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Abstract

We compute the quotient of the self-duality equation for conformal
metrics by the action of the diffeomorphism group. We also determine
Hilbert polynomial, counting the number of independent scalar dif-
ferential invariants depending on the jet-order, and the corresponding
Poincaré function. We describe the field of rational differential in-
variants separating generic orbits of the diffeomorphism pseudogroup
action, resolving the local recognition problem for self-dual conformal
structures.

Introduction

Self-duality is an important phenomenon in four-dimensional differential
geometry that has numerous applications in physics, twistor theory, anal-
ysis, topology and integrability theory. A pseudo-Riemannian metric g on
an oriented four-dimensional manifold M determines the Hodge operator
∗ : Λ2TM → Λ2TM that satisfies the property ∗2 = 1 provided g has the
Riemannian or split signature. In this paper we restrict to these two cases,
ignoring the Lorentzian signature.

The Riemann curvature tensor splits into O(g)-irreducible pieces Rg =
Scg + Ric0 +W , where the last part is the Weyl tensor [2] and O(g) is the
orthogonal group of g. In dimension 4, due to exceptional isomorphisms
so(4) = so(3)⊕so(3), so(2, 2) = so(1, 2)⊕so(1, 2), the last component splits
further W = W+ + W−, where ∗W± = ±W±. Metric g is called self-dual
if ∗W = W , i.e. W− = 0. This property does not depend on conformal
rescalings of the metric g → e2ϕg, and so is the property of the conformal
structure [g].

Since the space ofW− has dimension 5, and the conformal structure has 9
components in 4D, the self-duality equation appears as an underdetermined
system of 5 PDE on 9 functions of 4 arguments. This is however a misleading
count, since the equation is natural, and the diffeomorphism group acts as
the symmetry group of the equation. Since Diff(M) is parametrized by 4
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functions of 4 arguments, we expect to obtain a system of 5 PDE on 5 = 9−4
functions of 4 arguments.

This 5×5 system is determined, but it has never been written explicitly.
There are two approaches to eliminate the gauge freedom.

One way to fix the gauge is to pass to the quotient equation that is
obtained as a system of differential relations (syzygies) on a generating set
of differential invariants. By computing the latter for the self-dual conformal
structures we write the quotient equation as a nonlinear 9× 9 PDE system,
which is determined but complicated to investigate.

Another approach is to get a cross-section or a quasi-section to the orbits
of the pseudogroup G = Diff loc(M) action on the space SD = {[g] : W− =
0} of self-dual conformal metric structures. This was essentially done in the
recent work [5, III.A]: By choosing a convenient ansatz the authors of that
work encoded all self-dual structures via a 3 × 3 PDE system SDE of the
second order (this works for the neutral signature; in the Riemannian case
use doubly biorthogonal coordinates to get self-duality as a 5 × 5 second-
order PDE system [5, III.C] that can be investigated in a similar manner as
the 3× 3 system).

In this way almost all gauge freedom was eliminated, yet a part of sym-
metry remained shuffling the structures. This pseudogroup, denoted by G, is
parametrized by 5 functions of 2 arguments (and so is considerably smaller
than G). We fix this freedom by computing the differential invariants of
G-action on SDE and passing to the quotient equation.

The differential invariants are considered in rational-polynomial form,
as in [12]. This allows to describe the algebra of invariants in Lie-Tresse
approach, and also using the principle of n-invariants of [1]. We count
differential invariants in both approaches and organize the obtained numbers
in the Hilbert polynomial and the Poincaré function.

1 Scalar invariants of self-dual structures

The first approach to compute the quotient of the self-duality equation by
the local diffeomorphisms pseudogroup G action is via differential invariants
of self-dual structures SD. The signature of the metric g or conformal metric
structure [g] is either (2, 2) or (4, 0). In this and the following two sections we
assume that g is a Riemannian metric on M for convenience. Consideration
of the case (2, 2) is analogous.

To distinguish between metrics and conformal structures we will write
SDm for the former and SDc for the latter. Denote the space of k-jets of
such structures by SDkm and SDkc respectively. These clearly form a tower
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of bundles over M with projections πk,l : SDkx → SDlx, πk : SDkx → M ,
where x is either m or c.

1.1 Self-dual metrics: invariants

Consider the bundle S2
+T
∗M of positively definite quadratic forms on TM

and its space of jets Jk(S2
+T
∗M). The equation W− = 0 in 2-jets determines

the submanifold SD2
m ⊂ J2, and its prolongations are SDkm ⊂ Jk for k > 2.

Computation of the stabilizer of the action shows that the submanifolds
SDkm are regular, meaning that generic orbits of the G-action in SDkm have
the same dimension as in Jk(S2

+T
∗M). This is based on a simple observation

that generic self-dual metrics have no symmetry at all. Thus the differen-
tial invariants of the action on SDkm can be obtained from the differential
invariants on the jet space Jk [9, 13].

These invariants can be constructed as follows. There are no invariants
of order ≤ 1 due to existence of geodesic coordinates, the first invariants
arise in order 2 and they are derived from the Riemann curvature tensor
(as this is the only invariant of the 2-jet of g). Traces of the Ricci tensor
Tr(Rici), 1 ≤ i ≤ 4, yield 4 invariants I1, . . . , I4 that in a Zariski open
set of jets of metrics can be considered horizontally independent, meaning
d̂I1 ∧ . . . ∧ d̂I4 6= 0.

To get other invariants of order 2, choose an eigenbasis e1 . . . , e4 of the
Ricci operator (in a Zariski open set it is simple), denote the dual coframe
by {θi} and decompose Rg = Rijklei⊗ θj ⊗ θk ∧ θl. These invariants include
the previous Ii, and the totality of independent second-order invariants for
self-dual metrics is

dim{Rg|W− = 0} − dimO(g) = (20− 5)− 6 = 9.

The invariants Rijkl are however not algebraic, but obtained as algebraic

extensions via the characteristic equation. Then Rijkl (9 independent com-
ponents) and ei generate the algebra of invariants.

Alternatively, compute the basis of Tresse derivatives ∇i = ∂̂Ii and
express the metric in the dual coframe ωj = d̂Ij : g = Gijω

iωj . Then
the functions Ii, Gkl generate the space of invariants by the principle of
n-invariants [1].

Remark . There is a natural almost complex structure Ĵ on the twistor
space of self-dual (M, g), i.e. on the bundle M̂ over M whose fiber at a
consists of the sphere of orthogonal complex structures on TaM inducing the
given orientation. The celebrated theorem of Penrose [15, 2] states that self-
duality is equivalent to integrability of Ĵ . Thus local differential invariants
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of g can be expressed through semi-global invariants of the foliation of the
three-dimensional complex space M̂ by rational curves. Similarly in the split
signature one gets foliation by α-surfaces, and the geometry of this foliation
of M̂ yields the invariants on M .

We explain how to get rid of non-algebraicity in the next subsection.

1.2 Self-dual conformal structures: invariants

Here the invariants of the second order are obtained from the Weyl tensor as
the only conformally invariant part of the Riemann tensor Rg. For general
conformal structures a description of the scalar invariants was given recently
in [10]. In our case W = W+ + W− the second component vanishes, and
so we have only 5-dimensional space of curvature tensors W, namely Weyl
parts of Rg considered as (3, 1) tensors.

Let us fix a representative of the conformal structure g0 ∈ [g] by the
requirement ‖W+‖2g0 = 1, this uniquely determines g0 provided that W+ is
non-vanishing in a neighborhood (in the case of neutral signature we have to
require ‖W+‖2g 6= 0 for some and hence any metric g ∈ [g] and then we can
fix g0 up to ± by the requirement ‖W+‖2g0 = ±1). Use this representative
to convert W+ into a (2, 2)-tensor, considered as a map W+ : Λ2T → Λ2T ,
where T = TaM for a fixed a ∈M .

Recall [2] that the operator W = W+ +W− is block-diagonal in terms of
the Hodge ∗-decomposition Λ2T = Λ2

+T ⊕ Λ2
−T . Thus W+ : Λ2

+T → Λ2
+T

is a map of 3-dimensional spaces and it is traceless of norm 1. For the
spectrum Sp(W+) = {λ1, λ2, λ3} this means

∑
λi = 0, max |λi| = 1. To

conclude, we have only one scalar invariant of order 2, for which we can
take I = Tr(W 2

+).

To obtain more differential invariants we proceed as follows. It is known
that Riemannian conformal structure in 4D is equivalent to a quaternionic
structure (split-quaternionic in the split-signature). In the domain, where
Sp(W+|Λ2

+) is simple we even get a hyper-Hermitian structure (on the bun-
dle TM pulled back to SD2

c , so no integrability conditions for the operators
J1, J2, J3) as follows.

Let σi ∈ Λ2
+ be the eigenbasis of W+ corresponding to eigenvalues λi,

normalized by ‖σi‖2g0 = 1 (this still leaves ± freedom for every σi). These
2-forms are symplectic (= nondegenerate, since again these are forms on a
bundle over SD2

c) and g0-orthogonal, so the operators Ji = g−1
0 σi are anti-

commuting complex operators on the space T , and they are in quaternionic
relations up to the sign. We can fix one sign by requiring J3 = J1J2, but
still have residual freedom Z2 × Z2.
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Now we can fix a canonical (up to above residual symmetry) frame,
depending on the 3-jet of [g], as follows: e1 = g−1

0 d̂I/‖g−1
0 d̂I‖g0 , e2 = J1e1,

e3 = J2e1, e4 = J3e1. The structure functions of this frame ckij (given

by [ei, ej ] = ckijek) together with I constitute the fundamental invariants

of the conformal structure (we can fix, for instance, I1 = I, I2 = c1
12,

I3 = c1
13, I4 = c1

14 to be the basic invariants), and together with the invariant
derivations ∇j = Dej (total derivative along ej) they generate the algebra
of scalar differential invariants micro-locally.

The micro-locality comes from non-algebraicity of the invariants. In-
deed, since we used eigenvalues and eigenvectors in the construction, the
output depends on an algebraic extension via some additional variables y.
Notice though that this involves only 2-jet coordinates, i.e. the y-variables
are in algebraic relations with the fiber variables of the projection J2 → J1,
and with respect to higher jets everything is algebraic. Thus we can elimi-
nate the y-variables, as well as the residual freedom, and obtain the algebra
of global rational invariants Al.

Here l is the order of jet from which only polynomial behavior of the
invariants can be assumed [12]. This yields the Lie-Tresse type description
of the algebra Al.

It is easy to see that the rational expressions occur at most on the level
of 3-jets, so the generators of the rational algebra can be chosen polynomial
in the jets of order > 3. Thus we conclude:

Theorem 15. The algebra A3 of rational-polynomial invariants as well as
the field F of rational differential invariants of self-dual conformal metric
structures are both generated by a finite number of (the indicated) differential
invariants Ii and invariant derivations ∇j, and the invariants from this
algebra/field separate generic orbits in SD∞c .

A similar statement also holds true for metric invariants of SD∞m .

2 Stabilizers of generic jets

Our method to compute the number of independent differential invariants
of order k follows the approach of [13]. We will use the jet-language from
the formal theory of PDE, and refer the reader to [11].

Fix a point a ∈ M . Denote by Dk the Lie group of k-jets of diffeomor-
phisms preserving the point a. This group is obtained from D1 = GL(T ) by
successive extensions according to the exact 3-sequence

0→ ∆k −→ Dk −→ Dk−1 → {e},
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where ∆k = {[ϕ]kx : [ϕ]k−1
x = [id]k−1

x } ' SkT ∗ ⊗ T is Abelian (k > 1).
Denote by Stk ⊂ Dk+1 the stabilizer of a generic point ak ∈ SDkx, and

by St0
k its connected component of unity.

2.1 Self-dual metrics: stabilizers

We refer to [13] for computations of stabilizers and note that even though
the computation there is done for generic metrics, it applies to self-dual
metrics as well. Thus in the metric case the stabilizers are the following:
St0 = St1 = O(g), and St0

k = 0 for k ≥ 2.
Consequently the action of the pseudogroup G on jets of order k ≥ 2 is

almost free, meaning that Dk+1 has a discrete stabilizer on SDkm|a.

2.2 Self-dual conformal structures: stabilizers

The stabilizers for general conformal structures were computed in [10]. In
the self-dual case there is a deviation from the general result. Denote by
CM = S2

+T
∗M/R+ the bundle of conformal metric structures.

Lemma 16. ([10]) The following is a natural isomorphism:

T[g](CM) = Endsym
0 (T ) = {A : T → T | g(Au, v) = g(u,Av),Tr(A) = 0}.

Denote VM = T[g](CM). The differential group Dk+1 acts on SDkc , in
particular ∆k+1 acts on it. The next statement is obtained by a direct
computation of the symbol of Lie derivative.

Lemma 17. The tangent to the orbit ∆k+1(ak) is the image Im(ζk) ⊂ TSDkc
of the map ζk that is equal to the following composition

Sk+1T ∗ ⊗ T δ−→ SkT ∗ ⊗ (T ∗ ⊗ T )
1⊗Π−→ SkT ∗ ⊗ VM .

Here δ is the Spencer operator and Π : T ∗ ⊗ T → VM ⊂ T ∗ ⊗ T is the
projection given by

〈p,Π(B)u〉 = 1
2〈p,Bu〉+ 1

2〈u[, Bp
]〉 − 1

n Tr(B)〈p, u〉,

where u ∈ T, p ∈ T ∗, B ∈ T ∗ ⊗ T are arbitrary, 〈·, ·〉 denotes the pairing
between T ∗ and T , and u[ = g(u, ·), p] = g−1(p, ·) for some representative
g ∈ [g], on which the right-hand side does not depend.

Recall that i-th prolongation of a Lie algebra h ⊂ End(T ) is defined
by the formula h(i) = Si+1T ∗ ⊗ T ∩ SiT ∗ ⊗ h. As is well-known, for the
conformal algebra of [g] it holds: co(g)(1) = T ∗ and co(g)(i) = 0, i > 1.
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Lemma 18. We have Ker(ζk) = 0 for k > 1, and therefore the projectors
ρk+1,k : Dk+1 → Dk induce the injective homomorphisms Stk → Stk−1 and
St0
k → St0

k−1 for k > 1.

Proof. If ζk(Ψ) = 0, then δ(Ψ) ∈ SkT ∗⊗ co(g), where co(g) ⊂ End(T ) is the
conformal algebra. This means that Ψ ∈ co(g)(k+1) = 0, if k > 1. Thus we
conclude injectivity of ζk: ∆k+1 ∩ Stk = {e}, whence the second claim.

The stabilizers of low order (for any n ≥ 3) are the following. For any
a0 ∈ CM its stabilizer is St0 = CO(g) = (Sp(1)×Z2 Sp(1))× R+.

Next, the stabilizer St1 ⊂ D2 of a1 ∈ J1(CM) is the extension (by deriva-

tions) of St0 by co(g)(1) = T ∗
ι
↪→ ∆2, where ι : T ∗ → S2T ∗ ⊗ T is given

by

ι(p)(u, v) = 〈p, u〉v + 〈p, v〉u− 〈u[, v〉p],

for p ∈ T ∗, u, v ∈ T . In other words, we have St1 = CO(g) n T .

Since forG-action on SD2
c there is precisely 1 scalar differential invariant,

we get dim St2 = (16 + 40 + 80) − (9 + 36 + 85 − 1) = 7. This can be also
seen as follows. Since St0

2 ⊂ St1 preserves the hyper-Hermitian structure
determined by generic 2-jet a2 ∈ SD2

c (see Section 1) the R+ factor and one
of the Sp(1) copies in St0 disappears from the stabilizer of 2-jet, and we get
St0

2 ' Sp(1) n T .

Lemma 19. For k ≥ 3 we have: St0
k = {e}.

Proof. In Section 1 we constructed a canonical frame e1, . . . , e4 on T de-
pending on (generic) jet a3. In other words, we constructed a frame on the
bundle π∗3TM over a Zariski open set in SD3

c .

The elements from St0
3 shall preserve this frame, and so the last com-

ponent Sp(1) from St0 is reduced. But also the elements from St0
3 shall

preserve the 1-jet of the hyper-Hermitian structure and the invariant I de-
termined by 2-jets, whence also the factor T is reduced, and St0

3 is trivial
(we take the connected component because of the undetermined signs ±
in the normalizations). Hence the stabilizers St0

k for k ≥ 3 are trivial as
well.

3 The Hilbert and Poincaré function for SD

Now we can compute the number of independent differential invariants.
Since G acts transitively on M the codimension of the orbit of G in SDkx is
equal to the codimension of the orbit of Dk+1 in SDkx|a (where a ∈ M is a
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fixed point and x is either m or c). Denoting the orbit through a generic
k-jet ak by Ok ⊂ SDkx|a we have:

dim(Ok) = dimDk+1 − dim Stk .

Notice that

codim(Ok) = dimSDkx|a − dim(Ok) = trdegFk

is the number of (functionally independent) scalar differential invariants of
order k (here trdegFk is the transcendence degree of the field of rational
differential invariants on SDkx).

The Hilbert function is the number of “pure order” k differential invari-
ants H(k) = trdegFk− trdegFk−1. It is known to be a polynomial for large
k, so we will refer to it as the Hilbert polynomial.

The Poincaré function is the generating function for the Hilbert poly-
nomial, defined by P (z) =

∑∞
k=0H(k)zk. This is a rational function with

the only pole z = 1 of order equal to the minimal number of invariant
derivations in the Lie-Tresse generating set [12].

3.1 Counting differential invariants

The results of Section 2 allow to compute the Hilbert polynomial and the
Poincaré function.

Theorem 20. The Hilbert polynomial for G-action on SDm is

Hm(k) =


0 for k < 2,
9 for k = 2,
1
6(k − 1)(k2 + 25k + 36) for k > 2.

The corresponding Poincaré function is equal to

Pm(z) =
z2(9 + 4z − 30z2 + 24z3 − 6z4)

(1− z)4
.

Notice that Hm(k) ∼ 1
3! k

3, meaning that the moduli of self-dual metric
structures are parametrized by 1 function of 4 arguments. This function is
the unavoidable rescaling factor.

Proof. As for the general metrics, there are no invariants of order < 2. Since
St0

2 = 0, we have:

Hm(2) = dimSD2
m|a − dimD3 = (10 + 40 + 95)− (16 + 40 + 80) = 9.
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Alternatively, the only invariant of the 2-jet of a metric is the Riemann
curvature tensor. Since W− = 0, it has 20−5 = 15 components and is acted
upon effectively by the group O(g) of dimension 6; hence the codimension
of a generic orbit is 15− 6 = 9.

Starting from 2-jet we impose the self-duality constraint that, as dis-
cussed in the introduction, consist of 5 equations and is a determined sys-
tem (mod gauge). In particular, there are no differential syzygies between
these 5 equations, so that in “pure” order k ≥ 2 the number of independent
equations is 5 ·

(
k+1

3

)
. Thus the symbol of the self-duality metric equation

W− = 0 on g, given by

gk = Ker(dπk,k−1 : TSDkm → TSDk−1
m )

has dimension dim(SkT ∗ ⊗ S2T ∗)−#[independent equations].
Since the pseudogroup G acts almost freely on jets of order k ≥ 2 (freely

from some order k), we have:

Hm(k) = dim gk − dim ∆k+1 = 10 ·
(
k + 3

3

)
− 5 ·

(
k + 1

3

)
− 4 ·

(
k + 4

3

)
whence the claim for the Hilbert polynomial. The formula for the Poincaré
function follows.

Theorem 21. The Hilbert polynomial for G-action on SDc is

Hc(k) =


0 for k < 2,
1 for k = 2,
13 for k = 3,
3k2 − 7 for k > 3.

The corresponding Poincaré function is equal to

Pc(z) =
z2(1 + 10z + 5z2 − 17z3 + 7z4)

(1− z)3
.

Notice that Hc(k) ∼ 6 · 1
2! k

2, meaning that the moduli of self-dual con-
formal metric structures are parametrized by 6 function of 3 arguments.
This confirms the count in [6, 5].

Proof. As for the general metrics, there are no invariants of order < 2. We
already counted Hc(2) = 1. Since St0

3 = 0, we have:

Hc(3) = dimSD3
m|a − dimD4 −Hc(2)

= (9 + 36 + 85 + 160)− (16 + 40 + 80 + 140)− 1 = 13.
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Starting from 2-jet we impose the self-duality constraint, and we com-
puted in the previous proof that this yields 5·

(
k+1

3

)
independent equations of

“pure” order k ≥ 2. Thus the symbol of the self-duality conformal equation
W− = 0 on [g], given by

gk = Ker(dπk,k−1 : TSDkc → TSDk−1
c ),

has dimension= dim(SkT ∗ ⊗ (S2T ∗/R+))−#[independent equations].
Since the pseudogroup G acts almost freely on jets of order k ≥ 3 (freely

from some order k), we have:

Hc(k) = dim gk − dim ∆k+1 = 9 ·
(
k + 3

3

)
− 5 ·

(
k + 1

3

)
− 4 ·

(
k + 4

3

)
whence the claim for the Hilbert polynomial. The formula for the Poincaré
function follows.

3.2 The quotient equation

Let I1, . . . , I4 be the basic differential invariants of self-dual conformal struc-
tures. For generic such structures c these invariant evaluated on c are in-
dependent. Thus we can fix the gauge by requiring Ii = xi, i = 1, . . . , 4,
to be the local coordinates on M . This adds 4 differential equations to 5
equations of self-duality on 9 components of c. Consequently, denoting

Σ∞ = {θ ∈ SD∞c : d̂I1 ∧ d̂I2 ∧ d̂I3 ∧ d̂I4 is not defined at θ or vanishes},

the moduli space (SD∞c \ Σ∞)/G is given as 9× 9 PDE system

W− = 0, I1 = x1, . . . , I4 = x4.

4 The self-duality equation

In the second approach we use a 3× 3 PDE system from [5] which encodes
all self-dual conformal structures. It was shown in loc.cit. that any anti-self-
dual conformal structure in neutral signature (2, 2) locally takes the form
[g] where

g = dtdx+ dzdy + p dt2 + 2q dtdz + r dz2. (1)

Here p, q, r are functions of (t, x, y, z) which satisfy the following three
second-order PDEs:

pxx + 2qxy + ryy = 0,

mx + ny = 0,

mz − qmx − rmy + (qx + ry)m = nt − pnx − qny + (px + qy)n,

(2)
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where

m := pz − qt + pqx − qpx + qqy − rpy, n := qz − rt + qry − rqy + prx − qqx.

Conversely, any such conformal structure is anti-self-dual. Therefore
we can, instead of looking at arbitrary self-dual conformal structures, look
at conformal structures [g] where g is a metric of the Plebański-Robinson
form (1) satisfying (2). So from now on we restrict to self-dual conformal
structures in the neutral signature (2, 2).

Remark . These equations are admittedly describing anti-self-dual metrics
(∗W = −W ) instead of self-dual metrics (∗W = W ). However, in order
to define the Hodge operator, one must specify an orientation. Change of
orientation interchanges the equations, so from a local viewpoint self-dual
and anti-self-dual structures are the same.

Conformal structures of the form (1) are parametrized by sections of
the bundle π : CPR

M = M × R3(p, q, r) → M , where M = R4(t, x, y, z). Self-
dual conformal structures must, in addition, satisfy system (2), so they are
described by a second-order PDE

SDE2 = {θ = [(p, q, r)]2x : x ∈M, θ satisfies (2)} ⊂ J2(CPR
M ).

We let SDEk ⊂ Jk = Jk(CPR
M ) denote the prolonged equation. From now

on we will omit specification of the bundle over which the jet spaces are
constructed, because it will always be CPR

M in what follows.

The prolonged equation SDEk is given by 3
(
k+2

4

)
equations in Jk since

the system (2) is determined. By subtracting this from the jet space dimen-
sion dim Jk = 4 + 3

(
k+4

4

)
, we find

dimSDEk = 4 + 3

(
k + 4

4

)
− 3

(
k + 2

4

)
= k3 +

9

2
k2 +

13

2
k + 7.

5 Symmetries of SDE

Self-dual conformal structures locally correspond to sections of CPR
M that

are solutions of SDE . This correspondence is not 1-1 as there is some
residual freedom left: two solutions of SDE can still be equivalent up to
diffeomorphisms. The goal is to remove this freedom by factoring by diffeo-
morphisms that preserve the shape of the conformal structure [g] where g
is in Plebański-Robinson form (1).
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These transformations form the symmetry pseudogroup G of the equa-
tion SDE . We will study its Lie algebra g. By the Lie-Bäcklund theorem
[8] for our equation all symmetries are (prolongations of) point transforma-
tions. It turns out that the Lie algebra of symmetries is the same as the Lie
algebra of vector fields preserving the shape of [g].

5.1 Symmetries of SDE

A vector field X on J0 is a symmetry of SDE if the prolonged vector field
X(2) is tangent to SDE2 ⊂ J2, i.e. if X(2)(Fi) = λjiFj , where F1 = 0, F2 =
0, F3 = 0 are the three equations (2). This gives an overdetermined system
of PDEs that can be solved by the standard technique, and we obtain the
following result:

Theorem 22. The Lie algebra g of symmetries of SDE is generated by the
following five classes of vector fields X1(a), X2(b), X3(c), X4(d), X5(e),
each of which depends on a function of (t, z):

a∂t − xat∂x − xaz∂y + (xatt − 2pat)∂p + (xatz − qat − paz)∂q + (xazz − 2qaz)∂r,

b∂z − ybt∂x − ybz∂y + (ybtt − 2qbt)∂p + (ybtz − qbz − rbt)∂q + (ybzz − 2rbz)∂r,

cx∂x + cy∂y + (cp− xct)∂p + (cq − 1
2
xcz − 1

2
yct)∂q + (cr − ycz)∂r,

d∂x − dt∂p − 1
2
dz∂q,

e∂y − 1
2
et∂q − ez∂r.

The following table shows the commutation relations.

[, ] X1(g) X2(g) X3(g) X4(g) X5(g)

X1(f) X1(fgt − ftg) X2(fgt)−X1(fzg) X3(fgt) X4((fg)t) +X5(fzg) X5(fgt)

X2(f) ∗ X2(fgz − fzg) X3(fgz) X4(fgz) X4(ftg) +X5((fg)z)

X3(f) ∗ ∗ 0 −X4(fg) −X5(fg)

X4(f) ∗ ∗ ∗ 0 0

X5(f) ∗ ∗ ∗ ∗ 0

Notice that the Lie algebra is bi-graded g = ⊕gi,j , meaning that we have
[gi1,j1 , gi2,j2 ] ⊂ gi1+i2,j1+j2 with nontrivial graded pieces

g0,0 = 〈X1, X2〉, g0,1 = 〈X3〉, g1,∞ = 〈X4, X5〉.

5.2 Shape-preserving transformations

We say that a transformation ϕ ∈ Diffloc(M) preserves the PR-shape if
for every [g] ∈ Γ(CPR

M ) we have [ϕ∗g] ∈ Γ(CPR
M ). A vector field X on R4

preserves the PR-shape if its flow does so.

Theorem 23. The Lie algebra of vector fields preserving the PR-shape is
generated by the five classes of vector fields

a∂t − xat∂x − xaz∂y, b∂z − ybt∂x − ybz∂y, cx∂x + cy∂y, d∂x, e∂y.
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where a, b, c, d, e are arbitrary functions of (t, z).

Proof. In order to find the Lie algebra of vector fields preserving the shape
of [g], we let X = f1∂t + f2∂x + f3∂y + f4∂z be a general vector field and
take the Lie derivative LXg. The vector field preserves the PR-shape of [g]
if

LXg = ε · (dtdx+ dzdy) + p̃ dt2 + 2q̃ dtdz + r̃ dz2

for some functions ε, p̃, q̃, r̃. This gives an overdetermined system of 6 PDEs
on 4 unknowns with the solutions parametrized by 5 functions of 2 variables
as indicated.

5.3 Unique lift to J0

The conformal metric (1) can also be considered as a horizontal (degenerate)
symmetric tensor cPR on CPR

M . Namely, cPR ∈ Γ(π∗S2T ∗M/R+) is given at
the point (t, x, y, z, p, q, r) ∈ CPR

M via its representative g by formula (1). The
algebra of vector fields X preserving the shape of [g] is naturally lifted to
CPR
M by the requirement LX̂cPR = 0. This requirement algebraically restores

the vertical components of the vector fields X1, . . . , X5 from Theorem 23
yielding the symmetry fields from Theorem 22. We conclude:

Theorem 24. The Lie algebra of transformations preserving the PR-shape
coincides with the Lie algebra g of point symmetries of SDE.

Thus the conformal structure cPR uniquely restores g = sym(SDE).

5.4 Conformal tensors invariant under g

The goal of this subsection is to show that the simplest conformally invariant
tensor with respect to g is cPR, so that the conformal structure (of PR-
shape) is in turn uniquely determined by g.

We aim to describe the horizontal conformal tensors on CPR
M that are

invariant with respect to g. Since g acts transitively on CPR
M , we consider

the stabilizer St0 ⊂ g of the point given by (t, x, y, z, p, q, r) = (0, 0, 0, 0, 0, 0)
in CPR

M . Denote by Stk0 the subalgebra of g consisting of fields vanishing at
0 to order k, so that St0 = St1

0.
It is easy to see from formulae of Theorem 22 that the space St1

0/St2
0

is 18-dimensional, and 12 of the generators are vertical (they belong to
〈∂p, ∂q, ∂r〉). The complimentary linear fields have the horizontal parts

Y1 = t∂t − x∂x, Y2 = z∂t − x∂y, Y3 = t∂z − y∂x,
Y4 = z∂z − y∂y, Y5 = x∂x + y∂y, Y6 = z∂x − t∂y.
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They form a 6-dimensional Lie algebra h acting on the horizontal space T =
T0M = T0CPR

M /Ker(dπ). This Lie algebra is a semi-direct product of the
reductive part h0 = 〈Y1, Y2, Y3, Y4, Y5〉 and the nilpotent piece r = 〈Y6〉 (the
nilradical is 2-dimensional). The reductive piece splits in turn h0 = sl2 ⊕ a,
where the semi-simple part is sl2 = 〈Y1 − Y4, Y2, Y3〉 and the Abelian part
is a = 〈Y1 + Y4, Y5〉.

It is easy to see that the space T is h0-reducible. In fact, with respect
to h0 it is decomposable T = Π1 ⊕ Π2 = 〈∂t, ∂z〉 ⊕ 〈∂x, ∂y〉, and Π1,Π2 are
the standard sl2-representations (denoted by Π in what follows). However
r maps Π1 to Π2 and Π2 to 0. This Π2 ⊂ T is an h-invariant subspace, but
it does not have an h-invariant complement.

Moreover, Π2 is the only proper h-invariant subspace, so there are no
conformally invariant vectors (invariant 1-space) and covectors (invariant
3-space). We sumarize this as follows.

Lemma 25. There are no horizontal 1-tensors on CPRM that are conformally
invariant with respect to g.

Now, let’s consider conformally invariant horizontal 2-tensors. Since cPR

is g-invariant, we can lower the indices and consider (0, 2)-tensors. We have
the splitting T∗ ⊗ T∗ = Λ2T∗ ⊕ S2T∗.

The symmetric part further splits S2(Π∗1 ⊕ Π∗2) = S2Π∗1 ⊕ (Π∗1 ⊗ Π∗2) ⊕
S2Π∗2. As an sl2-representation, this is equal to 3 · S2Π⊕ Λ2Π = 3 · ad⊕ 1,
and the only one trivial piece 1 ⊂ Π∗1 ⊗ Π∗2 (which is also h-invariant) is
spanned by cPR. Here Π∗1 = 〈dt, dz〉 and Π∗2 = 〈dx, dy〉. Thus there are no
g-invariant symmetric conformal 2-tensors except cPR.

The skew-symmetric part further splits Λ2(Π∗1⊕Π∗2) = Λ2Π∗1⊕(Π∗1⊗Π∗2)⊕
Λ2Π∗2, and as an sl2-representation, this is equal to S2Π⊕3 ·Λ2Π = ad⊕3 ·1.
Thus there are three sl2-trivial pieces, and they are h0-invariant. However
only one of them is r-invariant, namely Λ2Π∗1 that is spanned by dz ∧ dt.
Thus we have proved the following statement.

Theorem 26. The only conformally invariant symmetric 2-tensor is cPR.
The only conformally invariant skew-symmetric 2-tensor is dz ∧ dt.

Since dz ∧ dt is degenerate and does not define a convenient geometry,
cPR is the simplest g-invariant conformal tensor.

5.5 Algebraicity of g

We say that the Lie algebra g is algebraic if its sheafification is equal to
the Lie algebra sheaf of some algebraic pseudo-group G (see definition of an
algebraic pseudo-group in [12]). Algebraicity of g is important because it
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guarantees, through the global Lie-Tresse theorem [12], existence of rational
differential invariants separating generic orbits (by [16] this yields rational
quotient of the action on every finite jet-level).

Let Dk ⊂ Jk(θ,θ)(C
PR
M , CPR

M ) denote the differential group of order k at

θ ∈ CPR
M . The stabilizer Gθ ⊂ G of θ can be viewed as a collection of

subbundles Gkθ ⊂ Dk. The transitive Lie pseudo-group G is algebraic if Gkθ is
an algebraic subgroup of Dk for every k. This is independent of the choice
of θ since G is transitive, implying that subgroups Gkθ ⊂ Dk are conjugate
for different points θ ∈ CPR

M .

When determining whether g is algebraic, there are essentially two ap-
proaches. One is to try to see it from the stabilizer gθ alone, and the other
is to integrate g in order to investigate the pseudo-group Gθ. It turns out
that the latter is more efficient in our case.

Consider the following pseudo-group G given via its action on CPR
M .

t 7→ T = A, z 7→ Z = B

x 7→ X = C(Bzx−Bty) +D, y 7→ Y = C(Aty −Azx) + E

p 7→ P =
C(B2

zp−2BtBzq+B2
t r)+(CJB,Bz+BzJB,C)x−(CJB,Bt+BtJB,C)y+JB,D

JA,B

r 7→ R =
C(A2

zp−2AtAzq+A2
t r)+(CJA,Az+AzJA,C)x−(CJA,At+AtJA,C)y−JA,E

JA,B

q 7→ Q =
C(−AzBzp+(AtBz+AzBt)q−AtBtr)+(JB,E−JA,D)/2

JA,B

+
((JAz,B−JA,Bz )C−BzJA,C−AzJB,C)x+((JA,Bt−JAt,B)C+AtJB,C+BtJA,C)y

2JA,B

Here we use the notation JF,G = FtGz−FzGt for two functions F,G of (t, z).
The functions A,B,C,D,E are all (locally defined) functions depending on
the variables (t, z). In addition A,B satisfy the requirement that (t, z) 7→
(A(t, z), B(t, z)) is a local diffeomorphism of the plane, and C 6= 0 wherever
it is defined.1

It is easy to check that this is a Lie pseudo-group (one should specify the
differential equations defining G, and they are Tx = 0, . . . , Tr = 0, . . . , Xy +
Zt = 0, . . . ). Moreover it is easy to check that the Lie algebra sheaf of G
coincides with the sheafification of g.

Theorem 27. The Lie pseudo-group G and consequently the Lie algebra g
are algebraic.

Proof. The subgroups Gkθ of Dk are constructed by repeated differentiation
of T, ..., R by t, ..., r and evaluation at θ. The formulas for the group action

1The formulas above are corrections of the ones from the original paper.
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make it clear that Gkθ will always be an algebraic subgroup of Dk (they
provide a rational parametrization of it as a subvariety). Thus G is algebraic.
The statement for g follows.

Let us briefly explain how to read algebraicity from the Lie algebra g.
Consider the Lie subalgebra f ⊂ gl(T0J

0) obtained by linearization of the
isotopy algebra at 0 ∈ J0 = CPR

M . As already noticed in §5.4, this is an
18-dimensional subalgebra admitting the following exact 3-sequence

0→ v −→ f −→ h→ 0,

where v is the vertical part and h – the ”horizontal” (that is the quotient).
The explicit form of these vector fields come from Theorem 22:

v = 〈x∂p, x∂q, x∂r, y∂p, y∂q, y∂r, t∂p, t∂q, t∂r, z∂p, z∂q, z∂r〉,
h = sl2 + a + r, where r = 〈z∂x − t∂y〉,

sl2 = 〈z∂t − x∂y − p∂q − 2q∂r, t∂z − y∂x − 2q∂p − r∂q,
t∂t − z∂z − x∂x + y∂y − 2p∂p + 2r∂r〉,

a = 〈t∂t + z∂z − p∂p − q∂q − r∂r, x∂x + y∂y + p∂p + q∂q + r∂r〉.

By [4] the subalgebra [f, f] ⊂ gl(T0J
0) is algebraic. Since f is obtained from

[f, f] = v+sl2+r by extension by derivations a, and the semi-simple elements
in the latter have no irrational ratio of spectral values, we conclude that
f ⊂ gl(T0J

0) is an algebraic Lie algebra [3]. The claim about algebraicity of
g follows by prolongations.

6 The Hilbert and Poincaré function for SDE
Even though g is just a PR-shape preserving Lie algebra, its prolongation to
the space of 2-jets preserves SDE (this is an unexpected remarkable fact),
and we consider the orbits of g on this equation.

6.1 Dimension of generic orbits

We can compute the dimension of a generic orbit in SDEk or Jk by com-
puting the rank of the system of prolonged symmetry vector fields X(k) at
a point in general position.

By prolonging the generators X1, ..., X5 and with the help of Maple we
observe that the Lie algebra g acts transitively on J1. The dimension of
a generic orbit on the Lie algebra acting on J2 is 44, but the equation
SDE2 ⊂ J2 contains no generic orbits, and if we restrict to SDE2 a generic
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orbit of g is of dimension 42. For higher jet-orders k > 2, the dimension of
a generic orbit is the same on SDEk as on Jk.

We are going to compute dimOk for k ≥ 3 as follows. Since g contains
the translations ∂t, ∂z, all its orbits pass through the subset Sk ⊂ Jk given
by t = 0, z = 0. On Sk we can make the Taylor expansion of parametrizing
functions a, b, c, d, e around (t, z) = (0, 0).

We use X5(e) to show the idea. By varying the coefficients of the Taylor
series e(t, z) = e(0, 0) + et(0, 0)t + ez(0, 0)z + · · · we see that the vector
fields X5(m,n) = zmtn∂y − n

2 z
mtn−1∂q −mzm−1tn∂r are contained in the

symmetry algebra, with the convention that t−1 = z−1 = 0, and any vector
field of the form X5(e) is tangent to a vector field in 〈X5(m,n)〉. The
prolongation of a vector field takes the form

X(k) =
∑
i

aiD(k+1)
i +

∑
|σ|≤k

(Dσ(φp)∂pσ +Dσ(φq)∂qσ +Dσ(φr)∂rσ) (3)

where Dσ is the iterated total derivative, D(k+1)
i the truncated total deriva-

tive (the “restriction” to the space Jk+1, cf. [8, 11]), ai = dxi(X) for
(x1, x2, x3, x4) = (t, x, y, z), and φp, φq, φr are the generating functions for
X, i.e. φp = ωp(X), φq = ωq(X), φr = ωr(X) where

ωp = dp− ptdt− pxdx− pydy − pzdz,
ωq = dq − qtdt− qxdx− qydy − qzdz,
ωr = dr − rtdt− rxdx− rydy − rzdz

In the case of X5(m,n), the generating functions are given by

φp = −pyzmtn, φq = −n
2 z

mtn−1 − qyzmtn, φr = −mzm−1tn − ryzmtn.

We see that the restriction of X5(m,n)(k) to the fiber over 0 ∈ CPR
M is

nonzero only whenm+n ≤ k+1. Hence we can parametrize 〈X5(m,n)〉(k) by
Jk+1

0 (R2(t, z),R(e)), and by extending this argument to the whole symmetry
algebra we get (the vector fields Xk(m,n) for k = 1, . . . , 4, are defined
similarly to the vector field X5(m,n) by simply substituting a = zmtn etc
into the formulae of Theorem 22)

g(k) = 〈X1(m,n), X2(m,n), X4(m,n), X5(m,n)〉(k) ⊕ 〈X3(m,n)〉(k)

= Jk+1
0 (R2(t, z),R4(a, b, d, e))× Jk0 (R2(t, z),R(c)).

Using formula (3) we verify that the Lie algebra g(k) acts freely on SDEk
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for k ≥ 3, whence

dimOk = dim
(
Jk+1

0 (R2,R4)× Jk0 (R2,R)
)

= 4 dim
(
Jk+1

0 (R2,R)
)

+ dim
(
Jk0 (R2,R)

)
= 4

(
k + 3

2

)
+

(
k + 2

2

)
=

(k + 2)(5k + 13)

2
.

6.2 Counting the differential invariants

The number sk of differential invariants of order k (as before, this is trdegFk)
is equal to the codimension of a generic orbit of g on SDEk. For the lowest
orders, we have s0 = s1 = 0 and s2 = dimSDE2 − dimO2 = 46 − 42 = 4.
For higher jet-orders, the number of invariants of order k is given by

sk = codimOk = dimSDEk − dimOk = k3 + 2k2 − 5k − 6, k ≥ 3.

The number of differential invariants of “pure order” k is then given by
H(k) = sk − sk−1. The Poincaré function P (z) =

∑∞
k=0H(k)zk can now

easily be computed, and we conclude:

Theorem 28. The Hilbert polynomial for the action of g on SDE is

H(k) =


0 for k < 2,
4 for k = 2,
20 for k = 3,
3k2 + k − 6 for k > 3.

The corresponding Poincaré function is equal to

P (z) =
2z2(2 + 4z − z2 − 4z3 + 2z4)

(1− z)3
.

Notice that H(k) in this statement has the same leading term as H(k) in
Theorem 21 for k > 3. The following table summarizes the counting results
from the last two subsections for low order k.

k 0 1 2 3 4 5 6 7 . . .

dimSDEk 7 19 46 94 169 277 424 616 . . .

dimOk 7 19 42 70 99 133 172 216 . . .

codimOk 0 0 4 24 70 144 252 400 . . .

H(k) 0 0 4 20 46 74 108 148 . . .
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7 The invariants of SDE and the quotient equation

From the global Lie-Tresse theorem [12] and Theorem 27 it follows that
there exist rational differential invariants of g-action (or G-action) on SDE
that separate generic orbits.

7.1 Invariants of the second order

There are four independent differential invariants of the second order:

I1 =
1

K

(
pyyrxx − pxxryy + 2 pxyqxx + 4 q2

xy + 2 qyyrxy
)

I2 =
1

K3

(
(qxyryy − qyyrxy) pxx + (pyyrxy − pxyryy) qxx

+ (pxyqyy − pyyqxy) rxx
)2

I3 =
1

K3

(
pyy (qxx − rxy)2 + rxx (qyy − pxy)2

− 2 qxy
(
pxyqxx + qyyrxy − pxyrxy − 2 pyyrxx + 2 q2

xy − qxxqyy
) )2

I4 =
1

K2

(
p2
xxr

2
yy + p2

yyr
2
xx − 2 pxxpyyrxxryy + 4 pxxpyyr

2
xy

+ 4 p2
xyrxxryy − 4 qxxqyy (pxxryy − 4 pxyrxy + pyyrxx)

+ 4 pxxqxyryy (pxx + 4 qxy + ryy)− 4 pxyrxy (pxxryy + pyyrxx)

+ 4 pxxrxx
(
q2
yy − pyyqxy

)
+ 4 pyyryy

(
q2
xx − qxyrxx

)
− 8 pxyqxy (qxxryy + qyyrxx)− 8 qxyrxy (pxxqyy + pyyqxx)

)
where

K = pxxryy − 2 pxyrxy + pyyrxx + 2 (q2
xy − qxxqyy)

is a relative differential invariant.

7.2 Singular set

Let Σ′2 ⊂ SDE2 be the set of points θ where 〈X(2)
θ : X ∈ g〉 ⊂ Tθ(SDE2) is

of dimension less than 42. It’s given by

Σ′2 = {θ ∈ SDE2 : rank (A|θ) < 4}
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where

A =



0 −2qxy − 2ryy pxy + qyy 0
0 2pxy − 2qyy 2pyy pyy

4qxy + ryy −rxx −2qxx −2qxx
−pxy + qyy qxx − rxy 0 −qxy
−pyy 2qxy − ryy qyy 0

−2qxx + 2rxy 0 −2rxx −3rxx
−2qxy + ryy rxx −rxy −2rxy
−2qyy 2rxy 0 −ryy


.

This set contains the singular points that can be seen from a local view-
point on SDE2, but there may still be some singular (non-closed) orbits of
dimension 42. We use the differential invariants Ii to filter out these. Let
Σ3 ⊂ SDE3 be the set of points where the 4-form

d̂I1 ∧ d̂I2 ∧ d̂I3 ∧ d̂I4

is not defined or is zero. Here d̂ is the horizontal differential

d̂f = Dt(f)dt+Dx(f)dx+Dy(f)dy +Dz(f)dz.

This defines the singular sets Σk = (πk,3|SDEk)−1(Σ3) ⊂ SDEk and Σ2 =
π3,2(Σ3). The set Σ2 of all singular points in SDE2 contains Σ′2.

By using Maple, we can easily verify that {K = K1 = K2 = K3 = K4 =
0} is contained in Σ′2, where Ki is the numerator of Ii for i = 1, 2, 3, 4.
Notice also that 2-jets of conformally flat metrics are contained in Σ′2.

7.3 Invariants of higher orders

The 1-forms d̂I1, d̂I2, d̂I3, d̂I4 determine an invariant horizontal coframe on
SDE3\Σ3. The basis elements of the dual frame ∂̂I1 , ∂̂I2 , ∂̂I3 , ∂̂I4 are invariant
derivations, the Tresse derivatives. We can rewrite metric (1) in terms of
the invariant coframe:

g =
∑

Gij d̂Iid̂Ij , where Gij = g(∂̂Ii , ∂̂Ij ). (4)

Since the d̂Ii are invariant, and [g] is invariant, the map

Ĝ = [G11 : G12 : G13 : G14 : G22 : G23 : G24 : G33 : G34 : G44] : J3 → RP 9

is invariant. Hence the functions Gij/G44 are rational scalar differential
invariants (of third order). This has been verified in Maple by differentiation
of Gij/G44 along the elements of g. It was also checked that these nine
invariants are independent. By the principle of n-invariants [1], Ii and
Gij/G44 generate all scalar differential invariants.
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Theorem 29. The field of rational differential invariants of g on SDE is
generated by the differential invariants Ik, Gij/G44 and invariant deriva-

tions ∂̂Ik . The differential invariants in this field separate generic orbits in
SDE∞.

7.4 The quotient equation

When restricted to a section g0 of CPR
M , the functions Gij can be considered

as functions of I1, I2, I3, I4. Two such nonsingular sections are equivalent
if they determine the same map Ĝ(I1, I2, I3, I4). The quotient equation
(SDE∞ \ Σ∞)/g is given by

∗Wg = Wg, where g =
∑

Gij(I1, I2, I3, I4)d̂Iid̂Ij .

Here we consider I1, . . . , I4 as coordinates on M . Equivalently, given
local coordinates (x1, . . . , x4) on M the quotient equation is obtained by
adding to SDE the equations Ii = xi, 1 ≤ i ≤ 4.
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