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Abstract  
The base of the gas hydrate stability zone (GHSZ) is a critical interface, providing a first-order 

estimate of gas hydrate distribution. Sensitivity to thermobaric conditions makes its prediction 

challenging particularly in the regions with dynamic pressure-temperature regime. In Green 

Canyon in the northern Gulf of Mexico (Block GC955), the seismically inferred base of the 

GHSZ is 450 meters (1476 ft) below the seafloor, which is 400 m (1312 ft) shallower than 

predicted by gas hydrate stability modeling using standard temperature and pressure gradient 

assumptions, and an assumption of structure I (99.9% methane gas) gas hydrate. We use 3D 

seismic, log data and heat flow modeling to explain the role of the salt diapir on the observed 

thinning of the GHSZ. We also test the alternative hypothesis that the GHSZ base is actually 

consistent with the theoretical depth. The heat flow model indicates a salt-induced temperature 

anomaly, reaching 8 °C at the reservoir level, which is sufficient to explain the position of the 

base of the GHSZ. Our analyses show that overpressure does develop at GC955, but only within 

a ~500 m (1640 ft) thick sediment section above the salt top, which does not currently affect the 

pressure field in the GHSZ (~1000 m (328 ft) above salt). Our study confirms that a salt diapir 
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can produce a strong localized perturbation of the temperature and pressure regime and thus on 

the stability of gas hydrates. Based on our results, we propose a generalized evolution 

mechanism for similar reservoirs, driven by salt-controlled gas hydrate formation and 

dissociation elsewhere in the world. 

2. Introduction  
Gas hydrate is a solid, ice-like form of water and gas (mainly methane), which is stable at the 

specific envelope of temperature and pressure (Kvenvolden and Lorenson, 2001). Because of the 

particular stability regime, natural gas hydrates are found worldwide within the sediment on 

continental slopes, in the polar permafrost regions (Collett, 2002), and potentially even under the 

ice sheets (Portnov et al., 2016). In the ocean, the subbottom gas hydrate stability zone (GHSZ) 

thickness may exceed 1000 m (3280 ft), primarily controlled by pressure (water depth), 

geothermal gradient, gas composition, and pore water salt content (Kvenvolden and Lorenson, 

2001). The base of GHSZ is a critical interface that determines the thickness of gas hydrate 

stability, below which gas hydrate is thermodynamically unstable (Haacke et al., 2007). Defining 

the base of the GHSZ is thus essential for estimation of gas hydrate volume, pore pressure 

prediction, safe borehole planning, and assessing submarine landslide potential (McIver, 1982; 

Frye, 2008; McConnell et al., 2012). The base of hydrate stability is often identified in seismic 

data from the geophysical signature – a bottom simulating reflection (BSR). In seismic data, a 

BSR is typically observed coincident with the base of GHSZ as a high-amplitude negative 

impedance contrast with reversed polarity from the water bottom reflector (Haacke et al., 2007). 

Heat flow and gas hydrate stability modeling are often used for characterization of GHSZ 

boundaries (Kvenvolden and Lorenson, 2001), and inversely, heat flow is interpreted based on 

the location of the BSR (Phrampus et al., 2017). While seismic surveys and theoretical hydrate 

phase boundary modeling have proved to be efficient in the areas with regionally uniform 
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geothermal heat flow, such as Blake Ridge on the southeastern U.S. passive margin (Wood and 

Ruppel, 2000), it may be more challenging on active margins, as shown for the Nankai Trough in 

the eastern Japan subduction zone (Kinoshita et al., 2011). Similarly, in the salt provinces like 

the Gulf of Mexico (Figure 1), salt tectonics may significantly distort both temperature and 

pressure fields and therefore change the configuration of the GHSZ (Ruppel et al., 2005; Frye, 

2008).  

Herein, we test the effects of salt diapirism on the stability regime of a gas hydrate reservoir in 

Green Canyon Block 955 (GC955) located in the northern Gulf of Mexico just off the edge of 

the Sigsbee Escarpment (~2000 m (6561 ft) water depth) (Figure 2a). Existing seismic and 

drilling data were previously used to estimate the base of the GHSZ at ~450 m (1476 ft) below 

the seafloor (mbsf) in GC955 (Boswell et al., 2012; Haines et al., 2017). This is 400 meters 

(1312 ft) shallower than the depth predicted by the theoretical gas hydrate phase boundary 

modeling (Sloan and Koh, 2008) for a regional, average geothermal gradient (20°C/km) 

(6°C/1000 ft)  in the Green Canyon protraction area (Jones, 2003; Forrest et al., 2007). We 

explore several possible reasons for the mismatch in the estimated and modeled base of the 

GHSZ, which include: (1) assessing the potential effect of an underlying salt diapir on pore 

pressure and temperature gradient, and (2) testing the alternative hypothesis, that the actual base 

of the GHSZ depth is consistent with the theoretically predicted depth. Our modeling results 

support the salt diapir hypothesis due primarily to a high geothermal gradient as a primary reason 

for the shallow base of GHSZ.  

This salt-diapir effect may be widespread where significant salt diapirism occurs across the Gulf 

of Mexico slope as well as in other offshore locations such as US East Coast, Brazilian and West 

Africa continental slopes, Mediterranean Sea, Persian Gulf (Figure 1); these regions usually 
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coincide with the temperature and pressure regime where gas hydrate is stable. Therefore, we 

propose a generalized evolution mechanism for salt diapir-roof gas hydrate reservoirs applicable 

to marine salt provinces worldwide. 

3. Geologic setting and data sets 
Upper sediment cover of the northern Gulf of Mexico fills a complicated synrift, mini-basin 

system created by the movement of Upper Jurassic allochthonous Louann salt deposits (Peel et 

al., 1995). In the Oligocene and Miocene, accumulation of thick Mesozoic and Cenozoic 

sediments mobilized this massive salt canopy and induced its upthrust towards the seafloor, 

forming sills, bulbs and diapiric domes of different size and shape (Jackson and Talbot, 1986; 

Peel et al., 1995). Associated salt tectonics is responsible for a large number of structural 

hydrocarbon traps, which constitute a significant part of the Gulf of Mexico’s hydrocarbon 

reservoirs (Worrall and Snelson, 1989; Diegel et al., 1995).  

For our seismic interpretation in GC955 we used a depth-migrated (zero-phase American SEG 

standard) seismic volume with the total record length of 14,000 m (8.7 ml), 30x25-m (98x82 ft) 

bin size and 8 ms sampling rate, provided by WesternGeco. A key feature imaged with these data 

is a prominent diapiric salt body with an apparent height of ~6 km, intruded into the Cenozoic 

sediment section (Peel et al., 1995) that ascends to within 1500 meters (4921 ft) of the seafloor 

(Figure 3a). Within the roof sediments above the diapir, a coarse-grained gas hydrate reservoir 

appears as a zone of anomalous high-amplitude reflections within a channel-levee system at 450-

500 mbsf (1476-1640 ftbsf) (McConnell et al., 2010; Boswell et al., 2012; McConnell et al., 

2012; Haines et al., 2017). The entire diapir roof section has a 4-way anticlinal structure related 

to the underlying salt diapir, and is intersected by normal faults rooted at the top of the salt diapir 

and many of which are restricted to the sand-rich facies (Santra et al., in press, this issue). High-

PR
ELI

M
IN

ARY 

VERSIO
N



Page	6	of	24	

amplitude reflections occur near the crest of the anticlinal structure at the gas-hydrate bearing 

interval and below it (Figure 3a, 4a) (Haines et al., 2017). According to the existing logging-

while-drilling (LWD) data, acquired under the Gulf of Mexico Gas Hydrate Joint Industry 

Project Leg II (Collett et al., 2012), the coarse-grained gas hydrate-bearing reservoir in vicinity 

of GC 955 H001 well is ~30 m (98 ft) thick. High compressional velocity (up to 3200 m/s) 

(10500 ft/s) and resistivity (10-100 ohm m) were measured in the gas hydrate-bearing reservoir, 

which suggests gas hydrate saturation up to 90% (Collett et al., 2012). Only one hole (GC 955 

Q001 ) out of three drilled in the area during JIP Leg II indicated evidence of free gas underlying 

gas hydrate (Boswell et al., 2012). Gas hydrate structure 1 occurrence (99.9% methane gas) in 

the reservoir was confirmed in May, 2017, by drilling two twin holes GC 955 H002 and GC 955 

H005 during expedition UT-GOM2-01 (Flemings et al., 2018). In the current study we use LWD 

data from two wells drilled into the roof of the salt diapir, JIP Leg II Hole GC 955 H001 (~570 

mbsf TD (1870 ftbsf), true vertical depth) and industry well GC955 #001 (~2175 mbsf TD (7135 

ftbsf), measured depth), in addition to one well drilled at the margin of the salt diapir, industry 

well GC955 #002 (~5843 mbsf TD [meters below sea floor, total depth)(19169 ftbsf), measured 

depth) (Figure 2a, b). We integrate well logs with 3D seismic data to constrain pore pressure and 

heat flow in GC955 study area. 

The geothermal gradient in the Gulf of Mexico is not uniform. Geothermal gradients in industry 

wells from the Green Canyon protraction area are typically below 20 °C/km (6°C/1000 ft), 

however several wells show higher values (30-40 °C/km) (9.1-12.2 °C/1000 ft) (Jones, 2003; 

Forrest et al., 2007). These high geothermal gradients have been previously explained by the 

local heat-conductive salt effect (Mello et al., 1995; Frye, 2008). Wood et al. (2002) and Shedd 
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et al. (2012) also suggested that aerially-limited increases in heat flow due to intensive fluid flux 

in the Gulf of Mexico may generate “pluming BSRs”, bowed toward the seafloor. 

4. Methods  
4.1 Pore pressure prediction from sonic and resistivity logs 
Hydrostatic (Ph) and overburden (Pob) pressure in the GC955 study area were calculated using 

the following equations (Zoback, 2007): 

𝑃! = 𝜌!gℎ; 

𝑃!" = 𝜌!gℎ! + 𝜌!g(ℎ − ℎ!), 

where ρw is water density ɡ is acceleration due to gravity, h is total depth, hw is water depth, and 

ρb is bulk density of the sediments from the density log. See Table 1 for values used.   

For better accuracy and control, pore pressure calculations have been performed using two 

independent methods: from the compressional velocity log and from the selected resistivity log 

(Eaton’s method) (Zoback, 2007). LWD data from Hole GC 955 H001 was acquired during the 

Gulf of Mexico gas hydrate Joint Industry Project, Leg II (Boswell et al., 2012); for pore 

pressure prediction using data from this hole, we use the compressional travel time and the RING 

resistivity measurement (the ring resistivity measured by a LWD toroid device). The data from 

Hole GC955 #001 were collected by Statoil Exploration Inc. in 1999 (McConnell, 2000), and we 

use the compressional travel time log and the PSR (phase shift resistivity) log. To characterize 

the pore pressure within the diapir roof sediments in GC955, we combined LWD log data from 

GC 955 H001 shallow section and GC955 #001 deeper section. 

Determination of pore pressure from the sonic log (PPS) is based on the following equation: 
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𝑃𝑃! = 𝑃!! − (
!
!
𝑙𝑛 !!

!
), 

where β is a constant, 𝜙! is the initial porosity (at zero effective pressure in the mudline), 𝜙 is 

porosity derived from the compressional travel time: 

𝜙 = 1− (∆!!"
∆!
)!/! , 

where Δt is measured compressional travel time (Δt=Vp-1, Vp is compressional-wave velocity), 

Δtma is the matrix travel time and f is an acoustic formation factor. β and 𝜙! were determined by 

Flemings et al. (2002) from the compaction trend of mudstone in the cores from Eugene Island 

330 reservoirs (Gulf of Mexico), while f and Δtma were determined from the laboratory 

measurements in the same cores. However, all empirical constants used by Flemings et al. 

(2002) were defined for mudstone rock, thus may not provide completely accurate results for 

mud sediment section in our study area. We used analytical solution suggested by Flemings et al. 

(2002) to determine β and 𝜙! in our study area and values for f , Δtma  based on Martin et al. 

(1988) and Zoback (2007) (see Table 1). We observed a good match (<1 MPa discrepancy) 

between our sonic-log-derived pore pressure and predicted hydrostatic pressure distribution in 

the upper sediment section (~0-300 mbsf (0-984 ftbsf)) as is expected for the shallow subseafloor 

sediments (Figure 3b). Additionally, our pore pressure calculations generally match the 

independent formation pressure measurements in the deeper sediment section in GC955 #001 

well (Figure 3b). Therefore, we assume that our calculations provide sufficient accuracy for pore 

pressure prediction according to the objectives of the present study. All values used for the pore 

pressure calculations are included in Table 1. 
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According to Zhang (2011), Eaton’s method of pore pressure prediction may be adapted using 

depth-dependent normal compaction trendline based on the case study in Green Canyon of the 

Gulf of Mexico (1520 m (4986 ft) water depth).  

𝑃𝑃!"# = 𝑃!" − 𝑃!! − 𝑃! (
!

!!!!!
)! , 

where PPres is pore pressure predicted from the resistivity log, R is measured resistivity at depth 

z. R0 is resistivity near the mudline, b and n are the constant values, applicable for young 

sedimentary basins (Zhang, 2011) (Table 1). 

4.2 Calculation of gas hydrate phase boundary  
A theoretical hydrate stability phase diagram was generated using the CSMHYD program (Sloan 

and Koh, 2008), which uses an algorithm based on Gibbs energy minimization and accounts for 

variable pressure and temperature conditions, the composition of gas forming hydrates, and the 

presence of inhibitors of hydrate formation (e.g., salt). Assuming 99.9% methane gas and 

minimum and maximum measured pore water salinity of 17 and 35 ‰ (Flemings et al., 2018), 

CSMHYD program estimated the pressure at which hydrates are stable for any given 

temperature. The gas hydrate boundary was plotted in pressure-temperature coordinates against 

depth to compare with predicted pore pressure at various temperature gradients (Figure 3b, 5d). 

4.3 Heat flow modeling 
We use static finite-element models to study the thermomechanical effect of the GC955 diapir on 

its roof sediments and estimate the temperature at the hydrate reservoir (Figure 5). We run an 

axisymmetric model (Figure 5a) to capture the 3-dimensional nature of the diapir and we 

complement it with a plane-strain model to investigate the effect of non-circular, elongated 

sections of the salt (Figure 5b). In the axisymmetric model, the salt diapir is represented as 

axisymmetric salt dome. In the plane-strain model, the salt diapir is represented as a salt wall 
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extending perpendicular to the studied cross section with the same geometry. Basal heat flow is 

the only source of heat in the model, assuming that the radiogenic heat source is negligible 

compared to the basal heat flow. A uniform basal heat flow of 42 mW m-2 is applied across the 

base of the model (Christie and Nagihara, 2016) (Figure 5a, b). Heat conduction is the only 

mechanism of heat flow in the model. The thermal conductivity of sediments increases with 

depth following the trend suggested by Christie and Nagihara (2016) for sediments in the Gulf of 

Mexico. The thermal conductivity of salt is treated as a constant, 6.5 W m-1 K-1, and specific heat 

capacity for salt and sediments is 860 J Kg-1 K-1 (Mello et al., 1995). Temperature at the seafloor 

is assumed to be 4 oC. The heat flow is assumed to have reached the equilibrium (steady) state.  

5. Results 
5.1 Pore pressure in the diapir roof sediments   
We investigate whether anomalous pore pressure may be responsible for a ~400 m (1312 ft) 

discrepancy between the previously proposed base of GHSZ and its theoretical depth calculated 

based on the regional, average geothermal gradient in the area (Jones, 2003; Forrest et al., 2007). 

Standard gas hydrate phase boundary modeling a priori considers normal (hydrostatic) pore 

pressure gradient. However, the pore pressure may differ from hydrostatic pressure, especially in 

the Gulf of Mexico where rapid sedimentation drives high pore pressure and leads to wellbore 

instability and landslides (Flemings et al., 2008; Sawyer et al., 2009; Stigall and Dugan, 2010). 

In sediments above rising salt, pore pressure can also vary as described by Nikolinakou et al. 

(2018). As a salt diapir rises, the roof sediments undergo significant deformation and changes in 

both the mean and shear stress regimes, which may lead to overpressure or underpressure on the 

flanks and in the roof of the diapir (Nikolinakou et al., 2018). 

To characterize the pore pressure within the diapir roof sediments in GC955, we combined LWD 

log data from Hole GC 955 H001 up to ~560 mbsf (1837 ftbsf), and GC955 #001 below 560 
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mbsf (1837 ftbsf) (Figure 3). To avoid misleading pore pressure values, we have excluded 

anomalously high velocity and resistivity measurements related to known gas hydrate bearing 

intervals and casing intervals (Figure 3c). 

Figure 3b shows that pore pressure above the salt diapir in GC955 generally follows the normal 

hydrostatic trend down to ~1000 mbsf (3280 ftbsf), where it starts to increase and approaches the 

level of the overburden stress in proximity of the salt diapir.  The overpressure increase is 

significantly below the hydrate reservoir depth (450 mbsf (1476 ftbsf)). This pattern is in a good 

agreement with the independent formation pressure measurements from the lower section of 

GC955 #001 well (Figure 3b). This pore pressure distribution is then coupled with a gas hydrate 

phase boundary diagram (CSMHYD, see methods), which considers the regional, average 

geothermal gradient for the Gulf of Mexico slope sediments (20°C/km) (6°C/1000 ft) (Jones, 

2003; Forrest, 2007). Therefore, based on our pore pressure calculations, the modeled base of 

GHSZ is predicted at ~850 mbsf (2788 ftbsf) where the pore pressure point cloud intersects the 

GHSZ phase boundary (Figure 3b).  

In contrast, previous studies suggest a much shallower depth for the base of GHSZ in the study 

area (~450 mbsf (1476 ftbsf)) based on the observation of the anomalous top of free gas at the 

GC 955 Q001 well (Boswell et al., 2012; Haines et al., 2017). In order to match this depth, pore 

pressure must be ≥15 MPa lower at the gas hydrate reservoir level (Figure 3b) which is not 

supported by the data.  

5.2 Seismic evidence for lower base of GHSZ 
Both 3D seismic data and high-resolution 2D seismic data at GC955 show high 

amplitude reflections below the previously assumed GHSZ lower boundary that have been 

interpreted to be gas (Shelander et al., 2012; Haines et al., 2017). At the same time, no clear BSR 
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has been presented in the GC955 study area thus far. Therefore, we consider an alternative 

scenario, in which the previously interpreted gas hydrate reservoir at 450 mbsf (1476 ftbsf) is 

located in the interior of GHSZ. In such a scenario, gas hydrate-related seismic indicators, 

normally observed at the base of GHSZ (BSR or enhanced seismic amplitudes) will be expected 

lower in the seismic section. 

In our 3D seismic data, the coarse-grained gas hydrate reservoir appears at ~450 mbsf (1476 

ftbsf) as a group of high-amplitude reflections, which can either have stratigraphic origin or be 

caused by the high acoustic impedance between water or gas and gas hydrate-bearing sediments 

(Figure 4a). Beyond that, deeper in the seismic data, another negative-polarity high-amplitude 

reflection occurs at ~750-850 mbsf (2460-2788 ftbsf) (300-400 m (984-1312 ft) below the upper 

gas hydrate reservoir) (Figure 4a). Root mean square (RMS) seismic amplitude maps for both 

upper and lower groups of reflections show general similarity in their spatial extent and 

structural layout in the arches of the multistage anticline framework (Figure 4b, c). RMS values 

of the lower group of reflections are generally 2x lower, however this may be a result of 

amplitude masking effect produced by the upper reservoir (Figure 4d). The lower group of 

reflections may be interpreted as free gas or the base of the GHSZ. Unfortunately, velocity log 

data from well GC955 #001, do not provide accurate acoustic velocities in the vicinity of the 

lower reservoir, because of the position of the casing during well logging (Figure 3c). However, 

available checkshot records for this well show distinct increase in the interval compressional 

velocity to 2100 m/s (6890 ft/s) for three individual shots at 2743-2971 mbsl (8113-9747 ftbsl), 

followed by a velocity drop to ~1800 m/s (~5905 ft/s) (Figure 3c) in the section below. The 

center of this interval agrees with both, the previously proposed theoretical base of GHSZ at 

20 °C/km (6°C/1000 ft) geothermal gradient (~850 mbsf) (2788 ftbsf) (Figure 3b), and the depth 
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of the lower reservoir inferred from the 3D seismic data (Figure 4a). Therefore, check-shot 

interval velocity and positive polarity reflection in the seismic data are indicative of a deeper 

base of GHSZ in GC955 at ~750-850 mbsf (2460-2788 ftbsf). Poor seismic resolution at this 

depth and 76-m long check-shot intervals impede a more definitive estimate for the position of 

GHSZ base. 

5.3 Modeling heat flow in the salt diapir roof 
Another possible reason for the discrepancy in the GHSZ depth is a temperature anomaly 

resulting from the salt diapir. Thermal conductivity of salt bodies varies depending on the 

temperature (~7.2-4.0 W m-1 °C-1 in 0-200°C interval) but remains very high compared to clastic 

sedimentary rocks (Mello et al., 1995). In contrast, mean thermal conductivity of clastic 

sedimentary rocks is several times lower (1.9-1.2 W m-1 k-1) (Robertson, 1988; Mello et al., 

1995). Therefore, salt diapirs behave as effective heat conductors, absorbing heat from the 

underlying and nearby sediment sections and channeling it upward to their roofs (Mello et al., 

1995). Frye (2008) considered this effect on the regional scale for modeling the GHSZ in the 

northern Gulf of Mexico. This resulted in a notably thinner GHSZ over near-surface salt bodies. 

We conducted a similar heat flow modeling experiment but on a significantly finer scale to test 

the local effect of salt on temperature field in GC955. We applied a basal heat flow of 42 mW m-

2 (Christie and Nagihara, 2016) at the bottom of 10x14 km 2D vertical section intersecting the 

central part of the salt diapir and location of well GC 955 H001 (Figure 2). Precise geometry of 

the salt diapir integrated in our heat flow model was derived from the 3D seismic data. These 

data constrained the distribution of thermal conductivity values – fundamental input parameter 

for the heat flow modeling – within our modeling domain. We ran two independent simulations - 

for axisymmetric (Figure 5a) and plane-strain (Figure 5b) model configurations. Because the salt 

diapir can be approximated as a dome (Figure 2b) the axisymmetric model better describes the 3-
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dimensional salt geometry of the upper parts of the diapir. The plane-strain model (Figure 5b) 

better describes the in-plane salt geometry, but in essence simulates an infinitely long salt wall. 

We use the plane-strain results as an end member behavior that accounts for elongated salt 

sections in deeper parts of the salt body.  

The axisymmetric model shows a strong positive temperature anomaly above the salt diapir 

(Figure 5a). In the upper ~500 m (1640 ft) of the salt roof, including the level of the gas hydrate 

reservoir (450 mbsf) (1476 ftbsf), the axisymmetric model suggests temperature gradient of 36-

37 °C/km (11.3°C/1000 ft) (Figure 5c). Lower in the sediment section, it starts to continuously 

increase and reaches ~42 °C/km (~12.9°C/1000 ft) just above the top of the salt. The plane strain 

model shows very similar temperature gradient in the upper salt roof section (Figure 5c). We do 

observe some differences between the results of two models, particularly in the amount of heat 

flow above salt pedestal and around the central column (insets of Figures 5a,b), however this is 

significantly below the gas hydrate reservoir. At Hole GC 955 H001, temperature reaches ~21 °C 

at the gas hydrate reservoir level (red profiles on Figure 5c), which is only 1° lower than the 

maximum anomaly at the reservoir level right above the central diapir roof (blue profiles on 

Figure 5c). Therefore, the temperature at the gas hydrate reservoir is 8° C higher compared to the 

temperature predicted by regional, average geothermal gradient (Figure 5c). Nearest existing 

temperature gradient measurements, derived away from salt in GC955 #002 well, show even 

lower value (15.3 °C/km (4.6°C/1000 ft) in 2438-8046 mbsl (7998-26397 ftbsl) interval). 

However, these temperature measurements do not provide accurate geothermal gradient value, 

since they show annular temperature, affected by recycled drilling mud in the borehole. Using 

the model-predicted temperature gradient in the upper diapir roof (36 °C/km) (10.9 °C/1000 ft) 

and related temperature estimation for the reservoir level (21 °C) the theoretical hydrate stability 
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phase diagram predicts the base of stability at ~450-470 mbsf (1476-1541ftbsf), which matches 

well with the existing estimate for the base of GHSZ (Figure 5d).  

6. Discussion 
6.1 Evidence for shallow and deep base of GHSZ in GC955 

The thickness of the GHSZ depends upon several major variables, including gas composition, 

pore pressure, pore water salinity, and geothermal gradient. In the GC955 study area, results of 

gas chromatographic (99.9% methane gas) and pore water salinity analyses (17-35 ‰) (Flemings 

et al., 2018) reduce the variables to pore pressure and geothermal gradient, which we determine 

with high confidence. 

Herein, we considered two different possible depths for the base of GHSZ at GC955 (Figure 6). 

The first, shallower estimate at 450 mbsf (1476 ftbsf), and corresponding gas hydrate phase 

diagram require a high geothermal gradient above the salt diapir (36 °C/km) (10.9 °C/1000 ft) or 

a significant decrease in pore pressure (15 MPa) (Figure 3b). Our pore pressure calculations from 

both compressional velocity and resistivity logs show no deviation from the normal hydrostatic 

trend in the upper ~1000 mbsf (3280), thus we do not consider low pore pressure to be the cause 

of the shallow base of GHSZ. If a gradient of 36 °C/km (10.1°C/1000 ft) is invoked to explain 

the shallow base of the GHSZ, this means the gradient is significantly higher than regional 

geothermal gradient in the Green Canyon protraction area, which average 20 °C/km (6°C/1000 

ft) (Jones, 2003; Forrest et al., 2007). This high gradient, however, has been well supported by 

the thermodynamic heat flow model applied in our study area (Figure 5).  

The second hypothesis, where the base of the GHSZ occurs at ~750 mbsf (2460 ftbsf), allows for 

a lower geothermal gradient of ~20 °C/km (~6°C/1000 ft). This is supported by a strong negative 

peak amplitude in the 3D seismic data at 750 mbsf (2460 ftbsf) (Figure 4a) and high check-shot 
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velocity registered in this depth interval, which implies a potential gas hydrate overlying a free 

gas accumulation. However, given the observation of gas below the gas hydrate interval at 442 

mbsf in GC 955 Q001 well (Collett et al., 2012; Haines et al., 2017) (Figure 1), confirmed by 

strong negative peak amplitudes (Figure 3a, 4a), and the apparent salt control on the heat flow 

redistribution (Figure 5), we consider it the less likely hypothesis.  

Even with a high modeled temperature gradient (36 °C/km) (10.1 °C/1000 ft), there is a 

possibility of structure II (which includes methane and heavier order hydrocarbons) gas hydrate 

formation beneath the documented structure I (almost pure methane) hydrate reservoir, as was 

the case of the deeper thermogenic gas infiltration shown by Paganoni et al. (2016) for offshore 

NW Borneo. Yet, gas hydrate phase boundary modeling shows that methane concentration even 

as low as 70% of the bulk gas composition, only results in the base of GHSZ at ~570 mbsf (1870 

ftbsf), which is significantly above the strong negative peak amplitude observed in the 3D 

seismic data at ~750 mbsf (2460 ftbsf). Instead, we infer that the lower reservoir accommodates 

free gas accumulation possibly attributed to sandy or silty levee deposits related to a channel 

system farther to the east. Potentially, this reservoir may be an important component of the 

GC955 fluid flow system, supplying methane gas towards the bottom of GHSZ along the diapir-

roof fault system, interpreted in the seismic data (Figure 4a). Although pore pressure analysis 

shows no deviation from the normal hydrostatic trend at the GHSZ lower boundary, it shows an 

apparent increase in the lower ~500 m (1640 ft) of the diapir-roof sediment section. Such 

observations conform to existing modeling of stress and pressure regimes around salt diapirs 

(Nikolinakou et al., 2018) and may be critical in similar gas hydrate systems with thinner diapir 

roofs, where disturbed stress field is able to reach the GHSZ. 

6.2 Evolution of the GHSZ above salt diapirs 
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Our analysis indicates that temperature anomalies can be caused by an underlying salt diapir, 

which likely exert a fundamental control on the life cycle of the gas hydrate reservoir in GC955. 

Salt diapirs progress upward driven by sediment loading and tectonic forces (Jackson and Hudec, 

2017). At the later stages of diapir development, the salt relative rise rate may override the 

sedimentation rate (Nikolinakou et al., 2017), accelerating the diapir approach to the seafloor. 

Numerical studies have also shown that diapirs can upbuild through thick roofs, when such roofs 

consist of highly plastic marine muds and mudrocks (Nikolinakou et al., 2017). This upbuilding 

results in anticlinal doming and emergence of structural traps for gas hydrate above the base of 

the GHSZ and natural gas reservoirs below. Importantly, salt upbuilding also shallows the base 

of the GHSZ by channeling heat upward. Therefore, it is reasonable to assume that the present 

day configuration of GHSZ in GC955 may continue to thin with future salt diapir growth.  

Based on our study, we propose a generalized mechanism for a long-term evolution of similar 

gas hydrate systems, governed by a salt diapir initiation and growth. In a hypothetical scenario 

with no salt involved, the relative location of the base of the GHSZ will remain at the same 

distance from the seafloor, but will transition through the sedimentary section as new sediment is 

deposited and buried. Such a process can result in continuous recycling between gas and gas 

hydrate at the base of GHSZ as shown by Burwicz et al. (2017), yet the relative GHSZ thickness 

will remain constant. On the contrary, if a salt diapir rises from below, a temperature-related 

warping of the GHSZ will superimpose upon this uniform shift pattern (Figure 7). Given that our 

thermodynamic modeling shows robust correlation between the temperature gradient and 

distance to the top of a diapir (Figure 5), salt upbuilding would inevitably lead to continuously 

increasing temperature in the diapir roof as it progresses upward. This process will facilitate 
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contraction of GHSZ, eventually pierce it, and accelerate the dissociation of any gas hydrate 

reservoir (figure 7).  

Therefore, we propose the following generalized model for a gas hydrate reservoir above a rising 

salt diapir: 1. A rising salt diapir creates a structural framework, favorable for accumulation of 

gas and gas hydrate at the base of GHSZ due to creation of anticlinal traps and potential fluid 

advection through the faults; 2. A salt-induced increase in the temperature gradient shifts the 

base of GHSZ upward. Elevated pore pressure is not yet affecting the GHSZ at this time; 3. 

Increasing pore pressure above the salt diapir and extensional stress regime support fluid flow 

and gas transport through the thinned GHSZ towards the seafloor. Increase in temperature 

gradient continues as salt rises; 4. If any gas hydrate reservoir has formed above the salt diapir, it 

will eventually become thermodynamically unstable if the salt top approaches close to the 

seafloor (Figure 7). This general mechanism may apply for characterization of similar gas 

hydrate reservoirs in other marine salt tectonic provinces along the continental margins, where 

gas hydrate is thermodynamically stable (Figure 1). Technically, such salt-induced collapse of 

gas hydrate reservoirs is similar to the dissociation of methane hydrate above salt diapirs across 

the shallow Gulf of Mexico shelf (<400 mbsl (1312 ftbsl)), driven by reciprocal migration of gas 

hydrate stability field during Pleistocene sea level fluctuations (±120 m) (±393 ft) (Roberts and 

Carney, 1997). 

Evidence for the ultimate dissociation of diapir-roof gas hydrate reservoirs is visible in the newly 

released high-resolution bathymetry data in the other regions of deep-water Gulf of Mexico 

(Kramer and Shedd, 2017), where gas hydrates are inferred to be thermodynamically stable 

assuming regional, average geothermal gradient. There, abundant fields of pockmarks and 

possibly mud volcanoes appear at the seafloor above many thin roofed (<700 m) (<2296 ft) salt 
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diapirs (Figure 8). Here, we demonstrate the shaded seafloor slope maps above salt diapirs with 

different roof sediment thicknesses, and possible indications of gas and gas hydrate 

accumulations. Figure 8a demonstrates a salt diapir with overlying high amplitude reflections in 

Keathley Canyon, 1750 m (5441 ft) water depth. Similar to GC955 scenario, this may indicate 

gas or gas hydrate accumulation in the salt roof. Yet, the roof of this diapir is 2x thinner (~680 

m) (2230 ft) compared to the GC955 diapir and has apparent seafloor expression with several 

pockmarks in the high-resolution seafloor slope data (Figure 8a). Therefore, we assume that this 

diapir-roof system belongs between stage 2 and early stage 3 according to our generalized 

model.   

Figures 8b and 8c show examples of two salt diapirs from Keathley Canyon and Garden Banks 

respectively, with abundant pockmarks on the seafloor above them. Figure 8c shows a prominent 

BSR at ~150 mbsf (492 ftbsl), indicating a shallow base of GHSZ overlying the salt diapir. We 

suggest these demonstrated salt diapir systems belong to stage 3 or early stage 4 in our model 

classification. Finally, figure 8d shows a salt diapir in Walker Ridge, which outcrops at the 

seafloor. A discontinuous BSR extends above the flank of the diapir, approaches close to the 

seafloor as the salt top becomes shallower, and finally merges with the seafloor reflector close to 

where salt outcrops at the surface (Figure 8d). Such BSR behavior indicates increasing 

temperature effect close to the heat-conductive salt diapir, which is in a good agreement with our 

heat flow numerical model (Figure 5). We do not observe any fluid flow features on the seafloor, 

likely because the outcropping salt has significantly affected the seafloor morphology. Such a 

salt diapir system represents late stage 4 in our model. 

Upward gas transport expressed in the seafloor morphology may be additionally supported by 

the opening systems of normal faults in the established regime of extensional stress, typical for 
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diapir roof sediments (Jackson and Talbot, 1986) (Figures 4a). Even in the GC955 area with a 

thick diapir roof, several gas flares in the water column, and possibly a mud volcano, have 

already been observed above a deep-seated fault reaching the seafloor (Figure 2) (Heggland, 

2004; National Geophysical Data Center, 2012). Although at present we do not observe 

increased pore pressure and pore water salinity as deep as 450 mbsf (1476 ftbsf) in Hole GC955 

H005 (Flemings et al., 2018) or pore pressure increases in the nearby industry well GC955 #001, 

this is expected to occur at the latter stages of salt diapir growth (Bruno and Hanor, 2003; 

Nikolinakou et al., 2017; Nikolinakou et al., 2018). Indeed, pore pressure modeling in GC955 

does show notable increase in the pore pressure trend in the lower section of the diapir roof, 

proximal to the top of salt (Figure 3b). Although it requires further subject-oriented studies, 

abnormal pressure and elevated pore-water salinity at the base of GHSZ may provide additional 

constraints for gas hydrate modeling and need to be accounted in such dynamic geological 

systems.  

7. Conclusions 
Pore pressure reconstructions based on the well log data in GC955 do not indicate any major 

over- or under-pressure in the upper 1000 m (3280 ft) of the salt diapir roof. Instead, finite-

element heat flow models show that conductive salt body produces a significant temperature 

anomaly, reaching 8 °C at the gas hydrate reservoir level. Such salt-induced temperature 

anomaly shifts the base of the GHSZ by as much as 400 m (1312 ft) above the depth based on a 

regional, average temperature gradient for Green Canyon, Gulf of Mexico (20 °C/km) (6°C/1000 

ft). Based on the existing salt diapir evolution models, we propose the generalized mechanism 

for initiation and collapse of salt-driven gas hydrate reservoirs in the Gulf of Mexico and similar 

salt provinces worldwide. Such mechanism is well supported by multiple pockmark fields and 
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mud volcanoes observed in the bathymetry data over a range of diapir-roof gas hydrate systems 

in several locations across the deep-sea Gulf of Mexico.	
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Figure captions 

Figure 1. Red polygons indicate major known marine salt basins on Earth. Modified from 

Jackson and Talbot (1992). 

Figure 2. a) Shaded relief map (Kramer and Shedd, 2017) and 3D seismic-derived bathymetry 

(blocks GC955, GC956, GC998, GC999, GC1000 of Green Canyon protraction area). Inset 

shows the location of the study area in the northern Gulf of Mexico. Wells are marked with 

yellow circles and labeled. Location of the inset in Figure 2b is marked with the red box. b) Map 

showing the top-salt surface depth in our study area meters below sea level (mbsl), outline of the 

gas hydrate reservoir (semi-transparent red area) and location of the seismic lines and modeling 

section, shown in Figures 3, 4 and 5. 

Figure 3. a) Seismic section a-b crossing the central part of the diapir roof sediment section 

(location of the line is shown in Figure 2b) and two wells GC 955 H001 and GC955 #001. 

Dashed boxes indicate log intervals used for pore pressure predictions in each well. b) Pore 

pressure prediction from the compressional velocity and resistivity logs in the diapir roof 

sediment section, coupled with gas hydrate stability zone (GHSZ) phase boundary diagram (at 

20 °C/km regional, average geothermal gradient) (Jones, 2003; Forrest et al., 2007) show a ~400 

m (1312 ft) deeper theoretical base of GHSZ compared with its existing estimate (Boswell et al., 

2012; Haines et al., 2017). c) Compressional velocity logs used for pore pressure prediction from 

wells GC 955 H001 and GC955 #001, showing anomalous velocity within the gas hydrate and 

casing intervals, which were excluded from our calculations. Check-shot interval velocity from 

well GC955 #001 is shown in brown. 
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Figure 4. a) 3D seismic image of the diapir roof sediment section, showing the upper gas hydrate 

reservoir and the lower reservoir that could be gas or hydrate. Black lines mark major faults 

cutting both reservoirs. Location of the inline and crossline is indicated in Figure 2b and Figure 

4b, c. b) root mean square (RMS) seismic amplitude map for the depth interval b (indicated in 

Figure 4a) showing the configuration of the upper gas hydrate reservoir. Dashed white line is the 

superimposed outline of the lower reservoir c) RMS seismic amplitude map for the depth interval 

c (indicated in Figure 4a) showing the configuration of the lower reservoir. Dashed white line is 

the superimposed outline of the upper gas hydrate reservoir. d) Example of the seismic energy 

absorption by the upper gas hydrate reservoir along three inlines extracted from “sweetness” 

attribute volume in the area marked with yellow box in Figure 4b,c. Sweetness is derived by 

dividing instantaneous amplitude by the square root of instantaneous frequency.   

Figure 5. Heat flow numerical simulations in the GC955 study area show significantly higher 

geothermal temperatures above the crest of the salt diapir compared to its margins: a) the 

axisymmetric model and b) the plane-strain model. The location of a 14 km (8.7 mi) deep cross 

section c-d, used in the numerical model is shown in Figure 2. Insets show the entire modeled 

salt cross section. Note the different color scale between the insets and zoomed-in salt roof 

sections. c) Temperature gradients (tgrad) along two probe sites (GC 955 H001 well location (red) 

and maximum observed anomaly (blue) for comparison). Solid lines show axisymmetric results 

and dashed lines show plane-strain results. d) Coupled pore pressure and gas hydrate phase 

boundary modeling modulated by the updated temperature gradient (36 °C/km) shows good 

agreement with the existing estimate for the base of gas hydrate stability zone (GHSZ). bsl = 

below sea level. 
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Figure 6. Possible scenarios supporting shallow and deep gas hydrate stability zone (GHSZ) base 

in GC955. Structure II gas hydrate in the deep (750 mbsf, 2460 ftbsf) scenario implies higher 

content of heavier order hydrocarbons in the total gas composition compared to structure I 

(almost pure methane). 

Figure 7. Diagram showing major stages of a salt diapir-controlled gas hydrate reservoir 

evolution from its initiation to ultimate collapse. GHSZ = gas hydrate stability zone. Tgrad = 

temperature gradient. 

Figure 8. Examples of pockmark fields and shallow Bottom Simulating Reflections (BSRs) 

above the salt diapirs in Keathley Canyon, Garden Banks and Walker Ridge in the deep water 

Gulf of Mexico (>1100 mbsl [meters below sea level]) (>3608 ftbsl [feet below sea level]). 

Demonstrated examples belong to stages 2-4 according to our model (Figure 7). Yellow lines on 

the shaded slope bathymetry plots show location of the related seismic sections below. 
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Tables 

Table 1 – calculated, measured parameters and constants, used for the pore pressure predictions. 

Ph hydrostatic	pressure	(Pa) hw water	depth	(m)
Pob overburden	pressure	(Pa) h total	depth	(m)
PPs pore	pressure	from	sonic	log	(Pa) Δt acoustic	slowness	(μs	m-1)
PPres pore	pressure	from	resistivity	log	(Pa) R resistivity	(ohm	m)
φ porosity ρb bulk	density	(kg	m-3)

ρw 1024
ɡ 9.81
f 2.1

Δtma 56
β 0.063
φ0 0.487
R0 1
b 3.4×10-5

n 1.2exponent	(-)

Calculated	parameters Measured	parameters

Constants
water	density	(kg	m-3)

acceleration	for	gravity	(m	s-2)
acoustic	formation	factor	(-)
matrix	travel	time	(μs	m-1)

beta-constant	(MPa-1)
initial	porosity
compaction	resistivity	in	the	mudline	(Ω	m)
constant	(-) indicated	values	are	applicable	

for	young	sedimentary	basins	
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