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“Once you stop learning, you start dying.”
—Albert Einstein






Abstract

Equilibrium climate sensitivity (ECS) measures the long-term global surface
temperature response due to a doubling of CO in the atmosphere. Estimates
of ECS is not well constrained, 1.5-4.5°C [Pachauri et al., 2014], and there is
a wide spread between different Earth system models (ESMs). Recently it has
been suggested that ECS can be constrained using an observed relationship
between the statistical properties of the unforced temperature fluctuations
extracted from historical runs of energy system models (ESMs), and the Gre-
gory estimates of ECS in these models [Cox et al., 2018]. In this thesis I derive
general fluctuation-response relations for linear stochastic climate models and
investigate the claimed relation over an ensemble of ESMs. My findings are
consistent with the existence of a fluctuation-response relation, but uncertain-
ties are large, and I find it unlikely that they can be used to constrain ECS. My
conclusion is that the time period 1850-present is too short for estimation of
ECS, and that we ultimately have to rely on longer reconstructed temperature
time series or satellite measurements of Earth’s energy imbalance.
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Introduction

The concentration of greenhouse gases, especially CO,, in the atmosphere is
increasing significantly compared to pre-industrial levels. Since 1850, the tem-
perature have been systematically recorded and we have seen an increasing
trend in the global average surface temperature. Compared to pre-industrial val-
ues, we are on our way to double the concentrations of CO, in the atmosphere,
and these changes are human made [Pachauri et al., 2014, Myhre et al., 2017].
The equilibrium climate sensitivity (ECS) is defined as the change in average
global surface temperature due to a doubling of CO, in the atmosphere af-
ter reaching a new equilibrium state. The change in temperature is defined
as

AT = T2—T1,

where T; is temperature before the forcing (the doubling of CO,) was in-
troduced, and T, is the temperature after the climate have reached a new
equilibrium due to this forcing. The reason why ECS has become such an
important number to estimate is that even though we know the temperature
is rising, but we do not know how much the temperature will increase. What
we do know is that if the temperature continues increasing there will be seri-
ous consequences for all living creatures on the planet. Large amounts of ice
melting due to the rise in temperature, causing the sea level to rise. Areas that
are warm and dry today, will become even warmer and drier. It is not only



2 CHAPTER 1 / INTRODUCTION

affecting humans, but many species will most likely be in danger of eradication
[Andrews and Jelley, 2013, Andrews et al., 2012].

There are different types of experiments that are done to obtain estimates of
ECS. Some of the most common experiments that are done with climate models,
are abrupt and spontaneous doubling or quadrupling of the concentration of
CO;, in the atmosphere compared to pre-industrial levels. There is no method
today which allow us to measure ECS directly, but in principle it should be
possible to make estimates. This can be done by either quantifying feedbacks
in comprehensive climate models, palaeoclimate records, analysis of the post-
industrial observed warming of the ocean and atmosphere in response to
forcing, the short term climate response to forcing (volcanic eruptions etc.) or
inter-annual temperature variations [Knutti et al., 2017]. The ECS can be used
to assess how the climate will change in the future, which is highly interesting
for us all. The values of ECS vary from 1.5°C to 4.5°C [Pachauri et al., 2014],
which is a very wide interval. The results of the increasing temperature and
its consequences will vary a lot within this interval. Many scientists try to
narrow the interval, such that we would have a clearer image of the results and
its consequences. One example is Cox et al. (2018), who used a fluctuation-
response relation to try to constrain the estimates of ECS, but their method
had some errors [Rypdal et al., 2018b]. IPCC estimates are found using the
Gregory method, which we can not apply to historical data. Another method
was presented by Rypdal et al (2018), still in the linear framework and assuming
linear and stationary response. They use the convolution of the forcing with a
response function. This describes the relationship between the global surface
temperature and the global radiative forcing [Rypdal et al., 2018a].

In this thesis we will discuss standard methods for estimation of the ECS.
These methods, such as the Gregory method, are methods where we can not
use historical data to find an estimate, usually using 4xXCQO,-data. Therefore we
look at how linear-response theory can be used to study temperature response
to forcing. Then we develop some theoretical fluctuation-response relations
that we will apply to historical data to test if we can use the fluctuations to
make an estimate of ECS. We also take a look at both CMIPs5 and CMIP6 and
the differences between them, and use CMIP6 to test linearity.



Theory and Background

Radiative forcing is the difference between incoming and outgoing radiation
at the top of Earth’s atmosphere, before the temperature responds to this im-
balance. A forcing will either have a warming (positive forcing) or a cooling
(negative forcing) effect on the Earth’s surface temperature. A forcing can both
be human-made or natural. The Earth seeks a balance. Such that if a forcing
is introduced, the Earth will try to adapt to the change, counteract, so it can
be in an equilibrium again. If we have more incoming than outgoing radiation,
an imbalance, which leads to an increase in the surface temperature, the Earth
will heat up and then be able to emit more radiation such that it obtains a
radiation balance again. If we had more outgoing than incoming radiation, the
Earth would cool down such that it emits less outgoing radiation, and once
again obtains an equilibrium [Andrews and Jelley, 2013].

We will also have feedback due to the forcing. A feedback is something that is
happening because of the forcing and will either amplify (positive feedback) or
impair (negative feedback) the tempearture response to the forcing. A positive
forcing, which will lead to a higher surface temperature, will lead to more melt-
ing of ice, such that more radiation will be absorbed instead of reflected, which
leads to even more heating, a positive feedback. While a negative feedback
would be a response, which in this case would lead to a cooling effect. The
feedbacks are indirect changes that occur in a climate system as a response to
the forcing [Sherwood et al., 2015]. In the latest generations of climate models,
idealised experiments are commonly used to study the long-term temperature
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responses to forcing.

The standard method of estimating ECS in these models is the so-called
Gregory plots, where we plot the change in radiation at the top of atmo-
sphere (N) against the change in global mean surface temperature (AT)
[Gregory et al., 2004]. After the climate has reached equilibrium after the
doubling of CO, in the atmosphere, the change in global mean surface temper-
ature will be the equilibrium climate sensitivity, ATeqm = ECS. We can make
an expression for the net heat flux N, where F is the imposed forcing (positive
downwards) and H is the radiative response caused by climate change (positive
upwards), both measured in Wm™2,

This tells us the rate of change of heat in and out of the system. Such that if
F > H we will get N > 0, which means that heat is added to the system, while
F < H means that more heat is leaving the system than heat added, N < 0.
Here N is the net heat flux downwards. If F = H, it means that N = 0, and
the system has reached a steady-state. Most of Earth’s heat capacity is in the
ocean. We can therefore say that we have a steady-state when the heat storage
is not changing on interannual timescales [Gregory et al., 2004]. The radiative
response is often assumed to depend linearly on the temperature change

H = AAT,

where A is the feedback parameter, assumed constant, that contains the strength
of the net feedback to the climate system. Even though the parameter is assumed
to be constant, it is a different constant for each general circulation model
(GCM). It is found roughly independent of both climate state and forcing in
any given GCM [Gregory et al., 2004]. For a steady-state where N = 0 and
F = H we get that, F = AAT. The ECS can then be expressed as,

Foxco
_ eqm  _ 2
ECS = ATyigo, = —5 2.

Foxco, is the forcing we get due to a doubling of CO, in the atmosphere. Using
a linear framework and Gregory-plot, we can find an estimate for ECS by using



linear regression. By plotting AN(t) against AT(t), the intercept (AT = 0) will
be our forcing F, while the slope is —A and the ECS is the value on the x-axis
(temperature change) when N = 0, given by AT = F/A.

CMIP is designed to improve knowledge of climate change, both the past,
present and future [CMI, 2019]. Using 4xCO,-data from CMIP5, we can make
a Gregory-plot and find estimates for ECS, F and A (figure 2.1). In table 2.1 we
see the results using Gregory plot for all the different models. Using 4XCO,-
data, we divide the forcing and equilibrium temperature by 2 to make estimates
due to 2XCO;. These results is a reproduction of Andrews et al. (2012).

Gregory plot for model:NorESM1-M

N [W/m?]

1 2 3 4
AT [K]

Figure 2.1: Gregory plot, plotting the change in heat flux (AN) against the change in
temperature (AT). The red line is linear regression to all the data points
(150 years) while the black line is linear regression to the first twenty years.
Both lines are plotted together with the data that are used to make the
linear regression. This plot is made using the climate model NorESM1-M.

This method assumes that the feedback parameter is constant. But we know that
the climate system has slow feedbacks as well, which may result in a reduced
feedback parameter, on long timescales [Rypdal et al., 2018a]. By using the
same method, we can choose to only include the first 20 years of data, and
see how this will affect the results. The ECS only including the first twenty
years is usually a bit smaller than the ECS for the 150 years. Figure 2.1 shows
the plot where we use all the data and only the first twenty years, and table
2.1 shows an overview over the different parameters you get by using both
methods. The equilibrium climate sensitivity using historical runs is said to
be in the lower range of the IPCC estimates [Proistosescu and Huybers, 2017].
This can be related to the fact that we are only able to see the shortest time
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scales in historical data, which may correspond to using some of the early years
(e.g. the first twenty years) in a Gregory-plot to make an estimate for ECS.
In the following chapter we will look at alternative ways of estimating ECS,
that can also be used for historical data. If we can use this to estimate ECS, it
should be discussed whether we are estimating ECS or ECS?°.

Table 2.1: Parameters using Gregory plot, both for all years and only the first 20
years. The ones that are denoted with 20, such as ECS?°, indicate which
parameters that are found only using the first twenty years. At the bottom
we see the mean and the standard deviation of each parameter. We see a
small difference between the ECS estimates that we found and the IPCC,
using the same method. This is most likely because we have used the
temperature at the surface, while IPCC is based on the temperature of the
air 2 meters above the surface.

IPCCECS ECS ECS?° forcing forcing®?® feedback feedback®®

ACCESS1.0 3.8 3.77 3.04 2.95 3.61 -0.78 -1.19
ACCESS1.3 na. 349 289 2.87 3.41 -0.82 -1.18
CanESM2 3.7 3.70 3.38 3.79 4.16 -1.03 -1.23
CNRM-CM5 3.3 3.21 3.33 3.67 3.54 -1.15 -1.07
CSIRO-Mk3.6.0 4.1 4.05 2.81 2.58 3.51 -0.64 -1.25
GFDL-CM3 4.0 3.84 3.10 2.95 3.47 -0.77 -1.12
GFDL-ESM2G 24 230 222 3.00 3.36 -1.31 -1.51
GFDL-ESM2M 24 233 2.28 3.27 3.43 -1.40 -1.51
GISS-E2-H 23 225 2.15 3.75 4.00 -1.67 -1.86
GISS-E2-R 2.1  2.05 1.80 3.71 4.66 -1.81 -2.58
HadGEM2-ES 46 4.51 3.94 2.88 3.26 -0.64 -0.83
INM-CM4 21 2.01 1.99 291 2.95 -1.45 -1.48
IPSL-CM5A-LR 41 4.05 3.72 3.08 3.32 -0.76 -0.89
IPSL-CM5B-LR 26 257 231 2.61 2.94 -1.02 -1.27
MIROCS5 2.7 270 2.65 4.09 4.24 -1.52 -1.60
MIROC-ESM 4.7 4.67 4.08 4.23 4.70 -0.91 -1.15
MPI-ESM-LR 3.6 347 3.16 4.04 4.56 -1.16 -1.44
MPI-ESM-MR na. 330 299 4.03 4.59 -1.22 -1.53
MPI-ESM-P 3.5 3.30 3.00 4.24 4.88 -1.28 -1.63
MRI-CGCM3 26  2.65 2.40 3.20 3.59 -1.21 -1.50
NorESM1-M 2.8 275 2.32 3.05 3.64 -1.11 -1.57
Mean 3.23 3.25 2.90 3.34 3.75 -1.10 -1.37

SD 0.826 0.845 0.672 0.492 0.522 0.331 0.389




Linear Theory of Global
Climate Response

One way to try and make a model of the Earth is to make a so-called box
model. A box model divides the surface into boxes where the box only have
one characteristic, such that one box is either land or ocean. A small grid size
will be more accurate than a larger grid size. We will now look at simple
linear box-models and we see that we get an expression for the temperature,
T = /_ too G(t — s)F(s)ds, which is a convolution integral. G(t) is the Green’s
function and F(s) is forcing. The forcing can also be a sum of forcings, such
that the the temperature response is equal to the sum of temperature responses
from each forcing.

The simplest type of box model is a one-box model, where we only have one
box in the vertical layer. Since we only have one box in the vertical layer, we
lose the effect from deep water. We often use a general linear vector equation
to explain the climate system, where the change in surface temperature often
is expressed as

x'(t) = =A - x(t) + F(t), (3.1)

where F(¢) is a vector with forcing terms and A is a matrix with constants due to
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the fact that we assume a linear response. Using equation 3.1, we can formulate
the simplest form where we only have a one-box energy balance model. The
change in global temperature for a one-box model can be expressed as

dx
CE = —Ax(t) + F(t), (3.2)

where C is the heat capacity and A is called the feedback parameter. To be able
to look at this kind of energy climate model, we will first look at some relations
using Fourier transform that we will be using while looking into the one-box
model. By looking at first the one-box model, and then two-box and N-box
model, we will try to find an relation such that they can tell us something about
the equilibrium climate sensitivity.

3.1 One-Box Model

3.1.1 General Response

For a function x(¢), we can use the Fourier transform on the function to change
from time domain to frequency domain,

x(f) = /_ ) x(t)e 2 1t (3.3)

[Se]

[Kaper and Engler, 2013]. If we differentiate x* with respect to time, and try to
rewrite the integral by using integration by parts where the first term is zero.
Then using the definition of a Fourier transform equation from time domain
to frequency domain, we get a relation between dx/dt and % in frequency
domain,

— =27if - %. (3.4)

For an exponential function with a step-function, x(¢) = e~?*60(t), which is 0
fort < 0and 1 for t > 0, we can get an expression for X(f) by inserting it into
equation 3.3,

£(f) = [ et 0(t) - e 27t gy

(o]
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Because of the step function, the expression is equal to zero for all t < O,
such that we can then rewrite the integral limits. Integrating the remaining
expression we get

x(f) = m- (3.5)

We also need to look at the definition of convolution between two functions
and the definition of the convolution between the functions g and h is

(g+h)(t) = / " g(t - 9)h(s)ds. (3.6)

o0

The Fourier transform of the convolution between two functions in time domain
is equal to the Fourier transform of the functions multiplied in frequency
domain, g = h(t) = ¢(f) - h( f) and the Fourier transform of two functions
multiplied in time domain is equal to the Fourier transform of the functions
and the convolution between them, g - h(t) = §(f) * fz( f) (see appendix B for
proofs) [Alme1da 1997]. Taking the Fourier transform of equation 3.2, such that
%' = —ax+F. Use equation 3.4 and substitute for x ,suchthat27ifx = —ax +F.
This gives us an expression for X in terms of the forcmg, the coefficient a and
the frequency,

A

F

X= —
2rmif +a

We can define the functions G(f) = 1/(a + 27if) and F(f) = F, such that
X = G(HF(f)

Comparing this to equation 3.5, if some function of time is equal to e %/0(t),
then the Fourier transform of this function can be expressed as 1/(a+2xif) . If
we then want to move back again, from frequency domain to time domain, we
can take the inverse Fourier transform and use the relations we know (equation
B.6) such that
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(o]

%(t) = (G * F)(1) = / G(t — s)F(s)ds,

—00

and since G(f) = 1/(a + 27if), we know from equation 3.5 that G(t) =
e o(t),

x(t) = [ ) e~ =9)9(t — s)F(s)ds.

(o]

The step function 6(t — s) is O for all ¢t > s and 1 otherwise, so can we redefine
the limits in the integral such that

t
x(t)=/ e_“(t_s)F(s)ds. (3.7)

o0

3.1.2 Calculations with Stochastic Forcing

We will now take a closer look at the forcing function F(s), and consider it as
a stochastic process F(s)ds = odB(s), where dB(s) is the white-noise random
measure with mean (dB(t)) = 0 and correlation (dB(t)dB(s)) = 0 for all s and
t, except when t = s, [Rypdal et al., 2018a]. If we had normalized white noise
in discrete time, this would give us 1 for the case where t = s, i.e.

0 fort#s
1 fort =s.

(AB(s)AB(t)) = {
In continuous time we can substitute this with a Dirac delta function [Hassani, 2009]:

(dB(s)dB(t)) « 5(t — s).

Now we use equation 3.7, and substitute for the forcing we just found an
expression for,

t t
x(t) = / eI F(5)ds = / e " odB(s) (3.8)
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This expression is called an Ornstein-Uhlenbeck process [Rypdal et al., 2018a].
It is a stochastic integral, and we can then use the definition of an It6 integral
to write this as limits of a sum. It integral is written as /a b f(t)dB(t) =
lima;—0 .-y f(ti-1)AB;. Where AB; is a step of Brownian motion across the
interval. An It6 integral differs from a Riemann integral, where the It6 integral
has B; as an integrator, and also that the input in the function f in the definition
of an Riemann integral can be any chosen point in the interval, while the same
point for an It6 integral is required to be the endpoint on left side of the interval,
t;_1 [Sauer, 2011],

t
x(t) = [Oo e ") 5dB(s) = AlsiEO Z e~ =) (B(si1) — B(s;)) As.

The increments B(s;,1) — B(s;) of a Brownion motion is a white noise. We want
to take a closer look at the Ornstein-Uhlenbeck processes and its characteristics.
The mean of such a process denoted by brackets ( ) is always equal to zero
[Gillespie, 1996],

(x(t)) = < /_ t e_“(t_s)crdB(s)> = [ t e~ ?=9) (5dB(s)) = 0.

[o¢] o0

The correlation can be expressed as

(x(t)x(s)) = < / e gdB(y,) / s e'“<s-yz>odB(y2>>.

Where the only stochastic terms are dB(y1) and dB(y»), and since dB is white
noise, we will get zero out from this expression except when y; = y,, and we
can then use the Dirac delta function to express the correlation between white
noise,

t S
(x(t)x(s)) = o2 / / e~ 1) =as1) 5 (1) — yo)dyrdys.
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Then we assume that s > t, such that we can rewrite the expression so we only
get one integral. There are several terms that can go outside the integral, such
that

t

(x(t)x(s)) = O'Ze_“te_“s/ My, .

—00

Integrating the remaining terms we get an expression for the correlation of the
Ornstein-Uhlenbeck process,

1 t 2
(x(D)x(s)) = o2e 4 ™4 [—e%m] = 7 alt=s), (3.9)
2a e 2a

The variance (r = t — s = 0) for an Ornstein-Uhlenbeck process can then be
written as

2
(x(0?) = 5.

3.1.3 Fluctuation-response relation

We use the one-box energy balance model for the global temperature, equation
??, where a = A/C and write the correlation for this model as

(x(t)x(t + 1))y = /e Cz—jz

and the variance (r = 0) :

Co?

(x(t)?) = =



3.1/ ONE-BOX MODEL 13

We see that this expression is similar to the one mentioned above for the
variance for an Ornstein-Uhlenbeck process, just that we have inserted the
expression for a = A/C.

If we look at a spontaneous doubling of CO, in the atmosphere such that the
forcing term F(t) = QO(t), where Q is now equal to Faxco,, which is the forcing
corresponding to a doubling of CO, in the atmosphere. We want to express
temperature as a function of time, and add the forcing and want to see how the
temperature changes due to a spontaneous doubling of CO,. Using equation
3.8 and inserting our forcing term F(t),

x(t) = [t e~ =9 00(s)ds.

o0

Since we have a spontaneous doubling and this occurs at t = 0, the forcing
term will be equal to zero for all t < 0, such that we can change the integration
limits and solve the integral,

t t as 5=t
x(t) = Q/ e~ =) g = Qe_'“/ e®ds = Qe™? [e_]
0 0 a

s=0
x(t) = %(1 — ) (3.10)

The function for x(t) expressed in equation 3.10, tells us something about how
the temperature will increase if we have a spontaneous doubling of CO,. If
we plot the forcing F as a function of time ¢, we will have a step-function,
that is O for t < 0 and Q for t > 0. The temperature as a function of time
will start to increase at t = 0 and after a while it will stabilize, where the
difference between the temperature at t = 0 and the temperature after it
has stabilized will be what we call equilibrium climate sensitivity (ECS). The
climate has reached an equilibrium when the temperature do not change
any more [Gregory et al., 2004]. This can be found by taking the limit as
I — oo,

ECS = (3.11)

S 10

The integral of the covariance function for x(t), C(7) = (x(t)x(t + 7)) is
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0 0002 ar _ 0_2
/0 (x(t)x(t + 7))dr = /0 Ze dr = —

2a?

The equilibrium climate sensitivity ECS = Q/a is also related to a? by

2
ECS? = Q—2 (3.12)
a

Now we want to use the expression for the auto-variance and ECS? to find an
expression for the relation between them. We start with the expression we just
found for the integration over the variance function and rewrite this so we get
an expression for a2,

a® = %/0 (x(t)x(t + 7))dr = %/0 C(r)dr.

We substitute this expression for a? into the expression for ECS?. Since the
correlation function is a symmetric function [Kaper and Engler, 2013], we can
use this to get rid of the factor 2, and instead rewrite the integration limits we
get that,

o2

ECS? = o / " C(r)dr.

[s¢]

The power spectral density (PSD), related to the Fourier transform of the co-
variance function by the Wiener-Kinchin theorem [Rypdal et al., 2018a]:

S(f) = [ N C(r)e 2" gr.

[o¢]

If we then take the limit of the power spectral density as the frequency f goes to
zero, we see that the low-frequency limit of the power spectral density is propor-
tional to the equilibrium climate sensitivity squared [Rypdal et al., 2018a],
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0]

2
o
li = = —ECS?
flir})S(f) [m C(r)dr 02 CSs-,
i.e.

2
ECS® = =55(0), (3.13)
(e

where S(0) is the power spectral density S(f) evaluated when f = 0. This
relation is shown for a model, such as the one-box energy climate model.By
using a one-box model we assume that the box has a constant temperature in
the vertical layer which means that it does not include any heat change with
the deep ocean. We can include this by adding another box with a higher heat
capacity. We want to look at a two-box energy climate model.

3.2 Two-Box Model
3.2.1 Two-Box Model Explained
Instead of only one box in the vertical layer, we add one more such that we

have two vertical boxes laying on top of each other. Each box has its own
characteristics, but the boxes interact with each other.

Cl% = —Ax1(t) + k(xo(t) — x1(t)) + F() (3.14)
dX2 -k
Czﬁ = —k(x2(t) — x1(t)) (3.15)

Equation 3.14 and 3.15 is obtained by assuming that the energy exchange
between the two boxes is proportional to the temperature difference between
the two boxes [Fredriksen and Rypdal, 2017]. C; and C, are the average heat
capacities per square meter for the upper box and lower box respectively. x;
and x, are the temperatures in the boxes, A is the feedback parameter, F(t)
is the forcing term and k is the coefficient of heat transfer between the two
boxes. First we need to find en expression for x; and x3, as equation 3.8 that
was used for the one-box model. Then we can rewrite equation 3.14 and 3.15
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in matrix form,

d
Cax =Kx +F, (3.16)
where
(G O e _[-(A+k) Kk _[F(t)
e=(o &) ==(a) = (5 ()

The solution to the linear system will have the form x = /_ too e~ AGDF(s)ds,
where e~46~8) = &(¢)d~(s), and ®(¢) is the fundamental matrix

[Fredriksen and Rypdal, 2017]. The fundamental matrix for this system will be
a 2 X 2 matrix where each column vector is v;etif, where A; is the eigenvalue
and v; is the corresponding eigenvector to the matrix A = C'K. We will
just call the eigenvalues of this problem A; and A,. Using this method, called
variations of parameters, we get that the eigenvectors are

Cl/l C
=1 + =L
v]_:(k 11 C2)7

ClA Cy

_ + —_

Uy = ( k72 CZ) .

As we are going to use this expression further, we put

C1 C1 w1
= —/1 —+ —_—, =
W1 k 1 C2 U1 ( )

and

C1 C1 Wo
= —A+ —, = .
Wy X 2 Cz (%)) ( )

To obtain the final expression for x; and x», we need to calculate ®(¢)®~!(s)C™LF.
Where
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1 wieM=S) — 4yyef2(1=9) gy 4y (eA2(079) — ghi(t=s)
“1(0) — 1 2 1W2
O(t)® " (s) = S l i) _ glalt=s) wye2(t=9) _ o phat=5)" |

and

. |F@y/c
ch_[ 0 1].

This gives us that

x = ®()d L(s)CIF =

(eM(=9) — eA2(=9)) F(1)

1 (w1 eh1(E=9) — apyet2(t=9)) F(¢)
w1 — w2

Then we get the expression for x; and x»,

1 t
x1(t) = —— / [wle“t_s) - erh(t_s)] F(s)ds, (3.17)
1 t
xo(t) = m/ [eh(t_s) - eAZ(t_s)] F(s)ds. (3.18)

3.2.2 Calculations with Stochastic Forcing

We will now find an expression for the covariance, which we will relate to the
ECS in the next section. We are only interested in looking at the covariance
for x; because what we want to obtain is an expression for the change in
temperature for the upper box. Using equation 3.17 and inserting for the
forcing, F(s) = odB(s), as for the one-box model, we can get an expression for
the covariance.

t
1 / (Wleal(r—m _ eraz(t—m) cdB(y)
W1 — W2 J_wo

s
1 / (Wleh(s—m) _ erﬁz(s—)’z)) GdB(y2)>

w1 + wy

(x1(H)x1(s)) = <
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As for the one-box model, the same yields for the two-box model, such that
dB is the only stochastic processes, and that (dB(y;)dB(y2)) will be zero for all
y1 and y2, except when y; = y», and we can then use the Dirac delta function
instead. We also write out the multiplication, such that we get four terms,

2 t S
(D (s)) =——— [ / / wie 1T (yy — yo)dyrdys
(Wl _WZ) —00 J —c0
t S
_ / / Wlwze/h(t_Y1)e/12(s_YZ)5(}/1 — y2)dy1dyo
ot s
—/ / w1wze’h(s_”l)e’b(t_yl)(s(}/1 — Y2)dy:1dys

t s
v [ e ors — oy,

We also assume that s > t, such that we can rewrite it to one integral. Solving
the integrals,

(x1()x1(s)) =
2
o 2 mes) [ L\ ane Mt s [ 1 —t(A1+12)
—(W1 o [wle o e wiwge e R e
1 1
_wlwze/hseﬂ.zt (_A - A ) e—l‘(/11+/12) + W%eAZ(H—S) (_ﬁ) e—2/12t:| .
1 2 2

We can substitute ¢ = s—t, such that the correlation can be expressed as,

0'2 1 2wWiwy W% 2 2wiwy W%

), (¢ =——|e"" -5 o T

(a(tpa(t+n)) 2(wy — wy)? [e (11 +A A e M+l A
(3.19)

3.2.3 Fluctuation-response relation

We now look at a spontaneous doubling of CO,, as we did for the one-box
model, where F(s) = Q0(s), inserted in equation 3.17. The doubling occurs
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att = 0,s0 QO(t) = 0 for all t < 0, such that we can change the integral
limits,

t t
x(t) = _9 wle’ht/ R wze’lzt/ e 25 ds)|
w1 — w2 0 0

Solving the integral we get that,

w1 —we | A4 Ao

el & At = Y] PR eP

The equilibrium climate sensitivity (ECS) is found as the climate is in steady-
state after a forcing has occurred. Such that we take the limit of the temperature,
equation 3.20, as time goes to infinity,

. Q Wy Wi
1 f)=ECS = — [2 - 2L,
f1—>n‘30 xl( ) w1 — Wy Az Al

This can also be written as

Q2 wy Wi 2
ECS?=—= |=_—| . .
(w1 — Wz)2 (/12 M ) (3.21)

Now we integrate over the auto-variance function for x;(t), C(7) = (x1(t)x1(t +
7)), and use equation 3.19 to express the variance,

00 o) 2 2 2
[ e = [T e (2 W g 2o
0 0 2(wi —ws) M+d A M+l Ay
Solving the integral on the right-hand side, we get an expression for the

covariance:
*© O'2 1 W1 Wo 2
=L (o)
/o 2 (wi—w2)?2 L1 Ay
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2
To make the expression a bit simpler, we can define D? = (% - ‘/“{—22) [(wy —

wy)?, and make an expression for D?,

2 o0
D? = ;/ (x1(t)x1(t + 7))dr. (3.22)
0

We insert this in equation 3.21 for ECS?, and because of symmetry, we can get rid
of the factor 2 as we change the integral limits [Kaper and Engler, 2013],

2 o]
ECS? = 0?D? = Q—z / C(r)dr.
0% J-

As we did for the one-box model, we find an expression for the low frequency
PSD by taking the limits of the power spectral density as the frequency f goes
to zero,

: — % . —2rifr — .
}IEI)})S(f) }13})‘[00 C(1)e dr / C(r)dr.

—00

We obtain a proportional relation between the power spectral density and the
square of the equilibrium climate sensitivity,

2
ECS* = =5(0). (3.23)
o

We see that we get the same expression for ECS? for the two-box model as for
the one-box model by equation 3.13. The two-box model only divides in to two
boxes, is that enough to make a good approximation? Now we want to look at
the N-box model, and see if this relation holds for that model as well.
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3.3 N-Box Model
3.3.1 N-Box Model Explained

We have now looked at both one-box and two-box. We could move on like this
or we can define a N-box model, such that we have N boxes on top of each
other, where N is a positive integer. Each box will have their own heat capacity
Cn, and there is no overlap of the boxes. Box N — 1 is only in contact with
box N and N — 2, and can then only exchange heat with those boxes. This will
give us N-equations, one for each box:

Cl% = —A.Xl + kz(Xz - Xl) + F(t)
dx
2d—2 = —ka(x2 — x1) — k3(x2 — x3)
t
Cn d;tn = —kn(xn — Xp-1)

We can write this on on matrix form:

Cix =Kx+F
dt
Where

¢ 0o o0 --- 0 X

0 C,b 0 --- 0 xl

c=10 0 G -+ 0| ,=|?

0 0 0 0 Cun N

—(A+ ko) ko 0 o --- 0 F(t)

k2 —(kz + kg) k3 o .- 0 0
K = 0 k3 _(k3 + k4) k4 e 0 F = 0
0 0 0 0 kn 0

C is a diagonal N X N-matrix, where we have the heat capacities on the
diagonal. x and F are both N-dimensional column vectors, where F contain
only zeros, except from the first element, because the forcing will only have an
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effect on the very upper box. K contains the coefficients for the heat transfer
between the difference boxes. Since the boxes are located on top of each other
with no overlap, the coefficients on row 2 gives us the heat transport for box 2,
which only depends on the temperature in box 1 and box 3. The solution to
this system is given as:

t
x(t):/ e""ACTIAF(s)ds,

[o0]

where A = C" K. And as we did for the two-box model, we are only interested
in the temperature in box 1, because this will tell us the surface temperature.
For x, the response function is a sum of N exponentially decaying functions,
R(t) = (efAC7h), = ij\r:1 bre !/ Where 7 = —1/Ax and Ay are the
eigenvalues for matrix A, which are real and negative because of the matrix
—K is symmetric and positive definite [Fredriksen and Rypdal, 2017]. We can
then express x;(t):

x1(t) = / R(t — s)AF(s)ds, (3.24)

[s¢]

where AF(s) = F(s)/C;.

3.3.2 Fluctuation-response relation

As we did for both the one-box and two-box model, we will now look at the
auto-variance of x;, using equation 3.24,

cawmasn = { [ ro-m 8 [ r - L),

We use that F(s)ds = 0dB(S). dB(y1) and dB(y,) are uncorrelated, and their
expectation value can then be expressed using the Dirac delta function, 6(y; —
Y2). Assuming s > t, we can write this as

2 t
() = 5 / R(t — )R - y1)dy
1 /-
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t N N
(Z bke—(f—h)/fk) (Z bke—(s—h)/fk) dy1.
~% \k=1 k=1

We can rewrite this such that we can split up the parentheses and gather the
sums such that we get an expression where we can solve the integral,

2 t
(x1(t)x1(s)) = %ZZbkb e ke S/TJ/ eV TN/ T gy,

1 k=1 j=1

N

N N
= 2SS bt 1 tmy
J 1 + 1 :

k=1 j:l

=N

We can make a substitute where we set ¢ = s — t. This gives us an expression
for the correlation depending on r,

2 N N
C(r) = (x(Ox(t+ 1)y = = » > ——L=

2
C] k=1 j=1

q

(3.25)

Now we can integrate over the correlation function, using equation 3.25, and
solve the integral on the right-hand side, such that

bib; TkT

%) 2
/O C(r)dr = — ZZ o (3.26)

1k1]1

We want to take a look at x;(t), using equation 3.24, to find an expression
for the equilibrium climate sensitivity. We can insert AF(s) = F(s)/C; and
F(s) = Q0O(s), where 0(s) is a step-function which is O for all + < 0 and 1 for
t>0.

x1(t) = C%/_‘ R(t —5)0(s)ds = C%/o‘ R(t — s)ds.
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Inserting the expression for R(¢ —s) where R(t) = (e’AC7'),, = Zszl bre t/x
and integrating the expression we get that

0 N t 0 N
x1(t) = o Z bre /T / e’/ ds = x1(t) = = Z br1i (1 _ e—t/fk) .
= 0 N

After a long time, we will reach a new equilibrium due to a doubling of CO,. To
make an expression for this equilibrium climate sensitivity, we let t — oo,

Q N
ECS = li t)=—=— > brrg.
Am () =g ;1 K

We can also make an expression for the square of the equilibrium climate
sensitivity,

2

Q2 N Q N N
ECS2 = = Z btk | = = Z Z bibtit;. (3-27)
1

1 k=1 k=1 j:l

N

Now we want to take a look at equation 3.26, and show that it is possible to
rewrite this expression a bit such that it is easier to compare with equation
3.27. We leave the constants ¢2/C2, and want to look at how we can rewrite
the sums. We start by adding and subtract 7 from one of the 7; terms,

N N . 2 N N
DD = 3y e
- Tk + 7 - Tk + 7j

terms,

N N . 2 N N N N
DIPIRAELEY 3 JLLCURRLN o gl
- Tk + 75 , Tk + 75 Tk + 7 )

k=1 j=1

We can cancel the 7 + 7; from the numerator and the denominator in the first
fraction on the right hand side. j and k are only indexes and it could have
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been chosen the other way around. This means that the left-hand side and the
second term on the right-hand side is equal just with opposite signs. We can
then write this as

We can insert this into equation 3.26, such that our expression for the integral
over the covariance function looks like

) 2 N N
o

To simplify both equation 3.28 and 3.27, we can define
B? = (1/Cf) Zlk\]:l ijil bib;Ti7j, and insert this in equation 3.28 and rewrite
the expression such that it gives us an expression for B2,

2 o
B? = —2/ C(r)dr.
0= Jo

If we now take a look at equation 3.27, which can be written as ECS? = Q%B?
and insert the expression we just found for B2. Here we can also use what we
know of the symmetry of the correlation function [Kaper and Engler, 2013] ,
such that we can get rid of the factor 2. We get that

2 )
ECS? = Q—/ C(r)dr. (3.29)

o2

We want to make an expression for the low-frequency power spectral density.
We take the limits of the PSD as the frequency goes towards zero,

%) 00 2
}i_)mo S(f) = }1_)mo [ ) C(r)e 2" dr = [ N C(r)dr = éECSZ,

2
ECS* = =5(0) (3.30)
o
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where S(0) is the power spectral density, S(f), evaluated when f = 0. This
relation is now showed for one-box model, two-box model and for N-box
model, where we see that equation 3.13, equation 3.23 and equation 3.30 give
the same relation. The relation connects the ECS to the power spectral density
evaluated in the zero-frequency, where the power spectral density can be found
in different ways. Later we will look at two methods, especially one where we
use the fluctuations in historical temperature data.
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3.4 General Case

We have shown the equilibrium climate sensitivity relation for both one-box,
two-box and N-box models. Now we want to generalize it, so G(t) is now any
function while F(t) is still a stochastic process where F(s)ds = odB(s). We
start with the auto-covariance function, C(7) = {x(t)x(t + 7)), where

x(t) = /t G(t — s)odB(s).

When we insert x(¢) and x(¢ + ) into the correlation function, both includes a
variable s, but not necessarily the same s, so we will call one of them s; and
the other s, such that we are able to separate them,

C(r) = o /t /HT G(t — s1)G(t + T — s3) (dB(s1)dB(s2)) .

Then we assume that 7 > 0, such that we get rid of the double integrals, and
only get one integral. As mentioned before, the (dB(s1)dB(s2)) term will give
zero for all s; # sy, we can replace this with the Dirac delta function,

C(r) = o2 /t G(t —s)G(t +  — s)ds.

(Se]

We can do a change of variables, such that t" = t — s, ds = —dt, and we also
have to change the limits of the integral as well, where it will now go from oo to
o. But we will get a minus sign in front our expression for the correlation. We
can flip the integral limits, which gives us another minus sign. The two minus
signs becomes a plus sign instead. The auto-correlation will now be expressed
as

C(r) = o /OO G(t")G(t' + r)dt’ = o* /m G()G(t + 1)dt.

0 0

Now we have an expression for the auto-covariance with the a generalized G(t).
Then we want to find an expression for the temperature x(t), using equation
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3.8 but with G(t) instead of the exponential function. The forcing function
F(t) = QO(t), where 0(t) is still a step function due to a spontaneous doubling
of CO,. Since we have no forcing for t < 0, we can change the integral limits
such that it goes from zero to infinity,

x(t) = /Ot QG(t — s)ds.

We make a substitution where we set u = t — s and ds = —du. Using the same
trick here as before, by flipping the integral limits to get rid of the minus sign
we get from the substitution,

x(t) = Q/O G(u)du.

The equilibrium climate sensitivity can be found from this expression if we let
t — oo, to find the change in temperature after the climate has stabilized due
to an induced forcing because of doubling of CO, . We can then change the
upper integration limits to achieve an expression for the equilibrium climate
sensitivity,

ECS = O / " G,
0

This can be also be written as

ECS? = Q? /O B /O B G(1)G(s)dtds.

We then do a change of variables, where 7 = s — t and ds = dr. Then we
see that we get an expression that looks very alike the one we made for the
covariance function, such that we get

ECS? = S—j /m C(7).

[o¢]
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We have achieved the same expression for the equilibrium climate sensitivity
for a generalized G(t) as for the other functions, and as we have shown for the
other cases as well. If we want to take a look at the spectral density function
for the low frequencies, we take the limit as the frequency goes towards zero,
with gives us that the expression for S(0) is equal to the integral from minus
infinity to infinity over the correlation function, C(7). So we can say that this
yields for every response function G(t),

2
ECS* = =5(0). (3.31)
o

3.5 Choice of Temperature Response Function

In this thesis, we will use the case where we have a three-box model such that
the response function will be a sum of three exponentials

3

G(t) = Z cre /T,

k=1

where 7, k = 1, 2, 3 are three different time scales. We have some responses
that are happening on a short time scale, while others responses will occur after
a long time (longer time scales). The reason that we chose to use three time
scales is that we see from the fit we do to 4XCQO,-data that three timescales
describes the response well enough. Choosing too many can lead to too much
overfitting, which we will try to avoid. The surface temperature response is
still defined as

x(t) = [ G(t —s) - F(s)ds, (3.32)

(e}

where G(t — s) is the response function that we have set to be the sum of the

three exponentials, and the forcing term F(s), is a constant equal to a doubling
of CO; in the atmosphere and occurs at ¢ = 0. Inserting this response function
into equation 3.32,

t 3
x(t) =/ che_(t_s)/fk - Faxco,ds.
0 k=1
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Solving this integral and inserting the limits gives us this expression for the
temperature response

3

x(t) = Foxco, Z Ck Tk (1 - e_t/rk) .

k=1

We want to find an estimate for the equilibrium climate sensitivity, which is
the temperature after the climate has reached a new equilibrium due to the
forcing that was introduced. We take the limit as time goes to infinity,

3
ECS = th—>nolo T(t) = tll)n(}o FZXCOZ ; Ck Tk (1 _ e—t/‘z'k)

3

ECS = F2><C02 Z Cr Tk - (3.33)
k=1

3.6 Power Spectral Density and ECS

The previous section showed us that both in one-box model, two-box model,
N-box model and a general case we got the same relation for ECS?, equation
3.13, 3.23, 3.30 and 3.31. Such that we see that ECS? o 5(0). Equation 3.27
we also get that ECS oc ), by 7x. This relation can also be shown using N-box
model, where we focus on the upper box and the spectral density of that box.

The temperature fluctuations in box number one, the one on the surface, in a
energy balance model of N vertically distributed boxes is given by

N
x1(t) = Z brxy k(1)
k=1
[Fredriksen and Rypdal, 2017], where

xpk(t) = / t e =)gF(s)  and  dF(s) = odB(s).

(o]
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Using the Fourier transform on x; ,(t), using equation 3.5 we get that

F(f)

iw+ wg

xl,k(f) =

where

w=2xf and Wp = ——.
Tk

The power spectral density of x;(t) becomes

$i(f) = Jim ~(m(P).

Inserting the expression for x;(¢) and x; g,

N 2
Z by - Fif) >
T iw + i

_ 1 P2 < b N bi
_TEEOT(l Sl kZ:;(wkHw)';(Wj—iw) .

$1() = Jim %<

If we take a look at the last parenthesis and write out the denominator and
multiply it with its complex conjugate,

bkb] Wiw; + w? — iw(w; — wk))

BE e[

k=1 j=1 ;
N i bb; wkwj + wz) _ brbjiw ( P — wk)
k=1 j=1 (w + wz) (wj2 - wz) (Wk + wz) (w]2 - wz)
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The last term, including (w; — wi) can be cancelled because of symmetry, such
that we get

N Y bib wkwj+w)
S1(f) = lim —(IF(f)I ZZ

k=1 j=1 (w + wz) (WJZ - wz)

If we evaluate this spectrum in the lower frequencies, where f — 0, we get
that w = 27 f = 0. The spectrum evaluated in f = 0 is

bib;
$1(0) = lim = (|F(0)P ZZ - WkWJ. (3.34)
=1

If we insert the expression for wi and w;, we get that S(0) oc >; 3., bbjrx ;.
From equation 3.27 we have that ESC? o S(0) o« Y} 3 j bbjTitj, which is
consistent with ECS o ) by k.



Methods and Results

Using data from the models in Coupled Model Intercomparison Project Phase
5 (CMIP5) [Taylor et al., 2012], we will compare the response to 2XCO, using
4XxCO2-runs and historical runs. The 4xXCO,-data comes from experiments
where the concentration of CO, in the atmosphere is quadrupled instanta-
neously. We will also study the power spectral density of the fluctuations in
both scenarios. We will discuss if we are able to use historical data to predict the
future. We can use Gregory-plots to make estimates for ECS using 4xXCO,-data
directly, but we can not use this method for historical data. Therefore when we
look at historical data we need to try to estimate the response due to historical
forcing.

33
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4.1 Adjust response to 4xCO,

Instead of using Gregory-plot, we will now look at another method where we
find a fit to the change in temperature using a sum of three exponentials as the
response function (chapter 3.5). Then, the temperature response to a doubling
of CO, can be written as

3

T(t) = Faxco, Z Ck Tk (1 - e_t/Tk) (4.1)

k=1

where 71 are the time scales and cj are constants. Assuming a linear response,
we expect 4xCO,-data to be well approximated by 2X equation 4.1. Using
4xC0,-data from climate models (CMIP5), we want to make a fit using the
response function in equation 4.1. We assume that r = (0.7, 9, 354) is constant,
such that we only need to estimate the product 2 - Foxco, - ¢k * Tk (€quation 4.1).
The model is linearly dependent on these parameters, such that they can be esti-
mated using linear regression. To avoid negative estimates we use non-negative
least squares (figure 4.1). The choice of time scale and how the results change
due to the choice will be discussed later in this chapter, but for now, we choose to
use 7 = (0.7, 9, 354). This is the mean of the time scales estimated for different
general circulation models (GCMs) [Proistosescu and Huybers, 2017].

Using CMIP5-data for both control run and 4XxXCO, run, we make a plot of the
change in surface temperature due to a quadrupling of CO, in the atmosphere.
Using these fixed time scales, we make a fit to the plot of temperature change,
which is shown in figure 4.1. With three different exponential responses, we
also allow to have up to three different feedback parameters. However, we
estimate only one value of the ECS. To investigate the time scale dependence
of the feedback parameter, we would need additional radiation data, an in
Proistosescu and Huybers(2017).
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Abrupt4xCO, AT (NorESM1-M)

—

v

Figure 4.1: Adjusted response to 4XCO-, data using climate model NorESM1-M. The
red lines are the fits for each time scale, and the smooth black line is the
combination of the three of them and a fit to the 4XCO, data. The time
scales used are 7 = (0.7, 9, 354).
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4.2 The response on longer time scales

Earlier we looked at an expression for the equilibrium climate sensitivity,

N

ECS = Faxco, ) | KTk,
k=0

where 7; are time scales and cj are the constants. We will in this thesis use
N = 3, so that we have three time scales. But when looking at historical runs
we might not able to see the response from longer time scales. We will therefore
check how well we can predict the response with three time scales using only
two time scales. To look at the relation between them we use 4XCO,-data
from CMIP5. The only uncertainty in using the two first time scales, is that
we are missing information about the response on longer time scales. Figure
4.2 shows the estimates of ECS using the first two time scales and using all
three of them. Gives a scatter plot, and using a linear fit, we get a red line
that is a fit to the estimates. The correlation is good enough such that it can
be used to predict ECS when we miss information about the longest response.
The equation for the red line is found to be

ECS, = 0.02782 - ECS3 + 0.8601.
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Figure 4.2: Using the expression for ECS containing the sums, ECSs is the sum of all
the three time scales and ECS; is the sum only containing the first two
time scales. Here using 7 = (0.7, 9, 354). We will talk about the choice of
time scale later. The estimates are made for 16 CMIP5 models.

4.3 Adjust response to historical data

Using historical data we want to estimate the temperature response to historical
forcing. Figure 4.3a shows the historical run temperature for the NorESM1-M
model. We also make a plot of the historical forcing, using the forcing that was
computed by Rypdal et al (2018) (figure 4.3b). This forcing was computed by ad-
justing the low-frequency part of the Hansen forcing to the low-frequency part
of Forster forcing [Forster et al., 2013] for each model. As mentioned, when we
want to look at historical data we need to consider the response due to historical
forcing (therefore using the Hansen forcing). Four of the models (GFDL-CM3,
GFDL-ESM2G, GFDL-ESM2M and HadGEM2-ES) didn’t have any record of the
forcing for the first ten years. Looking at the plot of the change in surface
temperature, figure 4.3a, we see that the temperature in overall is, as we know,
increasing. We see that we have some valleys in the temperature plot, years
where the surface temperature have been a bit lower, but the trend is increasing.
The forcing plot (figure 4.3b) is showing the change in forcing, where we see
that the forcing overall is increasing. There are some valleys in the forcing
plot as well. These valleys in the forcing are mainly due to volcanic eruptions
and have a net cooling effect on the surface temperature [Gregory et al., 2016].

To compute the temperature responses (Ty) to the forcing (F(t)) we use
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Figure 4.3: Historical average global surface temperature and modified Hansen forcing
(historical), both for climate model NorESM1-M.

T = cre /™ « F(t),

where * denotes convolution and k = 1, 2, 3. F(t) is the historical forcing, and
G(t) is the response function. We get a total response

T = /t G(t — s)F(s)ds,

(o]

where G(t) = Zi:l cre’! /™ (from chapter 3.5). Using historical data there
are two ways we can calculate the temperature response. We can use the
parameters we found using 4XCO, (divided by the forcing from 4xCO, and
7 such that we only get out the constants c;) to estimate the historical
temperature response to the modified Hansen forcing. The other method is to
use least squares to make a fit to the historical temperature (figure 4.3a) such
that we get new estimates for the constants (figure 4.5). Using the last method
we find the temperature responses to the modified Hansen forcing.

We use linear regression because we assume that the total temperature response
in linearly depending on ¢y (figure 4.4). Also in this case we use non-negative
least squares to avoid negative constants cg.

Using the historical runs from CMIP5, and comparing to the temperature
responses we found using the fixed time scales and the modified forcing,
we see that the linear response describes the main structure of the modelled
temperature (figure 4.5). But there are some fluctuation that the linear response
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Temperature responses to forcing (NorESM1-M)
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Figure 4.4: Temperature response to modified Hansen forcing. The different color
represent responses to different time scales. Using climate model NorESM1-
M.

does not describe. The difference between the the linear response to modified
forcing and modelled temperature (historical temperature), T — AT, will be
further analysed in chapter 4.5.

Temperature response to forcing (NorESM1-M)

0.8

—— Linear response to adjusted forcing

061 Historical run

T(t) [K]

0 25 50 75 100 125 150
Time [yr]
Figure 4.5: Temperature responses to forcing, where we both see the linear response
to modified forcing and the modelled temperature. Done by using non-

negative least squares to find new constants ¢ and not using the ones we
found from 4XxXCO,-data.



4.4 /| COMPARING MODELS 39

4.4 Comparing models

The parameters we found from the fit to historical data together with the
modified Hansen forcing is used to predict the temperature response due to a
doubling of CO,. This is then plotted together with the temperature response
using 4XCO,-data from CMIP5. Assuming linearity, such that the fit to 4xXCO,-
data will be a fit to 2XCO,, if we divide it by 2, we are able to compare the two
methods.

Estimating AT, both methods (NorESM1-M)

= Method 2
= Method 1

0O 20 40 60 80 100 120 140 160

Year after 1850

Figure 4.6: Temperature change to a doubling of CO, by two different methods.
Method 1 is fitting three exponentials to 4XCO;-data (and divide it by 2
for 2xC0O,-data). Method 2 is fitting linear response to modified forcing
and finding the temperature response to 2XCOx.

For each of the 16 models we use, we compute the difference between the
temperature responses estimated by the two methods. The results are shown
in figure 4.7a, and the standard deviation of these curves for each time step
are shown in figure 4.7b. As we see from figure 4.6, method 2 (from historical
temperatures) is giving us a much larger increase in temperature than method
1 (from 4xCO,-data). This is not always the case for all the models, as we see
in figure 4.7a, some of the models are above the x = 0 line, which means that
method 1 gives a higher increase in surface temperature change.

The average for all models, given by the dotted line in figure 4.7a, tells us that
using historical temperature data will in most models give an overestimation of
the 2XxXCO,-data (given linearity). But is the overestimating systematic? Figure
4.7a shows that there is a huge spread between the models. If the difference
for all models was the same, such that all the curves in figure 4.7a would look
the same and would lay on top of each other, we would be able to correct
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for the bias. But this is not the case. By looking at the plot we see that after
150 years the spread is around 5 degrees K. The standard deviation in figure
4.7b is increasing with time and will give us a huge error in estimates of the
equilibrium climate sensitivity.

o o © r r &
o ® o N »

kS

Method 1 - Method 2 [K]
stanard deviation (o)

o
o

4
o

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
time [yr] time [yr]

(@) The coloured lines show the difference (b) The standard deviation of the curves
between the two methods, and the in (a) for each time step.
black dashed line is the mean value
of all models at each time step.

Figure 4.7: The difference between the two methods and the standard deviation of
the curves for each time step.

4.5 Relation between power spectral density and
the equilibrium climate sensitivity

The relation we found between ECS? and the power spectral density, using
both one-box (equation 3.13), two-box (equation 3.23), N-box (equation 3.30)
and the general case (equation 3.31), is

2
ECS? = =5(0).
o

We will try to find estimates for all the parameters such that we can make an
estimate for ECS. Because of the uncertainties in the estimates, we might not
be able to detect the relation even though it exists, such that we will also look
at the correlation. When we look at historical runs, there is no direct way to
make an estimate of ECS, but we can find estimates for these other parameters.
First we will do this for the control run of temperature to try to compute a
so-called unforced variability. Then we will look at 4XCO, and historical data.
The reason we do this for the control run first is because we get an extra
uncertainty using 4xXCO, and historical data because we have to estimate the
unforced variability.
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The estimate of S(0) is found in two ways. The first is to average over S(f)-
values for the lower frequencies. The second method is to fit a function to
the estimate of the spectrum on the form S(f) = Zlk\]:] ﬁ We will talk
more about the second method when we use this. Using data from the CMIP5
archive, we can find an estimate for Q and ECS directly from Gregory-plot. As
mentioned, we assume a linear framework and the change in average global
surface temperature is defined as N = —AT + F, where A is the feedback
parameter found by linear regression using Gregory-plot, T is the temperature
from control run and N is the net radiation. Rewriting it such that we get an
expression for the forcing, F = N + AT, we can find the variance (%) by taking
the variance of F.

To make an estimate for S(0), we will use method 1, where we estimate the
power spectral density of the control run (T) and use that

S(0) ~ exp(mean(log(S(1 : k)))), where k is an integer low enough such that
it represent the lower frequencies. However, it must also be high enough to
give an estimate with low uncertainty. The power spectral density is estimated
using the windowed periodogram with a Hann-window . This is used for all
power spectral densities in the thesis. We test different values for k, and plot the
values for ECS? against the estimates of S(0) for all models (figure 4.8a) and
the same for ECS? against S(0)Q? /0?2 (figure 4.8b). To get a decent correlation
we had to include the first 25 points, such that k = 25. Using the first 5 points
only gave a correlation of 0.28 between ECS? and S(0) and 0.07 between ECS?
and S(0)Q? /2. We also see that ECS? and S(0) has the highest correlation (for
any k), and if we check the correlation between ECS? and S(0)Q? or S(0)/c?2,
the correlation decreases. There are uncertainties in all parameters, and the
product of all parameters appears to have the greatest uncertainty. So in future
analysis we will only study the correlation between ECS? and $(0).

p = 0.72054

0.01 002 003 004 005 006 007 008 0.09
S(0)

(a)

p =0.31372

é 1‘0 1‘2 1‘4 1‘6
S(0)Q%/0? [K?]

(b)

18

Figure 4.8: For k = 25 and using Pearson correlation, we find the correlation between
ECS? and S(0) and between ECS? and Q?S(0)/02, where the correlation
are shown in the plots.
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Now we study the residuals from 4XCO, (figure 4.1) and historical data (figure
4.5). The residuals are computed by taking the difference between the data and
the fitted curve. Using these residuals we can take the power spectral density
and make a plot of the PSD of the residuals together with a fitted function S(f),
where

o
+ =

2
S(f):kzzéw-

ck are two parameters that are found by fitting S(f) to the PSD of the residuals.
wi = 1/7x, where 7 are the first two time scales and w = 27 f. By taking out
the first element of S(f) we get an estimate for S(0) and we can then compare
to the Gregory-ECS values. Here we used N = 2, so that the sum only includes
two terms. We do have three different timescales, but here we only use the two
first because we only have data for 150 years while the last time scale operates
at even longer time scales such that it will not have any impact on these 150
years.

Plot for model: NorESM1-M Plot for model: NorESM1-M

— Residuals — Residuals

Adapted fit . _/\ /_\ /\ Adapted fit
AN .
SRR TRl

102 10 10 10
Frequency [Hz] Frequency [Hz]

(a) PSD for the residuals between the (b) PSD for the residuals between the

Power spectral density (PSD)
Power spectral density (PSD)

data and the fit for the adjusted re- data and the fit for the forcing re-
sponse to 4XCO, (figure 4.1). sponse using historical data (figure
4.5).

Figure 4.9: Plot of the power spectral density for the residuals and a fit to this using
logarithmic axis and 7 = (0.7, 9). This is done for model NorESM1-M.

Using this method, method 2, we use information about the PSD for all fre-
quencies to make an estimate of S(0). It is hard to tell whether this method is
better than method 1 or not. Figure 4.11 shows us the result from using method
1 and we can then compare it to figure 4.10.

For the historical data, we mentioned another method to estimate residuals,
using the constants ¢; found from 4XxCO,-data instead of estimating new
constants. We also took a look at what results that would give us. The residuals
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Figure 4.10: Using Pearson correlation we find that the correlation between ECS? and
S(0) from 4xCO,-data and the correlation between ECS? and S(0) using
historical data. This is done using method 2, where we fit a function to
the plot of the PDS.

using this method are slightly different, such that also the estimates of the
PSD of the residuals were a bit different with even larger peaks and valleys,
while the fit to the PSD (yellow curve in figure 4.9b) looked almost the same.
Making estimates for S(0) gave approximately the same plot using method 2,
where we used the fitted curve, with the same correlation at 0.20 (figure 4.10b).
Using method 1, where we took the mean of the 25 first points of the PSD, we
got a plot that was a bit different from figure 4.11b with a correlation of 0.46.
So these two methods of estimating the constants c; gave a slightly different
result, but which method is better than the other is hard to determine.
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Figure 4.11: Using Pearson correlation we find that the correlation between ECS? and
S(0) from 4xCO,-data and the correlation between ECS? and S(0) using
historical data. This is done using method 1, where we take the average
of the 25 first data points of the PSD.
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4.6 Time scales

Now we will take a look at the sensitivity to the choice of time scales. We use
data from Proistosescu and Huybers(2017) extra material, where they have
given three different time scales for each model. From their time scales we
make 1000 random samples of 7 = (17, 7, 73), and repeat our analysis. We will
just look at the results from one model, while the results from all the models
are included in appendix A.

Estimated temperature response to 2xCO; [K]
Estimated temperature response to 2xCO, [K]

i

0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140

Time [yrs] Time [yrs]
(a) 4xCO,-data from CMIPs5 for (b) Historical data from CMIPs5 for
different time scales different time scales

Figure 4.12: The same plot as in figure 4.6 (response to 2xXCO5y), the fitted lines
for both methods but in two different plots here. Using 1000 different
iterations, where each iteration has a different time scale.

Figure 4.12a shows the response to 2XCO, using 4XCO,-data. We see that
the results do not vary much due to 1000 different choices of time scales.
Figure 4.12b shows the response to 2XCO- using historical data. Here we see
that the responses are sensitive to the choice of time scales, especially for the
last 100 years of the total of 150 years. For each iteration we also find the
difference between the two methods. Figure 4.13 shows the difference between
the the two methods for all the iterations. Also here, we see that we get a huge
spread since our method is sensitive to the time scales and the other method
is not.

As we just showed, the historical data is much more sensitive to the choice of
time scales. For each of the 1000 samples, we also construct a residual and
study how sensitive estimates of S(0) are to the choice of time scales. So for
each of the 16 models that are included, we make a 1000 different S(0)-values
using method 2 from the difference between the fitted temperature response
and the historical temperature data. From these 1000 values for S(0), we can
find the mean and standard deviation, and make a plot between ECS? and
S(0) with error bars for the S(0)-values.
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Figure 4.13: The difference between the two methods (figure 4.12a and figure 4.12b)
for each of the 1000 iterations, where each iteration has a different choice
of time scale.
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Figure 4.14: Relation between ECS? and S(0) (using method 2 to make an estimate),
with error bar and a fitted line to the mean values represented by the
dots. The correlation between ECS? and S(0) is approximately 0.20.






Results for CMIP6

The first data from Coupled Model Intercomparison Project Phase 6 (CMIP6)
are now available. We study results from four different models and two of
them include other experiments than 4xCO,, like 2XCO, and 0.5XCO5. Using
data from CMIP6 we want to check if Gregory plots for CMIP6 show differ-
ent results than CMIP5. In addition, we use these data to test the linearity
hypothesis.

Using 4xCO,-data we make a Gregory plot and compare some of the models
from CMIP5 and the models we got from CMIP6. REsults are shown in table
5.1. The Gregory plots are only for 4XCO, data. The IPSL-model has one
from CMIP5 and one from CMIP6, the CNRM-model has one from CMIP5
and one similar to CMIP6, but also an Earth system model from CMIP6. The
GISS-model has one new model from CMIP6 and two models from CMIP5.
The model GISS-E2-1-G (from CMIP6) is a Atmosphere General Circulation
Model (AGCM), while the other models are Atmosphere and Ocean General
Circulation Model (AOGCM).

We can also look at the differences between the models from CMIP5 and CMIP6
by including both in a Gregory-plot. This is done for the IPSL-models and the
GISS-models, but we see from table 5.1 that all the models from CMIP6 have
a higher estimate for ECS than the models from CMIP5. The forcing is not
necessarily lower or higher in the CMIP6 models, but the feedback parameter
is lower in the CMIP6 models compared to the CMIP5 models.
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Table 5.1: Comparing models from CMIP5 and CMIP6 using Gregory-plot.

ECS Foxco, -Feedback parameter

IPSL-CM5A-LR (CMIP5) 4.05 3.08 -0.76
IPSL-CM6A-LR (CMIP6) 4.69 3.18 —-0.68
CNRM-CM5 (CMIP5) 3.70 3.79 —1.03
CNRM-CM6-1 (CMIP6) 4.79 3.70 -0.77
CNRM-ESM2-1 (CMIP6) 4.74 2.96 -0.63
GISS-E2-H (CMIP5) 2.25 3.75 -1.67
GISS-E2-R (CMIP5) 2.05 3.71 —-1.81
GISS-E2-1-G (CMIP6) 2.60 3.84 —1.48
IPSL-model for CMIP5 and CMIP6 0 GISS-model for CMIP5 and CMIP6
—— IPSL.CMSALR — GISS-E2R
35 IPSL-CMBA-LR 35 GISS-E2-H
30 30 GISS-E2-1.G
25
15
3, 3
05
0 e e
R 1 2 3 1 5 55 05 10 15 20 25 30
AT [K] AT [K]
(a) Gregory plot for the IPSL-models (b) Gregory plot for the GISS-models

Figure 5.1: Using 4xXCO,-data for the models and comparing the models from CMIP5
and CMIP6 in Gregory-plot. Where AT and AN is divided by 2 such that
we get the result for 2XCO,.

Since two of the models (IPSL-CM6A-LR and GISS-E2-1-G) have different
runs, not only 4xXCO, as in CMIP5, we can use the Gregory method for all the
different scenarios and see if they support the assumption of linearity. When
we assume linearity, we say that the temperature change for 4XCO, is the
double of the temperature change for 2xCO,, and the negative temperature
change for 0.5xCO5 is the same as for 2XCO,. This is based on linearity in the
forcing as well, where we assume that F4xco, = 2 - Faxco,, which comes from
the assumption

C
FC02 =5.35 log (C_) ,
0

where C is the CO, concentration and Cy is the reference level of CO5 concen-
tration, usually pre-industrial. The number 5.35 comes from the Third IPCC
rapport (TAR), but varies between models as we can see in table 5.2. For the
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IPSL-model we have data for 0.5XCO,, 2XCO, and 4XCO». For the GISS-model

we have data for 2xCO5 and 4XCO,.

Table 5.2: Comparing different types results using different kinds of data from CMIP6

Model, type of data Temperature change forcing feedback parameter
[PSL-CM6A-LR, 0.5XCO5 -3.96 -2.75 —0.695
IPSL-CM6A-LR, 2XCO, 3.85 3.366 -0.873
IPSL-CM6A-LR, 4XCO, 9.39 6.35 -0.676
GISS-E2-1-G, 2XCO, 2.55 3.71 -1.46
GISS-E2-1-G, 4XCOy 5.19 7.68 —1.48

In our comparison of the different experiments from the same models, we
also compare the time evolutions of the temperature changes. As in figure
4.1, three exponential responses are fitted to the temperatures. We do this for
all the different data and scale them such at all of them are a response to
2XCO5. This difference between 4XCO, and the 2XCO, could be due to the
estimates of forcing. But since the forcing estimates also contains uncertainties,
we can not say for sure. In figure 5.2a we see that the 0.5 and the 2xCO, data
give approximately the same response to 2XCO;, while the 4xCO,-data have
a higher estimate, but lies with approximately the same distance to the two
other curves at all times. In figure 5.2b we see that the responses using both
2XCO5 and 4XxXCO, are not so far from each other, but since the difference
between them is changing a bit, it is hard to tell how they would have looked
if we looked at a longer time scale.

Temperature change for model: IPSL-CM6A-LR Temperature change, model: GISS-E2-1-G

— axC02
2xC02
— 0.5xC02

— 4002

Z
5 |

2.0 wCO2 f“‘_—___,

1.0
1 0.5
0 0.0
0 20 40 60 80 100 120 140 0 20 40 60 80 100
Year after 1850 Year after 1850
(a) Comparing response to 0.5, 2 and (b) Comparing response to 2 and 4xCO;-
4xCO5-data for model IPSL-CM6A-LR data for model GISS-E2-1-G

Figure 5.2: Using data from CMIP6 and compare the response the different types of
data available. If the assumption of linearity holds, we will get the same
response from 0.5 - 4xXCO, and —0.5XCO, as for 2xCO,.



50 CHAPTER 5 / RESULTS FOR CMIP6
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Figure 5.3: All the different runs of historical temperatures (red curves) plotted to-
gether with the mean (black curve) for model IPSL-CM6A-LR. The mean
is found by taking the mean of the 31 different runs in each time step.

The CMIP6 model IPSL-CM6A-LR has 31 different historical runs. Since we
don’t have similar forcing estimates available as for CMIP5, we estimate the
expected temperature response to historical forcing as the mean of these 31
runs. Subtracting the mean for each run, gives us 31 different residual vectors
that we can make a power spectral density of. This gives us 31 estimates of S(0).
S(0) is estimated using both methods mentioned earlier, and we get quite dif-
ferent results. First using method 1, the mean of the windowed periodogram is
computed for the 25 lowest frequencies. We get that the estimates of S(0) vary
from 0.04 to 0.20 with a mean value of all the estimates of 0.09 and standard
deviation 0.04. Using method 2, where we fit a function to the PSD, we get 31
different estimates between 0.05 and 1.31, with a mean value of 0.44 and stan-
dard deviation of 0.35. Figure 4.14 shows the difference in estimates of S(0) due
to time scale. These uncertainties are much smaller compared to the difference
in estimates we get looking at these different historical runs. So the greatest un-
certainty in the estimates of S(0) lies within the realisation of the historical run.



Discussion and Conclusion

In this thesis we have looked at two different ways to estimate the temperature
response to a doubling of CO, in the atmosphere, using 4xCO, data and
historical data from CMIP5. This was first done for one choice of time scales
and we saw that using historical data gave a stronger response than using
4xCO,-data (figure 4.6)for most models. By looking at 1000 different choices
for time scales, we see that the uncertainties of the historical estimates are
also very large (figure 4.13 and appendix A). When we use these two methods
to try to say something about the ECS, we would need to know the response
after it has reached a new equilibrium due to an abrupt doubling of CO; in the
atmosphere. We only have data for 150 years using historical and 4xCO,-data.
The response due to 4XCO,-data (figure 4.12a) looks like it is going to stabilize
and have a much more flat curve than the response to historical data (figure
4.12b) which looks like it will increase even more before starting to flatten
out.

Using the fluctuation-response relation we want to find estimates for the spec-
tral density evaluated in the lower frequencies (S(0)), such that we may be able
to use this to make an estimate for the ECS. We used two different methods
to make an estimate for S(0): the method where we take the mean of the 25
first points (method 1), and the method where use the information from all
frequencies to make a fit and take out the first element (method 2). Using the
control run and method 1, we get a quite good correlation between ECS found
by Gregory-plot squared (ECS?) and S(0)(correlation ~ 0.72). When we use
both method 1 and method 2 for the historical data, we find a correlation of
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0.56 (method 1) and 0.20 (method 2) for the time scales 7 = (0.7, 9, 354)
years. For 4XCO;-data we find a correlation of 0.05 (method 1) and —0.03
(method 2). We see that method 1 gives us some better correlation in general
and especially for the historical run compared to using 4xXCO;,-data. We took
a brief look at the results we could get using the coefficients from 4xXCO,-data
to estimate temperature response to historical forcing, instead of estimating
the parameters from historical temperatures. In this way we got a different es-
timate of the residual. We got the same correlation as with historical estimates
of ¢ using method 2 (using the fitted curve to the PSD), but slightly lower for
method 1 (the mean of the first 25 data points from the PSD). As we have seen
previously, historical estimates of ¢, have a large uncertainty. On the other
hand , using estimated c; from 4XCO, experiments assumes a linear response
and there may be large uncertainties associated with this assumption as well.
We have no arguments that say that one method is better than the other (for
estimating cx). Both methods will include uncertainties and it is hard to say
which will have the greatest uncertainty.

We choose to only look at the correlation between ECS? and S(0) since we
saw that the correlation decreased a lot when including other parameters.
The correlation for the control run is much better than the ones we get from
historical and 4xCO4 data. This can be because of the choice of time scale that
may affect the estimate of S(0), or maybe the linearity assumption does not
hold. There is also a great uncertainty in the estimates of ECS. If we look at
figure 4.14, where we include the 1000 different choices of time scales and look
at the correlation between ECS? and the mean values of S(0) (for historical run,
using method 2), we get approximately the same correlation, 0.200, which is
still a pretty low correlation. From figure 4.14 we see that the estimates of S(0)
changes with the choice of time scale and that for some models S(0)-values
vary a lot more than for others. For the models in CMIP5 we only have one
analysed historical run per model, but for the IPSL-model in CMIP6 we have
31 historical runs. By making a fit to all these runs (figure 5.3) and look at
the difference between the fit and each of the 31 historical runs, we can get
31 different estimates for S(0) for this model. From this we get estimates that
vary between 0.04 and 0.20 for method 1, and between 0.05 and 1.31 using
method 2. We have just seen how much difference we can get in our results
due to the choice of time scale. This shows us how much uncertainties there
is in the historical runs, which leads to an even greater uncertainty in the
S(0)-values. The uncertainties from using the different realizations are larger
than the uncertainty from the choice of time scales.

The pattern of warming have a lot to say when we talk about climate sensitivity,
and if the future warming pattern is different to the past, then we might not be
able to predict it using historical records [Andrews et al., 2018]. The so-called
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pattern effect is something that need to take into account. Such as sea surface
temperature (SST) and sea ice will have an impact on the warming pattern.
This are factors that we don’t account for in this thesis. Andrews et al. (2018)
used historical runs and included the change in sea ice and the sea surface
temperature, and compare it to an abrupt 4XCO, for the corresponding models.
By doing this they got a higher estimate from the forced abrupt 4XCO, than
from using the historical records with adjustments, which is the opposite of
what we got from our results. The effective climate sensitivity, the sensitivity
on a timescale of about a century, for 4xXCO,-data, Andrews et al. (2018) found
to be around 2.4-4.6K, which is not so far from the results we got looking at
the response for 4XCO,-data for all the models in appendix A. Using historical
SST and sea ice changes, they got an effective climate sensitivity about 2K. Our
results are very dependent on the time scale, but in most cases we estimate
higher values. But we see that both using the 4xCO, and historical data gives
different estimates for the effective climate sensitivity, and as they say in An-
drews et al. (2018), "This is in contrast to decades of studies that explicitly or
implicitly assume that the relationship between historical temperature change
and energy budget variations provides a direct constraint on long-term climate
sensitivity" (p.8490). We see from our results that the feedback from historical
records and the feedback due to changes in the CO,-concentration in the atmo-
sphere may lead to different estimates for ECS. So maybe we can use historical
records to estimate the future if we take into account the pattern effects. We
see that our methods and results give very high uncertainties, such that we
can not see any clear connection between ECS? and S(0). Using 4xCO-, and
historical data gives results that differ a lot, and that the historical data may
not be used directly such as we used the data.

Both Otto et al. (2013) and Dessler and Forster (2018) have also estimated ECS
from the historical period, just with additional data. Using the same equation
for energy balance, N = —AAT + AF, where N is the heat uptake in the climate
system such that N = AQ = Ej, — Eoy. They rewrite A using Fo, = ECS - A,
where Fy, is the forcing due to a doubling of CO,. This gives an expression for

ECS
Fo, AT
ECS =

~ AF-AQ’

Using information about AQ they are able to say more about ECS than we are.
They estimate the change in total heat uptake of the Earth system using data-
based estimates for the main components of the system (ocean, contonent, ice
and atmosphere) [Otto et al., 2013], or observations of radiation using satelite
data [Dessler and Forster, 2018].

We assume linearity while doing this, but is the response really linear? Is the
response to a 4XCO, the same as twice the response to 2XCO,? Using CMIP6
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and comparing the different types of data that are available for IPSL-CM6A-LR
and GISS-E2-1-G, we can try to say something about this linearity assumption.
The negative of 0.5XCO; and the 2XCO, for the IPSL-model give approximately
the same response, while the 4XCO, - % data gives a slightly higher response.
Looking at figure 5.2a, we observe that the difference between the response
from 4xCO, - % and 2xXC0,/—0.5XC0,, is almost constant. This means that
if there is some kind of bias to correct for, it might as well end up giving the
same estimate as the two others. Looking at figure 5.2b, where we see 2XCO,
and % - 4XCO,, for the GISS-model, we see that the responses lay close to each
other, but it is hard to tell how they will behave after the 150 years. They may
both flatten out and give a quite similar results, or they may continue to grow
apart from each other. This is only done for these two models, since that was
the only available models with these experiments in CMIP6 at this time. If we
were to use more models and maybe more tests per model, we might be able
to draw a conclusion for the linearity assumption. It might look linear for some
of these results, but we don’t have enough test results to make a conclusion.

In table 5.1 we compare CMIP5 and CMIP6 parameters from Gregory plots.
We see that the CMIP6 models give a higher estimate for ECS than the CMIP5
models. The difference is especially large between the two IPSL-models. The
CMIP6 GISS-model is an AGCM model while the other GISS-models are AOGCM
models. The AOGCM has an interactive ocean, and will therefore have a slower
response than AGCM models. So far, the updated models (CMIP6) gives us a
higher estimate for ECS.
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6.1 Conclusion

Using fluctuation-response relations for linear stochastic climate models and
historical data (from 1850 to present) we have looked at the equilibrium
climate sensitivity. Looking at both the response to historical forcing and the
fluctuations around the response we have seen that we have great uncertainties
in the relations, the choice of time scale and all the estimates that are done.
Such that we cannot prove that we can use historical records to say something
about the equilibrium temperature, using the relations and methods that we
have used. We cannot say if it is the relation that doesn’t hold or if it is the
uncertainties that gives us this result.

Other methods that have smaller uncertainties will maybe show that we are
able to use historical records. Also using additional data as Otto et al. (2013),
might help to be able to use historical data to estimate the ECS. The time period
1850-present is too short for estimation of ECS, and we may ultimately have to
rely on longer reconstructed temperature time series or satellite measurements
of Earth’s energy imbalance.






Additional plots for testing
the different choice of time
scales

When Proistosescu and Huybers (2017) estimated linear responses functions
for GCMs, they employed a Bayesian method also estimating the time scales.
By doing sampling from this selection of time scales, we are able to see how
the different models react to the different choice of time scales. We make 1000
different samples and compute responses as in figure 4.1 (adjusted response
to 4xXCOy), figure 4.5 (response to forcing using historical data), and the
difference between these two methods, such as shown in figure 4.6 and 4.7a.
This is done for all the 16 climate models that are included in this thesis.
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(a) Adjusted response to 4 X CO4, computed as in figure 4.1.
Further this response is divided by 2, to convert it to the
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(c) Difference between the responses in (a) and (b).

Figure A.1: Model ACCESS1-0
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(c) Difference between the responses in (a) and (b).

Figure A.2: Model CanESM2
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Figure A.3: Model CNRM-CM5
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Figure A.4: Model CSIRO-Mk3-6-0
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Figure A.5: Model GFDL-CM3
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(c) Difference between the responses in (a) and (b).

Figure A.6: Model GFDL-ESM2G
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Figure A.11: Model IPSL-CM5A-LR
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Figure A.13: Model MIROC-ESM
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(b) Response to forcing using estimated historical data as in fig-
ure 4.5, and then converted to the corresponding response
to 2XCO0,, as in figure 4.6.
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Figure A.14: Model MPI-ESM-LR
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Figure A.15: Model MRI-CGCM3
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Fourier Transform

Here we look into some characteristics for the Fourier transform, and show
these two equations:

g=h=4(f)-h(f) (B.1)
g-h=4(f)*h(f) (B.2)

where the hat represents the Fourier transform. The definition of the convolu-
tion between the functions g and A is

(g% h)(t) = / " g(t - )h(s)ds. ®.3)

By applying the Fourier transform, we change a function from the time domain
to the frequency domain,

2= [ xwer B.4)

(s}
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and from the frequency domain to the time domain using the inverse trans-
form

x(t) = [ m’%(f)ez”if ‘df, (B.5)

[Kaper and Engler, 2013].

To show the relation (B.1) we start with the convolution between two functions
and then applying the definition of a Fourier transform, equation (B.4), and
the definition of the convolution between to functions, equation (B.3), and do
a change in variables:

grh= / (g = hye 2"t qt = / / g(t — s)h(s)e 2" dsdt.

We define p = t—s such that g(t—s) = g(p) and t = s+p. Using this substitution,
we can separate the variable such that we get two integrals multiplied, one
where we integrate over p and the other where we integrate over s, such
that

grh= / g(p)e 2P dp . / h(s)e 273 ds,

(e}

g=h=4(f)-h(f). (B.6)

The Fourier transform of two functions multiplied in time domain is equal to
the Fourier transform of the convolution between the functions in frequency
domain, gh = g * ﬁ, [Almeida, 1997]. This can be shown by taking the Fourier
transform of the two functions multiplied, and then using equation (B.5) to
express one of the functions.

g-h= /_  gOh(e >t = /_ g0 ( [ (e 'tdf') e iftgy,
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We can change the order of the integrals. Using equation (B.5), we can rewrite
the inner integral such that the expression changes from time domain to
frequency domain. Then we get that

ﬁ _ [ ﬁ(f/) (‘[ g(t)e—Zni(f—f’)tdt) df/ — [ fl(f’)g“(f _ f/)df/,

g-h=4(f)*h(f) (B.7)






Python Code

import os

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

filedirl = ’/Users/Bruker/Desktop/Forcingpaperdata’
#model ’CanESM2’

#model = ’CNRMCM5’
#model = ’CSIRO-Mk3-6-0’

#model = ’GFDL-CM3’
#model = ’'GFDL-ESM2G’
#model = ’GFDL-ESM2M’
#model = ’GISS—-E2-H’
#model = ’GISS—-E2-R’
#model = ’'HadGEM2-ES’
#model = ’inmcm4’

#model = "IPSL-CM5A-LR’
#model = ’IPSL—-CM5B-LR’

#model = "MIROC-ESM’
#model = "MIROC5’
#model = "MPI-ESM-LR’

#model = "MRI-CGCM3’
model = ’NorESM1-M’

realm = ’Amon’
ensemble = ’'rlilpl”’
if model == ’ACCESS1-0’:

79



80 APPENDIX C / PYTHON CODE

historicaltimeperiod = ’185001-200512"
controltimeperiod = ’030001-079912°
rcptimeperiod = ’200601-210012" #rcp45, rcp85
# rcp26 and rcp60 not available
control_branch_yr = 300

elif model == ’ACCESS1-3’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’025001-074912"
rcptimeperiod = ’200601-210012" #rcp45, rcp85
# rcp26 and rcp60 not available
control_branch_yr = 250

elif model == ’bcc—csml-1":
historicaltimeperiod = ’185001-201212"
print (model + ’has no control run’)
#rcptimeperiod = ’200601-230012" #rcp26, rcp45, rcp85
#rcptimeperiod = ’200601-210012" #rcp60
rcptimeperiod = ’200601-209912° #rcp26, rcp45, rcp60, rcp85
control branch yr = NaN

elif model == ’bcc—csml-1-m’:
historicaltimeperiod = ’185001-201212"
print (model + ’'has no control run’)
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control_branch_yr = NaN

elif model == ’CanESM2’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’201501-301012"
rcptimeperiod = ’200601-210012" #rcp26, rcp45, rcp85
#rcptimeperiod = ’200601-230012" #rcp26, rcp45
#rcp60 not available
control branch yr = 2321

elif model == CCSM4’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’025001-130012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
#rcptimeperiod = ’200601-230012" #rcp26, rcp60, rcp85
#rcptimeperiod = ’200601-229912° #rcp45
control_branch_yr = 937

elif model == 'CNRM-CM5’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185001-269912"
#rcptimeperiod = ’200601-210012" #rcp26
rcptimeperiod = ’200601-230012° #rcp45, rcp85
#rcp60 not available
control_branch_yr = 2250

elif model == ’CSIRO-Mk3-6-0":
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’000101-050012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control_branch_yr = 81

elif model == ’'FGOALS-s2’:
print (model + ’has no historical run’)
controltimeperiod = ’185001-235012"
print (model + ’has no rcp runs for rl’)
control_branch_yr = NaN



elif model == ’'GFDL-CM3’:
historicaltimeperiod = ’186001-200512"
controltimeperiod = '000101-050012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control_branch yr =1

elif model == ’GFDL-ESM2G’ or model == ’GFDL-ESM2M’:
historicaltimeperiod = ’186101-200512"
controltimeperiod = '000101-050012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control_branch_yr = 162

elif model == ’GISS-E2-H’:
historicaltimeperiod = ’185001-200512"
print (model + ’has control run for two different periods’)
#controltimeperiod = ’118001-141912’
controltimeperiod = ’241001-294912°
#rcptimeperiod = ’200601-210012" #rcp60
rcptimeperiod = ’200601-230012° #rcp26, rcp45, rcp85
control_branch_yr = 2410

elif model == ’GISS—-E2-R’:
historicaltimeperiod = ’185001-200512"
print (model + ’ has two different control runs’)
#controltimeperiod = ’333101-363012’
controltimeperiodl = ’398101-453012"
controltimeperiod2 = ’398101-920512"
#rcptimeperiod = ’200601-210012" #rcp60
rcptimeperiod = ’200601-230012° #rcp26, rcp45, rcp85
control_branch_yr = 3981

elif model == 'HadGEM2-ES’:
historicaltimeperiod = ’186001-200511"
controltimeperiod = ’186001-243511"
rcptimeperiod = ’200601-229912° #rcp26, rcp45, rcp85
#rcptimeperiod = '200601-209911° #rcp60
control branch yr = 1860

elif model == ’inmcm4’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185001-234912’
rcptimeperiod = ’200601-210012" # rcp45, rcp85
#rcp26 and rcp60 not available
control_branch_yr = 1850

elif model == ’IPSL-CM5A-LR’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’180001-279912°
rcptimeperiod = ’200601-230012° #rcp26, rcp45, rcp85
#rcptimeperiod = ’200601-210012" #rcp60
control_branch_yr = 1850

elif model == ’IPSL-CM5B-LR’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’183001-212912°
rcptimeperiod = ’200601-210012° #rcp45, rcp85
#rcp26 and rcp60 not available
control_branch_yr = 1850

elif model == 'MIROC-ESM:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’180001-242912"
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rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
#rcptimeperiod = ’200601-230012° #rcp45
control branch yr = 1880
elif model == 'MIROC5’:
historicaltimeperiod = ’185001-201212"
controltimeperiod = ’200001-286912°
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control_branch_yr = 2411

elif model == 'MPI-ESM-LR’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185001-284912"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp85
#rcptimeperiod = ’200601-230012" #rcp26, rcp45, rcp85
# rcp60 not available
control_branch_yr = 1880

elif model == 'MPI-ESM-MR’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185001-284912"
rcptimeperiod = ’200601-210012" #rcp26, rcp45, rcp85
# rcp60 not available
control_branch_yr = 1850

elif model == 'MPI-ESM-P’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185001-300512"
print (model + ’has no rcp runs’)
control branch yr = NaN

elif model == 'MRI-CGCM3’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185101-235012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control_branch_yr = 1950

elif model == ’NorESM1-M’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’070001-120012"
rcptimeperiod = ’200601-210012" #rcp26, rcp45, rcp60, rcp85
#rcptimeperiod = ’200601-230012° #rcp45
control_branch_yr = 700

#H#### load control run data #####H

exp = ’'piControl’
var = 'ts’ # temperatures
if model == ’GISS-E2-R’:

controltimeperiod = controltimeperiodl

strings = [var, realm, model, exp, ensemble, controltimeperiod]
filename = ’glannual ’ + " ".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)

datatable = pd.read table(file , header=None,sep=" ")
controltemp=datatable.iloc[:,0]

controlyears = np.arange(0,len(controltemp))
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# subtract linear trend
pl = np.polyfit(controlyears, controltemp, deg = 1)
lintrendT = np.polyval(pl, controlyears)

T = controltemp — lintrendT

# Compare with periodogram estimate for the PSD (more noise expected

)
from scipy import signal

#pf,pS = signal.periodogram (T, window = ’hamming’)
pf.,pS = signal.welch(T, nperseg=256)
# This also computes the value for f = 0, which is approx 0 (= mean)

# create figure

fig, ax = plt.subplots(figsize = [10,6])
ax.plot(pf[1:]1,pS[1:]) # exclude f=0 from plot
ax.set_xscale(’log’)

ax.set_yscale(’log’)

ax.set_xlabel(’f (1/years)’,fontsize = 18)

ax.set_ylabel (’S(f)’,fontsize = 18)

ax.set_title (’PSD for control temperature’,fontsize = 18)
ax.grid ()

ax.tick_params(axis=’both’,labelsize=18)

#for i=5
mean_explog=np.exp(np.mean(np.log(pS[1:5])))
mean_ps=np.mean(pS[1:5])

dp = pd.read _csv(’mean_val.csv’, index_col = 0)
dp.meanexp_5[model] = mean_explog
dp.mean_5[model]= mean_ps
dp.to_csv(’mean_val.csv’)

#for i=10
mean_explog=np.exp(np.mean(np.log(pS[1:10])))
mean_ps=np.mean(pS[1:10])

dp = pd.read csv(’mean_val.csv’, index _col = 0)
dp.meanexp_10[model] = mean_explog
dp.mean_10[model]= mean_ps
dp.to_csv(’mean_val.csv’)

#for i=15
mean_explog=np.exp(np.mean(np.log(pS[1:15])))
mean_ps=np.mean(pS[1:15])

dp = pd.read csv(’mean_val.csv’, index _col = 0)
dp.meanexp_15[model] = mean_explog
dp.mean_15[model]= mean_ps
dp.to_csv(’mean_val.csv’)
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#for i=20
mean_explog=np.exp (np.mean(np.log(pS[1:20])))
mean_ps=np.mean(pS[1:20])

dp = pd.read csv(’mean_val.csv’, index_col = 0)
dp.meanexp_20[model] = mean_explog
dp.mean_20[model]= mean_ps
dp.to_csv(’mean_val.csv’)

#for i =25
mean_explog=np.exp(np.mean(np.log(pS[1:25])))
mean_ps=np.mean(pS[1:25])

dp = pd.read csv(’mean_val.csv’, index_col = 0)
dp.meanexp_25[model] = mean_explog
dp.mean_25[model]= mean_ps
dp.to_csv(’mean_val.csv’)

df = pd.read csv(’ECS2 est.csv’, index_col=0)
#pl = np.polyfit ((dq.ECS)**2 estl ,deg = 1)
#p2 = np.polyfit ((dq.ECS)**2,est2,deg = 1)

dr = pd.read_csv(’correlation.csv’, index_col = 0)

i ='5"

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp 5)[1,0]
corr2=np.corrcoef ((df .ECS)**2,dp.mean_5)[1,0]
dr.S exp[i] = corrl

dr.S[i] = corr2

i=’10"

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_10)[1,0]
corr2=np. corrcoef ((df .ECS) **2,dp.mean_10)[1,0]
dr.S exp[i] = corrl

dr.S[i] = corr2

i=’15"

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_15)[1,0]
corr2=np. corrcoef ((df .ECS) **2,dp.mean_15)[1,0]
dr.S_exp[i] = corrl

dr.S[i] = corr2

i =20’

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_20)[1,0]
corr2=np.corrcoef ((df .ECS) **2,dp.mean 20)[1,0]
dr.S_exp[i] = corrl

dr.S[i] = corr2

i=’25"

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_25)[1,0]
corr2=np.corrcoef ((df .ECS) **2,dp.mean 25)[1,0]
dr.S_exp[i] = corrl



dr.S[i] = corr2

dr.to_csv(’correlation.csv’)

#S(0) *Q"2
dr=pd.read_csv(’correlation.csv’, index_col = 0)
dq = pd.read csv(’ECS2 est.csv’, index_col=0)

i=’5’

corrl=np.corrcoef ((df.ECS) **2,dp. meanexp_5*(dq.Q) **2)[1,0]
corr2=np.corrcoef ((dq.ECS)**2,dp.mean_5*(dq.Q) **2)[1,0]
dr.SQ _exp[i] = corrl

dr.SQ[i] = corr2

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_10*(dq.Q)**2)[1,0]
corr2=np. corrcoef ((df.ECS) **2 dp.mean_10+*(dq.Q)**2)[1,0]
dr.SQ _exp[’10’] = corrl

dr.SQ[’10’] = corr2

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_15*(dq.Q)**2)[1,0]
corr2=np.corrcoef ((df.ECS)**2,dp.mean_15+*(dq.Q) **2)[1,0]
dr.SQ exp[’15’] = corrl

dr.SQ[’15’] = corr2

corrl=np.corrcoef ((df.ECS) **2,dp. meanexp_20*(dq.Q) **2)[1,0]
corr2=np.corrcoef ((df.ECS)**2,dp.mean_20*(dq.Q)**2)[1,0]
dr.SQ _exp[’20°] = corrl

dr.SQ[’20’] = corr2

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_25*(dq.Q) **2)[1,0]
corr2=np. corrcoef ((df.ECS) **2,dp.mean_25+*(dq.Q) **2)[1,0]
dr.SQ exp[’25’] = corrl

dr.SQ[’25’] = corr2

dr.to_csv(’correlation.csv’)

#S(0) /sigma**2
dr=pd.read_csv(’correlation.csv’, index_col = 0)

i="fem’

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_5/(df.sigma)**2)[1,0]
corr2=np.corrcoef ((df.ECS) **2,dp.mean_5/(df.sigma)**2)[1,0]
dr.Ssigma_exp[i]=corrl

dr.Ssigmal[i]=corr2

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_10/(df.sigma)**2)[1,0]
corr2=np.corrcoef ((df.ECS) **2,dp.mean_10/(df.sigma)**2)[1,0]
dr.Ssigma exp[’10’]=corrl

dr.Ssigmal[’10’]=corr2

corrl=np.corrcoef ((df.ECS) **2,dp. meanexp_15/(df.sigma)**2)[1,0]
corr2=np. corrcoef ((df.ECS) **2,dp.mean_15/(df.sigma)**2)[1,0]
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dr.Ssigma _exp[’15’]=corrl
dr.Ssigma[’15’]=corr2

corrl=np.corrcoef ((df.ECS) **2,dp. meanexp_20/(df.sigma)**2)[1,0]
corr2=np.corrcoef ((df.ECS) **2,dp.mean_20/(df.sigma)**2)[1,0]
dr.Ssigma_exp[’20’]=corrl

dr.Ssigmal[’20’]=corr2

corrl=np.corrcoef ((df.ECS) **2,dp. meanexp_25/(df.sigma)**2)[1,0]
corr2=np. corrcoef ((df.ECS) **2,dp.mean_25/(df.sigma)**2)[1,0]
dr.Ssigma_exp[’25’]=corrl

dr.Ssigmal[’25’]=corr2

dr.to_csv(’correlation.csv’)

#S(0)*Q"2/sigma™2
dr=pd.read_csv(’correlation.csv’, index_col = 0)

i="fem’

corrl=np.corrcoef ((df.ECS) **2,dp. meanexp_5*(df.Q)**2/(df.sigma) **2)
[1,0]

corr2=np.corrcoef ((df.ECS) **2,dp.mean_5*(df.Q) **2/(df.sigma) **2)
[1,0]

dr.SQsigma exp[i] = corrl

dr.SQsigmal[i] = corr2

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_10*(df.Q)**2/(df.sigma) **2)
[1,0]

corr2=np.corrcoef ((df .ECS) **2,dp.mean_10*(df.Q) **2/(df.sigma) **2)
[1,0]

dr.SQsigma_exp[’10°’] = corrl

dr.SQsigma[’10’] = corr2

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_15*(df.Q)**2/(df.sigma) **2)
[1,0]

corr2=np. corrcoef ((df.ECS) **2,dp.mean_15*(df.Q) **2/(df.sigma) **2)
[1,0]

dr.SQsigma_exp[’15’] = corrl

dr.SQsigma[’15’] = corr2

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_20*(df.Q)**2/(df.sigma) **2)
[1,0]

corr2=np.corrcoef ((df.ECS) **2,dp.mean_20*(df.Q) **2/(df.sigma) **2)
[1,0]

dr.SQsigma_exp[’20’] = corrl

dr.SQsigmal[’20’] = corr2

corrl=np.corrcoef ((df.ECS)**2,dp. meanexp_ 25*(df.Q) **2/(df.sigma) **2)
[1,0]

corr2=np.corrcoef ((df .ECS) **2,dp.mean 25*(df.Q) **2/(df.sigma) **2)
[1,0]

dr.SQsigma_exp[’25’] = corrl

dr.SQsigmal’25’] = corr2
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dr.to_csv(’correlation.csv’)

x_val = dp.meanexp_ 25
pl = np.polyfit(x_val,(df.ECS)**2,deg = 1)

linfit = np.polyval(pl,x_val)
plt.plot(x_val,linfit ,linewidth=1,color = "black")
corr = np.corrcoef(x_val,df.ECS**2)[1,0]

corr = round(corr, 5)

plt.scatter (x_val,(df.ECS**2))

plt.xlabel (’S(0)’, fontsize=12)
plt.ylabel (’ECS$72% [K$"2$]’,fontsize=12)
plt.grid ()

plt.savefig (’ESC_S.eps’)

x_val = (dp.meanexp 25) *((df.Q) **2) /(df.sigma) **2
p2 = np.polyfit(x_val,(df.ECS)**2, deg = 1)

corr = np.corrcoef(x_val,df.ECS**2)[1,0]

corr = round(corr, 5)

linfit = np.polyval(p2,x_val)
plt.plot(x_val,linfit ,linewidth=1,color = "black")

plt.scatter (x_val,(df.ECS)**2)

plt.xlabel (’S(0)$Q"2$/$\sigma"2$ [K$"2$]’, fontsize=12)
plt.ylabel (’ECS$72$ [K$728]’, fontsize=12)

plt.grid ()

plt.savefig (’ECS_SQs.eps’)

x_val = (df.Q)**2
p2 = np.polyfit(x_val,(df.ECS)**2, deg = 1)

linfit = np.polyval(p2,x_val)
plt.plot(x_val,linfit ,linewidth=1,color = "black")
corr = np.corrcoef(x_val,df.ECS**2)[1,0]

corr = round(corr, 5)

plt.scatter (x_val,(df.ECS)**2)
plt.xlabel (’Q"2")

plt.ylabel (’ECS"™2’)

plt.title (’Plot’,fontsize = 14)
plt.grid ()

x_val = 1/(df.sigma)**2
p2 = np.polyfit(x_val,(df.ECS)**2, deg = 1)

linfit = np.polyval (p2,x_val)
plt.plot(x_val,linfit ,linewidth=1,color = "black")

plt.scatter (x_val,(df.ECS)**2)
plt.xlabel (’1/sigma™2’)
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plt.ylabel (’ECS"2’)
plt.title (’Plot’,fontsize = 14)
plt.grid O
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#Functions that will be used

import os
import numpy as np

from

numpy import NaN

import pandas as pd
import matplotlib.pyplot as plt

from
from
from
from

scipy.optimize import curve_fit
scipy import signal

scipy import optimize
matplotlib import pyplot

import statsmodels.api as sm

def

def

temp_plot(model):

filedirl = ’/Users/Bruker/Documents/Forcingpaperdata’
realm = ’Amon’

ensemble = ’rlilpl’

exp = ’historical’

period = ’185001-200512"

if model == ’bcc—csml-1’ or model == ’bcec—csml—1-m’ or model ==
"MIROC5 ’ :
period = ’185001-201212"
elif model == 'GFDL-CM3’:
period = ’186001-200512"
elif model == ’'GFDL-ESM2G’ or model == ’GFDL-ESM2M’ :
period = ’186101-200512"
elif model == ’HadGEM2-ES’:
period = ’186001-200511"

var = 'ts’

strings = [var, realm, model, exp, ensemble, period]
filename = ’glannual_’ + "_".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read _table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

return temp

forcing plot (model):

if model=="ACCESS1-3’ or model ==’GISS—-E2-H’ or model=="IPSL—

CM5B-LR’ or model== "MPI-ESM-P’:

try:
print (’No forcing data for this model. Model:’ + model )

except ValueError:
print (’No forcing’)

forcing = pd.read_excel(’C://Users/Bruker/Desktop/
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nyjustertforcingmedrcp85. xls’)

forcing = forcing[model].values
if model == 'GFDL-CM3’ or model == ’GFDL-ESM2G’ or model == ’
GFDL-ESM2M’ or model == ’HadGEM2-ES’:

forcing = forcing[10:]
fig, ax = plt.subplots(figsize = [6,4])
plt.plot(forcing ,linewidth=1,color = "red")
ax.set_xlabel(’Year (after 1850)’,fontsize = 12)
ax.set_ylabel (’Forcing [W/m$~2$] ’,fontsize = 12)
ax.set_title (’Change in forcing (’ + str(model) +’)’
= 15)
ax.grid ()
ax.tick_params(axis=’both’,labelsize=12)
return print(len(forcing))

, fontsize

exp_4CO2_function(model, taulist):

filedirl = ’/Users/Bruker/Documents/Forcingpaperdata’
realm = ’Amon’

ensemble = ’'rlilpl”’

if model == ’ACCESS1-0’:

abrupt4xco2timeperiod = ’030001-044912’
controltimeperiod = ’030001-079912°
control_branch_yr = 300

elif model == ’*ACCESS1-3’:
abrupt4xco2timeperiod = ’025001-040012"
controltimeperiod = ’025001-074912’
control_branch_yr = 250

elif model == ’CanESM2’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’201501-301012"
control_branch_yr = 2321

elif model == 'CNRM-CM5’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-269912°
control_branch_yr = 1850

elif model == 'CNRM-CM6-1":
ensemble = ’'rlilplf2’
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-234912’
control_branch_yr = 1850

elif model == ’CSIRO-Mk3-6-0":
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = ’000101-050012"
control_branch_yr = 104

elif model == *GFDL-CM3’:
abrupt4xco2timeperiod = ’000101-015012"



controltimeperiod = '000101-050012"
control_branch _yr =1

elif model == ’GFDL-ESM2G’ or model == ’GFDL-ESM2M’:
abrupt4xco2timeperiod = ’000101-030012°
controltimeperiod = ’000101-050012"
control branch yr =1

elif model == ’GISS—-E2-H’:
abrupt4xco2timeperiod = ’185001-200012"
print (model + ’has control run for two different periods’)
#controltimeperiod = ’118001-141912’
controltimeperiod = ’241001-294912"
control branch yr = 2660

elif model == ’GISS—-E2-R’:
abrupt4xco2timeperiod = ’185001-200012"
print (model + ’ has two different control runs’)
#controltimeperiod = ’333101-363012’
controltimeperiodl ’398101-453012"
controltimeperiod2 = ’398101-920512"
control _branch_yr = 4200

elif model == 'HadGEM2-ES’:
abrupt4xco2timeperiod = ’186001-201012"
controltimeperiod = '186001-243511"
control_branch_yr = 1860

elif model == ’inmcm4’:
abrupt4xco2timeperiod = ’209001-223912°
controltimeperiod = ’185001-234912’
control_branch_yr = 2090

elif model == ’IPSL-CM5A-LR’:
abrupt4xco2timeperiod = ’185001-210912°
controltimeperiod = ’180001-279912’
control _branch_yr = 1850

elif model == ’IPSL-CM5B-LR’:
abrupt4xco2timeperiod = ’185001-200912°
controltimeperiod = ’'183001-212912"
control_branch_yr = 1850

elif model == 'MIROC-ESM’:
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = ’180001-242912"
control_branch_yr = 1880

elif model == "MIROC5’:
abrupt4xco2timeperiod = ’210001-225012"
controltimeperiod = ’200001-286912°
control_branch_yr = 2100

elif model == 'MPI-ESM-LR’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-284912’
control branch yr = 1880

elif model == *MPI-ESM-MR’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-284912"
control_branch_yr = 1850

elif model == 'MPI-ESM-P’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-300512"

AN
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control_branch_yr = 1866

elif model == MRI-CGCM3’:
abrupt4xco2timeperiod = ’185101-200012"
controltimeperiod = ’185101-235012"
control_branch_yr = 1891

elif model == ’NorESM1-M’:
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = ’070001-120012"
control_branch_yr = 700

#### load abrupt4xco2 data ######

exp = ’abrupt4xco2’

var = 'ts’ # temperatures

strings = [var, realm, model, exp, ensemble,
abrupt4xco2timeperiod]

filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

if len(temp) >150:
temp = temp[0:150]

###### load control run data ######

exp = ’'piControl’
var = 'ts’ # temperatures
if model == ’GISS-E2-R’:
controltimeperiod = controltimeperiodl
strings = [var, realm, model, exp, ensemble, controltimeperiod]
filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
controltemp=datatable.iloc[:,0]

if model == ’GISS-E2-R’:
controltimeperiod = controltimeperiod2

years = np.arange(1,150+1)
controlyears = np.arange (0,len(controltemp))

branchindex = control branch yr — int(controltimeperiod[0:4])
#print (branchindex)

pl = np.polyfit(controlyears[branchindex:(branchindex + len (temp
))]1, controltemp[branchindex:(branchindex + len(temp))], deg =
1)

lintrendT = np.polyval(pl,controlyears[branchindex:(branchindex
+ len (temp)) 1)
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deltaT = temp — lintrendT

# for deltaT we also have the information that deltaT (0) = O.
Include this:

deltaTO = np.concatenate (([0],deltaT))

yearsO = np.concatenate (([0],years))

# compute components T n(t) = exp(—t/tau_n)*F(t) (Here * is a
convolution and F is a constant, so we can compute T n
analytically)

dim = len(taulist)

A = np.zeros((len(years)+1,dim))
for i in range(0,dim): # compute the predictors in the linear
model for deltaT

Al:,i] = (1 — np.exp((—np.arange(0,151))/taulist[i]))

# find parameters parl in the linear model: deltaT = \sum_i parl
[i]*(1 — np.exp((—t/taul[i]))

#parl, resT, rankT, sT = np.linalg.lstsq (A, deltaTO,rcond=None)
# least squares for deltaT

parl, rnorml = optimize.nnls (A, deltaTO0)

Ti = np.array ([A[:,i]*parl[i] for i in range(0,dim)]) # compute
components

Tsum = A@parl # sum of all components

# create figure
fig, ax = plt.subplots(figsize = [9,5])

var = deltaTO; label = ’$\Delta T$’

ax.plot(yearsO,var,linewidth=2,color = "black")

ax.plot(yearsO ,Tsum, linewidth=2,color = "black")

for i in range(0,dim):
ax.plot(yearsO,Ti[i,:],linewidth=2,color = "red")

ax.set_xlabel(’Years after 1850 ’,fontsize = 11)
ax.set_ylabel(label + ’(t) ’,fontsize = 11)

ax.set_title (’Abrupt4xco2 $\Delta T$, model: ’ +str (model),
fontsize = 18)

ax.grid ()

ax.set_xlim (min(years) ,max(years))
ax.tick_params(axis=’both’,labelsize=18)

return parl, rnorml, deltaTO, A, Tsum

lintrend func (model):

filedirl = ’/Users/Bruker/Documents/Forcingpaperdata’
realm = ’Amon’

ensemble = ’rlilpl’
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if model == ’ACCESS1-0’:
abrupt4xco2timeperiod = ’030001-044912’
controltimeperiod = ’030001-079912"
control_branch_yr = 300

elif model == ’ACCESS1-3’:
abrupt4xco2timeperiod = ’025001-040012°
controltimeperiod = '025001-074912"
control branch yr = 250

elif model == ’CanESM2’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’201501-301012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp85
#rcptimeperiod = ’200601-230012 #rcp26, rcp45
#rcp60 not available
control_branch_yr = 2321

elif model == 'CNRM-CM5’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185001-269912"
#rcptimeperiod = ’200601-210012" #rcp26
rcptimeperiod = ’200601-230012° #rcp45, rcp85
#rcp60 not available
control_branch_yr = 2250

elif model == ’CSIRO-Mk3-6-0":
historicaltimeperiod = ’185001-200512"
controltimeperiod = '000101-050012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control_branch_yr = 81

elif model == *GFDL-CM3’:
historicaltimeperiod = ’186001-200512"
controltimeperiod = ’000101-050012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control branch yr =1

elif model == ’'GFDL-ESM2G’ or model == ’GFDL-ESM2M’:
historicaltimeperiod = ’186101-200512"
controltimeperiod = '000101-050012"
rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
control_branch_yr = 162

elif model == ’GISS-E2-H’:
abrupt4xco2timeperiod = ’185001-200012"
print (model + ’'has control run for two different periods’)
#controltimeperiod = ’118001-141912’
controltimeperiod = ’241001-294912°
control_branch_yr = 2660

elif model == ’GISS—-E2-R’:
abrupt4xco2timeperiod = ’185001-200012"
print(model + ’ has two different control runs’)
#controltimeperiod = ’333101-363012’
controltimeperiodl ’398101-453012"
controltimeperiod2 = ’398101-920512"
control_branch_yr = 4200 #

elif model == ’HadGEM2-ES’:
historicaltimeperiod = ’186001-200511"



controltimeperiod = '186001-243511"
rcptimeperiod = ’200601-229912° #rcp26, rcp45, rcp85
#rcptimeperiod = ’200601-209911’ #rcp60
control _branch_yr = 1860

elif model == ’inmcm4’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’'185001-234912"
rcptimeperiod = ’200601-210012" # rcp45, rcp85
#rcp26 and rcp60 not available
control _branch_yr = 1850

elif model == ’IPSL-CM5A-LR’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’180001-279912"
rcptimeperiod = ’200601-230012° #rcp26, rcp45, rcp85
#rcptimeperiod = '200601-210012" #rcp60
control _branch_yr = 1850

elif model == ’IPSL-CM5B-LR’:
abrupt4xco2timeperiod = ’185001-200912°
controltimeperiod = ’'183001-212912"
control_branch_yr = 1850

elif model == 'MIROC-ESM’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’180001-242912’

95

rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85

#rcptimeperiod = ’200601-230012° #rcp45
control_branch_yr = 1880

elif model == *MIROC5’:
historicaltimeperiod = ’185001-201212"
controltimeperiod = ’200001-286912"

rcptimeperiod = ’200601-210012" #rcp26, rcp45, rcp60, rcp85

control_branch_yr = 2411

elif model == 'MPI-ESM-LR’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = '185001-284912"
rcptimeperiod = ’200601-210012" #rcp26, rcp45, rcp85
#rcptimeperiod = ’200601-230012 #rcp26, rcp45, rcp85
# rcp60 not available
control_branch_yr = 1880

elif model == 'MPI-ESM-P’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185001-300512"
print (model + ’has no rcp runs’)
control_branch_yr = NaN

elif model == 'MPI-ESM-MR’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-284912’
control branch yr = 1850

elif model == 'MRI-CGCM3’:
historicaltimeperiod = ’185001-200512"
controltimeperiod = ’185101-235012"

rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85

control_branch_yr = 1950
elif model == ’NorESM1-M’:
historicaltimeperiod = ’185001-200512’
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controltimeperiod = ’070001-120012"

rcptimeperiod = ’200601-210012° #rcp26, rcp45, rcp60, rcp85
#rcptimeperiod = ’200601-230012 #rcp45

control_branch_yr = 700

exp = ’'piControl’
var = ts’
if model == ’GISS-E2-R’:
controltimeperiod = controltimeperiodl
strings = [var, realm, model, exp, ensemble, controltimeperiod]
filename = ’glannual ’ + " _".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)

datatable = pd.read_table(file , header=None,sep=" ")
controltemp=datatable.iloc [:,0]

controlyears = np.arange(0,len(controltemp))

pl = np.polyfit(controlyears, controltemp, deg = 1)
lintrendT = np.polyval(pl, controlyears)

#plt.plot(controlyears, controltemp)
#plt.plot(controlyears, lintrendT [O:len(controlyears)])

return pl, lintrendT

gregory_func(model,n):

filedirl = ’/Users/Bruker/Documents/Forcingpaperdata’
realm = ’Amon’

ensemble = ’'rlilpl”’

if model == ’ACCESS1-0’:

abrupt4xco2timeperiod = ’030001-044912"
controltimeperiod = ’030001-079912°
control_branch_yr = 300

elif model == ’ACCESS1-3’:
abrupt4xco2timeperiod = ’025001-040012"
controltimeperiod = ’025001-074912"
control_branch_yr = 250

elif model == ’CanESM2’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’201501-301012°
control_branch_yr = 2321

elif model == *CNRM-CM5’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-269912"
control branch yr = 1850

elif model == ’CSIRO-Mk3-6—0":
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = ’000101-050012"
control branch_yr = 104



elif model == ’GFDL-CM3’:
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = ’000101-050012"
control_branch_yr =1

elif model == ’GFDL-ESM2G’ or model == ’GFDL-ESM2M’:
abrupt4xco2timeperiod = ’000101-030012"
controltimeperiod = '000101-050012"
control_branch yr =1

elif model == ’GISS-E2-H’:
abrupt4xco2timeperiod = ’185001-200012°
print (model + ’has control run for two different periods’)
#controltimeperiod = ’118001-141912’
controltimeperiod = '241001-294912"
control_branch_yr = 2660

elif model == ’GISS-E2-R’:
abrupt4xco2timeperiod = ’185001-200012°
print (model + ’ has two different control runs’)
#controltimeperiod = ’333101-363012’
controltimeperiodl = ’398101-453012’
controltimeperiod2 ’398101-920512"
control_branch_yr = 4200

elif model == ’'HadGEM2-ES’:
abrupt4xco2timeperiod = ’186001-201012"
controltimeperiod = ’186001-243511"
control _branch_yr = 1860

elif model == ’inmcm4’:
abrupt4xco2timeperiod = ’209001-223912°
controltimeperiod = '185001-234912"
control_branch_yr = 2090

elif model == ’IPSL-CM5A-LR’:
abrupt4xco2timeperiod = ’185001-210912°
controltimeperiod = ’180001-279912"
control branch yr = 1850

elif model == ’IPSL—-CM5B-LR’:
abrupt4xco2timeperiod = ’185001-200912°
controltimeperiod = ’183001-212912"
control _branch_yr = 1850

elif model == "MIROC-ESM’:
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = ’180001-242912"
control_branch_yr = 1880

elif model == 'MIROC5’:
abrupt4xco2timeperiod = ’210001-225012"
controltimeperiod = ’200001-286912"
control_branch_yr = 2100

elif model == 'MPI-ESM-LR’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-284912°
control_branch_yr = 1880

elif model == *MPI-ESM-P’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-300512’
control branch yr = 1866

elif model == *MRI-CGCM3 " :

97
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abrupt4xco2timeperiod = ’185101-200012°
controltimeperiod = ’185101-235012"
control_branch_yr = 1891

elif model == *MPI-ESM-MR’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-284912’
control branch_yr = 1850

elif model == ’NorESM1-M’:
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = ’070001-120012"
control_branch_yr = 700

exp = ’abrupt4xco2’

var = 'ts’ # temperatures

strings = [var, realm, model, exp, ensemble,
abrupt4xco2timeperiod]

filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

var = ’'rlut’ # rlut

strings = [var, realm, model, exp, ensemble,
abrupt4xco2timeperiod]

filename = ’glannual ’ + "_".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")

rlut=datatable.iloc[:,0]

var = ’rsut’ # rsut

strings = [var, realm, model, exp, ensemble,
abrupt4xco2timeperiod]

filename = ’glannual ’ + " _".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)

datatable = pd.read_table(file , header=None,sep=" ")
rsut=datatable.iloc[:,0]

var = ’'rsdt’ # rsdt

strings = [var, realm, model, exp, ensemble,
abrupt4xco2timeperiod]

filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
rsdt=datatable.iloc[:,0]

if len(temp) >150:
temp = temp[0:150]
rlut = rlut[0:150]
rsut = rsut[0:150]
rsdt = rsdt[0:150]

##### load control run data ######
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exp = ’'piControl’
var = ’ts’ # temperatures
if model == ’GISS-E2-R’:
controltimeperiod = controltimeperiodl
strings = [var, realm, model, exp, ensemble, controltimeperiod]
filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
controltemp=datatable.iloc[:,0]

if model == ’'GISS—-E2-R’:
controltimeperiod = controltimeperiod2

var = ’rlut’ # rlut

strings = [var, realm, model, exp, ensemble, controltimeperiod]
filename = ’glannual ’ + "_".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)

datatable = pd.read _table(file , header=None,sep=" ")
controlrlut=datatable.iloc[0:1len (controltemp) ,0]

var = ’'rsut’ # rsut
strings = [var, realm, model, exp, ensemble, controltimeperiod]
filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
controlrsut=datatable.iloc[0:len(controltemp) ,0]

var = ’'rsdt’ # rsdt

strings = [var, realm, model, exp, ensemble, controltimeperiod]
filename = ’glannual ’ + "_".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)

datatable = pd.read _table(file , header=None,sep=" ")
controlrsdt=datatable.iloc [0:len(controltemp) ,0]

controlyears = np.arange (0,len(controltemp))

nettoarad = rsdt — rsut — rlut
controlnettoarad = controlrsdt — controlrsut — controlrlut

branchindex = control _branch_yr — int(controltimeperiod[0:4])
#print (branchindex)

pl = np. polyfit(controlyears[branchindex:(branchindex + len (temp
))1, controltemp[branchindex:(branchindex + len(temp))], deg =
1)

lintrendT = np.polyval(pl, controlyears[branchindex:(branchindex
+ len(temp)) 1)

p2 = np.polyfit(controlyears[branchindex:(branchindex + len (temp
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))], controlnettoarad [branchindex:(branchindex + len(temp))],
deg = 1)

lintrendN = np.polyval(p2, controlyears[branchindex:(branchindex
+ len (temp)) 1)

deltaT temp — lintrendT
deltaN = nettoarad — lintrendN

# Gregory plot

fig, ax = plt.subplots(figsize = [9,5])

plt.scatter (deltaT,6deltaN,linewidth=1,color = "lavender")
ax.set_xlabel (’$\Delta$T [K]’,fontsize = 12)

ax.set_ylabel (’$\Delta$N [W/m$~2$]’,fontsize = 12)
ax.set_title (’Gregory plot for model:’ +str(model),fontsize =
16)

ax.grid ()

ax.tick_params(axis=’both’,labelsize =22)

# find linear fit to these points:
pl = np.polyfit(deltaT ,deltaN, deg = 1)

linfit = np.polyval(pl,deltaT)
ax.plot(deltaT,linfit ,linewidth=1,color = "r")

p2 = np.polyfit(deltaT[0:n], deltaN[O:n], deg
linfit2 = np.polyval(p2,deltaT[0:n])
ax.plot(deltaT[0:n],linfit2 ,linewidth=1,color = "black")

1

ax.set_ylim(-1,pl[1])
fig.savefig (model+’—gregory.png’)

print (’ECS_’+str(n)+’ = ’ + str(-p2[11/(2*p2[01)))
print (’ECS = ’ + str(—pl[1]/(2*p1[0])))

ECS = (—pl[1]/(2*pl[0]))

ECS_20 = (-p2[1]/(2*p2[0]))

Feedback = p1[0]

Feedback 20 = p2[0]

Forcing = p1[1]/2

Forcing 20 = p2[1]/2

return ECS, ECS_20, Feedback, Feedback 20, Forcing, Forcing 20

def ECS sum3(model, amplitudes):
ds = pd.read_csv(’gregory.csv’, index_col = 0)

tau_list = np.array([0.7, 9, 354])
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def

def

forcing = ds.forcing[model]
forcing 20 = ds.forcing 20[model]

ECS = forcing*sum(amplitudes*tau_list)
ECS 20 = forcing 20*sum(amplitudes*tau_list)

return ECS, ECS_20

ECS_sum_2(model, amplitudes):

ds = pd.read_csv(’gregory.csv’, index col = 0)
tau_list = np.array([0.7, 91)

forcing = ds.forcing[model]

forcing 20 = ds.forcing 20[model]

ECS = forcing*sum(amplitudes*tau_list)
ECS_ 20 = forcing 20*sum(amplitudes*tau_list)

return ECS, ECS_20

spec(freq, parl, par2):
#parl = amplitudes[0]
#par2 = amplitudes[1]
wl = 1/taulist[0]

w2 = 1/taulist[1]

omega = 2*np.pi*freq

spec_val = (parl**2/(wl**2 + omega**2))+(par2**2/(w2**24+omega
7':7':2))

return spec_val

psd_par_est(res, amplitudes, taulist):

f, S = signal.welch(res)
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#f, S = signal.welch(res, nperseg=len(res), noverlap= len(res) /

2)
parl = amplitudes[0]
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def

par2

wl
w2

S1
S2

plt
plt
plt
plt

APPENDIX C / PYTHON CODE

= amplitudes[1]
1/taulist[0]
1/taulist[1]

parl**2/(wl**2 + (2*np.pi*f)**2)
Parz-,’r:':z/(WZ:':f<2 + (anp'pi*f)k‘kz)

.plot(f,S, label = 'Residuals’)

.plot(f, S2, label = ’Second term in sum’)
.plot(f, S1, label= ’First term in sum’)
.plot(f, spec(f, parl, par2), label = 'The sum’)

plt.
pyplot.yscale(’log’)
pyplot.xscale(’log’)
plt.ylim(0.0001,0.5)
plt.legend ()
plt.grid ()

title (’Plot for model: ’ + str (model))

def func(f, a, b):
wl = 1/taulist[0]
w2 = 1/taulist[1]

omega = 2*np.pi*f

return (a**2/(wl**2 + omega**2))+(b**2/(w2**2+omega**2))

popt, pcov = curve_fit(func, f, S)
est_parl= popt[0]
est_par2 = popt[1]

return est_parl, est_par2, spec(f, parl, par2)

psd_func(res, taulist):

f:

S

= signal.welch(res)

#f, S = signal.welch(res, nperseg=len(res), noverlap= len(res) /

2)
wl
w2

1/taulist [0]
1/taulist[1]

def func(f, a, b):
wl = 1/taulist[0]
w2 = 1/taulist[1]

omega = 2*np.pi*f

return (a**2/(wl**2 + omega**2))+(b**2/(w2**2+omega**2))

popt, pcov = curve_fit(func, f, S)

a=

b=

S1

p
p

S2 =

opt[0]
opt[1]

a**Z/(wl**Z + (Z*Ilp.pi*f)**Z)
b#*#*2/(w2%*2 + (2*np.pi*f)**2)



def

103

S sum = a**2/(wl**2 + (2*np.pi*f)**2) + b**2/(w2**2 + (2*np.pi*f

)*+2)

#plt.plot(f,S, label = ’Residuals’)
#plt.plot(f, S2, label = ’Second term in sum’)
#plt.plot(f, S1, label= ’First term in sum’)
#plt.plot(f, S, label = 'The sum’, linestyle= ’dashed’)
#plt.title (’Plot for model: ’ + str(model))
#pyplot.yscale ("log’)

#pyplot.xscale ("log’)

#plt.ylim (0.0001,0.5)

#plt.legend ()

#plt.grid ()

#plt.savefig (model+’—psd.png’)

return S_sum

psd_plotfunc(res, taulist):

f, S = signal.welch(res)

#f, S = signal.welch(res, nperseg=len(res), noverlap= len(res) /
2)
wl
w2

1/taulist[0]
1/taulist[1]

def func(f, a, b):
wl = 1/taulist [0]
w2 = 1/taulist[1]
omega = 2*np.pi*f
return (a**2/(wl**2 + omega**2))+(b**2/(w2**2+omega**2))

popt, pcov = curve_fit(func, f, S)

a= popt[0]
b= popt[1]
S1 = a**2/(wl**2 + (2*np.pi*f)**2)

S2 = b**2/(w2**2 4+ (2*np.pi*f)**2)
S sum = a**2/(wl**2 + (2*np.pi*f)**2) + b**2/(w2**2 + (2*np.pi*f
)7':'!:2)

plt.plot(f,S, label = 'Residuals’)

plt.plot(f, S2, label = ’Second term in sum’)

plt.plot(f, S1, label= ’First term in sum’)

plt.plot(f, S sum, label = 'The sum’, linestyle= ’dashed’)
pyplot.yscale(’log’)

pyplot.xscale(’log’)

plt.legend ()

plt.grid ()
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return S sum, S



105

import os
import numpy as np

from

numpy import NaN

import pandas as pd
import matplotlib.pyplot as plt

from
from
from
from

scipy.optimize import curve_fit
scipy import signal

scipy import optimize
matplotlib import pyplot

import statsmodels.api as sm

def

def

temp_plot(model):

filedirl = ’/Users/Bruker/Documents/Forcingpaperdata’
realm = ’Amon’

ensemble = ’rlilpl’

exp = ’historical’

period = ’185001-200512"

if model == ’bcc—ecsml-1’ or model == ’becec—csml—1-m’ or model ==
"MIROCS5 " :
period = ’185001-201212"
elif model == 'GFDL-CM3’:
period = ’186001-200512"
elif model == ’GFDL-ESM2G’ or model == ’GFDL-ESM2M’ :
period = ’186101-200512"
elif model == 'HadGEM2-ES’:

period = ’186001-200511"

var = 'ts’

strings = [var, realm, model, exp, ensemble, period]
filename = ’glannual ’ + "_".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)

datatable = pd.read _table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

fig, ax = plt.subplots(figsize = [9,5])
plt.plot(temp, linewidth=1,color = "red")
ax.set_xlabel(’Years (after 1850)’,fontsize = 14)
ax.set_ylabel (’Temperature [K]’,fontsize = 14)

ax.set_title (’Change in surface temperature, model: ’ + str(
model) , fontsize = 15)
ax.grid ()

ax.tick_params(axis=’both’,labelsize=12)
fig.savefig (model+’—temp.png’)

return temp

exp_4CO2_ function(model, taulist):

filedirl = ’/Users/Bruker/Documents/Forcingpaperdata’
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realm = ’Amon’
ensemble = ’rlilpl’
if model == ’ACCESS1-0’:

abrupt4xco2timeperiod = ’030001-044912°
controltimeperiod = '030001-079912"
control branch_yr = 300

elif model == ’ACCESS1-3’:
abrupt4xco2timeperiod = ’025001-040012"
controltimeperiod = ’025001-074912"
control_branch_yr = 250

elif model == ’CanESM2’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’201501-301012"
control_branch_yr = 2321

elif model == *CNRM-CM5’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-269912"
control branch yr = 1850

elif model == 'CNRM-CM6-1":
ensemble = ’rlilplf2’
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-234912"
control_branch_yr = 1850

elif model == ’CSIRO-Mk3-6-0":
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = '000101-050012"
control_branch_yr = 104

elif model == ’'GFDL-CM3’:
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = '000101-050012"
control_branch_yr =1

elif model == ’'GFDL-ESM2G’ or model == ’GFDL-ESM2M’:
abrupt4xco2timeperiod = ’000101-030012"
controltimeperiod = ’000101-050012"
control_branch yr =1

elif model == ’GISS-E2-H’:
abrupt4xco2timeperiod = ’185001-200012"
print (model + ’'has control run for two different periods’)
#controltimeperiod = ’118001-141912’
controltimeperiod = ’241001-294912°
control_branch_yr = 2660

elif model == ’GISS—-E2-R’:
abrupt4xco2timeperiod = ’185001-200012"
print(model + ’ has two different control runs’)
#controltimeperiod = ’333101-363012’
controltimeperiodl = ’398101-453012"
controltimeperiod2 = ’398101-920512"
control branch_yr = 4200

elif model == 'HadGEM2-ES’:
abrupt4xco2timeperiod = ’186001-201012"
controltimeperiod = ’186001-243511"
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control _branch_yr = 1860

elif model == ’inmcm4’:
abrupt4xco2timeperiod = ’209001-223912°
controltimeperiod = '185001-234912"
control_branch_yr = 2090

elif model == ’IPSL-CM5A-LR’:
abrupt4xco2timeperiod = ’185001-210912°
controltimeperiod = ’180001-279912"
control branch yr = 1850

elif model == ’IPSL-CM5B-LR’:
abrupt4xco2timeperiod = ’185001-200912°
controltimeperiod = ’183001-212912"
control _branch_yr = 1850

elif model == 'MIROC-ESM:
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = '180001-242912"
control_branch_yr = 1880

elif model == 'MIROC5’:
abrupt4xco2timeperiod = ’210001-225012"
controltimeperiod = ’200001-286912"
control branch yr = 2100

elif model == 'MPI-ESM-LR’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-284912"
control _branch_yr = 1880

elif model == *MPI-ESM-MR’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = '185001-284912"
control_branch_yr = 1850

elif model == 'MPI-ESM-P’:
abrupt4xco2timeperiod = ’185001-199912°
controltimeperiod = ’185001-300512"
control branch yr = 1866

elif model == "MRI-CGCM3’:
abrupt4xco2timeperiod = ’185101-200012"
controltimeperiod = ’185101-235012"
control_branch_yr = 1891

elif model == ’NorESM1-M’:
abrupt4xco2timeperiod = ’000101-015012"
controltimeperiod = ’070001-120012"
control_branch_yr = 700

#i#### load abruptd4xco2 data ######

exp = ’abrupt4xco2’

var = 'ts’ # temperatures

strings = [var, realm, model, exp, ensemble,
abrupt4xco2timeperiod]

filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]
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if len(temp) >150:
temp = temp[0:150]

###A## load control run data #####H#

exp = ’'piControl’
var = ’ts’ # temperatures
if model == ’GISS-E2-R’:
controltimeperiod = controltimeperiodl
strings = [var, realm, model, exp, ensemble, controltimeperiod]
filename = ’glannual ’ + "_".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
controltemp=datatable.iloc[:,0]

if model == ’GISS-E2-R’:
controltimeperiod = controltimeperiod2

years = np.arange(1,150+1)
controlyears = np.arange(0,len(controltemp))

branchindex = control_branch _yr — int(controltimeperiod[0:4])
print (branchindex)

pl = np.polyfit(controlyears[branchindex:(branchindex + len (temp
))1, controltemp[branchindex:(branchindex + len(temp))], deg =
1)

lintrendT = np.polyval(pl,controlyears[branchindex:(branchindex
+ len (temp)) 1)

deltaT = temp — lintrendT

# for deltaT we also have the information that deltaT (0) = O.
Include this:

deltaTO = np.concatenate (([0],deltaT))

yearsO = np.concatenate (([0],years))

# compute components T n(t) = exp(—t/tau_n)*F(t) (Here * is a
convolution and F is a constant, so we can compute T n
analytically)

dim = len(taulist)

A = np.zeros((len(years)+1,dim))
for i in range(0,dim): # compute the predictors in the linear
model for deltaT

Al:,i] = (1 — np.exp((—np.arange(0,151))/taulist[i]))
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# find parameters parl in the linear model: deltaT = \sum_i parl
[i]*(1 — np.exp((—t/taulil]))

#parl, resT, rankT, sT = np.linalg.lstsq (A, deltaTO,rcond=None)
# least squares for deltaT

parl, rnorml = optimize.nnls (A, deltaTO0)

Ti = np.array ([A[:,i]*parl[i] for i in range(0,dim)]) # compute
components

Tsum = A@parl # sum of all components

# create figure
fig, ax = plt.subplots(figsize = [9,5])

var = deltaTO; label = ’$\Delta T$’

ax.plot(yearsO,var,linewidth=2,color = "black")

ax.plot(yearsO ,Tsum, linewidth=2,color = "black")

for i in range(0,dim):
ax.plot(yearsO,Ti[i,:],linewidth=2,color = "red")

ax.set_xlabel(’Year after 1850 ’,fontsize = 15)
ax.set_ylabel(label + ’(t) [K]’,fontsize = 15)

ax.set_title (’Abrupt4xCO$_2$, model: ’ +str(model),fontsize =
18)

ax.grid ()

ax.set_xlim (min(years) ,max(years))
ax.tick_params(axis=’both’,labelsize=18)

fig.savefig (model+’—fit_ 4CO2.png’)

return parl, rnorml, deltaTO, A, Tsum

psd_func(res, taulist):

f, S = signal.welch(res)
#f, S = signal.welch(res, nperseg=len(res), noverlap= len(res) /

2)
wl = 1/taulist [0]
w2 = 1/taulist[1]

def func(f, a, b):
wl = 1/taulist[0]
w2 = 1/taulist[1]
omega = 2*np.pi*f
return (a**2/(wl**2 + omega**2))+(b**2/(w2**2+omega**2))

popt, pcov = curve_fit(func, f, S)
a= popt[0]
b= popt[1]

S1 = a**2/(wl**2 4+ (2*np.pi*f)**2)

S2 = b¥*2/(w2**2 + (2*np.pi*f)**2)

spect = a**2/(wl**2 4+ (2*np.pi*f)**2) + b**2/(w2**2 + (2*np.pi*f
) *%2)
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plt.plot(f,S, label = 'Residuals’)

#plt.plot(f, S2, label = ’Second term in sum’)
#plt.plot(f, S1, label= ’First term in sum’)
plt.plot(f, spect, label = ’Adapted fit’)

plt.title (’Plot for model: ’ + str(model), fontsize=14)
plt.xlabel (’Frequency [Hz]’, fontsize=12)

plt.ylabel (’Power spectral density (PSD)’, fontsize=12)
pyplot.yscale(’log’)

pyplot.xscale(’log’)

plt.ylim(0.0001,0.5)

plt.legend ()

plt.grid ()

#plt.savefig (model+’—psd.png’)

return a, b, spect, S

import ipynb.fs. full.Functions as eom

#models included in nyjustertforcingmedrcp85 file and gregory file

#model = 'ACCESS1-0’
#model = ’CanESM2’
#model = CNRM-CM5’
#model = ’'CSIRO-Mk3-6-0’
#model = ’GFDL-CM3’
#model = ’GFDL-ESM2G’
#model = ’GFDL-ESM2M’
#model = ’GISS—-E2-R’
#model = ’HadGEM2-ES'’
#model = ’inmcm4’
#model = 'IPSL-CM5A-LR’
#model = "MIROC5’
#model = 'MIROC-ESM’
#model = "MPI-ESM-LR’

#model = 'MRI-CGCM3’
model = ’NorESM1-M’

ECS, ECS_ 20, fb, fb 20, F, F 20 = eom.gregory_func(model, 20)

#ds = pd.read_csv(’gregory.csv’, index_col = 0)
#ds .ECS[model] = ECS

#ds .ECS_20[model] = ECS_20

#ds. forcing [model] = F

#ds.forcing 20[model] = F_20

#ds.feedback par[model] = fb
#ds.feedback_par_20[model] = fb_20
#ds.to_csv(’gregory.csv’)
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histemp =eom.temp_plot(model)

eom. forcing plot(model)

taulist = np.array([0.7, 9, 354]) #parameter

#Try to find my own fit to deltaT(t) for a fixed set of time scales:

par_4CO2, rnorm, deltaT, A, Tsum = eom.exp_ 4CO2 function(model,
taulist)

#(from this, the table parameter is made (in file
linresponse_estimation), file=parameter)

res_4CO2 = Tsum — deltaT

a_4C02, b_4C0O2, spec_4CO2, S 4CO2 = psd_func(res_4CO2, taulist)
#plt.savefig (model+’—psd_4CO2.png’)

SS4 _metl = pd.read_csv(’SO_values_4CO2 metl.csv’, index_col=0)
#SS4 metl.SO[model] = np.mean(S_4C02[0:25])
#SS4_metl.to_csv (’SO_values_4CO2_metl.csv’)

spec_4C0O2
SS4_metl

SS4 = pd.read _csv(’S0O_values 4CO2.csv’, index_col=0)
#SS4.S0[model] = spec_4C0O2[0]

#SS4.to_csv (’SO_values_4CO2.csv’)

SS4

ds = pd.read csv(’gregory _short.csv’, index_col = 0)
p_.1 = np.polyfit(SS4.S0,ds.ECS**2, deg = 1)

linfit 1 = np.polyval(p_1,SS4.50)

corr = np.corrcoef(SS4.50,ds.ECS**2)[1,0]

corr = round(corr, 5)

plt.scatter (SS4, ds.ECS**2, color="darkred’)

plt.plot(SS4, linfit 1, color=’black’)

plt.ylabel (’Gregory estimates of ECS$72$ [K$"2$]’, fontsize=12)
plt.xlabel (’S(0) (4xCO2)’, fontsize=12)

plt.savefig (’SO_ECS_correlation_4C0O2’)

print(’Correlation: ’ +str(np.corrcoef(ds.ECS**2, SS4.50)[0,1]))

p_1 = np.polyfit(SS4_metl.S0,ds.ECS**2, deg = 1)
linfit 1 = np.polyval(p_1,SS4 _metl.S0)

corr = np.corrcoef(SS4 metl.S0,ds.ECS**2)[1,0]
corr = round(corr, 5)

plt.scatter (SS4 metl, ds.ECS**2, color="darkred’)
plt.plot(SS4 metl, linfit 1, color=’black’)
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plt.ylabel (’Gregory estimates of ECS$72$ [K$"2$]’, fontsize=12)
plt.xlabel (’S(0) (4xC0O2)’, fontsize=12)
plt.savefig (’SO_ECS_correlation_4CO2_metl’)

dr pd.read_csv(’parameter.csv’, index_col = 0)
dp = pd.read csv(’gregory.csv’, index _col = 0)

parameterlist = (dr.parl[model]/2, dr.par2[model]/2, dr.par3[model
1/2)

forcing = pd.read_excel(’C://Users/Bruker/Desktop/
nyjustertforcingmedrcp85.xls”’)

forcing = forcing[model]. values
if model == 'GFDL-CM3’ or model == ’'GFDL-ESM2G’ or model == ’GFDL—
ESM2M’ or model == ’'HadGEM2-ES’:

forcing = forcing[10:]

F2x = dp.forcing[model]
amplitudes = parameterlist/(taulist*F2x)

# compute components T n(t) = exp(—t/tau_n)*F(t) (Here * is a
convolution)

dim = len(taulist)

If = len(forcing)

predictors = np. full ((1f ,dim) ,np.nan)

# compute exact predictors by integrating greens function
for k in range(0,dim):
intgreensti = np. full ((1f,1f) ,0.) # remember dot after 0 to
create floating point number array instead of integer
for t in range(0,1f):
# compute one new contribution to the matrix:
intgreensti[t,0] = taulist[k]*(np.exp(—t/taulist[k]) — np.
exp(—(t+1)/taulist[k]))

# take the rest from row above:
if t > 0:
intgreensti[t,1:(t+1)] = intgreensti[t—1,0:t]
# compute discretized convolution integral by this matrix
product:
predictors[:,k] = intgreensti@np.array(forcing)

= histemp
predictors [0:1len (histemp)]
= sm.add_constant (X)

Y
X
X

modell, rnorml = optimize.nnls(X,Y)

#modell = sm.OLS(Y,X)

b_tmp = modell

b = np.array ([b_tmp[0],b tmp[1],b tmp[2],b tmp[3]])

Tn = b[1l:]*predictors
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residual = Y — X@b
T hege = amplitudes*predictors

#Plot temperature responses to forcing

years = np.arange (0,len(Tn))

fig, ax = plt.subplots(figsize = [9,5])

plt.plot(years,Tn[:,0],linewidth=2,color = "black",label = ’Mode
with time scale ’ + str(taulist[0]) + ’ years’)

plt.plot(years,Tn[:,1],linewidth=2,color = "blue",label = 'Mode with
time scale ’ + str(taulist[1]) + ’ years’)

plt.plot(years,Tn[:,2],linewidth=2,color = "red",label = 'Mode with
time scale ’ + str(taulist[2]) + ’ years’)

ax.set_xlabel ('Time [yr]’,fontsize = 14)

ax.set_ylabel (’Temperature [K]’,fontsize = 14)

ax.set_title (’Temperature responses to forcing (’+ str(model) +’)’,
fontsize = 16)

ax.grid ()

ax.set_xlim (min(years) ,max(years))

ax.tick_params(axis=’both’,labelsize =22)

ax.legend (loc=2, prop={’size’: 18})

#fig.savefig (model+’—response.png’)

# Plot the estimated temp with historical

pl, lin = eom.lintrend func (model)

period = ’185001-200512"

if model == ’becc—csml—-1’ or model == ’becec—csml-1-m’ or model == ’
MIROC5 "’ :
period = ’185001-201212"

elif model == *GFDL-CM3’:
period = ’186001-200512"

elif model == ’GFDL-ESM2G’ or model == ’GFDL-ESM2M’ :
period = ’186101-200512"

elif model == ’HadGEM2-ES’:
period = ’186001-200511"

filedirl = ’/Users/Bruker/Documents/Forcingpaperdata’

strings = [’ts’, ’Amon’, model, ’historical’, ’rlilpl’, period]
filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, ’historical’, filename)

datatable = pd.read table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

deltaT = temp — lin[0O:len (temp)]
Tn_1 = Tn[0:len (temp)]
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Tn_156 = np.sum(Tn_1, axis=1)
years_1 = np.arange(0,len(deltaT))

fig , ax = plt.subplots(figsize = [9,5])

ax.plot(years_1,Tn_156,linewidth=2,color = "black",label = ’linear
response to adjusted forcing’)
ax.plot(years_1,deltaT,linewidth=2,color = "red", label = ’modelled

temperature ’)
ax.set_xlabel(’t’,fontsize = 18)
ax.set_ylabel ('T(t)’,fontsize = 18)

ax.set_title (’Temperature response to forcing, model: ’ +str (model),
fontsize = 18)
ax.grid ()

ax.set_xlim (min(years) ,max(years))
ax.tick_params(axis=’both’,labelsize =22)
ax.legend (loc=2, prop={’size’: 18});

Tn_mean= np.mean(Tn_156[0:20])
deltaT _mean = np.mean(deltaT[0:20])
print (Tn_mean)

print (deltaT_mean)

factor = Tn_mean — deltaT_mean

new_deltaT = factor+deltaT
new_Tn = Tn_156

print(factor)

fig, ax = plt.subplots(figsize = [9,5])

ax.plot(years_1 ,new Tn,linewidth=2,color = "black",label = ’linear
response to adjusted forcing’)
ax.plot(years_1,new_deltaT,linewidth=2,color = "red", label =~

modelled temperature’)
ax.set_xlabel(’t’,fontsize = 18)
ax.set_ylabel ('T(t)’,fontsize = 18)

ax.set_title (’Temperature response to forcing, model: ’ +str(model),
fontsize = 18)
ax.grid ()

ax.set_xlim (min(years) ,max(years))
ax.tick_params(axis=’both’,labelsize=22)

ax.legend (loc=2, prop={’size’: 18});

#fig.savefig (model+’—linearresponsetoforcing.png’)

#Residuals

res = Tn_156 — deltaT
mean_res = np.mean(res)

res_justert = new Tn — new_deltaT
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print (mean_res)
print(np.mean(res_justert))
fig, ax = plt.subplots(figsize = [9,5])

ax.plot(res, label=’residual’)
ax.hlines (y=0, xmin=0, xmax=156, linewidth=1, color="black’,

linestyle ="—"’, label="x=0")

ax.hlines (y=mean_res, xmin=0, xmax=156, linewidth=1, color=’red’,
linestyle =’—"’, label = ’mean’)

ax.set_title (’Residuals’, fontsize= 18)

print (’The mean :’, mean_res)

print (’Maximum value :’, max(abs(res)))

print (’Minimum value :’, min(abs(res)))
ax.legend ()

plt.show()

print (mean_res)
print(np.mean(res_justert))
fig, ax = plt.subplots(figsize = [9,5])

ax.plot(res_hege, label="residual’)
ax.hlines (y=0, xmin=0, xmax=156, linewidth=1, color="black’,

linestyle ="—"’, label="x=0")

ax.hlines (y=mean_res, xmin=0, xmax=156, linewidth=1, color=’red’,
linestyle ="—"’, label = ’mean’)

ax.set_title (’Residuals’, fontsize= 18)

print (’The mean :’, mean_res)

print (’Maximum value :’, max(abs(res)))

print (’Minimum value :’, min(abs(res)))
ax.legend ()

plt.show()

#da = pd.read_excel(’res_justert.xlsx’)
#da[model]=res_justert

#da.to_excel ("res_justert.xlsx’)

#da

#dd = pd.read_excel ('res.xlsx’, index_col =0)
#dd[model]=res

#dd.to_excel ("res.xlsx’)

#dd

#estimating parameters and making the fit to residuals
a, b, spect_hist, S _hist = psd func(res, taulist)
#plt.savefig (model+’—psd_historical.png’)

SSh metl = pd.read csv(’SO_values _hist metl.csv’, index col=0)
#SSh_metl.SO[model] = np.mean(S_hist[0:25])
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#SSh_metl.to_csv (’SO_values_hist metl.csv’)
SSh_metl

ds = pd.read_csv(’gregory short.csv’, index_col = 0)
SSh = pd.read _csv(’SO_values_hist.csv’, index_col=0)
#SSh.SO[model] = spect_hist[0]
#SSh.to_csv(’S0_values_hist.csv’)

SSh

p_.2 = np.polyfit (SSh.S0,ds.ECS**2, deg = 1)
linfit_2 = np.polyval(p_2,SSh.S0)

corr = np.corrcoef(SSh.S0,ds.ECS**2)[1,0]
corr = round(corr, 5)

plt.scatter (SSh, ds.ECS**2, color="darkred’)

plt.plot(SSh, linfit 2, color="black’)

plt.ylabel (’Gregory estimates of ECS$72$ [K$"2$]’, fontsize=12)
plt.xlabel (’S(0) (historical)’, fontsize=12)
plt.savefig(’SO_ECS_correlation_historical ’)

print (’Correlation: ’ +str(np.corrcoef(ds.ECS**2, SSh.S0)[0,1]))

p_2 = np.polyfit (SSh_metl.S0,ds.ECS**2, deg = 1)
linfit 2 = np.polyval(p_2,SSh_metl.S0)

corr = np.corrcoef(SSh_metl.S0,ds.ECS**2)[1,0]
corr = round(corr, 5)

plt.scatter (SSh_metl, ds.ECS**2, color="darkred’)
plt.plot(SSh_metl, linfit 2, color="black’)

plt.ylabel (’Gregory estimates of ECS$72$ [K$"2$]’, fontsize=12)
plt.xlabel(’S(0) (historical)’, fontsize=12)
plt.savefig(’SO_ECS_correlation_historical metl’)

= pd.read csv(’parameterestimation.csv’, index col = 0)

.parl[model] amplitudes[0]

.par2[model] = amplitudes[1]
.a[model] = a
.b[model] = b

.diff1 [model]
.diff2 [model]

amplitudes[0] — a
amplitudes[1]— b

§ EEEEEE §

.to_csv(’parameterestimation.csv’)

dk = pd.read _csv(’ECS sum.csv’, index_col = 0)
#dk.ECS_sum3[model] = ECS_sum

#dk .ECS20_sum3[model] = ECS20_sum

#dk .ECS_sum2[model] = ECS_sum?2
#dk.ECS20_sum2[model] = ECS20_sum2

#dk.to_csv (’ECS_sum.csv’)
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X
y

np.linspace (0,5, num=len (dk.ECS_sum3))
pl[1]+x*pl1[0]

pl = np.polyfit (dk.ECS sum3,dk.ECS sum2, deg = 1)
linfitl = np.polyval(pl,dk.ECS sum3)

corr_ECS = np.corrcoef(dk.ECS _sum3, dk.ECS sum2)[1,0]
corr_ECS = round(corr_ECS, 5)

fig, ax = plt.subplots(figsize = [9,5])
ax.scatter (dk.ECS sum3, dk.ECS sum2)
ax.plot (dk.ECS_sum3, linfitl ,linewidth=1, color = ’r’)

ax.set_xlabel (’ECS$ 3$ [K]’,fontsize
ax.set_ylabel (’ECS$_2$ [K]’,fontsize
#ax.set_title (’’,fontsize = 18)
plt.savefig (’ECS_sum_correlation’)
plt.show ()

16)
16)

dy = pd.read csv(’gregory_short.csv’, index col = 0) #short becasue
there are som models not included compared to gregory.csv file

p2 = np.polyfit (dk.ECS sum3,dy.ECS, deg = 1)

linfit2 = np.polyval(p2,dk.ECS_sum3)

fig, ax = plt.subplots(figsize = [9,5])

ax.scatter (dk.ECS_sum3,dy.ECS)

ax.plot(dk.ECS_sum3, linfit2 ,linewidth=1, color = ’r’)
ax.plot(dk.ECS sum3, dk.ECS_sum3)

ax.set_xlabel (’ECS_sum3’,fontsize = 18)
ax.set_ylabel (’ECS (gregory)’,fontsize = 18)
ax.set_ylim (1.5,5)

ax.set_xlim (1.5,5)

plt.show()

#hat_ ECS = dy.forcing[model]*(taulist [0]*(dm.a[model]/sigma[model])
+ taulist[1]*(np.abs(dm.b[model])/sigma[model]))
#hat_ECS

dd = pd.read_csv(’hat_ECS.csv’, index_col = 0)
#dd.hat_ECS[model] = hat ECS
#dd.to_csv (’hat ECS.csv’)

p3 = np.polyfit(dd.hat ECS,dk.ECS sum3, deg = 1)
linfit3 = np.polyval(p3,dd.hat ECS)

fig , ax = plt.subplots(figsize = [9,5])
ax.scatter (dd.hat ECS, dk.ECS_sum3)
ax.plot(dd.hat ECS, linfit3 ,linewidth=1, color = ’r’)

ax.set_xlabel (’hat ECS’,fontsize = 18)
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ax.set_ylabel (’ECS sum3’,fontsize = 18)
#ax.set_title (’’,fontsize = 18)
plt.show()

p4 = np.polyfit(dd.hat ECS,dk.ECS_sum2, deg = 1)
linfit4 = np.polyval(p4,dd.hat ECS)

fig, ax = plt.subplots(figsize = [9,5])
ax.scatter (dd.hat ECS, dk.ECS_sum?2)
ax.plot(dd.hat ECS, linfit4 ,linewidth=1, color = ’'r’)

ax.set_xlabel(’hat ECS’,fontsize = 18)
ax.set_ylabel (’ECS_sum2’,fontsize = 18)
#ax.set_title (’’,fontsize = 18)
plt.show ()

p5 = np.polyfit(dd.hat ECS,dy.ECS, deg = 1)
linfit5 = np.polyval(p5,dd.hat ECS)

fig, ax = plt.subplots(figsize = [9,5])
ax.scatter (dd.hat ECS, dy.ECS)
ax.plot(dd.hat ECS, linfit5 ,linewidth=1, color = ’r’)

ax.set_xlabel(’hat ECS’,fontsize = 18)
ax.set_ylabel (’ECS (gregory)’,fontsize = 18)
#ax.set_title (’’,fontsize = 18)

plt.show ()
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import os

import numpy as np

from numpy import NaN

import pandas as pd

import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit
from scipy import signal

from scipy import optimize

from matplotlib import pyplot
import statsmodels.api as sm

import ipynb.fs.full.Functions as eom

#model = 'ACCESS1-0’

#model = ’CanESM2’
#model = 'CNRM-CM5’
#model = ’CSIRO-Mk3-6-0’

#model = ’GFDL-CM3’
#model = ’GFDL-ESM2G’

#model = ’GFDL-ESM2M’
#model = ’GISS—-E2-R’
#model = ’'HadGEM2-ES’
#model = ’inmcm4’
#model = 'IPSL-CM5A-LR’
#model = "MIROC5’
#model = "MIROC-ESM’

#model = "MPI-ESM-LR’
#model = 'MRI-CGCM3’
model = ’NorESM1-M’

# ### Punkt 1 (model 1)

taulist = np.array([0.7, 9, 354])
par, rnorm, deltaTl, A, Tsum = eom.exp_4CO2_function(model, taulist)

# ### Punkt 3 (model 2)

dr
dp

pd.read csv(’parameter.csv’, index_col = 0)
pd.read csv(’gregory.csv’, index_col = 0)

parameterlist = (dr.parl[model]/2, dr.par2[model]/2, dr.par3[model
1/2)

forcing = pd.read_excel (’C://Users/Bruker/Desktop/
nyjustertforcingmedrcp85. x1ls’)

forcing = forcing[model].values
if model == 'GFDL-CM3’ or model == ’GFDL-ESM2G’ or model == ’GFDL—
ESM2M’ or model == 'HadGEM2-ES’:

forcing = forcing[10:]

F2x = dp.forcing [model] #gregory forcing
amplitudes = parameterlist/(taulist*F2x)

# compute components T n(t) = exp(—t/tau_n)*F(t) (Here * is a
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convolution)
dim = len(taulist)
If = len(forcing)
predictors = np. full ((1f ,dim) ,np.nan)

# compute exact predictors by integrating greens function
for k in range(0,dim):
intgreensti = np. full ((1f,1f) ,0.) # remember dot after 0 to
create floating point number array instead of integer
for t in range(0,1f):
# compute one new contribution to the matrix:
intgreensti[t,0] = taulist[k]*(np.exp(—t/taulist[k]) — np.
exp(—(t+1)/taulist[k]))

# take the rest from row above:
if t> 0:
intgreensti[t,1:(t+1)] = intgreensti[t—1,0:t]
# compute discretized convolution integral by this matrix
product:
predictors[:,k] = intgreensti@np.array(forcing)

histemp = eom.temp_plot(model)

histemp
predictors [0:len (histemp)]
sm.add_constant (X)

Y
X
X

modell, rnorml = optimize.nnls(X,Y)

#modell = sm.OLS(Y,X)

b_tmp = modell

b = np.array ([b_tmp[0],b tmp[1],b tmp[2],b tmp[3]])

Tn = b[1l:]*predictors
residual = Y — X@b

years = np.arange (0,len(Tn))

fig , ax = plt.subplots(figsize = [9,5])

plt.plot(years,Tn[:,0],linewidth=2,color = "black",label = ’Mode
with time scale ’ + str(taulist[0]) + ’ years’)

plt.plot(years,Tn[:,1],linewidth=2,color = "blue",label = 'Mode with
time scale ’ + str(taulist[1]) + ’ years’)

plt.plot(years,Tn[:,2],linewidth=2,color = "red",label = 'Mode with
time scale ’ 4+ str(taulist[2]) + ’ years’)

ax.set_xlabel(’t’,fontsize = 18)

ax.set_ylabel ('T(t)’,fontsize = 18)

ax.set title (’Temperature responses to forcing, model: '+ str(model)
,fontsize = 18)

ax.grid ()

ax.set_xlim (min(years) ,max(years))

ax.tick_params(axis=’both’,labelsize =22)

ax.legend (loc=2, prop={’size’: 18})

# plot data
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years = np.arange (0,len(Tn))

fig, ax = plt.subplots( figsize = [9,5])

ax.plot(years[0:len (histemp)],histemp,linewidth=2,color = "black")
ax.plot(years[0:len (histemp)],X@b, linewidth=2,color = "blue")
ax.set_ylabel ('T(t)’,fontsize = 18)

ax.set_title (’Global temperature’,fontsize = 18)
ax.set_xlabel(’Year’,fontsize = 18)
ax.grid ()

ax.set_xlim (min(years) ,max(years))
ax.tick _params(axis=’both’,labelsize=20)

#trekker fra linear trend
pl, lin = eom.lintrend func (model)

deltaT = histemp — lin[0:len (histemp)]
Tn_1 = Tn[O0:len (histemp)]
Tn_156 = np.sum(Tn_1, axis=1)

years_1 = np.arange (0,len(deltaT))

fig, ax = plt.subplots(figsize = [9,5])

ax.plot(years_1,Tn_156,linewidth=2,color
response to adjusted forcing’)

ax.plot(years_1,deltaT,linewidth=2,color = "red", label = ’modelled
temperature ’)

ax.set_xlabel ('Time [yr]’,fontsize = 14)

ax.set_ylabel ('T(t) [K]’,fontsize = 14)

ax.set_title ('Temperature response to forcing (’ +str(model) +’)’,
fontsize = 16)

ax.grid ()

ax.set_xlim (min(years) ,max(years))

ax.tick_params(axis=’both’,labelsize=22)

ax.legend (loc=2, prop={’size’: 18});

"black",label = ’linear

#justerer plot

Tn_mean= np.mean(Tn_156[0:20])
deltaT_mean = np.mean(deltaT[0:20])
factor = Tn_mean — deltaT_mean

new_deltaT = factor+deltaT
new Tn = Tn_156

print(factor)

fig, ax = plt.subplots(figsize = [9,5])

ax.plot(years_1 ,new Tn,linewidth=2,color = "black",label = ’Linear
response to adjusted forcing’)
ax.plot(years_1,new_deltaT,linewidth=2,color = "red", label =’

Historical run’)

ax.set_xlabel(’Time [yr]’,fontsize = 14)

ax.set_ylabel ('T(t) [K]’,fontsize = 14)

ax.set_title ('Temperature response to forcing (’ +str(model) +’)’,
fontsize = 16)

ax.grid ()
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ax.
ax.
ax.
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set_xlim (min(years) ,max(years))
tick_params(axis='both’,labelsize=22)
legend (loc=2, prop={’size’: 18});

# ### Punkt 4

w = b[1:]

w = w*(taulist*F2x)

Tsum2 = A@w # sum of all components

yearsO = np.arange(151)
# create figure

fig

, ax = plt.subplots(figsize = [9,5])

Tsum=Tsum/2

ax.

ax
ax.
ax
ax.

ax.
ax.
ax.
ax
plt

plot (yearsO ,Tsum2, linewidth=2,color = "black", label = ’Method 2’
)
.plot(yearsO ,Tsum, linewidth=2, color= "red", label=’Method 17)

set_xlabel(’Year after 1850 ’,fontsize = 12)

.set_ylabel (’$\Delta$T(t) [K] ’,fontsize = 12)

set_title (’Estimating $\Delta$T, both methods (’ +str (model) +’)’
,fontsize = 16)

grid O

set_xlim (min(years) ,max(years))
tick_params(axis='both’,labelsize=18)

.legend ()

.show ()

diff = Tsum — Tsum2

plt

dd

.plot(diff)

= pd.read_excel(’diff.xlsx’, index_col = 0)

dd[model] = diff

dd.

to_excel (’diff.xlsx’)

mean_vec = np.zeros(151)

for

for

plt
plt

i in range(0,151):
mean _vec[i] = np.mean(dd.iloc[i,:])

i in range(0,15):
differ = dd.iloc[:,1]
plt.plot(differ)

plt.grid ()

plt.axhline (linewidth=1, color="black’, linestyle="—")
#plt.axhline (y=np.mean(dd.iloc[150,:]), color=’black’, linestyle
=7__7)

plt.plot(mean_vec, linewidth=1.5, color="black’, linestyle=’-.")

.xlabel (’time [yr]’)
.ylabel (’Method 1 — Method 2 [K]’)

end_point = dd.iloc[150,:]
print (max(end point))
min(end_point)
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max(end_point)-min(end_point)

reader = pd.read _excel (’diff.xlsx’)
vec_std = np.zeros(151)
for i in range(0,151):

vec_std[i] = np.std(reader.iloc[i,])

plt.plot(vec_std)
plt.xlabel (’time [yr]’)
plt.ylabel (’stanard deviation ($\sigma$)’)
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import numpy as np

import matplotlib.pyplot as plt
import random

import pandas as pd

import statsmodels.api as sm
from scipy import optimize

#model = 'ACCESS1-0’

#model = ’CanESM2’
#model = ’CNRM-CM5’
#model = ’'CSIRO-Mk3-6-0’
#model = ’GFDL-CM3’
#model = ’'GFDL-ESM2G’
#model = ’GFDL-ESM2M’
#model = ’GISS—-E2-R’
#model = ’HadGEM2-ES'’
#model = ’inmcm4’
#model = 'IPSL-CM5A-LR’
#model = "MIROC5’
#model = 'MIROC-ESM’
#model = "MPI-ESM-LR’

#model = "MRI-CGCM3’
model = ’NorESM1-M’

taul_vec = [0.4, 0.4, 0.7, 1.0, 0.7, 0.7, 1.1, 1.5, 0.8, 0.6, 0.3,
0.5, 0.5, 0.5, 0.8, 1.2, 1.0, 2.7, 2.5, 0.4, 0.2, 0.7, 0.9, 0.3]

plt.hist(taul_vec)

plt.show()

tau2_vec = [5, 3, 8, 6, 6, 11, 15, 9, 8, 9, 5, 7, 7, 7, 9, 9, 20,
54, 30, 11, 5, 10, 11, 9]

plt.hist(tau2_vec)

plt.show()

tau3_vec = [535, 229, 191, 407, 348, 209, 278, 442, 157, 271, 212,
342, 380, 234, 255, 267, 528, 1010, 597, 434, 403, 453, 417,
688]

plt.hist(tau3_vec)

plt.show()

n=1000

Tsum_matrix = np.zeros(shape=(151,n))
Tsum2_matrix = np.zeros(shape=(151,n))
diff matrix = np.zeros(shape=(151,n))
tau_matrix = np.zeros(shape=(3,n))

import ipynb.fs.full.Functions as eom
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for i in range(0,n,1):
taul _sample = random.sample(taul _vec,1) [0]
tau2_sample = random.sample(tau2 vec,1) [0]
tau3_sample = random.sample(tau3_vec,1)[0]
#np.array ([random.sample (taul vec,1), random.sample(tau2 vec,1),
random . sample (tau3_vec,1) 1)
taulist = np.array([taul_sample, tau2 sample, tau3_sample])

par, rnorm, deltaTl, A, Tsum = eom.exp_4CO2 function(model,
taulist)

dr = pd.read csv(’parameter.csv’, index col = 0)

dp = pd.read _csv(’gregory.csv’, index_col = 0)

parameterlist = (dr.parl[model]/2, dr.par2[model]/2, dr.par3[
model]/2)
forcing = pd.read_excel(’C://Users/Bruker/Desktop/
nyjustertforcingmedrcp85. xls’)
forcing = forcing[model]. values
if model == 'GFDL-CM3’ or model == ’GFDL-ESM2G’ or model == ’
GFDL-ESM2M’ or model == ’HadGEM2-ES’:

forcing = forcing[10:]

F2x = dp.forcing[model] #gregory forcing
amplitudes = parameterlist/(taulist*F2x)

dim = len(taulist)
If = len(forcing)
predictors = np. full ((1f ,dim) ,np.nan)

# compute exact predictors by integrating greens function
for k in range(0,dim):
intgreensti = np. full ((1f,1f),0.) # remember dot after O
to create floating point number array instead of integer
for t in range(0,1f):
# compute one new contribution to the matrix:
intgreensti[t,0] = taulist[k]*(np.exp(—t/taulist[k]) —
np.exp(—(t+1)/taulist[k]))

# take the rest from row above:
if t > 0:
intgreensti[t,1:(t+1)] = intgreensti[t—1,0:¢t]
# compute discretized convolution integral by this matrix
product:
predictors [:,k] = intgreensti@np.array(forcing)

histemp = eom.temp_plot(model)
= histemp

Y
X = predictors[0:len (histemp)]
X sm.add_constant (X)

modell, rnorml = optimize.nnls(X,Y)
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#modell = sm.OLS(Y,X)
b_tmp = modell
b = np.array([b_tmp[0],b tmp[1],b tmp[2],b tmp[3]1])

Tn = b[1:]* predictors

residual = Y — X@b

pl, lin = eom.lintrend func (model)
deltaT = histemp — lin[0:len (histemp)]
Tn 1 = Tn[O0:len (histemp)]

Tn_156 = np.sum(Tn_1, axis=1)

Tn_mean= np.mean(Tn_156[0:20])
deltaT_mean = np.mean(deltaT[0:20])

factor = Tn_mean — deltaT_mean

new_deltaT = factor+deltaT
new Tn = Tn_156

w = b[1:]
w = w*(taulist*F2x)
Tsum2 = A@w

Tsum=Tsum/2 #to correct for 4xCO2
diff = Tsum — Tsum2

tau_matrix[:,i]=taulist
Tsum_ matrix[:, i]=Tsum
Tsum2_matrix [:, i]=Tsum2
diff matrix[:,i]=diff

if max(Tsum2 matrix[150,:]1)> max(Tsum_matrix[150,:]):
val = max(Tsum2_matrix[150,:])

else:
val = max(Tsum_matrix[150,:])

for i in range(0,n):
Tsum_vec = Tsum_matrix[:,1i]
plt.plot(Tsum_vec)

plt.grid O

plt.xlabel (’Time [yrs]’)

plt.ylabel (’Change in temperature [K]’)

plt.ylim(-0.1, val+0.2)

plt.savefig (model+’tau—check—4CO2. eps’)

for i in range(0,n):
Tsum2 vec = Tsum2 matrix[:,i]
plt.plot(Tsum2_vec)

plt.grid )

plt.xlabel (’Time [yrs]’)

plt.ylabel (’Change in temperature [K]’)
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plt.ylim(-0.1, val+0.2)
plt.savefig (model+’tau—check—historical .eps’)

diff mean = np.mean(diff matrix[150,:])
diff mean = round(diff mean, 2)
diff mean

for i in range(0,n,1):
if round(diff matrix[150,i],2) == diff mean:
no_it=i
print (i)

for i in range(0O,n):
diff vec = diff matrix[:,i]
plt.plot(diff vec)
#plt.plot(mean_vec, color=’black’, label="mean differance ’)
#plt.plot(diff matrix[:,no_it], color=’darkblue’, linestyle="-.7)
plt.grid )
plt.xlabel (’Time [yrs]’)
plt.ylabel (’Change in temperature [K]’)
plt.savefig (model+’tau—check—differance.eps’)

tau_matrix[:,no_it]
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import os

import numpy as np

from numpy import NaN

import pandas as pd

import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy import signal

from scipy import optimize

from matplotlib import pyplot

def abruptCO_func(model, taulist, expCO2):
filedirl = ’/Users/Bruker/Documents/CMIP6’
realm = ’Amon’
ensemble = ’rlilplfl’
if model=="GISS-E2-1-G’:
grid _label = ’gn’
else:
grid _label = ’gr’

## define time periods of data:

if model == 'IPSL-CM6A-LR’:
abrupt_4xco2_timeperiod = ’185001-214912"
abrupt_2xco2_timeperiod = ’185001-199912’
abrupt_Op5xco2_timeperiod = ’185001-199912°
abrupt_solp4p_timeperiod = ’185001-199912°
piControl timeperiod = ’185001-234912’
abrupt_exp_branch_yr = 1870

if expCO2 == ’abrupt—4xCO2’:

abrupt_timeperiod = abrupt_4xco2_timeperiod
elif expCO2 == ’abrupt—-2xC0O2’:

abrupt_timeperiod = abrupt_2xco2_timeperiod
elif expCO2 == ’abrupt-0p5xC0O2’:

abrupt_timeperiod = abrupt_Op5xco2 timeperiod

elif model== 'GISS-E2-1-G’:
abrupt_4xco2_timeperiod = ’185001-200012"
abrupt_2xco2_timeperiod = ’185001-200012’
piControl_timeperiod = ’415001-500012"
abrupt_exp_branch_yr = 4150

if expCO2 == ’abrupt—4xCO2’:
abrupt_timeperiod = abrupt_4xco2_ timeperiod
elif expCO2 == ’abrupt—-2xCO2’:

abrupt_timeperiod = abrupt_2xco2 timeperiod

#i#### load abrupt—co2 data ######

var = 'ts’ # temperatures

strings = [var, realm, model, expCO2, ensemble, grid label,
abrupt_timeperiod]
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filename = ’glannual ’ 4+ " _".join(strings) + ’.txt’
file = os.path.join(filedirl , model, expCO2, filename)
datatable = pd.read table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

if len(temp) >150:
temp = temp[0:150]

#H#### load control run data ######

exp = ’'piControl’

var = 'ts’ # temperatures

strings = [var, realm, model, exp, ensemble, grid label,
piControl_timeperiod]

filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
controltemp=datatable.iloc[:,0]

years = np.arange(1,150+1)
controlyears = np.arange(0,len(controltemp))

branchindex = abrupt _exp_branch yr — int(piControl timeperiod
[0:4]1)
print (branchindex)

pl = np. polyfit(controlyears[branchindex:(branchindex + len (temp
))]1, controltemp[branchindex:(branchindex + len(temp))], deg =
D

lintrendT = np.polyval(pl, controlyears[branchindex:(branchindex
+ len(temp)) 1)

deltaT = temp — lintrendT

if expCO2 == ’abrupt-0p5xC0O2’:
deltaT=(-1)*deltaT

# for deltaT we also have the information that deltaT (0) = O.
Include this:

deltaTO = np.concatenate (([0],deltaT))

yearsO = np.concatenate (([0],years))

# compute components T n(t) = exp(—t/tau_n)*F(t) (Here * is a
convolution and F is a constant, so we can compute T_n
analytically)

dim = len(taulist)

A = np.zeros((len(years)+1,dim))
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for i in range(0,dim): # compute the predictors in the linear
model for deltaT

Al:,i] = (1 — np.exp((—np.arange(0,151))/taulist[i]))

# find parameters parl in the linear model: deltaT = \sum_i parl
[i]*(1 — np.exp((—t/taul[i]))

parl, rnorml = optimize.nnls(A, deltaTO0)

Ti = np.array ([A[:,i]*parl[i] for i in range(0,dim)]) # compute
components

Tsum = A@parl # sum of all components

return yearsO, deltaTO, Tsum
def gregory(model, exp type):

filedirl = ’/Users/Bruker/Documents/CMIP6’
realm = ’Amon’

if model=="GISS-E2-1-G’:
grid _label = ’gn’
else:
grid_label = ’gr’

## define time periods of data:

if model == 'IPSL-CM6A-LR’:
ensemble = ’'rlilplfl’
abrupt_4xco2_timeperiod = ’185001-214912"
abrupt_2xco2_timeperiod = ’185001-199912°
abrupt_Op5xco2 timeperiod = ’185001-199912°
abrupt_solp4p_timeperiod = ’185001-199912°
piControl_timeperiod = ’185001-234912’
abrupt_exp_branch_yr = 1870

elif model == 'CNRM-CM6-1":
ensemble = ’rlilplf2’
abrupt_4xco2_timeperiod = ’185001-199912°
piControl timeperiod = ’185001-234912’
abrupt_exp_branch_yr = 1850

elif model == 'CNRM-ESM2-1’:
ensemble = ’rlilplf2’
abrupt_4xco2_timeperiod = ’185001-199912°
piControl timeperiod = ’185001-234912’
abrupt_exp branch _yr = 1850

elif model== ’GISS-E2-1-G’:
ensemble = ’rlilplfl’
abrupt_4xco2_timeperiod = ’185001-200012"
abrupt_2xco2_timeperiod = ’185001-200012"
piControl timeperiod = ’415001-500012"
abrupt_exp_branch_yr = 4150
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##### load control run data ######
exp = ’'piControl’

timeperiod = piControl timeperiod
length wanted = 500 # measured in years

var = 'ts’ # temperatures

strings = [var, realm, model, exp, ensemble, grid label,
timeperiod]

filename = ’glannual_’ + "_".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")

controltemp=datatable.iloc[:,0]

var = ’'rlut’ # rlut

strings = [var, realm, model, exp, ensemble, grid label,
timeperiod]

filename = ’glannual ’ + "_".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read table(file , header=None,sep=" ")

controlrlut=datatable.iloc[0:1len (controltemp) ,0]

var = ’'rsut’ # rsut

strings = [var, realm, model, exp, ensemble, grid label,
timeperiod]

filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")

controlrsut=datatable.iloc[0:len(controltemp) ,0]

var = ’'rsdt’ # rsdt

strings = [var, realm, model, exp, ensemble, grid label,
timeperiod]

filename = ’glannual_’ + "_".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read _table(file , header=None,sep=" ")

controlrsdt=datatable.iloc[0:1len (controltemp) ,0]

if len(controltemp)>length wanted:
controltemp = controltemp[0:length wanted]
controlrlut = controlrlut[0:length wanted]
controlrsut controlrsut[0:length wanted]
controlrsdt controlrsdt[0:length wanted]

#i### load abrupt—exp data #####

if exp_type == ’abrupt—4xCO2’:
timeperiod = abrupt_4xco2 timeperiod
length _wanted = 300 # measured in years
elif exp_type == ’abrupt—-2xC02’:

timeperiod = abrupt_2xco2 timeperiod
length_wanted = 150
elif exp_type == ’abrupt-0p5xC0O2’:
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timeperiod = abrupt Op5xco2_ timeperiod
length_wanted = 150

elif exp_type == ’abrupt—solp4p’:
timeperiod = abrupt_solp4p timeperiod
length_wanted = 150

var = 'ts’ # temperatures

strings = [var, realm, model, exp type, ensemble, grid label,
timeperiod]

filename = ’glannual ’ + "_".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp type, filename)
datatable = pd.read_table(file , header=None,sep=" ")

temp=datatable.iloc[:,0]

var = ’rlut’ # rlut

strings = [var, realm, model, exp_type, ensemble, grid label,
timeperiod]

filename = ’glannual ’ + " _".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp_ type, filename)
datatable = pd.read_table(file , header=None,sep=" ")
rlut=datatable.iloc[:,0]

var = ’'rsut’ # rsut

strings = [var, realm, model, exp_type, ensemble, grid label,
timeperiod]

filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp_type, filename)
datatable = pd.read_table(file , header=None,sep=" ")
rsut=datatable.iloc[:,0]

var = ’rsdt’ # rsdt

strings = [var, realm, model, exp type, ensemble, grid label,
timeperiod]

filename = ’glannual ’ + "_".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp type, filename)
datatable = pd.read_table(file , header=None,sep=" ")

rsdt=datatable.iloc[:,0]

if len(temp)>length wanted:
temp = temp[0:length wanted]

rlut = rlut[0:length wanted]

rsut = rsut[0:length_wanted]

rsdt = rsdt[0:length wanted]
#exp == ’'piControl’

years = np.arange (0,len (temp));
if exp == ’piControl ’:
years = np.arange (0,len(controltemp))

# plot temperature
var = temp[:]; label = ’temperature’
if exp == ’piControl ’:
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var = controltemp [:]

controlyears = np.arange(0,len(controltemp))

nettoarad = rsdt — rsut — rlut

controlnettoarad = controlrsdt — controlrsut — controlrlut
branchindex = abrupt_exp branch_yr — int(piControl timeperiod
[0:4])

#print (branchindex)

pl = np. polyfit(controlyears[branchindex:(branchindex + len (temp
))]1, controltemp[branchindex:(branchindex + len(temp))], deg =
1)

lintrendT = np.polyval(pl,controlyears[branchindex:(branchindex
+ len (temp)) 1)

p2 = np.polyfit(controlyears[branchindex:(branchindex + len (temp
))], controlnettoarad [branchindex:(branchindex + len(temp))],
deg = 1)

lintrendN = np.polyval(p2, controlyears[branchindex:(branchindex
+ len (temp)) 1)

deltaN
deltaT

nettoarad — lintrendN
temp — lintrendT

# Gregory plot

fig, ax = plt.subplots(figsize = [9,5])
plt.scatter (deltaT,bdeltaN,linewidth=1,color = "lavender")
ax.set_xlabel (’$\Delta$T’,fontsize = 18)
ax.set_ylabel (’$\Delta§N’,fontsize = 18)

ax.set_title (’Gregory plot for ’ 4+ str(model) + ° (’ + str(
exp_type) + ’)’,fontsize = 18)
ax.grid ()

ax.tick_params(axis=’both’,labelsize =22)

# find linear fit to these points:
pl = np.polyfit(deltaT ,deltaN ,deg = 1)

#linfit = np.polyval(pl, deltaT)

deltaTextended = np.concatenate (([0],deltaT,[—p1[1]/p1[01]1))
linfit = np.polyval(pl,deltaTextended)
plt.plot(deltaTextended, linfit ,linewidth=1,color = "black")

if pl[1]>0:
ax.set_ylim(-1,p1[1]+1)
ax.set_xlim(-0.3,-p1[1]1/(p1[0])+1)
else:
ax.set_ylim (p1[1],-1)
ax.set_xlim(-p1[1]1/(p1[0]),0)

return pl
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# ## Making Gregory—plot

#model "IPSL-CM6A-LR’
#model = ’CNRMCM6—-1’
#model "CNRM-ESM2-1"
model = ’GISS-E2-1-G’

exp_type = ’abrupt—4xCO2’

#exp_type = ’“abrupt—2xC02’
#exp_type = ’abrupt-0p5xCO2’
#exp_type = ’abrupt—solp4p’

pl = gregory(model, exp_type)

if exp_type == ’abrupt-2xCO2’:
print (’F2xCO2 = '+ str(pl[1]))
print (’feedback parameter = ’ + str(pl[0]))
print (’ECS / T2xCO2 = ’ + str(—p1[1]1/p1[0]))
elif exp type == ’abrupt—4xCO2’:

convfactor = 1/2 # that converts to corresponding estimates for
a doubling of CO2

print (’converted to measures for 2xCO2:’)

print (’F2xCO2 = '+ str(pl[1l]*convfactor))

print (’feedback parameter = ’ + str(pl[0]))

print (’ECS / T2xCO2 = ’ + str(—pl[1l]*convfactor/p1[0]))
elif exp_type == ’abrupt-0p5xCO2’:

print (’Forcing of Op5xCO2 = ’ + str(pl[1]))

print (’feedback parameter = ’ + str(pl[0]))

print(’deltaT after 0p5CO2 = ’ + str(—pl1[1]/p1[0]))
elif exp_type == ’abrupt—solp4p’:

print(’Forcing of solp4p = ’ + str(pl[1]))

print (’feedback parameter = ’ + str(pl[0]))

print(’deltaT after solp4p = ’ + str(-pl[1]/p1[0]))
p1[1]

# ## Making different tabels

### making table for different ECS—estimates for IPSL-CM6A-LR ###
ipsl = pd.read_csv(’IPSL-CM6A-LR.csv’, index_col = 0)
if model=="IPSL-CM6A-LR’:

ipsl = pd.read_csv(’IPSL-CM6A-LR.csv’, index_col = 0)
if exp_type == ’abrupt—4xCO2’:
ipsl.deltaT[exp_typel=—pl1[1]/p1[0]
ipsl.forcing[exp typel=pl[1]
ipsl.feedback[exp typel=pl[O0]
else:
ipsl.deltaT[exp_typel=—-p1[11/(p1[0])
ipsl.forcing[exp typel=pl[1l]
ipsl.feedback[exp typel=p1l[0]
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ipsl.to_csv(’IPSL-CM6A-LR.csv’)
ipsl

ipsl.forcing[’abrupt—2xCO2’] — ipsl.forcing[’abrupt—4xC02°’]1/2

ipsl.forcing[’abrupt—2xCO2’] + ipsl.forcing[’abrupt—0p5xC0O2’]

### making table for 4xCO2 for all models in CMIP6 ###
if exp type== ’abrupt—-4xCO2’:
df = pd.read_csv(’cmip6_gregory.csv’, index_col = 0)
df .ECS[model]l=—p1[1]/(p1[0]*2)
df.forcing [model]l=p1[1]*(1/2)
df.feedback[model]=p1[0]

df.to_csv(’cmip6_gregory.csv’)

# ## Compare IPSL-—model in Gregory

x = np.arange (0,10)

gregb pd.read csv(’IPSL—gregory.csv’, index _col= 0)

ipsl5 = greg6.feedback[ ’IPSL-CM5A-LR’]*x + greg6.forcing [’ IPSL—-CM5A-
LR’]

ipsl6 = greg6.feedback[’IPSL-CM6A-LR’]*x + greg6.forcing[’IPSL-CM6A-
LR’]

plt.plot(x,ipsl5, label="IPSL-CM5A-LR’)

plt.plot(x,ipsl6é, label="IPSL-CM6A-LR’)

plt.hlines(0,0,5, linestyles="dashed’)

plt.grid )

plt.xlim (0,5)

plt.ylim(-0.5,4)

plt.xlabel (’$\Delta T$ [K]’, fontsize=12)

plt.ylabel (’$\Delta N $ [W/m$"2$]’, fontsize=12)

plt.title (’IPSL-model for CMIP5 and CMIP6’, fontsize=16)
plt.legend ()

print (’ECS for IPSL-CMS5A-LR:’ + str(greg6.ECS[’IPSL—-CM5A-LR’]))
print (’ECS for IPSL-CM6A-LR:’ + str(greg6.ECS[’IPSL-CM6A-LR’]))
plt.savefig (’CMIP6—IPSL.png’)

# ## Compare GISS—model in Gregory

x = np.arange(0,10)

giss6 = pd.read csv(’GISS—gregory.csv’, index col=0)

giss5_1 = giss6.feedback[’GISS-E2-R’]*x + giss6.forcing [’ GISS-E2-R’]

giss5 2 = giss6.feedback[ ’GISS—-E2-H’]*x + giss6.forcing [ GISS-E2-H’]

giss6 = giss6.feedback[’GISS—-E2-1-G’]*x + giss6.forcing[’GISS-E2-1-G
']

plt.plot(x,giss5 1, label="GISS-E2-R’)
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plt.plot(x,giss5 2, label="GISS-E2-H’)
plt.plot(x, giss6, label="GISS-E2-1-G’)
plt.hlines (0,0,5, linestyles="dashed’)

plt.grid O

plt.xlim (0,3)

plt.ylim(-0.5,4)

plt.xlabel(’$\Delta T$ [K]’, fontsize=12)
plt.ylabel (’$\Delta N $§ [W/m$~2$]’, fontsize=12)
plt.title (’GISS—model for CMIP5 and CMIP6’, fontsize=16)
plt.legend ()

plt.savefig ('CMIP6—GISS.png’)

# ## Abrupt CO2, comparing different scenario

taulist = np.array ([0.7, 9, 354])
model = ’IPSL-CM6A-LR’

exp4xCO2 = ’"abrupt—4xC02’
exp2xCO2 = ’"abrupt-—2xC02’
exp0p5xC0O2 = ’“abrupt—-0p5xCO2’

years_4xCO2, var_4xCO2, Tsum_4xCO2
exp4xC02)

years_2xCO2, var_2xCO2, Tsum_2xCO2
exp2xC02)

years_0p5xCO2, var_Op5xCO2, Tsum_Op5xCO2 = abruptCO_func(model,
taulist , expOp5xC0O2)

abruptCO_func(model, taulist,

abruptCO_func(model, taulist,

fig, ax = plt.subplots(figsize = [9,5])

ax.plot(years_4xCO2,var_4xCO2,linewidth=2,color = "silver")
ax.plot(years 4xCO2,Tsum_4xCO2,linewidth=2,color = "slateblue",
label="4xC027)

ax.plot(years_2xC0O2,var_2xCO2,linewidth=2,color = "silver")

ax.plot(years 2xCO2,Tsum_2xCO2, linewidth=2,color = "mediumvioletred"
, label="2xC02’)

ax.plot(years_0p5xCO2,var_Op5xCO2,linewidth=2,color = "silver")

ax.plot(years_0p5xCO2,Tsum_0p5xCO2, linewidth=2,color = "darkblue",
label="0.5xC02")

ax.set_xlabel(’Years after 1850 ’,fontsize = 11)
ax.set_ylabel(’$\Delta T$(t) ’,fontsize = 11)

ax.set_title( ’$\Delta T$, model: ’ +str(model) ,fontsize = 18)
ax.grid ()

ax.tick_params(axis=’both’,labelsize=18)

ax.legend ()

fig , ax = plt.subplots(figsize = [9,5])
ax.plot(years_4xC02,0.5*Tsum_4xCO2, linewidth=2, label="4xC02")

ax.plot(years 2xCO2,Tsum_2xCO2, linewidth=2, label="2xC02")
ax.plot(years_0p5xCO2,Tsum_0p5xCO2, linewidth=2, label=’0.5xC02")
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ax.set_xlabel (’Year after 1850 ’,fontsize = 12)

ax.set_ylabel (’$\Delta T$ [K] ’,fontsize = 12)

ax.set_title( ’'Temperature change for model: ’ +str(model) ,fontsize
= 16)

ax.grid ()

ax.tick _params(axis='both’,labelsize=18)

ax.legend ()

fig.savefig (’IPSL—comparing.png’)

model = ’GISS-E2-1-G’

years_4xCO2, var_4xCO2, Tsum_4xCO2
exp4xC0O2)

years_2xCO2, var_2xCO2, Tsum_2xCO2 = abruptCO_func(model, taulist,
exp2xC02)

abruptCO_func(model, taulist,

fig, ax = plt.subplots(figsize = [9,5])

ax.plot(years_4xCO2,var_4xCO2,linewidth=2,color = "silver")

ax.plot(years_4xCO2,Tsum_4xCO2, linewidth=2,color = "slateblue",
label="4xC02’)

ax.plot(years_2xCO2,var_2xCO2,linewidth=2,color = "silver")

ax.plot(years_2xC0O2,Tsum_2xCO2, linewidth=2,color = "mediumvioletred"
, label="2xC02")

ax.set_xlabel(’Years after 1850 ’,fontsize = 11)

ax.set_ylabel (’$\Delta T$(t) ’,fontsize = 11)

ax.set_title( ’$\Delta T$, model: ’ +str(model) ,fontsize = 18)
ax.grid ()

ax.tick_params(axis=’both’,labelsize=18)

ax.legend ()

fig, ax = plt.subplots(figsize = [9,5])

ax.plot(years_4xC02,0.5*Tsum_4xCO2, linewidth=2, label="4xC02")
ax.plot(years 2xCO2,Tsum_2xCO2, linewidth=2, label="2xC02")

ax.set_xlabel (’Year after 1850 ’,fontsize = 12)

ax.set_ylabel (’$\Delta T$ [K]’,fontsize = 12)

ax.set_title( ’'Temperature change, model: ’ +str(model) ,fontsize =
16)

ax.grid ()

ax.tick_params(axis=’both’,labelsize=18)

ax.legend ()

fig.savefig (’GISS—comparing.png’)

# ## Plotting Historical temperatures

temp = eom.temp_ plot(’CNRM-CM5’)

model = *CNRM-CM6-1"

filedirl = ’/Users/Bruker/Documents/CMIP6’
realm = ’Amon’

ensemble = ’rlilplf2’
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exp = ’historical’

I )

gr = 8r
period = ’185001-201412"

var = 'ts’

strings = [var, realm, model, exp, ensemble, gr, period]
filename = ’glannual ’ + " ".join(strings) + ’.txt’

file = os.path.join(filedirl , model, exp, filename)

datatable = pd.read _table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

fig, ax = plt.subplots(figsize = [9,5])
plt.plot(temp, linewidth=1,color = "red")
ax.set_xlabel(’Years (after 1850)’,fontsize = 10)
ax.set_ylabel (’Temperature (K)’,fontsize = 10)

ax.set_title (’Change in surface temperature, model: ’ + str (model)
, fontsize = 18)
ax.grid ()

ax.tick_params(axis='both’,labelsize=12)
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import os

import numpy as np

from numpy import NaN

import pandas as pd

import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
from scipy import signal

from scipy import optimize

import random

from matplotlib import pyplot

model list= np.array ([ "ACCESS1-0’, ’CanESM2’ , "CNRM-CM5’, ’CSIRO-Mk3
—-6-0’, ’'GFDL-CM3’, ’GFDL-ESM2G’, ’GFDL-ESM2M’, ’GISS—E2-R’, °’
HadGEM2-ES ’ ,
‘inmem4’, 'IPSL-CM5A-LR’, 'MIROC5’, 'MIROC-ESM
>, "MPI-ESM-LR’, ’MRI-CGCM3’, ’'NorESM1-M’])

taul vec = [0.4, 0.4, 0.7, 1.0, 0.7, 0.7, 1.1, 1.5, 0.8, 0.6, 0.3,
0.5, 0.5, 0.5, 0.8, 1.2, 1.0, 2.7, 2.5, 0.4, 0.2, 0.7, 0.9, 0.3]
tau2_vec = [5, 3, 8, 6, 6, 11, 15, 9, 8, 9, 5, 7, 7, 7, 9, 9, 20,

54, 30, 11, 5, 10, 11, 9]

tau3_vec = [535, 229, 191, 407, 348, 209, 278, 442, 157, 271, 212,
342, 380, 234, 255, 267, 528, 1010, 597, 434, 403, 453, 417,
688]

import ipynb.fs.full.Functions as func

dg = pd.read csv(’gregory_short.csv’, index_col = 0)
dr pd.read_csv(’parameter.csv’, index_col = 0)

dp = pd.read _csv(’gregory.csv’, index _col = 0)

#model = ’NorESM1-M’
n=1000

#tau_matrix = np.zeros(shape=(3,n))

for i in range(0, len(model list),1):
spec_vec = np.zeros(n)
model=model list[i]

for i in range(0,n,1):
taul_sample = random.sample(taul _vec,1) [0]
tau2_sample = random.sample(tau2_vec,1) [0]
tau3_sample = random.sample(tau3_vec,1) [0]
taulist = np.array([taul_sample, tau2 sample, tau3_sample])

histemp = func.temp_plot(model)
par_4CO2, rnorm, deltaT, A, Tsum = func.exp_4CO2_function (
model, taulist)

parameterlist = (dr.parl[model]/2, dr.par2[model]/2, dr.par3
[model]l/2)
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forcing = pd.read_excel(’C://Users/Bruker/Desktop/
nyjustertforcingmedrcp85. xls’)
forcing = forcing[model].values
if model == ’GFDL-CM3’ or model == ’GFDL-ESM2G’ or model ==
’GFDL-ESM2M’ or model == ’HadGEM2-ES’:
forcing = forcing[10:]

F2x = dp.forcing[model]
amplitudes = parameterlist/(taulist*F2x)

# compute components T n(t) = exp(—t/tau_n)*F(t) (Here * is
a convolution)

dim = len(taulist)

If = len(forcing)

predictors = np. full ((1f ,dim) ,np.nan)

# compute exact predictors by integrating greens function
for k in range(0,dim):
intgreensti = np. full ((1f,1f),0.) # remember dot after
0 to create floating point number array instead of integer
for t in range(0,1f):
# compute one new contribution to the matrix:
intgreensti[t,0] = taulist[k]*(np.exp(—t/taulist[k])
— np.exp(—(t+1)/taulist[k]))

# take the rest from row above:
if t > 0:
intgreensti[t,1:(t+1)] = intgreensti[t—1,0:t]
# compute discretized convolution integral by this
matrix product:

predictors[:,k] = intgreensti@np.array(forcing)

Tn = amplitudes*predictors

pl, lin = func.lintrend_func (model)

period = ’185001-200512"

if model == ’becc—csml—-1’ or model == ’becc—csml-1-m’ or model
== "MIROC5 " :
period = ’185001-201212"
elif model == 'GFDL-CM3’:
period = ’186001-200512"
elif model == ’GFDL-ESM2G’ or model == ’GFDL-ESM2M’ :
period = ’186101-200512"
elif model == ’HadGEM2-ES’:
period = ’186001-200511"
filedirl = ’/Users/Bruker/Documents/Forcingpaperdata’
strings = [’ts’, ’Amon’, model, ’historical’, ’rlilpl’,
period]

filename = ’glannual ’ + " _".join(strings) + ’.txt’
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file = os.path.join(filedirl , model, ’historical’, filename)
datatable = pd.read _table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

deltaT = temp — lin[0:len (temp)]
Tn_1 = Tn[O:len (temp)]

Tn_156 = np.sum(Tn_1, axis=1)

res = Tn_156 — deltaT

spect_hist = func.psd_func(res, taulist)
spec_vec[i] = spect_hist[0]

dd = pd.read_excel(’hist_SO.xlsx’)
dd[model]=spec_vec
dd.to_excel(’hist_SO0.xlsx’)

Y = dg.ECS
X = np.mean(dd.iloc[:,])
plt.scatter (X,Y)

fig, ax = plt.subplots(figsize = [8,8])

ax.grid ()

ax.set_ylabel (’Gregory estimates of ECS$"2$ [K]’, fontsize=12)
ax.set_xlabel(’S(0)’, fontsize=12)

for i in range(0,len(model _list),1):
model = model list[i]
snitt = np.mean(dd.iloc[:,i])
std = np.std(dd.iloc[:,i])

Y
X

dg.ECS[model]
snitt

ax.errorbar (X, Y**2, fmt="o’, xerr=std, label= str (model))
ax.legend ()

snitt_vec=np.zeros(len(model_list))
for p in range(0,len(model list),1):
snitt_vec[p]l=np.mean(dd. iloc[:,p])

pl = np.polyfit(snitt_vec, dg.ECS**2, deg= 1)
linfitl = np.polyval(pl, snitt_vec)

plt.plot(snitt_vec, linfitl, color=’grey’)

print(’Correlation: ’ + str(np.corrcoef(dg.ECS**2, snitt vec)[0,1]))

snitt_vec=np.zeros(len(model list))
for p in range(0,len(model list),1):
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snitt_vec[pl=np.mean(dd.iloc[:,p])

pl = np.polyfit(snitt_vec, dg.ECS**2, deg= 1)
linfitl = np.polyval(pl, snitt_vec)

plt.scatter (snitt_vec, dg.ECS**2)

plt.plot(snitt_vec, linfitl)

plt.xlabel(’S(0)’, fontsize=12)

plt.ylabel (’ECS$72%’, fontsize=12)

print (’Correlation: ’ + str(np.corrcoef(dg.ECS**2, snitt vec)[0,1]))
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import os

import numpy as np

from numpy import NaN

import pandas as pd

import matplotlib.pyplot as plt
from scipy.optimize import curve_ fit
from scipy import signal

from scipy import optimize

from matplotlib import pyplot

model = ’IPSL-CM6A-LR’
filedirl = ’/Users/Bruker/Documents/CMIP6’
realm = ’Amon’
ensemble vec = np.array([’rlilp1fl’, ’r2ilplfl’, ’r3ilplfl’, ~’
r4ilp1fl’, ’r5ilplfl’,

‘r6ilplfl’, ’r7ilplfl’, ’r8ilplfl’, ~’
r9ilp1fl1’, ’rl10ilp1fl’,

’r1lilplfl’, ’rl12ilplfl’, ’r13ilp1lf1’, ’
r14ilplf1’, ’r15ilplfl’,

‘rl6ilplfl’, ’r17ilplfl’, ’r18ilplf1l’, ’
r19i1p1f1’, ’r20ilplfl’,

’r21ilplfl’, ’r22ilpifl’, ’r23ilplf1l’, ’
r24i1p1f1’, ’r25ilplfl’,

'r26ilplfl’, ’'r27ilplfl’, ’r28ilplfl’, ’
r29ilp1fl1’, ’r30ilplfl’,

"r31ilplfl’])

fig, ax = plt.subplots(figsize = [9,5])

ax.set_xlabel(’Year after 1850’,fontsize = 10)

ax.set_ylabel (’Temperature [K]’,fontsize = 10)

ax.set_title(’Historical temperature (’ + str(model) +’)’ ,
fontsize = 18)

ax.tick_params(axis=’both’,labelsize=12)

ax.grid ()

ensemble = 'rlilplfl’
exp = ’'historical’

gr = ’'gr’

period = ’185001-201412"
var = 'ts’

for i in range (0, len(ensemble), 1):
ensemble = ensemble vec[i]
strings = [var, realm, model, exp, ensemble, gr, period]
filename = ’glannual ’ + " ".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

plt.plot(temp,linewidth=1,color = "red")
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mean_temp = np.zeros (len (temp))
for i in range(0,len(temp),1):
tmp = np.zeros(len(ensemble vec))
for t in range(0,len(ensemble vec)):
ensemble=ensemble _vec[t]

strings = [var, realm, model, exp, ensemble, gr, period]
filename = ’glannual ’ 4+ " _".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)

datatable = pd.read _table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

tmp[t]=temp[i]
mean_temp|[ i]=np.mean(tmp)

ax.plot(mean_temp, color=’black’)

res_matrix = np.zeros(shape=(len(temp),len(ensemble vec)))

for i in range(0,len(ensemble vec),1):
ensemble = ensemble vec[i]
strings = [var, realm, model, exp, ensemble, gr, period]
filename = ’glannual ’ + "_".join(strings) + ’.txt’
file = os.path.join(filedirl , model, exp, filename)
datatable = pd.read_table(file , header=None,sep=" ")
temp=datatable.iloc[:,0]

res = mean_temp — temp

res_matrix|[:,i]= res

import ipynb.fs.full.Functions as fun

taulist = np.array([0.7, 9, 354])
s, S_res = fun.psd_plotfunc(res, taulist)

taulist = np.array ([0.7, 9, 354])
for i in range (0, len(ensemble vec), 1):
res = res_matrix[:,i]
s, S_res = fun.psd _plotfunc(res, taulist)

cc = pd.read_csv(’IPSL-CM6A-LR_SO-values.csv’, index_col=0)
cc.S0[i+1] = s[0]
cc.to_csv(’IPSL-CM6A-LR_SO-values.csv’)

ccl = pd.read_csv(’IPSL-CM6A-LR_SO-values _metl.csv’, index_col
=0)

ccl.SO0[i+1] = np.mean(S_res[1:25])
ccl.to_csv(’IPSL-CM6A-LR_SO-values _metl.csv’)

cc = pd.read_csv(’IPSL-CM6A-LR_SO—values.csv’, index col=0)



ccl =
print(
print(
print(
print(
print(
print(
print(
print(
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pd.read csv(’IPSL-CM6A-LR_SO—values metl.csv’, index_col=0)

"The mean: ’ +str (np.mean(cc.S0)))

"Minimum: ’+4str (np.min(cc.S0)))

’Maximum: ’ + str (np.max(cc.S0)))

’Standard deviation: ’ + str(np.std(cc.S0)))
"The mean: ’ +str (np.mean(ccl.S0)))

"Minimum: ’+str (np.min(ccl.S0)))

’Maximum: ’ + str (np.max(ccl.S0)))

’Standard deviation: ’ + str(np.std(ccl.S0)))

plt.hist(cc.SO0)
plt.show()
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