands and the USA. In
branch E, P26-66 is located together with isolates of diverse origin
and STs, while isolates from four countries (diverse STs) collocate
with P26-62 in branch F. The ST101-cluster situates on branch G,
which in addition to the Ghanaian and South African isolates
includes isolates from UK and Pakistan.

Discussion

We report on the complexity of multidrug resistance in ESBL-
producing K. pneumoniae isolates from a referral hospital in Ghana.
The isolates were phylogenetically diverse in terms of their
alignment to geographical distinct clusters. They were character-
ized with diverse and multiple permutations and combinations of
antibiotic resistance genes. A high prevalence of CTX-M-15 β-
lactamases was observed, which mediated high-level phenotypic
resistance to the second- and third-generation cephalosporins as
indicated in the MICs profile (Tables 1 and 2). The resistance genes
were mainly correlated with IncFIB(K) plasmids, with ColRNAI also
being common among the isolates.

The isolates were resistant to cefuroxime, cefotaxime ceftazi-
dime, amoxicillin-clavulanate, piperacillin-tazobactam, gentami-
cin, nitrofurantoin and trimethoprim-sulfamethoxazole. This
poses a serious challenge to antibiotic therapy as these agents
are commonly used as empirical treatment in Ghana (Hackman
et al., 2014). The phenotypic profile was corroborated by the whole
genome sequencing results as evident from Tables 1 and 2. This is
comparable to studies from many parts of the world, which
reported CTX-M class of β-lactamases as a major resistance
mechanism among Gram-negative bacteria to oxyimino-cepha-
losporins, particularly cefotaxime (Bonnet, 2004; Tofteland et al.,
2007), with CTX-M-15 being the most common allele in Enter-
obacteriaceae in Africa (Ahmed et al., 2012; Breurec et al., 2013),
including Gram-negative ESKAPE bacteria and (Breurec et al., 2013;
Rodrigues et al., 2014; Santajit and Indrawattana, 2016), particu-
larly in K. pneumoniae (Baraniak et al., 2013).

Multiple K. pneumoniae STs were identified in lineage with other
isolates from a global strain collection, although from different
geographical sources and genetic exchange suggest high diversity
and clonal expansion of this species, as reported in other studies
(Breurec et al., 2013; Brisse et al., 2009). The high variation between
the isolates was in concordance with the Klebsiella capsular
serotypes which also predicted 8 different K types and wzi allelic
types for the strains. This highlights the ability of WGS to accurately
predict different epidemiological typing techniques. The CTX-M-
15-producing K. pneumoniae STtype 101 was first reported in Greece
in an ICU infections outbreak caused by ertapenem-resistant
K. pneumoniae (Poulou et al., 2013) and then in other countries
including Spain, Italy, France and Tunisia in hospital outbreaks
associated with carbapenem resistance (Marcade et al., 2013). In
contrast, our isolates were sensitive to carbapenems as these agents
have only recently been introduced into the Ghanaian clinical
practice, are comparatively more expensive than the mainstay
antibiotics and used as last-resort agents in treating serious
infections. Thus, there is relatively low selection pressure for the
development of carbapenem resistance. Global phylogeny investi-
gation indicated that two of the isolates (P26-75 and P26-81) were
of the same sequence type (ST101) as the main cluster of
carbapenemase-producing K. pneumoniae found in Durban, South
Africa. Interestingly, the cgMLST analysis coupled with metadata
confirmed that the two isolates; P26-75 (child-health) and P26-81
(Medicine) of ST101 clone were genetically related with 100%
identity, an allelic distance of zero (Figure 1 and Table 3). This
reiterates the importance of visualizing phylogenetic structures in
relation to their metadata as it offers valuable insight into the
identification, characterization spread and evolution of pathogens.
However, the lineages of ST101 were the same in our isolates but
have evolved in different local environments and resistance
patterns including carbapenem resistance. Also the P26-66 and
P26-71 isolates were phylogenetically related to the South African
ST323 isolate and ST14 isolate respectively (Sekyere and Amoako,
2017). This could indicate regional transmission, perhaps due to
international travel between the two countries facilitating the
dissemination of specific K. pneumoniae STs (Figure 2).

The predominance of CTX-M-15 and different TEM-types found in
this study is associated with multidrug-resistance in Enterobacteriaceae.
The CTX-M-15 and TEM-, SHV- and OXA-types of β-lactamases are
plasmid encoded with the tendency to disseminate among various
species to confer resistance to β-lactams and other non-β-lactam
antibiotics including quinolones, chloramphenicol, tetracyclines
and aminoglycosides (Shaikh et al., 2015) as reflected in this study.

The IncFIB(K) and ColRNAI plasmids were found in all the
isolates and were associated with CTX-M-15 and other resistance
genes. This finding is consistent with studies that reported that
CTX-M-15 is mainly harboured on IncFII(K) plasmids in ESBL-
producing K. pneumoniae isolates (Coelho et al., 2010; Tokajian
et al., 2015). Reports from others studies have described IncFIB(K)
plasmids as dynamic in nature, with the capacity to disseminate
antibiotic resistance genes among Enterobacteriaceae (Carattoli,
2013; Coelho et al., 2010; Dolejska et al., 2013).

Our study found qnrB66 variant of the qnrB gene in the isolates
(P26-66, P26-75 and P26-81) which mediated quinolone resis-
tance, consistent with a study that reported this gene as
predominantly encoding for fluoroquinolone/quinolone resistance
among K. pneumoniae in Africa (Breurec et al., 2013). oqxA and oqxB
genes were found together in all the isolates, suggesting that the
oqxA and oqxB genes cannot be a major mechanism, particularly as
they were detected in isolates of both susceptible and much higher
MICs. Perhaps oqxAB in synergy with other mechanisms increased
fluoroquinolone resistance in the isolates as other studies have
indicated oqxA and oqxB genes encoding oqxAB protein to mediate
high fluoroquinolone resistance commonly in K. pneumoniae
(El-Badawy et al., 2017; Sekyere and Amoako, 2017). We also
identified multiple aminoglycoside (aac(6')Ib-cr, StrA, StrB) and
quinolone (qnrB66) resistance genes which have been reported in
other studies to mediate resistance to gentamicin and ciprofloxa-
cin (Breurec et al., 2013).

Analysis of quinolone resistance-determining regions of gyrA and
parC genes revealed the presence of multiple and diverse mutations
in gyrA (S83Y, S83F, D87A)and parC (S80I, N304S) in isolates that
were clonally distinct. Mutations in gyrA and parC genes have been
reported as major mechanisms of fluoroquinolone/quinolone
resistance associated with DNA gyrase and topoisomerase IV
alterations in Enterobacteriaceae (Alvi et al., 2018; Piekarska et al.,
2015; Sekyere and Amoako, 2017), as the plasmid-mediated



Figure 2. Klebsiella pneumoniae global phylogeny as revealed by rapid core genome multi-alignment (https://github.com/marbl/parsnp Assembly dataset from this study was
analyzed together with datasets from the PATRIC database (n = 1158) and from South Africa (ref. 35). Subtrees showing the distribution of the Ghanaian isolates in eight in
distinct phylogenetic branches (A-G) as indicated by the color codes in the global tree. The subtrees rooted (includes branch lengths) and scale of 0.005 (for all the trees) using
(https://cran.r-project.org/web/packages/ape/ape.pdf). For the isolates included in each of these branches, assembly ID, isolation country and MLST are shown.
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quinolone resistance genes (PMQR) and extrusion by intrinsic efflux
pumps commonly mediate low-level fluoroquinolone/quinolone
resistance (Sekyereand Amoako, 2017). However, mutations in both
gyrA and parC are often common and associated with high-level
quinolone resistance in Enterobacteriaceae compared with alter-
ations in gyrB (Piekarska et al., 2015) as evident in this study. ST101
(P26-75, P26-81) and ST152 (P26-66) isolates were of the same
mutation codons 83 and 87 of the gyrA and at 80 in parC genes with
no mutation in gyrB gene among isolates with a ciprofloxacin MIC of
�4 mg/L. Mutations at 83 and 87 in gyrA and 80 in parC genes have
been reported as the most common mutation points which display
major alterations among clinical isolates, associated with fluoro-
quinolone resistance (Sekyere and Amoako, 2017), with codon 83
commonly identified in fluoroquinolone resistant K. pneumoniae
(Sekyere and Amoako, 2017). The combined effect of S83Y/F, D87A
and S80I detected in gyrA and parC genes in the isolates, P26-66,
P26-75 and P26-81 (MIC � 4 mg/L) in our study could be associated
with increased level of ciprofloxacin resistance as previously
reported (Minarini and Darini, 2012). This is because fluoroquino-
lones have been the main stay in the management of UTIs in
Ghanaian teaching hospitals including Komfo Anokye Teaching
Hospital (KATH) as levofloxacin and ciprofloxacin remain the
commonest fluoroquinolones prescribed for UTIs leading to recent
reports of the emergence of resistance in these settings (Agyepong
et al., 2018; Afriyie et al., 2015; Fegloet al., 2013). The complexityand
diversity of resistance gene combinations detected among
K. pneumoniae strains in this study and their potential for
dissemination poses a serious threat to the management of
infections by this species in Ghana.

Conclusion

This study identified genes encoding resistance for β-lactams,
fluoroquinolones, aminoglycosides and other antibiotics in diverse
permutations and combinations among multidrug-resistant
K. pneumoniae bacteria in Komfo Anokye Teaching Hospital. There
is thus an urgent need for epidemiological and molecular studies to
understand the dynamics of antibiotic resistance transmission to
inform strategies for containment.
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