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Abstract

We present the extension of the quantum/classical polarizable fluctuating charge

model to the calculation of single residues of quadratic response functions, as required

for the computational modeling of two-photon absorption cross-sections. By virtue of

a variational formulation of the quantum/classical polarizable coupling, we are able to
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exploit an atomic orbital-based quasienergy formalism to derive the additional coupling

terms in the response equations. Our formalism can be extended to the calculation of

arbitrary order response functions and their residues. The approach has been applied

to the challenging problem of one- and two-photon spectra of rhodamine 6G (R6G) in

aqueous solution. Solvent effects on one- and two-photon spectra of R6G in aqueous

solution have been analyzed by considering three different approaches, from a contin-

uum (QM/PCM) to two QM/MM models (non-polarizable QM/TIP3P and polarizable

QM/FQ). Both QM/TIP3P and QM/FQ simulated OPA and TPA spectra show that

the inclusion of discrete water solvent molecules is essential to increase the agreement

between theory and experiment. QM/FQ has been shown to give the best agreement

with experiments.

1 Introduction

Multiphoton absorption is the synchronous absorption of multiple photons leading to an

excitation of a molecule from one electronic state to another.1 Such an effect was originally

predicted by Göppert-Mayer in 1931,2 but only first measured in 1961 because its inten-

sity was too weak to be detected before the advent of laser sources.3 Among multiphoton

processes, the most common is two-photon absorption (TPA), in which the simultaneous

absorption of two photons takes place.1 Nowadays, TPA measurements are not as common

as compared to one-photon absorption (OPA), however the study of TPA processes is grow-

ing and rapidly becoming a well-established research field.4,5 TPA is governed by different

symmetry selection rules, states that are dark in OPA experiments might thus be accessible

in TPA. Furthermore, TPA is a non-linear process whose intensity depends on the square

of the incoming light. This affords a greater spatial resolution than in OPA experiments.

TPA has a number of technological applications, in particular in molecular devices.1,6–9 The

design of molecular systems with large TPA cross sections is thus a challenge both from an

experimental and computational point of view.1,10–24
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High TPA cross sections are generally measured for large chromophores,19,25 for which the

computational description at high level of accuracy is difficult and sometimes not affordable.

For this reason, most of the computational studies on this kind of spectroscopy have been

performed by resorting to density functional theory (DFT), due to the good compromise be-

tween accuracy and computational cost.10,26,27 In addition to the quantum-mechanical issue

in the description of the target molecule, it is worth remarking that most of the experi-

mental TPA cross sections are measured in the condensed phase.21–23,28,29 For instance, a

50% increase in TPA cross sections has been reported by changing the solvent.4 In order to

successfully reproduce experimental data, such effects need to be taken into consideration.

The problem of treating solvent effects on observable properties is one of the pillars in

quantum chemistry. The most successful approaches make use of multiscale and focused

models, where the environment is treated at a lower level of accuracy with respect to the

target molecule:30–40 the latter is generally treated at the quantum-mechanical (QM) level,

whereas the former is treated classically.

In the resulting QM/classical approaches, the classical portion can range from an atom-

istic description (giving rise to quantum mechanics/molecular mechanics (QM/MM) mod-

els30,31,41–46) to a dielectric continuum (DC) description. Among the latter, the polarizable

continuum model (PCM),32,47–52 in which the environment is depicted as a homogeneous con-

tinuum dielectric with given dielectric properties, has been particularly successful. In such an

approach, the QM described target molecule is accommodated into a molecular shaped cav-

ity. The QM electron density and the dielectric mutually polarize. The QM/PCM approach

has been extended to the description of TPA spectra by some of the present authors,14,53–55

and an open-ended response formulation was put forth in a recent communication.56 One

of the main problems related to a continuum description of the environment is that all in-

formation about the atomistic structure of the environment is neglected. Thus, the specific

molecule-environment interactions (e.g. hydrogen bonding), cannot be described.

In order to recover the atomistic description of the environment, QM/MM is exploited,
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where the target molecule is still described at the QM level, whereas the environment is

described by resorting to molecular mechanics (MM) force fields.30,33,37,57–62 In electrostatic

QM/MM embedding approaches, a set of fixed charges is placed on the MM portion and

the interaction between QM density and MM charges is introduced in the QM Hamiltonian.

Mutual polarization, i.e. the polarization of the MM portion arising from the interaction

with the QM density and viceversa, can be introduced by employing polarizable force fields.

These can be based on distributed multipoles,63–67 induced dipoles,68–70 Drude oscillators,71

capacitances and polarizabilities,72–74 fluctuating charges (FQs)75–77 or fluctuating charges

and fluctuating dipoles (FQFµ).78

Thanks to the availability of a variational formulation of the quantum/classical polar-

izable coupling, the QM/FQ approach has been extended to the analytical calculation of a

large variety of properties and spectroscopies: molecular gradients and Hessians,79 linear re-

sponse properties,80,81 including optical rotation,82–84 and electronic circular dichroism,85 vi-

brational circular dichroism,86 third order mixed electric/magnetic/geometric properties87,88

and second harmonic generation.89 Remarkably, QM/FQ has already been shown to ac-

curately model some of the systems where PCM and other continuum models completely

fail.

Non-polarizable QM/MM approaches and polarizable QM/MM based on induced dipoles

have been extended to the calculation of TPA spectra of molecules in solution.46,69,90 In this

paper, we extend the QM/FQ model to the computation of TPA spectra. In particular, we

have selected the challenging case of rhodamine 6G (R6G) in aqueous solution, which has

been studied extensively both theoretically and experimentally.16,91–97 The large interest in

such a molecule – in particular to its TPA spectrum – is due to the transition between the

ground and second excited state, which is dark in OPA due to symmetry selection rules.

From a theoretical point of view, this is the first time that solvent effects on TPA of R6G

in aqueous solution are considered. This is achieved using a variety of models: a continuum

approach (PCM), an electrostatic embedding (QM/TIP3P98) and a polarizable embedding
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(QM/FQ).

The paper is organized as follows: we first describe the QM/FQ approach and derive its

extension to quadratic response properties using a quasienergy formulation. After briefly

discussing our implementation and the computational protocol, we discuss our OPA and

TPA results for the R6G system in aqueous solution. Except where stated otherwise, atomic

units are used throughout.

2 Theory and Implementation

2.1 The QM/FQ Approach

In the FQ approach, each MM atom is endowed with a charge which can vary according to

the electronegativity equalization principle (EEP)99,100 which states that, at equilibrium, the

instantaneous electronegativity (χ) of each atom has the same value.99,100 The model is based

on a set of two parameters, i.e. atomic electronegativies and chemical hardnesses (η), which

can be rigorously defined within conceptual DFT 99,101 as the first and second derivatives of

the energy with respect to the charges, respectively. Through these parameters, FQs (q) can

be defined as those minimizing the functional:75,102

F [q,λ] =
∑
α,i

qαiχαi +
1

2

∑
α,i

∑
β,j

qαiJαi,βjqβj +
∑
α

λα

(∑
i

qαi −Qα

)

= q†χ+
1

2
q†Jq + q†λ

(1)

where q is a vector containing the FQs, the Greek indices α run over molecules and the

Latin ones i over the atoms of each molecule. λ is a set of Lagrangian multipliers used to

impose charge conservation constraints on each molecule. The charge interaction kernel J is,

in our implementation, the Ohno kernel and the diagonal terms of J kernel are the chemical

hardnesses η. The stationarity conditions of the functional in eq.(1) are defined through a
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linear system:89,102 J 1λ

1†
λ 0


q

λ

 = −

χ

Q

 (2)

We note in passing that the capacitance MM model employed by Rinkevicius et al. includes

induced charges in its modeling of the metallic portions of the MM environment.73 Hence,

despite the largely different physical setting of the models, their polarization equations bear

a significant resemblance.

The QM/FQ model system is constituted by a QM core region placed at the center of

a spherical region defining the environment (see Figure 1), i.e. containing a number of

solvent molecules, which are described in terms of FQ force field (FF). The FQ FF can be

Figure 1: Schematic representation of the QM/FQ model.

effectively coupled to any QM method. It suffices to augment the QM energy functional

with the classical functional in eq. (1) and the quantum/classical interaction. For the FQ

FF the latter is defined as the classical electrostatic interaction between the FQs and the

QM density.80 Explicitly, the interaction takes the form:

EQM/FQ =

NFQ∑
i=1

V [ρ](ri)qi =

NFQ∑
i=1

NAO∑
µ,ν=1

⟨
χµ

∣∣∣∣ −qi
|r− ri|

∣∣∣∣χν

⟩
Dνµ, (3)
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with V [ρ](ri) the electrostatic potential due to the QM density of charge at the i-th FQ qi

placed at ri, {χµ} a Gaussian atomic orbital (AO) basis set and Dµν the AO density matrix.

For a hybrid Kohn–Sham (KS) DFT description of the QM moiety, the global QM/MM

energy functional reads:79,80

E [D, q,λ] = ESCF[D] + F [q,λ] + q†V (D). (4)

Stationarity of eq. (4) with respect to the density matrix yields the self-consistent field (SCF)

equations:

FC = SCϵ, F = h+Gγ(D) + Fxc + FFQ (5)

where the various terms in the KS matrix F are:

hµν =

⟨
χµ

∣∣∣∣∣−1

2
∇2 −

∑
K

ZK

|RK − r|

∣∣∣∣∣χν

⟩
, (6a)

Gγ
µν(D) =

∑
αβ

Dβα(gµναβ − γgµβαν), (6b)

Fxc,µν =

∫
drχµ(r)χν(r)

∂Exc

∂ρ(r)

∣∣∣∣
ρ(r)

=

∫
drχµ(r)χν(r)vxc(r), (6c)

FFQ,µν = q†Vµν =

NFQ∑
i=1

⟨
χµ

∣∣∣∣ −qi
|r− ri|

∣∣∣∣χν

⟩
. (6d)

The FQs consistent with the QM density are obtained by solving the stationarity conditions

with respect to the polarization variational degrees of freedom q, i.e. by solving eq. (2) with

a modified right-hand side (RHS), including the QM potential as additional source term,

effectively coupling the QM and MM moieties and ensuring mutual polarization:

J 1λ

1†
λ 0


q

λ

 = −

χ+ V (D)

Q

 (7)

.
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2.1.1 Linear and Quadratic Response Functions in a QM/FQ framework

Thanks to its variational formalism, the QM/FQ approach77 is especially suited to the

modeling of response and spectral properties because its energy expression can be easily

differentiated up to high orders. The quantum/classical coupling terms needed for the cal-

culation of response properties, can be easily derived and implemented so that polarization

effects are fully considered also in the computed final spectral data.79–81,86,87,103,104

For a QM/FQ system subject to a Hermitian, time-periodic, one-electron perturbation

V t, response functions and response equations can be formulated in the atomic orbital,

density matrix-based quasienergy formalism105 of Thorvaldsen et al. 106 . To the best of our

knowledge, this is the first time the quasienergy formalism is employed in the QM/FQ frame-

work. The starting point is the time-averaged quasienergy Lagrangian, {L̃(C̃, µ̃, q̃, t)}T ,

parametrized in terms of the desired perturbed coefficient matrix C̃, the Lagrange multipli-

ers ensuring orthonormality of the one-electron basis µ̃ and the perturbed FQs q̃. The tilde

is here used for quantities evaluated at general perturbation strengths. We can obtain this

Lagrangian by augmenting the quasienergy in eq. (52) of Ref. 106 with the perturbed FQ

functional of eq. (1). The time-averaged quasienergy Lagrangian is not suitable for an atomic

orbital-based theory, since it features the molecular orbital (MO) coefficient matrix. How-

ever, its perturbation-strength-differentiated counterpart {L̃a(D̃, q̃, t)}T can be expressed in

terms of the desired variational degrees of freedom D̃ and q̃:

L̃a(D̃, q̃, t)
{Tr}T
= Ẽ00,a − S̃aW̃ , (8)

where we have borrowed notation from Ref. 56. Indeed, the close similarity between the

PCM and FQ models allows us to leverage the same arguments in Ref. 56 to formulate

linear and quadratic response functions in a QM/FQ framework. The generalized KS energy
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Ẽ is the time-dependent equivalent of eq. (4):

Ẽ [D̃, q̃]
Tr
=

[
h̃+ Ṽ t +

1

2
G̃γ(D̃)− i

2
T̃

]
D̃ + Ẽxc[ρ̃(D̃)] + hnuc + F [q̃, λ̃] + q̃†Ṽ (D̃). (9)

where Ṽ t is the AO basis representation of the perturbation operator and T̃ =
⟨
χ̃µ

∣∣ ˙̃χν

⟩
−⟨

˙̃χµ

∣∣ χ̃ν

⟩
is the time-differentiation AO overlap matrix. Evaluation of eq. (8) at zero pertur-

bation strength yields the the first-order property formula. For an electric field perturbation

this corresponds to the electric dipole moment and, thanks to the Hellmann–Feynman the-

orem, only requires the unperturbed density matrix. Further differentiation of eq. (8) and

evaluation at zero perturbation strength yields higher order response functions. Detailed

expressions can be obtained from eqs. (22a)-(22c) and Appendix A in Ref. 56 by replacing

perturbed and unperturbed apparent surface charges σ with perturbed and unperturbed

FQs, respectively and the generalized free energy G with E :

Lab {Tr}T
= E00,ab + E10,aDb + E01,aqb − SabW − SaW b (10a)

Labc {Tr}T
= E00,abc + E10,acDb + E10,abDc + E20,aDbDc + E10,aDbc + E11,aDbqc

+ E01,acqb + E01,abqc + E01,aqbc + E11,aqbDc

− SabcW − SabW c − SacW b − SaW bc

(10b)

Response parameters need to be determined in order to assemble the property expressions

from the perturbed variational parameters Da, qa and so forth appearing in the expressions

given above. Zero-field perturbation-strength differentiation of the orthonormality, TDSCF,

and FQ equations yields the desired response equations.56,106,107 Solution of the N -th order

response equations for the bN perturbation tuple yields the desired response parameters XbN .

The perturbed variational parameters are further partitioned into a sum of homogeneous

and particular contributions.106 Whereas the former depend on the N -th order response

parameters, the latter depend only on lower order response parameters. With this partition,
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the response equations to any order can be compactly rearranged as:108,109

[
E[2] − ωbNS

[2]
]
XbN = M bN

RHS. (11)

The left-hand side (LHS) includes the generalized Hessian and metric matrices, E[2] and S[2],

respectively and ωbN =
∑N

i=1 ωbi . The RHS M bN
RHS collects contributions from lower-order

perturbed density matrices and N -th order particular contributions, see Refs. 56,106,107.

For a single, electric-field type perturbation, the matrix-vector products E[2]Xb and

S[2]Xb assume the form:

E[2]Xb = GKS([Xb,D]S)DS − SDGKS([Xb,D]S) + F [Xb,D]SS

− S[Xb,D]SF + qb
HV DS − SDV qb

H (12)

S[2]Xb = S[Xb,D]SS. (13)

whereGKS now collects the two-electron and exchange-correlation contributions. The general

expression for the RHS (see eq. (46) in Ref. 56) simplifies to the matrix elements of the

electric dipole perturbation operator, with no contributions from the classical polarizable

model. These equations are equivalent, upon transformation to the MO basis, to their more

familiar formulation as Casida’s equations.80,110 Perturbed FQs are obtained by solving:

Jqb
H = −V (Db

H), (14)

once again highlighting the introduction of the mutual QM/MM polarization.

Response equations for the second-order response parameters Xbc can be derived in a

similar fashion. Restricting ourselves to electric-field type perturbations only, the linear
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transformations are expressed as:

E[2]Xbc = GKS([Xbc,D]S)DS − SDGKS([Xbc,D]S) + F [Xbc,D]SS

− S[Xbc,D]SF + qbc
HV DS − SDV qbc

H (15)

S[2]Xbc = S[Xbc,D]SS. (16)

In contrast to the linear response equations, the RHS will contain FQ contributions:

M bc
RHS,FQ =

[
(qbc

P )
†V DS + q†V Dbc

PS + (qb
H)

†V Dc
ωS + (qc

H)
†V Db

ωS
]⊖

, (17)

with the second-order particular FQs calculated as the solution to the linear equation:

Jqbc
P = −V (Dbc

P ), (18)

and the perturbed density matrix Dbc
P is in turn assembled from first-order perturbed density

matrices.

As for the PCM, there are two classes of contributions from the classical polarizable

region: implicit, through the unperturbed Fock matrix, and explicit, through the N -th

order perturbed homogeneous FQs. This is indeed a trait shared by any quantum/classical

polarizable model.

2.1.2 One- and Two-Photon Absorption

We can formulate one- and two-photon absorption parameters in terms of single residues

of the linear and quadratic response functions, respectively. Friese et al. 111 have presented

a density matrix-based, open-ended formulation of single residues that can be coupled to

classical polarizable models.56,90

TPA cross sections of randomly oriented systems can be calculated from the imaginary

part of the third susceptibility. Alternatively, they can be obtained as the individual two-
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photon transition matrix elements Sab between the initial state |i⟩ and final state |f⟩, with

the sum-over-states expression:112

Sab =
∑
s

(
⟨i|µa|s⟩ ⟨s|µb|f⟩

ωsi − ω
+

⟨i|µb|s⟩ ⟨s|µa|f⟩
ωsi − ω

)
(19)

where a, b ∈ x, y, z and ω is the frequency of the external radiation, which is half of the

excitation energy ωf to the final state |f⟩ (2ω = ωf ). The summation runs over all s states,

including initial and final state. ωsi = ωs−ωi is the transition energy between s and i states.

For linearly polarized light with parallel polarization, rotationally averaged microscopic

OPA and TPA cross sections can be written in terms of the transition matrix tensors S and

their complex conjugates S as:

⟨δ1PA⟩ = 1

3

∑
a

SaS̄a (20)

⟨δ2PA⟩ = 1

15

∑
ab

(
2SabS̄ab + SaaS̄bb

)
. (21)

Finally, the macroscopic TPA cross section in cgs units can be obtained from the rota-

tionally averaged TPA strengths (⟨δTPA⟩) expressed in atomic units as:

σTPA =
Nπ3αa50ω

2

c
⟨δTPA⟩ g(2ω, ω0,Γ) (22)

where N = 4 in case of single beam experiments, α is the fine structure constant, a0 is the

Bohr radius, ω is the photon energy in atomic units, c is the speed of light and g(2ω, ω0,Γ)

the lineshape function describing spectral broadening effects. The common unit for TPA

cross sections is GM in honour of the work of Maria Goppert-Mayer (1 GM = 10−50 cm4 s

photon−1). We refer the reader to Ref. 10 for further details on the computational approach

to TPA cross sections.
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2.2 Implementation

The close similarity of the PCM and FQ models renders the implementation of the latter

a rather straightforward extension of the former. Our implementation relies on the PCM-

Solver library,113 which already provides the infrastructure for the PCM and lends itself to

the extensions needed for a FQ implementation. The calculation of TPA cross sections with

the FQ discrete model was implemented in the LSDALTON program package.114 LSDAL-

TON provides single residues of the quadratic response function in vacuo and we exploited

the existing interface with PCMSolver115 to extend this functionality to include the PCM

and FQ quantum/classical polarizable models. The TPA implementation in LSDALTON

leverages the 2n+ 1 rule. Ensuring correctness of the linear response calculations is enough

to guarantee correctness up to cubic response properties. We performed extensive testing of

the PCM and FQ linear and quadratic response functions, including their residues, against

DALTON.14,53–55

The use of a modular programming paradigm, based on open-source libraries and pro-

grams, is particularly beneficial for the work here presented. The most significant program-

ming investment was the extension of the PCMSolver library.

3 Computational Details

Rhodamine 6G (R6G) (see Figure 2) in aqueous solution has been amply studied experi-

mentally using both OPA and TPA techniques.16,91–97 Such a system is capable of forming

solute-solvent hydrogen bonds, and is thus a good test case for our atomistic polarizable

QM/FQ approach.

We adopted the following computational protocol for our QM/MM calculations of exci-

tation energies, OPA and TPA intensities:

Definition of the systems and calculation of atomic charges The solute molecule was

surrounded by a number of water molecules large enough to represent all the solute-
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solvent interactions (at least 8500). The atomic charges of the solute were computed

by using the Charge Model 5 (CM5).116

Classical MD simulations in aqueous solution The MD simulations were performed

in a cubic box reproduced periodically in every direction, satisfying periodic boundary

conditions (PBC). A minimization step ensures that simulations were started from a

minimum of the classical PES. From the MD run, a set of snapshots was extracted to

be used in the following QM/TIP3P98 and QM/FQ calculations.

Definition of the different regions of the two-layer scheme and their boundaries

Each snapshot extracted from the MD run was cut into a sphere centered on the solute.

A radius of 25 Å was chosen in order to include all specific water-solute interactions.

QM/classical calculations QM/TIP3P, and QM/FQ OPA and TPA calculations were

performed on 100 structures obtained in the previous step. The results obtained for

each spherical snapshot were extracted and averaged to produce the final value.

O1

O3

O2

N2

N1

Figure 2: Rhodamine 6G structure and atom labeling.

In step 1, R6G was optimized and CM5 charges were calculated at the B3LYP/6-31+G*
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level of theory including solvent effects by means of the PCM.32

The MD simulation was performed using GROMACS,117 with the OPLS-AA118 force

fields to describe intra- and inter-molecular interactions. CM5 charges were used to account

for electrostatic interactions. The TIP3P FF was used to describe the water molecules.98

A single molecule was dissolved in a cubic box containing at least 8500 water molecules.

A chloride ion has been included in the box to neutralize the system. The chromophore

was kept fixed during all the steps of the MD run. This neglects geometric relaxation

due to solvation and is an approximation. However, our primary goal is to compare direct

(electronic) rather than indirect (geometrical) solvent effects on the properties. Furthermore,

this approximation affords a fairer comparison with implicit solvent models. R6G in aqueous

solution was initially brought to 0 K with the steepest descent minimization procedure and

then heated to 298.15 K in an NVT ensemble using the velocity-rescaling119 method with

an integration time step of 0.2 fs and a coupling constant of 0.1 ps for 200 ps. The time step

and temperature coupling constant were then increased to 2.0 fs and 0.2 ps, respectively,

and an NPT simulation (using the Berendsen barostat and a coupling constant of 1.0 ps)

for 1 ns was performed to obtain a uniform distribution of molecules in the box. A 10 ns

production run in the NVT ensemble was then carried out, fixing the fastest internal degrees

of freedom by means of the LINCS algorithm (δt=2.0 fs),120 and freezing the R6G at the

center of the simulation box. Electrostatic interactions are treated by using particle-mesh

Ewald (PME)121 method with a grid spacing of 1.2 Å and a spline interpolation of order

4. We have excluded intramolecular interactions between atom pairs separated up to three

bonds. A snapshot every 100 ps was extracted in order to obtain a total of 100 uncorrelated

snapshots.

For each snapshot a solute-centered sphere with a radius of 25 Å was cut. Notice that

the chloride ion was not present in any of the extracted spherical snapshots. For each

snapshot, OPA and TPA spectra were then calculated with two QM/MM approaches: the

water molecules were modeled by means of the non-polarizable TIP3P FF,98 and the FQ SPC
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parametrization proposed by Rick et al. 75 . For comparison, we also ran QM calculations on

the isolated chromophore and embedded in a PCM continuum modelling the water solution.

We performed all OPA calculations using a locally modified version of the Gaussian

16 package,122 whereas we used a locally modified version of the LSDALTON program,114

interfaced to the PCMSolver library,113 for the TPA calculations. The CAM-B3LYP/6-

31+G* model chemistry was used in all calculations. For the LSDALTON calculations we

leveraged the implementation of density fitting, with the df-def2 auxiliary fitting basis, to

accelerate the evaluation of the Coulomb matrix.

For the PCM calculations, the cavity was generated from a set of atom-centered, inter-

locking spheres. PCMSolver implements the GePol algorithm for cavity generation and uses

the Bondi–Mantina set of van der Waals radii123,124 1.20 Å for hydrogen, 1.70 Å for carbon,

1.55 Å for nitrogen and 1.52 Å for oxygen. All radii were scaled by a factor of 1.2. Values

of the static and optical permittivities of εs = 78.39 and ε∞ = 1.776, respectively, were used

for the PCM calculations in water in LSDALTON.

For the PCM calculations in Gaussian, the following atomic radii were used and scaled

by a factor of 1.1: 1.443 Å for hydrogen, 1.9255 Å for carbon, 1.83 Å for nitrogen and 1.75 Å

for oxygen. Values of the static and optical permittivities of εs = 78.3553 and ε∞ = 1.77785,

respectively, were instead used to model water solvent effects.

The differences in PCM parametrization between the two codes used in this study did

not lead to significant differences (less than 1%) between computed ground state energies,

excitation frequencies and oscillator strengths.

4 Numerical Results

First, we analyze the MD runs in terms of the hydration patterns with a particular focus

on hydrogen bonds (HBs) formed between R6G and solvent water molecules. Second, OPA

and TPA spectra are presented and compared with their experimental counterparts.
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4.1 MD analysis: Hydration Pattern

R6G is characterized by a keto oxygen and by amino groups, which can act as HB donors,

whereas the ether oxygen atoms (O1 and O2) together with the amino nitrogen atoms (N1

and N2) can act as HB acceptors (see Figure 2 for atom labeling). HB patterns were analyzed

by extracting the radial distribution functions g(r) from the MD trajectories. For this

analysis the TRAVIS package was used.125 The radial distribution functions were computed

taking as reference oxygen atoms (O1, O2 and O3), nitrogen atoms (N1 and N2) and amino

hydrogen atoms (H1 and H2) of the solute; they are plotted in Figure 3. The most intense

peak of the g(r) refers to the carboxylic oxygen (O3), whereas the other atoms are not

involved in HBs with the solvent water molecules. The average number of HBs between

water molecules and the carboxylic oxygen (O3) is 1.7, thus confirming strong HB patterns.
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Figure 3: Radial distribution function g(r) between selected sites of R6G and water
molecules. The considered atomic sites are highlighted in Figure 2
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4.2 OPA Spectra of R6G in aqueous solution

100 uncorrelated snapshots were extracted from the MD run. The convergence of the studied

properties (OPA and TPA spectra) was checked by considering an increasing number of

snapshots. These results are reported in Figures S1 and S2 in the supporting information

(SI).

QM/FQ OPA results are depicted in Figure 4. Raw data (sticks) and their Gaussian

convolution, with full width at half maximum (FWHM) of 0.1 eV, are shown.
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Figure 4: QM/FQ calculated OPA spectrum of R6G in aqueous solution reported as stick
spectrum and convoluted with a Gaussian band shape (FWHM=0.1 eV)

The OPA spectrum is characterized by an intense transition (S1) at about 2.8 eV (440 nm)

which is related to a pure HOMO→LUMO transition. The second transition (S2) is a pure

HOMO-1→LUMO transition and is located at about 3.2 eV (380 nm). This transition is dark

due to the symmetry of the involved orbitals, see Figure 5. Our findings confirm what already

reported in previous theoretical studies,92 and is in contrast with some experimental works,16

where S2 is instead assigned to a visible transition. The third transition predicted by the

QM/FQ approach is located at 4.1 eV (300 nm), and involves a combined transition between

HOMO-1→LUMO+1 and HOMO-2→LUMO. The whole computed spectrum, involving also
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the higher transitions, is reported in the SI ( Figure S3).

HOMO - 1

HOMO

LUMO

S1

S2

A'

A'

A''

Figure 5: Graphical scheme of the first two transitions of R6G in aqueous solution. Molecular
orbitals related to each transition are depicted.

We investigated the relevance of solvent effects by employing different computational ap-

proaches, ranging from continuum QM/PCM to nonpolarizable QM/TIP3P and polarizable

QM/FQ descriptions. As a reference, the OPA spectrum of the solute in vacuo was also cal-

culated. Vertical excitations and oscillator strengths as obtained by exploiting the different

approaches summarized in Table 1 and graphically depicted in Figure 6. The experimental

spectrum is also reported.16

The experimental spectrum is dominated by an intense transition (S1) at about 2.3 eV

(550 nm), characterized by an inhomogeneous band broadening, probably due to a vibronic

convolution. The second visible transition is instead at about 3.6 eV (350 nm) and can be

associated to the S3 transition.

The first transition (S1) is predicted to be the most intense by all the different methods,
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Table 1: Vacuum and aqueous solution vertical excitation energies (eV) and oscillator
strengths (a.u.) for the three lowest singlet excited states of R6G calculated at the CAM-
B3LYP/6-31+G* level of theory. QM/PCM, QM/TIP3P and QM/FQ approaches were used
to model environment effects in solution. The experimental vertical excitation energies are
also reported.

Vacuum QM/PCM QM/TIP3P QM/FQ Exp. a

Evert f Evert f Evert f Evert f Evert

S1 3.07 0.89 2.98 1.05 2.82 0.84 2.81 0.90 2.27
S2 3.68 0.00 3.71 0.00 3.18 0.01 3.20 0.00
S3 4.42 0.25 4.47 0.29 4.15 0.21 4.13 0.26 3.46

a Experimental values are taken from Ref. 16.
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Figure 6: One-photon absorption spectra for the R6G chromophore at the CAM-B3LYP/6-
31+G* level of theory. Computed vacuum, QM/PCM, QM/TIP3P and QM/FQ OPA spec-
tra are reported. The experimental spectrum is reproduced from Ref. 16.
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with a redshift when solvent effects are taken into consideration. In particular, QM/PCM,

QM/TIP3P and QM/FQ predict very similar vertical excitation energies for the S1 transi-

tion, with the largest redshift shown by QM/FQ. All the approaches considered correctly

describe the S2 transition as being symmetry-forbidden, see Table 1. The models employed

exhibit major differences for the third transition (S3), which is predicted at about 280 nm

in vacuum and by QM/PCM, and at about 310 nm by both QM/TIP3P and QM/FQ

approaches (see Fig.6). The atomistic description captures the explicit solvent-solute inter-

actions that appear to be crucial in the modeling of this transition. Implicit solvation is

unable to capture solvent effects, as it is shown by the negligible differences observed with

respect to the vacuum results. Furthermore, the energy difference between S1 and S3 is

correctly predicted by QM/MM approaches (∼ 1.18 eV) as compared to the experimental

value (1.19 eV), whereas it is overestimated by the QM/PCM approach (1.49 eV). Notice

also that by considering energy differences, instead of absolute vertical excitation energies,

systematic errors and biases due to the choice of QM method, and in particular of a specific

DFT functional, should be avoided.

To further analyze the nature of the electronic transitions, their charge transfer (CT)

nature was characterized by a simple index, denoted as DCT.126,127 The barycenters of the

positive and negative density distributions are calculated as the difference of ground state

(GS) and excited state (ES) densities. The CT length index (DCT ) is defined as the distance

between the two barycenters. Calculated vacuum, QM/PCM, QM/TIP3P and QM/FQ DCT

values are reported in Table 2.

Table 2: DCT indices (Å) for the first three excited states as obtained by exploiting the
various models considered in this work.

Vacuum QM/PCM QM/TIP3P QM/FQ
S1 1.195 1.170 1.668 1.624
S2 1.318 1.336 1.587 1.574
S3 0.811 0.759 4.043 3.580

The first two transitions (S1 and S2) have little CT character. The largest difference
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between the considered approaches is shown by the S3 transition, of which the CT character

is irrelevant in vacuo and at the QM/PCM level, whereas is huge at both QM/TIP3P and

QM/FQ levels. This different behaviour was expected by considering the computed OPA

spectra reported in Figure 6; in fact, the largest discrepancy between vacumm-QM/PCM

and QM/MM approaches was indeed predicted for the S3 transition.

4.3 TPA Spectra of R6G in aqueous solution

Figure 7 reports computed QM/FQ TPA raw data and their Gaussian convolution. We

adopted a Gaussian lineshape with FWHM of 0.1 eV in agreement with previous computa-

tional studies on TPA and suggested best practices, see Ref. 10.
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Figure 7: QM/FQ calculated TPA spectrum of R6G in aqueous solution reported as stick
spectrum and convoluted with a Gaussian band shape (FWHM = 0.1 eV)

The first two visible transitions at about 1.4 and 1.6 eV have almost the same intensity

and they are the S1 and S2 transitions, respectively. The S2 transition is not dark, due

to the different symmetry selection rules in TPA compared to OPA (see Figure 4). The

computed QM/FQ TPA spectrum is dominated by an intense peak at about 2.06 eV (600

nm) associated to the S3 transition.
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We compared different approaches to model solvent effects also for TPA spectra and

considered QM/PCM, QM/TIP3P and QM/FQ models. In addition, TPA spectra of R6G

in vacuo was computed as an additional reference point. Vacuum, QM/PCM, QM/TIP3P

and QM/FQ TPA spectra are plotted in Figure 8 together with the experimental spectrum,

reproduced from Ref. 91.
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Figure 8: Two-photon absorption spectra for the R6G chromophore at the CAM- B3LYP/6-
31+G* level of theory. Computed vacuum, QM/PCM, QM/TIP3P and QM/FQ OPA spec-
tra are reported. The experimental spectrum is reproduced from Ref. 91.

The experimental TPA spectrum is characterized by three main peaks at 1.14, 1.52, and

1.73 eV. These correspond to the S1, S2 and S3 transitions, respectively. It is worth noting

that the peak at about 1.25 eV was wrongly reported to be associated to the S2 transition

in some experimental works due to the similar intensity with respect to the peak at 1.14

eV.16 Milojevich et al. recently showed that such a peak is instead a vibronic band due
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to Herzberg–Teller terms.92 Notice in fact that such a vibronic peak exactly corresponds

to the vibronic peak present also in the experimental OPA spectrum, see Figure 6. In this

work, we are not considering any vibronic contributions because our main goal is to show the

performance of QM/FQ approach in predicting solvent effects on multiphoton spectroscopies.

As a consequence, the peak at 1.25 eV cannot be reproduced by the different approaches

explored in this work.

The computed vacuum and aqueous solution transition energies and TPA cross sections

(in GM units) of the first three transitions are reported in Table 3, together with their

experimental values. It is clear from Figure 8 and Table 3 that all the approaches considered

in this work predict the S3 transition as the most intense in the TPA spectrum. The whole

TPA spectra, including also higher energy transitions, are reported in Figure S4 of the SI.

Table 3: Vacuum and aqueous solution TPA vertical excitation energies (eV) and cross
sections (GM) for the six lowest singlet excited states of R6G calculated at the CAM-
B3LYP/6-31+G* level of theory. QM/PCM, QM/TIP3P and QM/FQ approaches were used
to model environment effects in aqueous solution. The experimental TPA vertical excitation
energies and cross sections are also reported.

Vacuum QM/PCM QM/TIP3P QM/FQ Exp. a

ETPA σ ETPA σ ETPA σ ETPA σ ETPA σ

S1 1.54 15.52 1.46 24.03 1.46 18.67 1.44 27.37 1.14 15
S2 1.84 29.83 1.83 69.55 1.64 16.92 1.64 27.59 1.52 65
S3 2.21 466.50 2.20 1390.33 2.07 417.39 2.06 712.69 1.73 150

a Experimental values from Ref. 91.

Both QM/MM approaches outperform the vacuum and QM/PCM models in reproducing

the experimental relative differences between the vertical transition energies. As already

pointed out in case of OPA spectra (see Figure 6 and Table 1), this is particularly evident

in the case of the S1-S3 difference. The relative intensity of the S1 and S3 transitions is

correctly reproduced by all the different methods, with the best agreement with experiment

shown by QM/TIP3P and QM/FQ.

The largest discrepancy is reported in case of the S2 transition for both relative energies

and intensities. The data reported in Table 3 show that the S1-S2 energy difference is
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indeed wrongly reproduced even by QM/MM approaches (∼ 0.2 eV vs. 0.38 eV in the

experiment). Some differences between the considered methods are encountered in case of

relative intensities between S1 and S2. In particular, QM/PCM is almost able to reproduce

the experimental intensity ratio between the two peaks (2.9 vs. 4.3), whereas non-polarizable

QM/TIP3P results are the worst (0.9 vs. 4.3). Such a huge discrepancies probably reflects

the fact that for this transition, HB interactions play a minor role with respect to polarization

effects.

Finally, the major effect of including polarization effects in the description of solvent

effects is the increase of the S3 TPA cross section, which is reported by both QM/PCM

and QM/FQ whereas QM/TIP3P is consistent with the vacuum counterpart. Remarkably,

in passing from a continuum to a discrete approach (QM/FQ), the S3 TPA cross section

decreases, thus moving closer to the experimental value.

To conclude our comparison between computed and experimental TPA spectra of R6G

in water, it is worth pointing out that experimental TPA measurements are not a standard

technique.91 In fact, as reported in Figure S5 in the SI, several experimental TPA spec-

tra of R6G in aqueous solution have been reported previously in the literature,91 showing

large discrepancies even in the measured spectra. Therefore, a quantitative comparison is

particularly challenging.

5 Summary, Conclusions and Perspectives

In this paper, the extension of the QM/FQ approach to linear and quadratic response in the

quasienergy formalism has been presented for the first time. The approach has been coupled

to a classical MD simulation in order to have a reliable sampling of the phase space. The

computational protocol has been applied to a challenging problem, i.e. the OPA and TPA

spectra of R6G in aqueous solution. Such a molecule is characterized by a transition (S2)

that is dark in OPA spectra due to symmetry selection rules, see Figure 6. Thanks to the
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different selection rules, however, such a transition is visible in TPA spectra, see Figure 8.

To analyze the importance of solvent effects for such a system, three different approaches

have been considered, from a continuum (QM/PCM) to two QM/MM approaches (i.e. non-

polarizable QM/TIP3P and polarizable QM/FQ). Both QM/TIP3P and QM/FQ simulated

OPA and TPA spectra show that the inclusion of discrete water solvent molecules is essen-

tial to increase the agreement between theory and experiment. However, some discrepancies

still remain and are principally related to the OPA-dark S2 transition. For this particular

transition, polarization effects included by both QM/PCM and QM/FQ seem to be crucial.

Although the agreement with experiment increases by including solvent polarization, it still

remains poor. This can be ascribed to several factors. The choice of DFT as the quantum

mechanical methodology has been recently reported to systematically underestimate TPA

cross sections if compared to reference resolution-of-the-identity CC2 data.26 DFT function-

als are mostly tested on vertical excitation energies, and only rarely on TPA cross sections,

which for an OPA-dark transition is particularly problematic. In addition, as pointed out in

Ref. 92, the inclusion of vibronic coupling can play an important role in the determination of

TPA cross sections.128,129 Finally, our polarizable QM/FQ approach models the interaction

between the QM and MM portions in terms of electrostatic interactions only. Some of the

present authors have recently developed different approaches to include non-electrostatic en-

ergy terms in QM/MM approaches,130–132 which can play a relevant role in predicting both

OPA and TPA spectra.
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(37) Boulanger, E.; Harvey, J. N. QM/MM methods for free energies and photochemistry. Curr.

Opin. Struc. Biol. 2018, 49, 72–76.

(38) Lahiri, P.; Wiberg, K. B.; Vaccaro, P. H.; Caricato, M.; Crawford, T. D. Large solvation effect

in the optical rotatory dispersion of norbornenone. Angew. Chem. 2014, 126, 1410–1413.

(39) Loco, D.; Jurinovich, S.; Cupellini, L.; Menger, M. F.; Mennucci, B. The modeling of the

absorption lineshape for embedded molecules through a polarizable QM/MM approach. Pho-

tochem. Photobiol. Sci. 2018, 17, 552–560.

(40) Di Remigio, R.; Repisky, M.; Komorovsky, S.; Hrobarik, P.; Frediani, L.; Ruud, K. Four-

component relativistic density functional theory with the polarisable continuum model: ap-

plication to EPR parameters and paramagnetic NMR shifts. Mol. Phys. 2017, 115, 214–227.

31



(41) Warshel, A. Computer simulations of enzyme catalysis: methods, progress, and insights.

Ann. Rev. Bioph. Biom. 2003, 32, 425–443.

(42) Gao, J.; Xia, X. A priori evaluation of aqueous polarization effects through Monte Carlo

QM-MM simulations. Science 1992, 258, 631–635.

(43) Curutchet, C.; Muñoz-Losa, A.; Monti, S.; Kongsted, J.; Scholes, G. D.; Mennucci, B. Elec-

tronic energy transfer in condensed phase studied by a polarizable QM/MM model. J. Chem.

Theory Comput. 2009, 5, 1838–1848.

(44) Arora, P.; Slipchenko, L. V.; Webb, S. P.; DeFusco, A.; Gordon, M. S. Solvent-Induced

Frequency Shifts: Configuration Interaction Singles Combined with the Effective Fragment

Potential Method. J. Phys. Chem. A 2010, 114, 6742–6750.

(45) Barone, V.; Biczysko, M.; Brancato, G. In Combining Quantum Mechanics and Molecular

Mechanics. Some Recent Progresses in QM/MM Methods; Sabin, J. R., Canuto, S., Eds.;

Advances in Quantum Chemistry; Academic Press, 2010; Vol. 59; pp 17–57.

(46) Nielsen, C. B.; Christiansen, O.; Mikkelsen, K. V.; Kongsted, J. Density functional self-

consistent quantum mechanics/molecular mechanics theory for linear and nonlinear molecu-

lar properties: Applications to solvated water and formaldehyde. J. Chem. Phys. 2007, 126,

154112.

(47) Miertuš, S.; Scrocco, E.; Tomasi, J. Electrostatic interaction of a solute with a continuum. A

direct utilizaion of AB initio molecular potentials for the prevision of solvent effects. Chem.

Phys. 1981, 55, 117–129.

(48) Tomasi, J.; Persico, M. Molecular interactions in solution: an overview of methods based on

continuous distributions of the solvent. Chem. Rev. 1994, 94, 2027–2094.

(49) Orozco, M.; Luque, F. J. Theoretical methods for the description of the solvent effect in

biomolecular systems. Chem. Rev. 2000, 100, 4187–4226.

(50) Mennucci, B., Cammi, R., Eds. Continuum Solvation Models in Chemical Physics; Wiley,

New York, 2007.

32



(51) Scalmani, G.; Frisch, M. J. Continuous surface charge polarizable continuum models of sol-

vation. I. General formalism. J. Chem. Phys. 2010, 132, 114110.

(52) Lipparini, F.; Scalmani, G.; Mennucci, B.; Cancès, E.; Caricato, M.; Frisch, M. J. A varia-

tional formulation of the polarizable continuum model. J. Chem. Phys. 2010, 133, 014106.

(53) Frediani, L.; Rinkevicius, Z.; Ågren, H. Two-photon absorption in solution by means of time-

dependent density-functional theory and the polarizable continuum model. J. Chem. Phys.

2005, 122, 244104.

(54) Zhao, K.; Ferrighi, L.; Frediani, L.; Wang, C.-K.; Luo, Y. Solvent effects on two-photon

absorption of dialkylamino substituted distyrylbenzene chromophore. J. Chem. Phys. 2007,

126, 204509.

(55) Frediani, L.; Ågren, H.; Ferrighi, L.; Ruud, K. Second-harmonic generation of solvated

molecules using multiconfigurational self-consistent-field quadratic response theory and the

polarizable continuum model. J. Chem. Phys. 2005, 123, 144117.

(56) Di Remigio, R.; Beerepoot, M. T.; Cornaton, Y.; Ringholm, M.; Steindal, A. H.; Ruud, K.;

Frediani, L. Open-ended formulation of self-consistent field response theory with the polar-

izable continuum model for solvation. Phys. Chem. Chem. Phys. 2017, 19, 366–379.

(57) Field, M. J.; Bash, P. A.; Karplus, M. A combined quantum mechanical and molecular

mechanical potential for molecular dynamics simulations. J. Comput. Chem. 1990, 11, 700–

733.

(58) Gao, J. Hybrid quantum and molecular mechanical simulations: an alternative avenue to

solvent effects in organic chemistry. Acc. Chem. Res. 1996, 29, 298–305.

(59) Friesner, R. A.; Guallar, V. Ab initio quantum chemical and mixed quantum mechan-

ics/molecular mechanics (QM/MM) methods for studying enzymatic catalysis. Annu. Rev.

Phys. Chem. 2005, 56, 389–427.

(60) Lin, H.; Truhlar, D. G. QM/MM: what have we learned, where are we, and where do we go

from here? Theor. Chem. Acc. 2007, 117, 185–199.

33



(61) Monari, A.; Rivail, J.-L.; Assfeld, X. Theoretical modeling of large molecular systems. Ad-

vances in the local self consistent field method for mixed quantum mechanics/molecular

mechanics calculations. Acc. Chem. Res. 2012, 46, 596–603.

(62) Monari, A.; Very, T.; Rivail, J.-L.; Assfeld, X. A QM/MM study on the spinach plastocyanin:

redox properties and absorption spectra. Comput. Theor. Chem. 2012, 990, 119–125.

(63) Day, P. N.; Jensen, J. H.; Gordon, M. S.; Webb, S. P.; Stevens, W. J.; Krauss, M.; Garmer, D.;

Basch, H.; Cohen, D. An effective fragment method for modeling solvent effects in quantum

mechanical calculations. J. Chem. Phys. 1996, 105, 1968–1986.

(64) Kairys, V.; Jensen, J. H. QM/MM boundaries across covalent bonds: a frozen localized

molecular orbital-based approach for the effective fragment potential method. J. Phys. Chem.

A 2000, 104, 6656–6665.

(65) Mao, Y.; Demerdash, O.; Head-Gordon, M.; Head-Gordon, T. Assessing Ion–Water Inter-

actions in the AMOEBA Force Field Using Energy Decomposition Analysis of Electronic

Structure Calculations. J. Chem. Theory Comput. 2016, 12, 5422–5437.

(66) Loco, D.; Polack, É.; Caprasecca, S.; Lagardere, L.; Lipparini, F.; Piquemal, J.-P.; Men-

nucci, B. A QM/MM approach using the AMOEBA polarizable embedding: from ground

state energies to electronic excitations. J. Chem. Theory Comput. 2016, 12, 3654–3661.

(67) Loco, D.; Cupellini, L. Modeling the absorption lineshape of embedded systems from molec-

ular dynamics: A tutorial review. Int. J. Quantum Chem. 2018, DOI: 10.1002/qua.25726.

(68) Thole, B. T. Molecular polarizabilities calculated with a modified dipole interaction. Chem.

Phys. 1981, 59, 341–350.

(69) Steindal, A. H.; Ruud, K.; Frediani, L.; Aidas, K.; Kongsted, J. Excitation energies in

solution: the fully polarizable QM/MM/PCM method. J. Phys. Chem. B 2011, 115, 3027–

3037.

(70) Jurinovich, S.; Curutchet, C.; Mennucci, B. The Fenna–Matthews–Olson Protein Revisited:

A Fully Polarizable (TD) DFT/MM Description. ChemPhysChem 2014, 15, 3194–3204.

34



(71) Boulanger, E.; Thiel, W. Solvent boundary potentials for hybrid QM/MM computations

using classical drude oscillators: a fully polarizable model. J. Chem. Theory Comput. 2012,

8, 4527–4538.

(72) Rinkevicius, Z.; Li, X.; Sandberg, J. A. R.; Ågren, H. Non-linear optical properties of

molecules in heterogeneous environments: a quadratic density functional/molecular mechan-

ics response theory. Phys. Chem. Chem. Phys. 2014, 16, 8981–8989.

(73) Rinkevicius, Z.; Li, X.; Sandberg, J. A. R.; Mikkelsen, K. V.; Ågren, H. A Hybrid Den-

sity Functional Theory/Molecular Mechanics Approach for Linear Response Properties in

Heterogeneous Environments. J. Chem. Theory Comput. 2014, 10, 989–1003.

(74) Li, X.; Rinkevicius, Z.; Ågren, H. Two-Photon Absorption of Metal-Assisted Chromophores.

J. Chem. Theory Comput. 2014, 10, 5630–5639.

(75) Rick, S. W.; Stuart, S. J.; Berne, B. J. Dynamical fluctuating charge force fields: Application

to liquid water. J. Chem. Phys. 1994, 101, 6141–6156.

(76) Rick, S. W.; Berne, B. J. Dynamical Fluctuating Charge Force Fields: The Aqueous Solvation

of Amides. J. Am. Chem. Soc. 1996, 118, 672–679.

(77) Cappelli, C. Integrated QM/Polarizable MM/Continuum Approaches to Model Chiroptical

Properties of Strongly Interacting Solute-Solvent Systems. Int. J. Quantum Chem. 2016,

116, 1532–1542.

(78) Giovannini, T.; Puglisi, A.; Ambrosetti, M.; Cappelli, C. Polarizable QM/MM Approach

with Fluctuating Charges and Fluctuating Dipoles: The QM/FQFµ Model. J. Chem. Theory

Comput. 2019, 15, 2233–2245.

(79) Lipparini, F.; Cappelli, C.; Scalmani, G.; De Mitri, N.; Barone, V. Analytical first and second

derivatives for a fully polarizable QM/classical hamiltonian. J. Chem. Theory Comput. 2012,

8, 4270–4278.

35



(80) Lipparini, F.; Cappelli, C.; Barone, V. Linear response theory and electronic transition

energies for a fully polarizable QM/classical hamiltonian. J. Chem. Theory Comput. 2012,

8, 4153–4165.

(81) Giovannini, T.; Macchiagodena, M.; Ambrosetti, M.; Puglisi, A.; Lafiosca, P.; Lo Gerfo, G.;

Egidi, F.; Cappelli, C. Simulating vertical excitation energies of solvated dyes: From contin-

uum to polarizable discrete modeling. Int. J. Quantum Chem. 2019, 119, e25684.

(82) Lipparini, F.; Egidi, F.; Cappelli, C.; Barone, V. The optical rotation of methyloxirane in

aqueous solution: a never ending story? J. Chem. Theory Comput. 2013, 9, 1880–1884.

(83) Egidi, F.; Carnimeo, I.; Cappelli, C. Optical rotatory dispersion of methyloxirane in aqueous

solution: assessing the performance of density functional theory in combination with a fully

polarizable QM/MM/PCMapproach. Opt. Mater. Express 2015, 5, 196–209.

(84) Egidi, F.; Giovannini, T.; Del Frate, G.; Lemler, P. M.; Vaccaro, P. H.; Cappelli, C.

A combined experimental and theoretical study of optical rotatory dispersion for (R)-

glycidyl methyl ether in aqueous solution. Phys. Chem. Chem. Phys. 2019, DOI:

10.1039/C8CP04445G.

(85) Egidi, F.; Russo, R.; Carnimeo, I.; D’Urso, A.; Mancini, G.; Cappelli, C. The Electronic

Circular Dichroism of Nicotine in Aqueous Solution: A Test Case for Continuum and Mixed

Explicit-Continuum Solvation Approaches. J. Phys. Chem. A 2015, 119, 5396–5404.

(86) Giovannini, T.; Olszowka, M.; Cappelli, C. Effective Fully Polarizable QM/MM Approach

To Model Vibrational Circular Dichroism Spectra of Systems in Aqueous Solution. J. Chem.

Theory Comput. 2016, 12, 5483–5492.

(87) Giovannini, T.; Olszòwka, M.; Egidi, F.; Cheeseman, J. R.; Scalmani, G.; Cappelli, C. Po-

larizable Embedding Approach for the Analytical Calculation of Raman and Raman Optical

Activity Spectra of Solvated Systems. J. Chem. Theory Comput. 2017, 13, 4421–4435.

(88) Giovannini, T.; Del Frate, G.; Lafiosca, P.; Cappelli, C. Effective computational route towards

36



vibrational optical activity spectra of chiral molecules in aqueous solution. Phys. Chem.

Chem. Phys. 2018, 20, 9181–9197.

(89) Giovannini, T.; Ambrosetti, M.; Cappelli, C. A polarizable embedding approach to second

harmonic generation (SHG) of molecular systems in aqueous solutions. Theor. Chem. Acc.

2018, 137, 74.

(90) Steindal, A. H.; Beerepoot, M. T.; Ringholm, M.; List, N. H.; Ruud, K.; Kongsted, J.;

Olsen, J. M. H. Open-ended response theory with polarizable embedding: multiphoton ab-

sorption in biomolecular systems. Physical Chemistry Chemical Physics 2016, 18, 28339–

28352.

(91) Makarov, N. S.; Drobizhev, M.; Rebane, A. Two-photon absorption standards in the 550–

1600 nm excitation wavelength range. Opt. Express 2008, 16, 4029–4047.

(92) Milojevich, C. B.; Silverstein, D. W.; Jensen, L.; Camden, J. P. Surface-enhanced hyper-

raman scattering elucidates the two-photon absorption spectrum of rhodamine 6G. J. Phys.

Chem. C 2013, 117, 3046–3054.

(93) Milojevich, C. B.; Silverstein, D. W.; Jensen, L.; Camden, J. P. Probing two-photon proper-

ties of molecules: Large non-Condon effects dominate the resonance hyper-Raman scattering

of rhodamine 6g. J. Am. Chem. Soc. 2011, 133, 14590–14592.

(94) Guthmuller, J.; Champagne, B. Resonance Raman scattering of rhodamine 6G as calculated

by time-dependent density functional theory: vibronic and solvent effects. J. Phys. Chem.

A 2008, 112, 3215–3223.

(95) Guthmuller, J.; Champagne, B. Resonance Raman Spectra and Raman Excitation Profiles

of Rhodamine 6G from Time-Dependent Density Functional Theory. ChemPhysChem 2008,

9, 1667–1669.

(96) Dieringer, J. A.; Wustholz, K. L.; Masiello, D. J.; Camden, J. P.; Kleinman, S. L.;

Schatz, G. C.; Van Duyne, R. P. Surface-enhanced Raman excitation spectroscopy of a

single rhodamine 6G molecule. J. Am. Chem. Soc 2008, 131, 849–854.

37



(97) Weiss, P. A.; Silverstein, D. W.; Jensen, L. Non-condon effects on the doubly resonant sum

frequency generation of Rhodamine 6G. J. Phys. Chem. Lett. 2014, 5, 329–335.

(98) Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models

at 298 K. J. Phys. Chem. A 2001, 105, 9954–9960.

(99) Mortier, W. J.; Van Genechten, K.; Gasteiger, J. Electronegativity equalization: application

and parametrization. J. Am. Chem. Soc. 1985, 107, 829–835.

(100) Sanderson, R. An interpretation of bond lengths and a classification of bonds. Science 1951,

114, 670–672.

(101) Chelli, R.; Procacci, P. A transferable polarizable electrostatic force field for molecular me-

chanics based on the chemical potential equalization principle. J. Chem. Phys. 2002, 117,

9175–9189.

(102) Lipparini, F.; Barone, V. Polarizable force fields and polarizable continuum model: a fluc-

tuating charges/PCM approach. 1. theory and implementation. J. Chem. Theory Comput.

2011, 7, 3711–3724.

(103) Lipparini, F.; Cappelli, C.; Barone, V. A gauge invariant multiscale approach to magnetic

spectroscopies in condensed phase: General three-layer model, computational implementa-

tion and pilot applications. J. Chem. Phys. 2013, 138, 234108.

(104) Carnimeo, I.; Cappelli, C.; Barone, V. Analytical gradients for MP2, double hybrid function-

als, and TD-DFT with polarizable embedding described by fluctuating charges. J. Comput.

Chem. 2015, 36, 2271–2290.

(105) Helgaker, T.; Coriani, S.; Jørgensen, P.; Kristensen, K.; Olsen, J.; Ruud, K. Recent advances

in wave function-based methods of molecular-property calculations. Chem. Rev. 2012, 112,

543–631.

(106) Thorvaldsen, A. J.; Ruud, K.; Kristensen, K.; Jørgensen, P.; Coriani, S. A density matrix-

based quasienergy formulation of the Kohn-Sham density functional response theory using

perturbation- and time-dependent basis sets. J. Chem. Phys. 2008, 129, 214108.

38



(107) Ringholm, M.; Jonsson, D.; Ruud, K. A general, recursive, and open-ended response code.

J. Comput. Chem. 2014, 35, 622–633.

(108) Larsen, H.; Joørgensen, P.; Olsen, J.; Helgaker, T. Hartree–Fock and Kohn–Sham atomic-

orbital based time-dependent response theory. J. Chem. Phys. 2000, 113, 8908.

(109) Kjaergaard, T.; Jørgensen, P.; Olsen, J.; Coriani, S.; Helgaker, T. Hartree-Fock and Kohn-

Sham time-dependent response theory in a second-quantization atomic-orbital formalism

suitable for linear scaling. J. Chem. Phys. 2008, 129, 054106.

(110) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. An efficient implementation of time-

dependent density-functional theory for the calculation of excitation energies of large

molecules. J. Chem. Phys. 1998, 109, 8218–8224.

(111) Friese, D. H.; Beerepoot, M. T. P.; Ringholm, M.; Ruud, K. Open-Ended Recursive Approach

for the Calculation of Multiphoton Absorption Matrix Elements. J. Chem. Theory Comput.

2015, 11, 1129–1144.

(112) Cronstrand, P.; Luo, Y.; Ågren, H. Multi-photon absorption of molecules. Adv. Quantum

Chem. 2005, 50, 1–21.

(113) Di Remigio, R.; Steindal, A. H.; Mozgawa, K.; Weijo, V.; Cao, H.; Frediani, L. PCMSolver:

An open-source library for solvation modeling. Int. J. Quantum Chem. 2019, 119, e25685.

(114) Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.; Cimi-

raglia, R.; Coriani, S.; Dahle, P.; Dalskov, E. K.; Ekström, U.; Enevoldsen, T.; Eriksen, J. J.;

Ettenhuber, P.; Fernández, B.; Ferrighi, L.; Fliegl, H.; Frediani, L.; Hald, K.; Halkier, A.;

Hättig, C.; Heiberg, H.; Helgaker, T.; Hennum, A. C.; Hettema, H.; Hjertenæs, E.; Høst, S.;

Høyvik, I.-M.; Iozzi, M. F.; Jansík, B.; Jensen, H. J. A.; Jonsson, D.; Jørgensen, P.; Kauc-

zor, J.; Kirpekar, S.; Kjærgaard, T.; Klopper, W.; Knecht, S.; Kobayashi, R.; Koch, H.; Kong-

sted, J.; Krapp, A.; Kristensen, K.; Ligabue, A.; Lutnæs, O. B.; Melo, J. I.; Mikkelsen, K. V.;

Myhre, R. H.; Neiss, C.; Nielsen, C. B.; Norman, P.; Olsen, J.; Olsen, J. M. H.; Osted, A.;

Packer, M. J.; Pawlowski, F.; Pedersen, T. B.; Provasi, P. F.; Reine, S.; Rinkevicius, Z.;

39



Ruden, T. A.; Ruud, K.; Rybkin, V. V.; Sałek, P.; Samson, C. C. M.; de Merás, A. S.;

Saue, T.; Sauer, S. P. A.; Schimmelpfennig, B.; Sneskov, K.; Steindal, A. H.; Sylvester-

Hvid, K. O.; Taylor, P. R.; Teale, A. M.; Tellgren, E. I.; Tew, D. P.; Thorvaldsen, A. J.;

Thøgersen, L.; Vahtras, O.; Watson, M. A.; Wilson, D. J. D.; Ziolkowski, M.; Agren, H.

The Dalton quantum chemistry program system. Wiley Interdiscip. Rev. Comput. Mol. Sci.

2014, 4, 269–284.

(115) Bugeanu, M.; Di Remigio, R.; Mozgawa, K.; Reine, S. S.; Harbrecht, H.; Frediani, L. Wavelet

formulation of the polarizable continuum model. II. Use of piecewise bilinear boundary ele-

ments. Phys. Chem. Chem. Phys. 2015, 17, 31566–31581.

(116) Dodda, L. S.; Vilseck, J. Z.; Cutrona, K. J.; Jorgensen, W. L. Evaluation of cm5 charges for

nonaqueous condensed-phase modeling. J. Chem. Theory Comput. 2015, 11, 4273–4282.

(117) Abrahama, M. J.; Murtola, T.; Schulz, R.; Pálla, S.; Smith, J. C.; Hess, B.; Lindahl, E.

GROMACS: High Performance Molecular Simulations through Multi-Level Parallelism from

Laptops to Supercomputers. SoftwareX 2015, 1-2, 19–25.

(118) Oostenbrink, C.; Villa, A.; Mark, A. E.; Van Gunsteren, W. F. A biomolecular force field

based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter

sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676.

(119) Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J.

Chem. Phys. 2007, 126.

(120) Hess, B.; Bekker, H.; Berendsen, H. J.; Fraaije, J. G. LINCS: a linear constraint solver for

molecular simulations. J. Comput. Chem. 1997, 18, 1463–1472.

(121) Darden, T.; York, D.; Pedersen, L. Particle mesh Ewald: An Nlog(N) method for Ewald

sums in large systems. J. Chem. Phys. 1993, 98, 10089–10092.

(122) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-

man, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.;

Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.;

40



Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lip-

parini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.;

Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toy-

ota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;

Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.;

Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.;

Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;

Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision A.03. 2016;

Gaussian Inc. Wallingford CT.

(123) Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem. 1964, 68, 441–451.

(124) Mantina, M.; Chamberlin, A. C.; Valero, R.; Cramer, C. J.; Truhlar, D. G. Consistent van

der Waals radii for the whole main group. J. Phys. Chem. A 2009, 113, 5806–5812.

(125) Brehm, M.; Kirchner, B. TRAVIS - A Free Analyzer and Visualizer for Monte Carlo

and Molecular Dynamics Trajectories. J. Chem. Inf. Model. 2011, 51, 2007–2023, PMID:

21761915.

(126) Le Bahers, T.; Adamo, C.; Ciofini, I. A qualitative index of spatial extent in charge-transfer

excitations. J. Chem. Theory Comput. 2011, 7, 2498–2506.

(127) Egidi, F.; Lo Gerfo, G.; Macchiagodena, M.; Cappelli, C. On the nature of charge-transfer

excitations for molecules in aqueous solution: a polarizable QM/MM study. Theor. Chem.

Acc. 2018, 137, 82.

(128) Macak, P.; Luo, Y.; Norman, P.; Ågren, H. Electronic and vibronic contributions to two-

photon absorption of molecules with multi-branched structures. J. Chem. Phys. 2000, 113,

7055–7061.

(129) Macak, P.; Luo, Y.; Ågren, H. Simulations of vibronic profiles in two-photon absorption.

Chem. Phys. Lett. 2000, 330, 447–456.

41



(130) Giovannini, T.; Lafiosca, P.; Cappelli, C. A General Route to Include Pauli Repulsion and

Quantum Dispersion Effects in QM/MM Approaches. J. Chem. Theory Comput. 2017, 13,

4854–4870.

(131) Curutchet, C.; Cupellini, L.; Kongsted, J.; Corni, S.; Frediani, L.; Steindal, A. H.;

Guido, C. A.; Scalmani, G.; Mennucci, B. Density-Dependent Formulation of Dispersion–

Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM)

Models. J. Chem. Theory Comput. 2018, 14, 1671–1681.

(132) Giovannini, T.; Lafiosca, P.; Chandramouli, B.; Barone, V.; Cappelli, C. Effective yet reliable

computation of hyperfine coupling constants in solution by a QM/MM approach: Interplay

between electrostatics and non-electrostatic effects. J. Chem. Phys. 2019, 150, 124102.

42


	Introduction
	Theory and Implementation
	The QM/FQ Approach
	Linear and Quadratic Response Functions in a QM/FQ framework
	One- and Two-Photon Absorption

	Implementation

	Computational Details
	Numerical Results
	MD analysis: Hydration Pattern
	OPA Spectra of R6G in aqueous solution
	TPA Spectra of R6G in aqueous solution

	Summary, Conclusions and Perspectives
	Acknowledgement
	Supporting Information Available
	References

