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Summary 

MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) involved in the regulation of 

gene expression, and they are often seen dysregulated in cancer. For this reason, it is of great 

scientific interest to study these ncRNAs to better understand their distribution in human tissues 

and their mode of function. Based on a comprehensive miRNA microarray from 108 breast 

cancers in the Norwegian Woman and Cancer Study and 44 healthy controls, this thesis sought 

to investigate tissue expression and functional properties of the miRNA cluster miR-143/145 

in breast and lung cancer tissues and cell lines, as well as miR-126 in breast cancer (BC) tissue 

and cell lines. 

Our analysis found the miR-143/145 cluster to be downregulated in tumor samples from both 

breast and lung, as well as in their corresponding cancer cell lines. The transfection of miR-143 

into a number of cancer cell lines from both breast and lung, promoted proliferation in some, 

whilst having opposite or no effect in others. In contrast, all cell lines suffered inhibition in both 

proliferation and migration when transfected with miR-145. 

In BC tissue, expression of miR-143 and miR-145 was lower in malignant compared to benign 

breast tissue, and lower in the more aggressive tumors. Interestingly, miR-145 was mainly 

expressed in the myoepithelial cells of benign breast tissue, and at the subcellular level located 

to the nuclei. In lung cancer tissue, expression of the miR-143/145 cluster was found to correlate 

with expression of several sex steroid hormone receptors. Also, stromal expression of miR-143 

was an independent positive prognostic factor in female patients, whereas stromal expression 

of miR-145 was associated with improved disease specific survival for male patients. 

Both miR-126-3p and its passenger strand, miR-126-5p, was verified as downregulated in BCs 

as well as in all tested BC cell lines. The passenger strand had a strong proliferation promoting 
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effect in the most aggressive BC cell line, whilst having the opposite effect in the other cell 

lines. The introduction of miR-126-3p resulted in decreased proliferation and invasion in all 

BC cell lines. In BC tissue, expression of miR-126-5p was significantly higher in high grade 

tumors, and both miR-126 strands were downregulated in lymph node positive BCs when 

compared to tumors with no nodal involvement. 

This thesis depicts interesting findings, and contributes to a better understanding of context-

specific expression patterns, functions and prognostic impacts of the three selected miRNAs. 

  

III 



 

List of papers 
Paper I 

Charles Johannessen, Line Moi, Yury Kiselev, Mona Irene Pedersen, Stig Manfred Dalen, 

Tonje Braaten, Lill-Tove Busund. 

Expression and function of the miR-143/145 cluster in vitro and in vivo in human breast 

cancer 

PLoS One. 2017 Oct 26;12(10):e0186658. doi: 10.1371/journal.pone.0186658. 

 

Paper II 

Charles Johannessen, Yury Kiselev, Mona Irene Pedersen, Stig Manfred Dalen, Lill-Tove 

Rasmussen Busund, Line Moi. 

Different functional roles and expression of miR-126-3p and miR-126-5p in breast cancer 

cell lines and tissues 

Manuscript 

 

Paper III 

Kaja Skjefstad, Charles Johannessen, Thea Grindstad, Thomas Kilvaer, Erna-Elise Paulsen, 

Mona Pedersen, Tom Donnem, Sigve Andersen, Roy Bremnes, Elin Richardsen, Samer Al-

Saad, Lill-Tove Busund.  

A gender specific improved survival related to stromal miR-143 and miR-145 expression 

in non-small cell lung cancer 

Sci Rep. 2018 Jun 4;8(1):8549. doi: 10.1038/s41598-018-26864-w.  

IV 



 

List of abbreviations 

3'UTR 3’untranslated region  
ADC Adenocarcinoma  
BC Breast cancer 
BL Basal-like 
bp Base pair 
CAF Cancer associated fibroblast 
CK Cytokeratin 
DCIS Ductal carcinoma in situ  
DNA Deoxyribonucleic acid 
dsRBD Double-stranded RNA binding domain 
EGFR Epidermal growth factor receptor  
ER Estrogen receptor 
EXP5 Exportin 5 
HER2 Human epidermal growth factor receptor 2 
IHC Immunohistochemistry  
ISH In situ hybridization 
MeSH  Medical subject heading search 
miRNA MicroRNA 
ncRNA Non-coding RNA 
NOS Not otherwise specified  
NOWAC Norwegian women and cancer study 
NSCLC Non-small cell lung cancer  
NST No special type 
p63 Transformation-related protein 63 
PR Progesterone receptor  
Pre-miRNA Precursor miRNA 
Pri-miRNA Primary miRNA 
qPCR Quantitative polymerase chain reaction 
RISC RNA-induced silencing complex 
RNA Ribonucleic acid 
RNA pol II RNA polymerase II 
rRNA Ribosomal RNA 
SCC Squamous cell carcinoma  
SCLC Small cell lung cancer 
TMA Tissue microarray  
TN Triple-negative 
TNBC Triple-negative breast cancer 
TRBP TAR RNA-binding protein 
tRNA Transfer RNA  
TTF-1 Thyroid transcription factor-1  
WTS Whole-tissue section 

V 



 

Contents 
 

Acknowledgements ..................................................................................................................... I 

Summary .................................................................................................................................... II 

List of papers ............................................................................................................................ IV 

List of abbreviations .................................................................................................................. V 

1. Background ............................................................................................................................ 1 

1.1 Breast cancer .................................................................................................................... 1 

1.1.1 Classification ............................................................................................................. 3 

1.2 Non-small cell lung cancer ............................................................................................... 9 

1.2.1 Classification ........................................................................................................... 10 

1.3 MicroRNA ...................................................................................................................... 13 

1.3.1 MiRNA biogenesis .................................................................................................. 14 

1.3.2 The role of miRNAs in cancer ................................................................................ 17 

2. Aims of the study ................................................................................................................. 19 

3. Summary of results ............................................................................................................... 21 

4. General discussion ................................................................................................................ 25 

4.1 Materials and methods ................................................................................................... 25 

4.1.1 Patient cohorts ......................................................................................................... 25 

4.1.2 Tissue microarray .................................................................................................... 26 

4.1.3 Immunohistochemistry ............................................................................................ 27 

4.1.4 In situ hybridization ................................................................................................ 28 

4.1.5 Human cell lines ...................................................................................................... 29 

4.2 Discussion of main results.............................................................................................. 30 

4.2.1 Paper I ..................................................................................................................... 30 

4.2.2 Paper II .................................................................................................................... 34 

4.2.3 Paper III ................................................................................................................... 37 

5. Conclusions and future perspectives .................................................................................... 39 

6. References ............................................................................................................................ 41 

 

 



1 

 

1. Background 

1.1 Breast cancer 

Worldwide, there are reported more than 1.6 million new cases of breast cancer (BC) every 

year, and the annual BC death rate is in excess of 500.000 [1]. This makes BC the most 

diagnosed cancer in the female population, where it contributes to 25% of all new cancer cases, 

and 15% of all cancer related deaths [1]. The five year survival rate of BC is 89% [2], but once 

metastases to distant organs occur, the five year survival rate drops below 25% [3].  

Although metastatic BC rarely presents at the initial time of diagnosis, as many as 30% of 

patients diagnosed with early stage BC will later develop recurrent advanced disease or 

metastasis [4, 5]. The majority of BC metastases occur in the liver, bone, lung or central nervous 

system [6]. Although there has been some controversy regarding the effects of mammography 

[7], public screening programs are considered important for early detection and prevention of 

BC [8]. 

Figure 1: Anatomy and histology of the breast. Alvarado, 2016. 
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The mammary gland (figure 1) consists of several different cell types [9], and is a complex 

organ. The epithelial cells form the ductal network of the glands  which are bilayered structures 

comprised of luminal cells (milk secreting epithelial cells) and basal cells [10]. The luminal 

cells form the ducts and the secretory alveoli, and makes up the inner layer of the glands’ 

bilayered structure, whilst the basal cells form the outer layer which consists mainly of 

myoepithelial cells [10]. The function of the alveoli and the luminal cells is to secrete milk 

containing water and nutrients, whereas the contraction by the myoepithelial cells directs the 

milk through the ductal pathways [10, 11]. A relatively newly discovered cell type in this 

cellular landscape is the mammary stem cells which have been described as lineage-restricted  

cells with the capacity to differentiate into either luminal cells or myoepithelial cells [12, 13]. 

Precursor lesions of BC are annotated ductal carcinoma in situ (DCIS), and consist of clusters 

of neoplastic cells confined to the milk duct. It is estimated that up to 40% of DCIS cases 

progress into invasive carcinoma of no special type (NST), where cancer cells breach the 

basement membrane and infiltrate the surrounding tissue [14, 15]. Noteworthy, hereditary BC 

accounts for approximately 5-10% of all BC cases, and is primarily caused by mutations in one 

of the genes coding for the tumor suppressor proteins BRCA1 or BRCA2. Mutations in either 

of these genes are very potent cancer predictors, and women carrying these mutations have a 

40-80% chance of developing BC before the age of 80 [16, 17]. 
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1.1.1 Classification 

BC is a highly heterogeneous disease composed of a diverse collection of molecular subtypes, 

which can be determined by gene expression patterns or immunohistochemistry (IHC) [18-21]. 

The identification of each tumor’s molecular subtype is of great value, as each subtype has 

biological and clinical features [20] which are associated with prognosis and direct choice of  

treatment [22]. It is established that the different gene expression patterns observed in BC 

account for this heterogeneity [19]. The histopathological features of BC include characteristics 

such as histological morphology, receptor status, tumor size, tumor grade and nodal 

involvement. With the knowledge of both the molecular subtype and the histopathological 

status, the metastatic predisposition of the primary tumor may be determined [22, 23]. With the 

access to whole-genome profiling, one has been able to categorize BC into four general 

molecular subtypes. These subtypes are the luminal A, luminal B, human epidermal growth 

factor receptor 2 positive (HER2+) and the triple-negative (TN)/basal-like (BL) BCs [19, 24, 

25]. Routinely, the classification of the tumors molecular subtype is basically based on the 

expression of relevant immunohistochemically stained receptors, and the expression of the 

proliferative marker Ki67. An illustration of immunohistochemical staining patterns for BCs 

with different receptor status is presented in figure 2. 
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The luminal BCs are so named because their molecular profile has a similar gene expression to 

the normal luminal epithelium of the breast, and they are typically estrogen receptor positive 

(ER+) and progesterone receptor positive (PR+). The luminal A tumors display high expression 

of ER, low expression of HER2 and low expression of proliferation promoting genes [26, 27]. 

Luminal B tumors exhibit ER expression at lower levels compared to the luminal A subgroup, 

they can be either HER2+ or HER2-, and they typically have a higher expression of the 

proliferation-associated protein, Ki67 [27, 28]. The luminal BCs comprise the largest subgroup 

of BCs, where the luminal B cancers account for approximately 40% of all BCs [29], thus 

making it the largest individual subgroup. Due to the higher expression of ER and the lower 

Figure 2: Representative immunohistochemical expression of ER, PR and HER2 in different subtypes of invasive BC. 

Rivenbark et al., 2013. 
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expression of proliferation markers in the luminal A tumors, this subgroup has a better 

prognosis than patients in the luminal B subgroup, with an overall survival rate 10 years after 

diagnosis of 70% vs 54%, respectively [22]. Notably, when further subgrouping the luminal B 

subgroup into luminal B/HER2+ and luminal B/HER2-, there is a significant difference in the 

overall survival rate at 10 years after diagnosis of 46% vs 54%, respectively [22]. Combined, 

however, the luminal BCs have a better prognosis compared to the non-luminal subgroups, 

which primarily is a result of their positive ER-status, hence allowing for targeted hormonal 

therapy [30]. 

The molecular subgroup HER2+ constitutes approximately 15-20% of all BC cases, where the 

HER2 gene copy number can be as high as 50, resulting in a protein overexpression close to a 

100-fold [31]. HER2 is a transmembrane receptor protein and is one of the four membrane 

receptor tyrosine kinases (RTKs) in the epidermal growth factor receptor family, first identified 

in rat neuroblastomas as a protein capable of transforming a mouse fibroblasts cell line into 

malignancy [32]. This family of receptors is important in communication between cell-cell and 

cell-stroma via signal transductors known as ligands. HER2 is a co-receptor for many ligands, 

and whilst the HER2 receptor has no known ligand of its own, the receptor forms heterodimers 

with other receptors of the HER family when activated by their ligand(s) [33]. Dysregulation 

of HER2, on both gene and protein level, is associated with a worse prognosis in both the lymph 

node-negative and lymph node-positive BC patients [34]. Adjuvant treatment of HER2+ BC 

with trastuzumab, a monoclonal antibody targeting the extracellular domain of the HER2 

protein, has proven beneficial to patient outcome, with a 34% reduction in risk of death after 

two years [35]. Currently, adjuvant treatment with trastuzumab is the standard care of treatment 

for HER2+ tumors.  
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The TN/BL subgroup is highly heterogeneous, is immunohistochemically defined as BCs not 

overexpressing HER2, and is both ER and PR negative. It is considered an especially aggressive 

subtype, in particular affecting the younger female population, and targeted therapeutic options 

are limited to clinical trials [36]. The terms TN and BL are often used as synonyms, and 

although most TN cancers are of a BL phenotype, and most tumors expressing basal-markers 

are TN, this is not always the case [37, 38]. In fact, studies have revealed that 70-90% of TN 

cancer are of a BL subtype, and 50-80% of molecular BL tumors are TN [38-40]. However, 

pooling the TN and the BL cancers into one subgroup is sensible, as they exhibit great 

similarities in that they affect younger patients, are more likely to present as interval cancers, 

and they are significantly more aggressive than tumors in other subclasses [41, 42]. 

The TNBCs account for 10-20% of all BCs, depending on the methods and thresholds used to 

evaluate ER, PR and HER2 expression [41]. There are histological subtypes which are  typically 

TN, but the TN cancers as a group lack distinctive histological characteristics [43]. With their 

expression of epidermal growth factor receptor (EGFR) together with cytokeratins 5, 14 and 

17, their genomic characteristics are similar to the normal myoepithelial (basal) cells of the 

breast [44], and interestingly, the gene expression patterns of myoepithelial mammary cells are 

similar to those found in squamous cell carcinoma of the lung [45]. 

As a result of the tumors’ negative receptor status, the TNBC patients benefit from neither 

endocrine therapy, nor trastuzumab (HER2 antagonist). The current backbone in TNBC 

management is treatment with cytotoxic chemotherapy, where TNBCs have a higher pathologic 

complete response rate when compared to hormone receptor-positive BC treated with 

neoadjuvant chemotherapy [46]. Still, however, patients harboring the TN subtype have a worse 

outcome after chemotherapy compared to patients with BC of other subtypes [44, 47]. 
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The highly heterogeneous nature of TNBC argues for personalized treatment strategies 

targeting molecular tumor-specific sites. This is further substantiated by the fact that the 

response rate of TNBC patients treated with chemotherapy is 40% or less [43]. Indeed, there 

are currently several ongoing clinical trials investigating the potential for targeted therapy for 

TNBC. These targets include, but are not limited to, the androgen receptor (phase II), the AKT-

pathway (phase II) and poly (ADP-ribose) polymerase PARP (phase III) [36]. The future of 

treating TNBCs may be brighter, as the treatment regime shifts towards more personalized, 

molecular targeted therapies. 

 

  



8 

 

  



9 

 

1.2 Non-small cell lung cancer 

Worldwide, lung cancer is the leading cause of cancer related death, and annually 1.8 million 

new lung cancer cases are reported [48]. Additionally, it is also one of the cancers with the 

highest death rate, with just short of 1.6 million people dying each year [48]. It is estimated that 

approximately 80-90% of all lung cancer cases in high-income countries are directly related to 

smoking [49], and although lung cancer incidence in men is slowly declining due to fewer 

smokers, the incidence in women continues to rise, also in Norway [50] (figure 3). 

Lung cancer is a disease that presents great challenges, as 70% of lung cancer patients have 

advanced stage at the time of diagnosis [58]. Metastases to distant organs are responsible for 

70% of all lung cancer deaths, regardless of histological subtype, and the most frequent sites 

for metastases include bone, brain, adrenal glands and liver [59]. An obvious way to decrease 

lung cancer mortality (in addition to reducing smoking in the population) is through achieving 

early diagnosis, and hence treatment, by screening programs. However, studies involving 

chest radiographs and sputum cytology for early detection did not significantly reduce lung 

Figure 3: Incidence and mortality rates in lung cancer patients from 1965-2015. 

(Adapted from www.kreftregisteret.no; Cancer in Norway 2016) 

http://www.kreftregisteret.no/
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cancer mortality [60]. On the other hand, patients in high-risk groups participating in The 

American National Lung Screening Trial had significantly lower mortality, but there are still 

unanswered questions in regards to over-diagnosis and over-treatment [60, 61]. 

 

1.2.1 Classification 

Histologically and clinically, lung cancer is typically classified into two major groups: Small 

cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). SCLC accounts for 

approximately 15% of all diagnosed lung cancers and is a very aggressive type of cancer, 

generally observed in smokers [51].  

NSCLC is the largest group and accounts for approximately 85% of all lung cancer cases, and 

is further classified into subgroups [52]. The classification of NSCLCs was recently revised by 

the 2015 WHO Classification of Lung Tumors, and consist of squamous cell carcinoma (SCC), 

adenocarcinoma (ADC) and NSCLC not otherwise specified (NOS) [53]. ADC is the most 

common subtype observed in never-smokers [54], it typically forms glandular structures, and 

the production of mucus is sometimes observed. SCCs are typically more aggressive than 

ADCs, and can be keratinizing, non-keratinizing or display a low differentiated basaloid 

morphology, somewhat similar to that of TNBCs [45, 55]. 

Previous classification of NSCLC was based on light microscopy of hematoxylin and eosin 

stained tissue samples, and focused mainly on morphology. However, new IHC analyses have 

been applied to classify subgroups more accurately. These analyses include the thyroid 

transcription factor-1 (TTF-1), which is expressed by pneumocytes and is primarily associated 

with ADCs [53]. Similarly, the transformation-related protein 63 (p63), its isoform p40, and 

cytokeratin 5/6 (CK 5/6) are predominantly expressed in the bronchial epithelium and are 
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typically associated with SCCs [53]. On rare occasions (3% of cases), if no distinct IHC staining 

pattern is evident to indicate either ADC or SCC, then the NOS subtype is applied, and merely 

as a diagnosis of exclusion [53].  

The histological and molecular distinction between ADC and SCC is crucial when it comes to 

therapeutic decisions and to predicting the clinical course, especially for patients with 

advanced-stage disease [56]. In Norway, the recent availability of targeted treatments has 

resulted in the screening of all non-SCCs for mutations in both the EGFR and the anaplastic 

lymphoma kinase (ALK) gene at the time of diagnosis. In addition, the list of potential future 

candidates for targeted treatment of NSCLC is still growing, and include KRAS, BRAF, HER2, 

RET, ROS1, MET, PIK3CA, NTRK [57].  
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1.3 MicroRNA 

In the early era of DNA research, 3% of genes were considered to be protein-coding while the 

other 97% was considered little more than ‘junk’ DNA [58]. However, decades later, our 

understanding of the human transcriptome has changed fundamentally. Not too long ago, the 

Encyclopedia of DNA Elements (ENCODE) project reported that as much as 75% of the human 

genome is transcribed into RNA, which is a big statement to the fact that non-coding RNAs 

(ncRNAs) comprise the majority of the human transcriptome [59, 60]. The first ncRNAs were 

discovered in the 1950s, and they include the ribosomal RNA (rRNA) and the transfer RNA 

(tRNA). Since then, a vast variety of various ncRNAs have been described, where microRNAs 

(miRNAs) are the best described class of short ncRNAs [61, 62]. 

The first miRNA, named lin-4, was initially described in the transparent nematode 

Caenorhabditis elegans, and was reported as a small RNA with antisense complementarity to 

the mRNA transcript of the gene lin-14 [63]. Today, more than 2500 human miRNAs later, we 

understand that the regulation and dysregulation of miRNAs are involved in virtually all types 

of cellular processes, both benign and malignant, as miRNAs’ involvement in a vast number of 

different intracellular processes has been revealed [64-69]. 

The mature miRNA is typically 22 nucleotides in length and is normally processed by the two 

RNase III proteins Drosha and Dicer [70]. In RNA silencing, the miRNA sequence function as 

a guide by base pairing with the complementary 3’untranslated region (3’UTR) of its target 

mRNA, and when united with the AGO proteins, this ultimately results in either translational 

repression, mRNA deadenylation or mRNA degradation [70]. 
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1.3.1 MiRNA biogenesis 

The genes encoding miRNAs are typically located within intergenic regions, but approximately 

30% of miRNA genes are positioned within introns or exons of protein-coding genes [71]. It is 

not unusual that miRNA loci are positioned in relative close proximity to each other, making a 

polycistronic transcription unit, often referred to as a miRNA cluster [72]. The miRNA cluster 

is generally subject to a common promoter region, and is hence cotranscribed. However, 

subsequent differentiated processing and regulation at the posttranscriptional level is common 

[72, 73]. The miRNA genes that reside in the introns or exons of protein-coding genes often 

share promoter with their host gene, but it has been shown that different miRNA genes can have 

several start sites for transcription, which is also the case for intragenic miRNA, whose 

promoter site can be distinct from the promoters of their host genes [74]. 

The vast majority of miRNAs are transcribed by RNA polymerase II (RNA pol II). This is 

apparent when considering the length of the primary miRNA (pri-miRNA) transcript, which is 

more than 1 kb longer than a typical RNA pol III transcript [75]. In addition, the pri-miRNA 

transcript  contains sequences of uridine residues, which terminate transcription by RNA pol 

III [76]. Transcriptional regulation of miRNAs is typically directed by various factors, like the 

transcription factors p53, MYC, ZEB1 and ZEB2, as well as epigenetic factors, like DNA 

methylation and histone modification [73, 77, 78]. 

Transcribed pri-miRNA is typically >1 kb long and forms a specific hairpin-shaped stem-loop 

secondary structure where the mature miRNA sequence is embedded. Typically, a pri-miRNA 

consists of the mature miRNA-containing stem (33-35 bp), the terminal loop, and a single-

stranded RNA segment at both the 5’ and 3’ side [73]. The nuclear maturation process of pri-

miRNA is in essence initiated by the nuclear RNase III protein Drosha in collaboration with the 

DiGeorge syndrome chromosomal region 8 (DGCR8) protein. The RNA binding protein 
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DGCR8 identifies and binds pri-miRNA and the central part of the Drosha protein. Together, 

these proteins form the Microprocessor complex, which process the 5’ and the 3’ strand of the 

pri-miRNA into an approximately 65 bp hairpin-shaped RNA structure called precursor 

miRNA (pre-miRNA) [79, 80]. The pre-miRNA is subsequently exported into the cytoplasm, 

where maturation can be completed. The export of pre-miRNA is aided by the protein exportin 

5 (EXP5), whose interaction with the GTP-binding nuclear protein RAN∙GTP forms a 

transporter complex [81]. Upon reaching the cytoplasm through the nuclear pore, the GTP is 

hydrolyzed and the pre-miRNA/EXP5/RAN∙GTP-complex is disassembled, resulting in the 

release of pre-miRNA into the cell’s cytosol [82, 83]. 

Figure 4: miRNA pathway. An illustration of the miRNA pathway from transcribed pri-miRNA to translational 

repression. Modified from He et al., 2016. 

RNA pol II 

EXP5 

 

RISC 

RISC 

Passenger strand 
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Once the pre-miRNA is released into the cytosol, the RNase III endonuclease Dicer carries out 

the next step in miRNA maturation. Dicer recognizes the 5’ phosphate and the 3’ overhang 

close to the terminal loop, and cleaves the double stranded pre-miRNA at this site, producing a 

roughly 22 bp long RNA duplex often referred to as a miRNA:miRNA* complex [73, 76, 84]. 

There are many different factors and pathways regulating the activity of Dicer, the most 

recognized being by the TAR RNA-binding protein (TRBP). TRBP contains three double-

stranded RNA binding domains (dsRBDs) and is involved in the modulation of several pre-

miRNAs, as well as in regulating the length of mature miRNAs [85, 86]. 

Next, the miRNA:miRNA* complex is loaded into the RNA induced silencing complex (RISC) 

to finalize the miRNA maturation. The catalytic component of the human RISC complex is the 

Ago2 protein, who is essential in both binding miRNA and in releasing Dicer [87]. Ago2 is a 

protein with endonuclease activity, and it cleaves the 3’ arm of the miRNA before it is processed 

by Dicer, a course that is believed to aid in determining the mature lead miRNA strand [87, 88]. 

Selection of the miRNA lead strand is based on the relative thermodynamic stability of the two 

ends of the small RNA duplex, and the lead strand is generally the one with the more relatively 

unstable terminus at the 5ʹ side [73, 89]. In addition, the Ago2 protein selects the lead strand 

based on the first nucleotide sequence, and the lead strand presenting a U at nucleotide position 

1 is typically selected [90]. 

The Arg2, using the lead miRNA as a guide, then directs the RISC complex to downregulate 

target genes. Based on the complementarity between the 3’UTR of the target mRNA and the 

RISC incorporated miRNA, gene expression is post-transcriptionally repressed by either 

translational repression, mRNA degradation or mRNA deadenylation [70, 91]. An illustration 

of the canonical miRNA pathway is presented in figure 4 [92]. 
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1.3.2 The role of miRNAs in cancer 

Ever since the first publication describing the deletion of the miR-15 and miR-16 loci in the 

majority of samples from patients with B-cell chronic lymphocytic leukemia [93], a large 

number of papers describing dysregulation of numerous different miRNAs in a vast diversity 

of cancers has been published [94]. In general, the mechanisms involved in miRNA 

dysregulation are chromosomal abnormalities, alterations in transcriptional control, epigenetic 

changes and defects in the miRNA biogenesis [95].  

The deletion of the miR-15 and miR-16 loci was the first reported miRNA dysregulation due to 

a chromosomal abnormality (deletion). Similarly, the 5q33 region, harboring the miR-143/145 

gene cluster, is commonly deleted in lung cancer, resulting in reduced expression of both these 

miRNAs [96]. In contrast, duplication of the miR-17-92 gene cluster has been reported in both 

B-cell lymphomas and lung cancer, resulting in overexpression of these miRNAs [97, 98]. It 

has become evident that both deletions and duplications (amplifications) of specific genomic 

regions, as well as chromosomal translocations, contribute to abnormal miRNA expression. 

The expression of pri-miRNAs is subject to dysregulation similar to protein-coding genes. 

During tumorigenesis, alterations in tumor suppressors or oncogenic factors functioning as 

transcriptional activators or suppressors, will affect the expression of pri-miRNAs. One of these 

alterations involves the oncogenic miR-17-92 cluster, which is upregulated in several different 

cancers [99]. MYC stimulates expression of the miR-17-92 cluster, which in turn promotes 

tumorigenesis by regulating the post transcriptional expression of E2F1, THBS1, CTGF and 

other transcripts important for cell cycle progression and angiogenesis [94, 100]. Conversely, 

the miR-200 family is regularly reported as downregulated in human tumors. The miR-200 

family is involved in targeting important transcription factors involved in suppression of 

epithelial genes in order to facilitate the epithelial-mesenchymal transition, which is key to 
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invasion and metastasis [101]. There are many transcription factors associated with cancer that 

regulate expression of miRNAs, making transcriptional dysregulation a crucial mechanism in 

altered miRNA expression in cancer. 

Modifications of histones and DNA control the chromatin structure of the chromosome, and 

these epigenetic changes have an important role in regulating expression of both protein coding 

RNA and ncRNA. The gene promotors of miRNAs, as well as promotors for most genes, have 

a relatively high content of CpG islands, and these are frequently hypermethylated in tumor 

suppressor miRNAs, resulting in an epigenetic silencing of these miRNAs [102]. Histone 

modification is another epigenetic change, and has been reported to cooperate with DNA 

methylation to suppress the expression of tumor suppressor miRNAs in cancer [103]. Together, 

these epigenetic mechanisms play important parts in repressing tumor suppressive miRNAs in 

cancer. 

In miRNA biogenesis, the two RNase III proteins Drosha and Dicer are frequently 

downregulated in various cancers, and this downregulation is associated with poor patient 

outcome [104]. For example, the expression of DROSHA is regulated by the proto-oncogenic 

transcription factor MYC, which may lead to decreased pri-miRNA processing [105]. Also, 

downregulation of DROSHA has been reported in context with hypoxia, and this process was 

facilitated by direct binding of the hypoxia-responsive transcription factors ETS1 and ELK1 to 

the promoter of DROSHA [106]. Likewise, the expression of DICER is also subject to 

dysregulation in cancer, a process that is highly diverse. The transcription factor Tap63 

activates DICER expression by direct promotor binding to its promotor, but this transcription 

factor is frequently lost in cancer, leading to downregulation of DICER. Another pathway in 

which DICER is downregulated is through direct binding to its 3’UTR by specific miRNAs, an 

effect highly influenced by hypoxia [106, 107]. 
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2. Aims of the study 

The overall aim of this study was to explore functions and expression patterns of carefully 

selected miRNAs in breast cancer and lung cancer. To this end, we investigated expression in 

tissue samples from both breast- and lung cancer patients, alongside functional studies on 

cancer cell lines representing both organ systems. Expression of miRNA was evaluated using 

miRNA microarray, qPCR and ISH, and functional studies included experiments eligible for 

the study of cell proliferation and cell migration. 

More specifically, the objectives of the study were to evaluate expression patterns and 

functional properties of the miR-143/145 cluster in BC and NSCLC. Also, expression and 

function of the miR-126-3p, and its passenger strand, miR-126-5p, was investigated in BC 

tissue and BC cell lines. 
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3. Summary of results 

Paper I 

Expression and function of the miR-143/145 cluster in vitro and in vivo in human breast 

cancer 

Vast numbers of miRNAs are dysregulated in cancer, and the miRNA cluster miR-143/145 is 

among them. In this paper, we sought to investigate the functional properties and expression of 

the miR-143/145 cluster both in vivo and in vitro in human breast cancer. For the functional 

studies we used three different BC cell lines corresponding to the major subtypes of BC: ER+, 

HER2+ and TN. In addition to analyzing expression, we also studied how the cell lines’ ability 

to proliferate and migrate/invade was affected when transfected with either miR-143 mimic, 

miR-145 mimic, or miR-143 mimic and miR-145 mimic in combination. For the in vivo part, 

the cellular and subcellular expression of miR-143 and miR-145 was evaluated in full 

histological slides from both benign and malignant breast tissue. Patient samples were stratified 

according to molecular subtype, tumor grade and receptor status, and expression patterns of 

miR-143 and miR-145 were analyzed accordingly.  

Results from a comprehensive miRNA microarray study on breast cancer tissue revealed both 

miR-143 and miR-145 to be downregulated in BC tumors when compared to benign breast 

tissue. These results were later verified by RT-qPCR. Similar, expression of both miR-143 and 

miR-145 were downregulated in all tested BC cell lines. 

In vitro, miR-143 promoted proliferation of the ER+ and the TN BC cell line, whereas having 

no significant effect on the proliferation properties of the HER2+ cell line. In contrast, all BC 

cell lines suffered proliferation inhibition when transfected with miR-145. The cotransfection 

with miR-143 and miR-145 resulted in inhibited proliferation similar to that of miR-145 alone 
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in all BC cell lines. All BC cell lines suffered inhibition of invasion when transfected with either 

miR-143, miR-145 or miR-143 and miR-145. In vivo, the expression of miR-143 and miR-145 

was lower in malignant compared to benign breast tissue, and lower in the more aggressive 

tumors with higher tumor grade, loss of ER and the basal-like phenotype. The collected ISH 

data also contributed very interesting findings regarding cellular and subcellular distribution of 

the studied miRNAs, especially for the miR-145. Staining patterns of miR-143 were primarily 

cytoplasmatic and predominantly found in luminal cells of benign breast tissue. In contrast, 

miR-145 was mainly expressed in the myoepithelial cells of benign breast tissue, and sub-

cellularly located to the nuclei. 

 

Paper II 

Different functional roles and expression of miR-126-3p and miR-126-5p in breast cancer 

cell lines and tissues 

In the literature, miR-126 is described as a tumor suppressor in various cancers, and is involved 

in regulation of metastatic processes in BCs. In this paper, we were interested in investigating 

expression and functional properties of both the miR-126-3p and its passenger strand, miR-

126-5p. The study explored the effects of transfecting miR-126-3p mimic, miR-126-5p mimic, 

or miR-126-3p mimic and miR-126-5p mimic in combination on proliferation and invasion in 

BC cell lines representing the major subtypes of BC. Expression of miR-126-3p and miR-126-

5p in tissue samples were investigated using in situ hybridization and tissue miRNA 

microarrays and PCR.  

Results from the miRNA microarray revealed both miR-126-3p and miR-126-5p to be 

downregulated in BC tumors when compared to benign breast tissue. Results were verified by 
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qPCR. Likewise, expression of both miR-126 strands were downregulated in all our tested BC 

cell lines when compared to the non-cancerous breast cell line MCF-10A. Transfection of miR-

126-3p resulted in decreased proliferation and invasion in all BC cell lines. Transfection of 

miR-126-5p decreased proliferation in the ER+ and the HER2+ BC cell lines, whereas having 

a strong opposite effect in the TN BC cell line, dramatically increasing proliferation potential. 

In vivo, expression of miR-126-5p was significantly higher in high grade tumors and in stroma 

and tumor cells of luminal B, HER2+ and TN tumors when compared to luminal A tumors. In 

addition, both miR-126 strands were downregulated in lymph node positive BCs when 

compared to tumors with no nodal involvement. 

 

Paper III 

A gender specific improved survival related to stromal miR-143 and miR-145 expression 

in non-small cell lung cancer 

In addition to the BC cohort (paper I), the miRNA cluster miR-143/145 was investigated in a 

large retrospective study including 553 NSCLC patients. Tissue was collected from primary 

lung tumors and metastatic lymph nodes, and tissue microarrays were subsequently constructed 

from these. Functional studies to evaluate proliferation and migration after transfection of either 

miR-143 mimic, miR-145 mimic, or miR-143 mimic and miR-145 mimic in combination, were 

performed using different NSCLC cell lines representing adenocarcinomas, squamous cell 

carcinomas and large cell carcinomas. Expression of miR-143 and miR-145 in tissue samples 

was investigated using in situ hybridization and tissue miRNA microarrays.  

Expression of both miR-143 and miR-145 was downregulated in all NSCLC cell lines included 

in this study. In contrast, ISH-results from patient samples demonstrated significantly increased 
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expression of miR-143/miR-145 in tumor cells and adjoining stromal cells when compared to 

non-malignant tissue. Migration studies were performed on the NSCLC cell lines representing 

adenocarcinoma and large cell carcinoma. Both cell lines displayed a notable decrease in 

migration potential when transfected with either miR-143 or miR-145. Proliferation was 

evaluated in NSCLC cell lines representing adenocarcinoma, squamous cell carcinoma and 

large cell carcinoma. Both the adenocarcinoma cell line and the large cell carcinoma cell line 

experienced proliferation inhibition when transfected with either miR-143, miR-145, or miR-

143 and miR-145 in combination. In contrast, the squamous cell carcinoma cell line displayed 

increased proliferation when transfected with miR-143, whilst displaying inhibition of 

proliferation when transfected with miR-145. When combining miR-143 and miR-145, the 

proliferation rate of the squamous cell carcinoma cell line was not significantly different to the 

negative control. In vivo, expression of the miR-143/145 cluster was found to correlate with 

expression of several sex steroid hormone receptors, including progesterone receptor, androgen 

receptor and estrogen receptor beta. In addition, stromal expression of miR-143 was an 

independent positive prognostic factor in female patients in both univariate and multivariate 

analysis, whereas stromal expression of miR-145 was associated with improved disease specific 

survival for male patients in both univariate and multivariate analysis. 
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4. General discussion 

The main focus of this work has been to investigate functional properties and expression 

patterns of selected miRNAs in breast cancer tissue. In paper III we investigate the same 

miRNAs as in paper I, but in NSCLC. Results for each paper are discussed within the 

respective papers. In the first part of the discussion (4.1), selected materials and methods will 

be briefly presented and discussed, and in the second part (4.2) the major findings in each paper 

will be discussed. 

 

4.1 Materials and methods 

4.1.1 Patient cohorts 

Patients in the BC cohort were collected from the NOWAC postgenome cohort [108], and 

included participants diagnosed with BC during the years 2004-2010. A total of 102 BC surgery 

specimens and 38 benign breast specimens were included in the miRNA microarray, and the 

data from the miRNA microarray analysis were used in the planning and design of papers I 

and II. The histological grading was based on the modified criteria by Elston and Ellis [109], 

and the molecular subtyping of tumors were based on the expression of ER, PR, HER2 and 

Ki67 in consensus with guidelines provided by the St Gallen International Expert Consensus 

and previous publications [29, 110]. 

The large NSCLC cohort, which is a part of paper III, comprises 553 resected patients with 

stage I-IIIB NSCLC. The cohort includes patients who underwent surgical resection at the 

Nordland Central Hospital (NS), Bodø and the University Hospital of North Norway (UNN), 

Tromsø from 1990-2011 [111, 112], and includes complete medical records with follow-up 

data up until October 1, 2013 [113]. 
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The most common histological subtype of NSCLC has shifted during the last years from SCC 

towards ADC. This shift contributes to our data being not quite representative of the current 

situation, as the SCC subtype had a higher frequency in the early material (1990-2004), which 

contains 335 of the 553 patients in the NSCLC cohort [111, 112]. The enrollment of patients 

and the collection of clinical data used in this study was done over a time period spanning more 

than 20 years. During this period, there have been several alterations in how lung cancer was 

treated, with the most important one being the implementation of adjuvant chemotherapy in 

2005. Moreover, criteria for diagnosing and subtyping NSCLC have also changed during the 

follow up period. The changes in treatment regimens and criteria for diagnosing and subtyping 

that have been implemented since the start of data collection present a challenge for this 

retrospective study, as the longitudinal data may not have been treated adequately 

homogenously, resulting in skewed results. However, to counter any discrepancies due to 

updated criteria and to minimize test-retest variations, all tumor material was systematically 

examined by an experienced pathologist whenever new criteria for NSCLC classification were 

applied. 

 

4.1.2 Tissue microarray 

The process of constructing a tissue microarray (TMA) involves systematically transferring 

cylinders of small representative tissue from a ‘donor’ block, usually a whole-tissue section 

(WTS) block, into an empty ‘recipient’ paraffin block [114]. One ‘recipient’ block may hold 

several hundred cores, allowing several samples from numerous patients in the same ‘recipient’ 

block [115]. 

Compared to WTSs, TMAs saves both time and tissue, as one slide containing TMAs can hold 

close to 800 cores. Another very important advantage of using TMAs, is the elimination of 
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batch-to-batch variability. To analyze the same amount of samples using WTSs, one would 

have to prepare slides from hundreds of patients, and the staining process would have to be 

performed in numerous batches, greatly increasing the chance for batch-to-batch variability 

[116]. The pathologist(s) that would subsequently evaluate and analyze the samples to identify 

the relevant tumor compartments, would be facing a very time consuming task, complicating 

the standardization of staining. 

In regards to challenges using TMA, the question of whether a 0.6-1.0 mm core is representative 

for the heterogeneity of the total tumor is often raised. Studies have, however, revealed that 

there can be a correlation of more than 90% when comparing the expression of certain 

biomarkers in TMA and WTS [117, 118], and a recent study provides additional evidence of 

reliability in determining biomarkers using TMA when using more than one tissue core [119]. 

It is, however, important to also consider the limitations of WTS, as one single WTS contains 

a small fragment of the total tumor volume, hence representing a small part of the tumor, and 

may not itself be representative for large heterogenic tumors. 

 

4.1.3 Immunohistochemistry 

IHC is a method for the detection of antigens within cells or tissue sections (usually WTSs or 

TMAs) using specific antibodies against the antigen of interest. Next, the antibody-antigen 

complex is visualized by staining. This is a versatile technique, and can be used to assess the 

expression of numerous antigens, including proteins, amino acids and infectious agents. IHC is 

an important tool in routine diagnostics, as well as in basal research [120]. 
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The advantages of IHC are many, and include cost effectiveness and in situ assessment of 

distribution and localization of cellular components of interest. It is a well-established method 

around the world, and IHC analysis can be performed on archived tissue, decades old. 

Factors contributing to the challenges of IHC include adequate fixation, tissue processing and 

antigen retrieval. If tissues are not adequately fixated, decomposition of tissue and its markers 

may occur, and insufficient antigen retrieval may contribute to false negative results. Other 

analytical factors include selecting antibody with sufficient specificity, antibody concentration 

for adequate visualization, incubation conditions, and selection of secondary antibodies and 

mode of detection. 

 

4.1.4 In situ hybridization 

ISH is a method used to detect specific nucleotide sequences, like DNA and RNA, in tissue 

samples or in individual cells. A probe with a specific nucleotide sequence is hybridized to its 

target RNA or DNA, and subsequently visualized microscopically. 

A great advantage when using ISH for the detection of miRNAs, is the visualization of both 

expression levels and the ability to pinpoint cellular localization. However, miRNAs are small 

in size, the sequence between related miRNAs may be very similar, resulting in unspecific 

hybridization, and they may be tissue specific. Other challenges are similar to those for IHC, 

and include probe specificity, probe concentration, incubation conditions and mode of 

detection. Probe specificity is important to avoid unspecific hybridization (false positive), 

whereas correct probe concentration is important to ensure a representative view of expression. 
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4.1.5 Human cell lines 

Human immortalized cancer cell lines are widely used as a substitute for primary cells to 

investigate the biology of human cancers. They are cost effective, easy to use, they divide 

practically eternally, hence producing an unlimited supply of material, and they bypass ethical 

concerns often associated with animal studies. In addition, they comprise a very pure population 

of cells, absent of stromal and immune cells, contributing to consistency and reproducibility of 

results. However, this also produces a challenge, as cell lines are cultivated in absence of a 

normal tumor microenvironment, lacking the stromal compartment. Also, cell lines are highly 

manipulated and their original phenotype, functions and responsiveness may, to a great extent, 

have been lost [121]. Additionally, high passage numbers can inflict both genotypic and 

phenotypic variations, and genetic drift may over time cause heterogeneity in cell cultures 

[121]. 

It is important to realize that cell lines do not mirror primary cells, which in turn do not mirror 

source tissue either, and caution should be made when/if conclusions are drawn from cell line 

experiments. It is also important to recognize that both primary cells and cell lines are usually 

cultured in the absence of their normal environment, again urging for the use of caution when 

ascribing function in the body/model based on results from cell culture experiments alone. 
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4.2 Discussion of main results 

4.2.1 Paper I 

In the first paper we present functional properties and expression patterns of the miRNA cluster 

miR-143/145 in BC. The findings are based on results from functional studies, miRNA 

microarray, RT-qPCR and ISH. A miRNA cluster is miRNAs whose genes are localized in 

close proximity to each other on the DNA, resulting in their simultaneous transcription under 

the control of a common promotor. The correlation in expression between miR-143 and miR-

145 was highly significant (R=0.88, p<0.001), suggesting their cotranscription. 

We found the miR-143/145 cluster to be significantly downregulated in tumor cells when 

compared to benign cells, both in tissue samples collected from the BC cohort and in BC cell 

lines. Downregulation of the miR-143/145 cluster has been previously published for both BC 

and other cancer tissues [113, 122-126], but together with miRNA microarray and RT-qPCR, 

our study also verified expression in BC by ISH. 

Results from the miRNA microarray indicated that expression of the miR-143/145 cluster was 

higher in ER+ tumors than in ER- tumors, and this result was later verified by RT-qPCR (paper 

I, table 4). Partly due to their sensitivity to endocrine therapy targeting the ER, ER+ BCs are 

generally considered among the least aggressive subtypes. In fact, increased expression of both 

miR-143 and miR-145 was observed consistently in the least aggressive subtypes (paper I, 

tables 3 and 5). This finding is in line with previous studies describing miR-143 and miR-145 

as tumor suppressor miRNAs [127-129]. 

Functions of miRNAs are complex, and not yet fully understood, as is exemplified by 

publications reporting adverse effects of miR-143 and miR-145. Dimitrova et al. reported the 

stromal expression of miR-143 and miR-145 to stimulate neoangiogenesis, and in turn facilitate 
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tumor expansion in the lung [130]. Also, Donnarumma et al. reported increased levels of miR-

143 in exosomes from cancer associated fibroblasts, and that exosome mediated delivery to BC 

cells could promote further BC progression [131]. 

Results from the functional studies performed for paper I were interesting and somewhat 

surprising. The miR-143, which is conventionally considered a tumor suppressor [128, 132, 

133], displayed evidence of tumor promoting characteristics. The functional studies in paper I 

included three different BC cell lines, representing the major subtypes of BC. When transfecting 

these with the miR-143 mimic, both the ER+ and the TN BC cell line experienced increased 

proliferation. Proliferation in the HER2+ cell line did not significantly change from the negative 

control after transfection with the miR-143 mimic. These findings confirm the presence of a 

dualism in the function of miRNAs, and that environment and cellular context may be more 

important than expected. 

Interestingly when considering the proliferation experiments, the miR-143 mimic had 

inhibitory effect on the cells’ ability to invade in all three BC cell lines. In addition, all three 

BC cell lines suffered inhibition of both proliferation and invasion when transfected with the 

miR-145 mimic. The inhibitory effect on proliferation presented as very potent (paper I, 

figures 2a-c), and these results are in accordance with most of previous publications on miR-

145 [134-139]. Cotransfecting miR-143 and miR-145 in equal concentration, resulted in an 

inhibition of both proliferation and invasion in all three BC cell lines, which is in line with 

previous publications [140-142]. The magnitude of the effect was similar to that of the cells 

transfected with miR-145 alone. This translates into two deductions: 1) the proliferation 

promoting properties of miR-143 in the ER+ and the TN BC cell lines were not able to 

significantly halt the inhibitory effects of miR-145, and 2) the cotransfection of miR-143 and 

miR-145 did not in synergy contribute to significantly lower the cells invasive potential when 



32 

 

compared to cells transfected with either miR-143 or miR-145 alone (paper I, figure 2d). 

Different results in different BC cell lines may be explained by the target genes that are active 

in operating the oncogenic phenotype at any given time, and the miRNAs that are there to 

regulate them. 

A very interesting finding in paper I was the subcellular miR-145 distribution in the nuclei of 

myoepithelial cells (paper I, figure 7). Mature miRNAs located to the nucleus are gaining 

more and more interest, and in a very recent review by Liu et al. they summarize existing 

evidence of nuclear miRNAs [143]. The list of nuclear mature miRNAs is ever growing, and a 

relevant selection is presented in table 1. 

In addition to nuclear enrichment of mature miRNAs, which presence is in divergence to earlier 

beliefs, new and surprising functions of miRNAs are also starting to emerge. Recent 

publications have reported that nuclear miRNAs probably are involved in upregulation of 

transcription via interactions between miRNAs and gene promotors and enhancers [144]. 

Interestingly, Xiao et al. recently published a research article describing miRNAs as epigenetic 

gene activators, and that a subset of miRNAs is capable of activating transcription by means of 

association with active genetic enhancers [145]. Further, they demonstrated that miR-24-1 

function as an alternative mediator for transcriptional gene activation by facilitating the 

remodeling of chromatins at enhancer regions [145].  
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Table 1: Profiling of nuclear microRNAs. Adapted from [143]. 

Cell line Method Result 

Human nasopharyngeal 

carcinoma (NPC) 5-8F cell line 
Deep sequencing 

Among 339 nuclear and 324 

cytoplasmic miRNAs, 300 of them 

overlap. 

HCT116 human colorectal 

carcinoma cell 

Microarray 

 

RT-PCR 

Northern blot 

The overall average of nuclear ratio 

of miRNAs is 0.471 ± 0.15. 

MiR-16, miR-19b, miR-200b, miR-

222, miR-29b, miR-29c are highly 

expressed in the nucleus. 

MiR-19b, miR-195 are highly 

expressed in the nucleus. 

HeLa 

RT-qPCR array 

 

In situ Hybridization 

11 miRNAs are highly expressed in 

the nucleolus. 

MiR191, miR-484, miR-574-3p and 

miR-193b are highly expressed in the 

nucleolus 

The human breast cancer cell 

line MCF-7, MDA-MB-231 and 

the human mammary epithelial 

cell line MCF-10A (normal 

breast cells) 

Microarray 

Nuclear/cytoplasmic ratios of 

numerous miRNAs vary considerably 

across different cell lines 
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4.2.2 Paper II 

Based on results from miRNA microarray on the BC cohort and previous work performed by 

our research group, we wanted to investigate the miR-126. Downregulation of miR-126 is 

previously reported in malignant breast tissue, and is associated with metastatic progression in 

BC cells, mainly through upregulation of key functions such as cell proliferation, migration, 

and survival [146, 147]. In order to gain more insight into functions and expression, we decided 

to include the passenger strand, miR-126-5p, into our inquiry.  

We found endogenous expression of both miR-126-3p (lead strand) and miR-126-5p (passenger 

strand) to be significantly downregulated in tumor cells when compared to benign cells, both 

in tissue samples collected from the BC cohort and in BC cell lines representing the major 

subtypes of BC: ER+, HER2+ and TN. 

Endogenous expression of miR-126-3p is considered to be tumor suppressive [148-151], and 

this is supported by our findings in the functional experiments, where all three BC cell lines 

suffered both reduced proliferation and reduced invasive capacity when transfected with the 

miR-126-3p mimic (paper II, figures 3 and 4). Surprisingly, the TN BC cell line experienced 

a very potent increase in proliferation when transfected with miR-126-5p, whilst the ER+ and 

the HER2+ BC cell lines suffered inhibition of proliferation when transfected with the same 

miRNA. Invasion potential was also increased in the TN BC cell line when transfected with 

miR-126-5p, but the magnitude of the response was not as obvious as it was for the proliferation 

experiment. These findings are not in line with previous publications, where the passenger 

strand, miR-126-5p, is reported to work in synergy with the lead strand, miR-126-3p, to 

facilitate a tumor suppressor phenotype [151, 152]. However, there are several reports 

supporting our findings in the TN BC cell line, and they put miR-126-5p in association with 

tumor supporting properties such as drug resistance and poor prognosis in acute myeloid 
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leukemia (AML) patients [153], promotion and protection of endothelial proliferation by 

inhibition of Dlk1 and SetD5 [154, 155], and induction of proliferation and angiogenesis in 

non-tumorigenic cells via the PI3K/AKT and MAPK/ERK pathways [156]. Other pathways 

described in association with miR-126-5p and enhanced tumor progression, include the 

NOTCH pathway, the Akt signaling pathway and the IGF-1 signaling pathway [157-159]. 

Expression analysis using TMA revealed that stromal levels of miR-126-5p were significantly 

associated with both molecular subtype and histological grade, and the highest levels of miR-

126-5p were found in the more aggressive subtypes of BC. In this context it is also relevant to 

point out the correlation between miR-126-5p and the proliferation marker Ki67, at R=0.24, 

p=0.055.  Although not statistically significant at the p≤0.05 level, it is worth considering in 

this setting. In the clinical tissue material analyzed by microarray and RT-qPCR, expression of 

miR-126-3p and miR126-5p was lower in BCs with nodal involvement (paper II, figure 5). 

As previously described, miR-126 is associated with metastases, and has been demonstrated as 

a negative regulator of the metastatic process in BC, in part by suppressing tumor growth in 

vitro using highly metastatic BC cell lines [146]. Knockdown of miR-126 has also been proven 

to lead to formation of metastases with high blood vessel density due to increased recruitment 

of endothelial cells to the metastatic cells [160].  

The passenger strands of miRNAs are typically degraded after processing, and are consequently 

less abundant compared to their lead strand [161], and this is also evident in our study when 

analyzing results from microarray and PCR. Interestingly, when comparing endogenous levels 

of lead strand miRNA with endogenous levels of passenger strand miRNA in the non-cancerous 

breast cell line MCF-10A, the ER+ BC cell line, the HER2+ BC cell line and the TN BC cell 

line, we discovered an incremental shift in the miR-126-3p/miR-126-5p expression pattern, 

revealing miR-126-5p to be the more abundant strand in the TN BC cell line (paper II, figure 
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2). It is possible that mechanisms responsible for targeting the passenger strand for degradation 

are either corrupted, or in some way modified, allowing the accumulation of the passenger 

strand (paper II, figure 8). Consequently, a larger part of the mature passenger strand is eligible 

to interact with the RISC-complex to exhibit a more potent biological response in the TN BC 

cell line, which represents the most aggressive BC subtype. 

There was a strong link between molecular subtype, tumor grade and expression of miR-126-

5p in the tumor stromal compartments. Several studies have described considerable crosstalk 

between tumor and stroma via exosomal transfer of miRNAs [162-164] where microvesicles 

containing miRNAs derived from cancer cells convert fibroblast into cancer associated 

fibroblasts (CAFs) with tumor-promoting properties. Together with functional studies on miR-

126-5p, the increased expression in stroma of more advanced BCs tells an interesting story. 

This work has provided valuable insight into the duplicity of miRNA function, emphasized by 

mature miR-126 having both potent tumor suppressor and tumor driver functions with opposite 

effects of the two different miR-126 strands in TN BC.  
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4.2.3 Paper III 

Herein, we present results on functional studies, expression patterns, and prognostic 

significance in regards to the same miRNA cluster as in paper I, namely the miR-143/145 

cluster. The work in this paper was performed on a NSCLC cohort comprising 553 patients and 

NSCLC cell lines. My involvement in this work was primarily on the design and 

implementation of the functional studies, and the subsequent interpretation and discussion of 

the results obtained from these studies. 

The results from this work revealed stromal expression of miR-143 to be a positive prognostic 

marker in the female population, and it was also demonstrated that stromal expression of miR-

145 is a positive prognostic marker in the male population. Previous publications have reported 

comparable findings, where low expression of miR-145 was associated with poor outcome in 

NSCLC and prostate cancer [165, 166]. However, there are reports of miR-143/145 expression 

having a negative impact on survival for patients with esophageal cancer [167] and bladder 

cancer [168], suggesting that impact of the expression patterns is tissue-specific. There are 

indications implying that expression of certain miRNAs may be gender specific, in addition to 

tissue-specific, and Duttagupta et al. have observed a subset of miRNAs to be differentially 

expressed in men and women [169]. This is interesting, and in line with our results, where 

stromal expression of miR-143 was associated with positive prognosis in women, and stromal 

expression of miR-145 was associated with positive prognosis in men. 

The functional experiments were performed on NSCLC cell lines representing adenocarcinoma, 

squamous cell carcinoma and large-cell lung cancer. Cell lines were transfected with either 

miR-143 mimic, miR-145 mimic or miR-143 and miR-145 in equal concentrations. All cell 

lines suffered a significant loss in their capacity to both proliferate and migrate when introduced 

to miR-145. The adenocarcinoma cell line and the large-cell lung cancer cell line displayed 
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similar behavior when introduced to either miR-143 alone, or miR-143 and miR-145 in 

combination and in equal concentrations, although the effect was less prominent for the miR-

143 transfected cells. When the squamous cell carcinoma cell line was transfected with miR-

143, the proliferation was significantly increased, indicating miR-143 to promote tumor growth 

in this cell line. This is a very interesting observation when considering the results from the BC 

study on miR-143 and miR-145. In paper I we demonstrated that miR-143 was a potent tumor 

promoting factor in the ER+ and the TN BC cell lines (paper I, figures 2a and 2c). We have jet 

to explain why miR-143 has this effect on these cell lines, but it is noteworthy that basal cells 

and squamous cells share many cellular signatures [45, 55]. It is possible that the proliferation 

promoting properties of miR-143 in these two cell lines from different organs are a direct result 

of their cellular similarities, perhaps arguing for cell-type specific miRNAs rather than, or in 

addition to, tissue-specific miRNAs. Unfortunately, we were not able to get the squamous lung 

cancer cell line to migrate, so there are no results for this experiment. It would have been 

interesting to observe if the miR-143 has an inhibitory effect on migration in the squamous cell 

lung carcinoma cell line, like it had in the TN BC cell line, or if it would promote migration as 

it promotes proliferation.  

As we observed for BC cell lines in paper I, the miR-143/145 cluster has a two-faced function 

in NSCLC cell lines as well, probably ascribed to cellular context. In order to increase our 

understanding into this duplicity, future experiments should focus on deciphering cellular 

pathways and miRNA targets in cells with different subtype, but within the same tissue, and 

also from cells in various tissues. 
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5. Conclusions and future perspectives 

The discovery of miRNAs in the early 1990s was groundbreaking, and a MeSH search (medical 

subject heading search) today, revealed close to 60 000 entries regarding miRNAs in the 

PubMed database. In the majority of publications their described function appears to be pretty 

obvious: To act as post-transcriptional inhibitors of translation, targeting specific mRNAs via 

interactions with endonucleases. Today, however, we have come to realize that the actual 

picture is far more complicated. New pathways and mechanisms of action are frequently being 

described for both well-known and newly discovered miRNAs. Very recently (August 2018), 

Dragomir et al. published a SnapShot in Cell, describing unconventional functions of miRNAs, 

including miRNAs directly activating transcription and miRNAs coding for proteins [170]. 

These are modes of action quite opposite to the central/old dogma of miRNA biogenesis and 

function, and will likely maneuver future miRNA research into new directions. 

The main focus of this thesis has been on investigating functions and tissue expression of 

selected miRNAs identified as dysregulated in BC. We have determined that the miR-143/145 

cluster generally function as a tumor suppressor, which is in accordance with the general 

consensus, but that this function is dependent on (at least) cellular context. The functional 

dualism observed for the miR-143 in both BC cell lines and NSCLC cell lines, emphasizes the 

need for more specific research into pathways and functions of miRNAs. Adding to this story, 

are the results from the paper describing miR-126. Again, we encounter results contradicting 

the general consensus, and again we observe a dualism in function which is unsuspected. 

One of the major questions of the future is whether or not miRNAs can be effective players in 

targeted therapy, e.g. as miRNA replacement therapy in cancer treatment. Indeed, interesting 

research has depicted certain miRNAs to prevent development of drug resistance when used in 

multi-targeted treatment [171, 172], and the first miRNA treatment eligible for clinical trial, 
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MesomiR-1, quite recently completed phase I, and preliminary results are promising [173]. But 

as this thesis accentuates, caution should be exercised when navigating the miRNA landscape 

in search for new therapeutics, as their functional duality may become a concern. 

Hopefully, the future development of new technologies will help shed light on the complex role 

of miRNA function in human cells. It is my sincere belief that, guided by miRNAs, the future 

holds promise of increased accuracy of diagnosis and treatment options for many malignancies. 
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