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ABSTRACT 

DYRK1A is one of five members of the Dual-specificity tyrosine (Y) phosphorylation-Regulated 

Kinase (DYRK) family. The DYRK1A gene is located in the Down syndrome critical region and 

regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells 

during early development. This has focused research on to its role in neuronal degenerative 

diseases, including Alzheimer’s and Down syndrome; recent studies have also shown a possible 

role of DYRK1A in diabetes. Here we report a variety of scaffolds not generally known for 

DYRK1A inhibition, demonstrating their effects in in vitro assays and also in cell cultures. These 

inhibitors effectively block the tau phosphorylation that is a hallmark of Alzheimer’s Disease. 

The crystal structures of these inhibitors support the design of optimized and novel therapeutics. 

 

INTRODUCTION 

Alzheimer’s disease (AD) is the primary cause of dementia in the elderly1. AD affects less than 

5% of individuals 65 years of age and younger, but the incidence of AD reaches nearly 40% in 

patients 85 years of age and older1.  This neurodegenerative disorder is characterized by neuronal 

death and loss of gray matter in the frontal cortex and hippocampus. This neurodegenerative 

disorder is characterized by neuronal death and loss of gray matter in the frontal cortex and 

hippocampus. Memory loss is a typical symptom of AD and has been linked to the accumulation 

of amyloid plaques and neurofibrillary tangles (NFTs)2. The latter process is mediated by 

hyperphosphorylation of tau proteins that are inactive and form multiple aggregates. According to 

the β−amyloid cascade hypothesis, the deposition of insoluble β-amyloid is responsible for 

neuronal death. Plaques are constituted by β-amyloid peptides (Aβ) that are generated via the 

cleavage of the amyloid precursor protein (APP) by β- and γ-secretases. Aβ-fragments, 37-42 
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amino acids in length, may produce soluble oligomers, although they aggregate into insoluble 

β-amyloid plaques in AD2, 3. Alternatively, the insoluble hyperphosphorylated tau proteins and 

the buildup of NFTs may be the etiology of neuronal death4-6. Both mechanisms of neuronal 

pathology depend on the kinase DYRK1A, which regulates the cell cycle, neuronal 

differentiation and synaptic transmission7. 

Increased levels of DYRK1A are present in the brain of patients with AD and in other 

neurodegenerative diseases, including Parkinson, Huntington and Pick syndromes7. The human 

DYRK1A gene is located in the Down syndrome critical region (DSCR) encoded by chromosome 

21, and the overexpression of DYRK1A likely contributes to the neurological abnormalities of 

this  disorder8. 

DYRK1A increases the secretase-mediated cleavage of APP into Aβ peptides. DYRK1A 

phosphorylates APP directly9 and the Aβ peptides stimulate DYRK1A expression in a positive 

feedback loop9. Additionally DYRK1A phosphorylates presenilin 1 (PSEN1)10, one of the four 

core proteins in the γ-secretase complex, which enhances secretase activity. DYRK1A 

phosphorylates human microtubule associated protein tau at eleven different sites11, whereby 

most of the tau protein becomes hyperphosphorylated. The initial phosphorylation of tau by 

DYRK1A triggers tau phosphorylation by GSK3β, which potentiates self-aggregation and fibril 

formation in vitro
11, 12. Because of the central role of DYRK1A in the development and 

progression of AD, DYRK1A has emerged as a high priority target for inhibition, offering a 

novel approach for the treatment of AD. In recent years, evidence has built up that point to a role 

of DYRK1A in diabetes and β-cell proliferation13-15, expanding the pharmaceutical application of 

a DYRK1A inhibitor. Therefore, we screened a diverse set of scaffolds for their ability to inhibit 

DYRK1A kinase activity and to prevent tau phosphorylation. The diversity of the novel scaffolds 
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and the binding modes determined by crystal structure and in vitro assays may lead to the 

development of novel strategies for the clinical treatment of AD. 

 

RESULTS 

Identification of novel DYRK1A inhibitors 

Novel DYRK1A inhibitors were identified by employing KinomeScanTM screening data of an 

in-house library of approximately 1,000 compounds including previously synthesized kinase 

inhibitors.  23 compounds were chosen as candidates for activity assay and their ability to inhibit 

the phosphorylation of DYRKtide (RRRFRPASPLRGPPK) by DYRK1A at a fixed 

concentration of 20 µM with an ATP regenerative assay (Cook et al.16). The results for the most 

promising compounds are shown in Table 1 and all the 23 compounds are shown in the 

supporting information Table S1. The inhibitors had a broad range of activity: 8 compounds 

showed strong inhibition (remaining activity <5%), 8 compounds showed moderate inhibition 

(11%-46% remaining activity) and 6 compounds showed little or no inhibition (70%-100% 

remaining activity). 15 inhibitors that showed at least 50% inhibition were titrated in decreasing 

concentrations (200µM-20nM) to determine the IC50 and Ki values.  

 

Compounds AC12, AC13, AC14, AC15 and AC27 were found to possess highest ability to 

inhibit the phosphorylation of DYRKtide, with Ki values around 100-250 nM. AC7, AC24 and 

AC25 inhibitors showed Ki values of around 326 nM - 570 nM. Inhibitors with identical core 

scaffolds revealed similar Ki values, as seen for the two pairs AC12 and AC15 (~104 nM and 

~158 nM), and AC24 and AC25 (383 nM and 575 nM, respectively). The remaining compounds 

(AC2, AC8, AC16, AC18, AC20, AC22, and AC23) were weaker compared to the 8 inhibitors 
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discussed above and exhibited Ki values ranging from 1.7 µM to >8 µM (supporting information 

Table S1).  

Table 1. Inhibitory activity of the selected most active compounds. 

 

 Name 

Remaining 

activity at 

20 µM (%) 

IC50  

(nM) 

Ki 

(nM) 

Kinome 

Scan 

10 µM 

Kinome 

Scan 

1 µM 

Cell line 

tau 

phosphorylation 

Cell line 

Luciferase 

Assay*** 

PDB 

code 

Code 

 

AC22 XMD8-49 24 >6000 >2800 0.7 -  active 5-10 µM 6EIL 

AC23 XMD8-62e 15 4200 2015 1.6 -  active 0.5-1 µM 6EIP 

AC20 HG-8-60-1 11 3500 1680 1.2 - active >20 µM 6EIJ 

AC25 XMD15-27 4 1200 575 0.15 - active † 6EIR 

AC24 XMD14-124 1.3 800 383 0.05 - active 10-20 µM 6EIQ 

AC27 JWC-055 2 532 252 - 1.4 active 0.05-0.1 µM 6EIS 

AC15 XMD7-112 0 329 158 ** - active 5-10 µM 6EJ4 

AC12 XMD7-117 0 216 104 ** - active 1-5 µM 6EIF 

AC28 JWD-065* - - -  0 - - - 6EIV 

 

IC50 values determined in the Cook assay at 25 degrees and 128 µM ATP, Ki calculated with a 

KM value for DYRK1A of 118 µM17. *due to solubility problems of the compound in stock 

solution and resulting uncertainty of the concentration, binding kinetics were not measured, 

however a cocrystal structure with inhibitor could be obtained. **values available for DYRK1B 

only (0.5 and 0.2 respectively). *** Concentration where inhibitory activity was above 1.5 fold 

the basal level. †compound failed to inhibit DYRK1A in this assay, negatively interferes with the 

cells.  
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Figure 1. Structures of the nine novel DYRK1A inhibitors, representing six different core 

scaffolds. AC12 and AC15 share one core structure, and AC24, AC25 and AC28 share a second 

type of the core structure.  

 

 

 

 

 

 

Tau phosphorylation inhibitory activity assay in cells 
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Eight compounds that displayed inhibitory activity in vitro (see Table 1) were further tested in 

a cell line to establish whether they possessed the capacity to inhibit tau phosphorylation by 

DYRK1A. Expression vectors encoding FLAG-tagged TAU and EGFP-tagged DYRK1A were 

co-transfected into NCI-H1299 cells and the amount of phospho-tau protein (p-tau) was analyzed 

by Western blot (Figure 2 and supporting information Figure S2). Cells transfected with empty 

vectors were utilized as controls. 

 

 

 

Figure 2. Inhibition of DYRK1A dependent tau T212 phosphorylation by different compounds. 

NCI-H1299 cells were transfected with expression vector encoding FLAG-tagged tau in 

combination with either empty expression vector or EGFP-tagged DYRK1A. Twenty hours after 

transfection the cells were incubated for 2 hours with vehicle (-) or the indicated inhibitor 

concentration before the cells were harvested. Phosphorylated T212 tau was detected by Western-

blotting using the polyclonal anti-phospho T212 tau antibody (44-740G, Invitrogen), total FLAG- 

tau was detected by using a monoclonal M2 anti-FLAG antibody (F1804, Sigma-Aldrich) and 

EGFP-DYRK1A by a polyclonal anti-GFP antibody (Sc-8334, Santa-Cruz). 
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AC12, AC15, AC24 and AC25 showed a significant dose-dependent inhibition of pT212-tau 

phosphorylation, in contrast to AC20, AC22, AC23 and AC27. However, all these compounds 

inhibited pT212-tau phosphorylation. The degree of kinase inhibition observed at the protein 

level reflected the one seen in the in vitro activity assay. In general, compounds with Ki of 

600 nM or tighter showed clear dose-response effects, while compounds with Ki values ranging 

from 1.7 to 3 µM showed inhibition but with significantly greater noise with respect to dose-

response correlation. An exception to this general observation is AC27. This compound inhibits 

DYRK1A in the pT212-tau phosphorylation assay, however not as potently as it would have been 

expected from the in vitro activity assay. 

 

Crystal structures 

The inhibitors were set up in co-crystallization trials with DYRK1A. Nine of the novel 

scaffolds (Figure 1) formed co-crystals. The crystal packing and asymmetric unit is similar to the 

previously published DYRK1A complexes with PKC41217 or the benzothiazole fragments18, with 

tetramers constituting the asymmetric unit. In general, the best electron density fit is found for 

protomer A and the greatest disorder is seen in protomer C. Several chains in the asymmetric unit 

show disulfide bridge formation between the HCD motif and the activation loop cysteine. 

However, in many chains the cysteine residues are reduced and/or in a mixed state, with 

additional evidence of radiation damage due to low amplitude electron density for cysteine 

C31217, 18. The compounds are bound to all four protomers in the tetramer of the asymmetric unit 

in DYRK1A (Figure 3). One exception is compound AC22, which lacks electron density for the 

entire inhibitor in chain C of the tetramer and the ATP-pocket is empty. However, the electron 
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9 

 

density is clear for the other three chains. The omit difference density maps after simulated 

annealing for all the nine inhibitors are shown in the supporting information Figure S3. The 

crystallographic data and refinement statistics are summarized in supporting information Table 

S2 in the supplementary data.  

 

Figure 3. Binding pocket of DYRK1A bound to nine different inhibitors. The electron density 

for the inhibitor (2Fo-Fc map) is shown at 1 σ.  The inhibitors form hydrogen bonds to E239 and 

L241, and AC20, AC22 and AC27 form an H-bond to K188. Inhibitors AC12 and AC15 have a 

hydrogen bond acceptor group oriented toward K188. Most of inhibitors are shown as they bind 

to chain A of the four protein molecules in the asymmetric unit of DYRK1A. The two exceptions 

are AC23 where the inhibitor is shown bound in chain B, and AC27 with the inhibitor shown in 

chain D. In the AC23 crystal structure, only chain B has a water clearly visible in the electron 

density that could form bridging H-bonds between the inhibitor and K188 or D307. In the AC27 
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crystal structure chain D has a water molecule, which connects the inhibitor to the hinge. There is 

no clear electron density for a water in the other chains, however, some diffuse electron density 

might suggest water molecules at these positions, in the other chains too. PDB codes for 

DYRK1A complexes: AC12: 6EIF; AC15: 6EJ4; AC20: 6EIJ; AC22: 6EIL; AC23: 6EIP; 

AC24: 6EIQ; AC25: 6EIR; AC27: 6EIS; AC28: 6EIV. 

 

The inhibitors that could be co-crystallized with DYRK1A represent six different chemical 

scaffolds. Inhibitors AC12 and AC15 share a 3-(3-pyridin-3-yl-1H-pyrrolo[2,3-b]pyridin-5-

yl)phenyl core scaffold, while inhibitors AC24, AC25 and AC28 share a 4-[4-amino-2-[2-

methoxy-4-(4-methylpiperazin-1-yl)anilino]-1,3-thiazole-5-carbonyl]phenyl core scaffold. AC12 

and AC15 differ by the substitutions of sulfonamide (para) or amine (meta) on the terminal arene, 

respectively. Compound AC24 represents the core scaffold, whereby compounds AC25 and 

AC28 have terminal acrylamide functions added to the terminal arene at para and meta positions, 

respectively. AC28 differs additionally by the lack of a methoxy substitution on the central 

phenyl ring. The other core scaffolds are represented by compounds AC20 with 7-azathiazole, 

AC22 as a pyrazine, AC23 with an alkaloid, and AC27 as a substituted 1,6-phenanthroline.  

With one exception, the inhibitors are typical hinge binders (Figure 3 and supporting 

information Figures S3, S4 and S5). AC12 and AC15 each make two hydrogen bonds to E239 

(gatekeeper+1) and L241 (gatekeeper+3). The pyridine nitrogen faces the catalytic lysine K188, 

but the 4 Å distance to the amine nitrogen is too long for a hydrogen bond. AC22 is anchored to 

the hinge via two hydrogen bonds, which orients the pyridine nitrogen H-bond acceptor towards 

the catalytic lysine K188. Compared to AC12 and AC15, the distances to K188 are shorter, 

including one contact at 3.2 Å, within the range of typical hydrogen bond distances. The crystal 
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structure also shows that K188 shares a salt bridge with E203. Similarly, the aminopyrimidine 

functionality of AC23 is anchored to the hinge, which points the benzamide substituent towards 

K188, but without a direct hydrogen bond interaction. However, in chain B there is a water 

molecule that bridges the gap between the amide and K188. The benzamide moiety has a parallel 

displaced π-π stacking interaction with the gatekeeper phenylalanine F238.  

AC24, AC25 and AC28 make three hydrogen bonds to the hinge via the thiazole and two 

adjoining amines. In addition, the piperazine rings of these compounds have salt bridge 

interactions with D247 (the gatekeeper+8 residue). They do not interact with K188. Compared to 

AC24, the addition of an acrylamide group on AC25 weakens binding, and the crystal structure 

shows no favorable interactions, and especially no covalent binding. A superposition of AC24, 

AC25, and AC28 from all asymmetric unit domains show that the acrylamide groups are pushed 

out of the binding pocket (Figure 4). However, the electron density for the acrylamide groups are 

relatively weak, and some divergence in their positions is evident in the refined structures. A 

rotation of the terminal benzene ring of approximately 90 degrees may be seen in two binding 

poses for AC25. The other benzene ring of the scaffold (adjacent to the piperazine ring) is 

oriented differently and heterogeneously for AC28. The methoxy substituent of this ring, found 

in AC24 and AC25, apparently stabilizes this benzene ring compared to AC28 (Figure 4). On 

the other hand, the ring of inhibitor AC28 is stabilized by intramolecular π-π interactions of the 

acrylamide double bond with the π system of the benzene ring.  
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Figure 4. Superposition of the binding pockets and inhibitors of the four chains in the 

asymmetric unit of DYRK1A of each inhibitor:  AC24 (green PDB: 6EIQ) with AC25 (cyan 

PDB: 6EIR) and AC28 (violet PDB: 6EIV). Although the general pose of each inhibitor remains 

similar, some differences are evident between the individual pockets. AC24 has the greatest 

conservation of geometry, while especially the acrylamide groups of AC25 and AC28 show more 

variation, reflected also by lower electron density for these parts.   

 

AC20 has only a single hinge binding hydrogen bond, with L241 (gatekeeper+3), rather than a 

pair (including the gatekeeper+1 residue E239) that is typical for the other inhibitors.  AC20 

shares a hydrogen bond with the catalytic lysine K188 with its urea oxygen, and also shares a salt 

bridge with the DFG aspartate D307 via the morpholine nitrogen. It forms in addition a 

perpendicular π stacking interaction with the gatekeeper phenylalanine. Like all the other 

inhibitors, AC20 binds in a typical type I binding mode. 

The strongest of the inhibitors in this study, AC27 uniquely has no hydrogen bond to the hinge. 

It has anchoring hydrogen bonds with K188 and E203 via its diazole group, with N244 via its 

carbonyl group, and also with the N292 side chain as a C-H--O hydrogen bond with a hydrogen 
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of the fluorinated arene. Additionally, a bridging water between the hinge and the inhibitor was 

found in the chain D of the tetramer. This water has a hydrogen bonding distance of 2.7 Å from 

the 1,6-phenanthroline nitrogen, and is in contact with the main chain amide nitrogen of L241 

with a distance of 2.8 Å and to the carbonyl of E239 of 2.6 Å. The trifluoromethyl, fluorobenzyl 

ring is in perpendicular face-edge intramolecular contact with both the 1,6-phenanthroline and 

diazole rings. The trifluoromethyl group is embedded in a shallow hydrophobic pocket created by 

the first glycine (G166) of the glycine rich loop, the preceding I165 side chain, and the V173 side 

chain opposite of G166. (Figure 3) A superposition of all the inhibitors is shown in supporting 

information Figure S4.  

 

Kinase profiling of DYRK1A inhibitors  

 We evaluated kinase selectivity profiles as determined by KinomeScanTM binding assays 

against a panel of 353/402/442 distinct kinases and their mutants (Figure 5). The kinase profiling 

data for the inhibitors show that AC12 and AC15 are pan kinase inhibitors (with a broad 

spectrum of inhibition). As a consequence, these two inhibitors did not show a clear pattern of 

selectivity, and were generally less effective against tyrosine kinases. The kinase profiling data 

for remaining seven of the compounds with cocrystal structures showed the typical cross 

reactivities of the inhibitors between DYRK and CLK families. In addition, AC22 and AC27 

show significant cross reactivities against GSK3β, which is consistent with the kinase selectivity 

pattern of leucettine L4119 

AC20 exhibited good overall kinome selectivity, with a S(10) selectivity score of 0.06 at 10 

µM. (The S(10) selectivity index is defined as the percentage of the kinome inhibited below 10% 

of the control; S[10] = [number of kinases with %Ctrl < 10]/[number of kinases tested]). AC20 
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binds CLK2 more tightly than DYRK1A. This compound bound also the tyrosine kinases ABL 

and PDGFR, which is unsurprising, considering that the series of compounds with this core 

structure were initially designed for targeting BCR-ABL20.  

AC22 is the only tested inhibitor that shows a stronger inhibition of GSK3β compared to 

DYRK1A. Other kinases of the CMGC group significantly inhibited by AC22 include CLK2, 

HIPK1/2 and CDK7. AC22 also interferes with other kinases across several families, albeit with 

weaker binding affinity. 

AC23 exhibited rather weak and unspecific DYRK binding. The main targets of this compound 

belonged to the CMGC and CAMK families, with DRAK1/2 and ERK5 as the top hits.  

The three thiazole compounds, AC24, AC25 and AC28, have slightly varying affinities. While 

AC24 had greater affinity for DYRKs compared to CLKs, the addition of the acrylamide in 

AC25 and AC28 shifted the profile towards CLK2, and also decreases the overall selectivity.  

AC27, an analog of mTOR inhibitor Torin221, selectively binds to mTOR, but also CMGC 

family kinases and lipid kinases PIK3CG, PIK4CB, with S(10) scores of 0.03 at 1 µM. It 

possesses similar inhibition strengths against DYRK1A/B, CLK1/3 and GSK3A/B among 

CMGC family members. 
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Figure 5 Kinome binding plots for the nine compounds. The levels of binding were measured at 

concentrations 10 µM (except for AC27, measured at 1 µM).  

 

NFAT Luc reporter assays 

The newly identified compounds were studied in the HEK293 cell line by introducing the 

NFAT luciferase activity assay (Figure 6). The compounds were titrated in increasing amounts 

from 0.25 µM to 20 µM. AC27, as the most active compound, was titrated from 0.05 µM to 

10 µM. With the exception of AC25, all compounds showed activity in the tested cell line. AC12 

was found to be active at concentrations up to 5 µM; higher concentrations of this compound led 

to a drop in the activity, suggesting that AC12 might be toxic at concentrations >5 µM.  AC15, 

despite sharing the same core structure of AC12, showed dose-dependent inhibition up to 20 µM; 

this compound required a minimum of 5 µM to show considerable activity above the background 

level. This was also the case for AC20, AC22 and AC24. Based on the NFAT luciferase activity 

assay, the most active compounds were AC23 and AC27. Specifically, AC27 showed clear 

activity at 50 nM and thus is approximately 10-fold more active than AC23 and approximately 
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100-fold more active than to the other six inhibitors in this assay. The drop in the activity of 

AC27 at 10 µM and AC23 at 20 µM may suggest that these concentrations might be toxic. As 

mentioned above, AC25 was the only inactive compound with respect to this assay, showing an 

apparent dose-dependent drop in the basal activity, possibly coupled with toxicity for HEK293 

cells. 

 

 

Figure 6. NFAT Luc reporter assay. The plot is normalized to the basal activity of the luciferase. 

Numbers indicate the fold of increase in luciferase activity upon inhibition of DYRK1A (A). The 

most active compound AC27 shows a 1.5fold increase in luciferase activity at 50 nM. For 

comparison harmine is included in the same assay (B). Even though harmine reached a higher 

activity and does not display the drop in activity as AC27 at higher concentrations toward 

DYRK1A, AC27 is active at much lower concentrations. 100 nM AC27 leads to the same 

activity as 5 µM harmine, making AC27 nearly 50 times more active than harmine in this 

particular cellular assay. 
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DISCUSSION 

The list of potential DYRK1A inhibitors has been growing over the past few years. Diverse 

chemical fragments that bind to DYRK1A with high affinity have been reported22. However, 

none of these have advanced into clinical trials. This study presents a set of novel scaffolds with 

good potential for DYRK1A inhibition, evaluated using a series of structural and cellular assay 

experiments. AC12, AC15 and AC22 are compounds with relatively low molecular weights and 

can considered as fragments and classical hinge binders. In contrast to harmine, INDY23 or  

recently published hydroxy- and methoxy-benzothiazole18 fragments, the distances of inhibitor 

atoms to the catalytic lysine or the aspartate from the DFG motive remain relatively long. On the 

other hand, structural variations in the physiological environment might include significant 

dynamic hydrogen bonding to the catalytic lysine K188, especially correlated with dynamic 

properties of helix C. Although AC12, AC15 and AC22 have similar molecular weights and 

similar binding poses with the hinge region, their binding strengths differ greatly. AC12 and 

AC15 were the strongest binders, while AC22 was one of the weakest that still enabled cocrystal 

structure determination. (The relatively weak binding of AC22 is also reflected in the fact that 

one of the ATP pockets of the four DYRK1A chains in the asymmetric unit of the crystal 

structure was empty). Detailed comparison of the structures AC12, AC15 and AC22 shows that 

the pyridine rings occupy the same volume, and the overlap of the nitrogen atoms anchored to the 

hinge is apparent (Figure 7A). However, the methoxy group of AC22 on the aniline ring most 

likely weakens the binding. The structure shows that the methoxy group pushes the compound 

away from the hinge, hence increasing intramolecular strain.  
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Figure 7. Orientation and interaction of the inhibitors in the binding pocket. (A) Superimposition 

of AC12 (cyan PDB: 6EIF) AC15 (pink PDB: 6EJ4) and AC22 (green PDB: 6EIL). The 

methoxy group of AC22 displaces the inhibitor away from the hinge, weakening binding. (B) 

Superposition of AC20 (green PDB: 6EIJ) with 5-hydroxy-benzothiazole (blue PDB: 5A3X) and 

6-cyano-benzothiazole (magenta PDB: 5A4T). AC20 binds with its 5-substiuted pyridothiazole 

in the same orientation as the 6-cyano-benzothiazole and, unlike 5-hydroxy-benzothiazole or 

INDY, does not make sulfur aromatic ring interactions with the gatekeeper phenylalanine. The 

three compounds also have differing selectivity profiles. While AC12 and AC15 are more nearly 

pan kinome inhibitors (targeting many different kinases), AC22 is much more discriminating, 

with however a greatly reduced inhibitory strength.  

 

The remaining inhibitors for which a cocrystal structure could be obtained are selective towards 

the CMGC kinase group and DYRKs. However, all show additional cross reactivity against 

targets outside the CMGC group. 

Inhibitor AC20 inhibits DYRK1A, however the strongest inhibition of CMGC group kinases is 

of CLK2, and similar or stronger inhibition is seen of TK group members ABL and PDGFRB 

(with considerable variation across ABL mutants).  AC20 is clearly hydrogen bonded to K188, 
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wrapping its extended tail across and partially around the DFG motif. The pyridothiazole core 

structure of AC20 is similar to the benzothiazoles found in other published DYRK1A inhibitors 

(including INDY23, BINDY24, or the recently published 5- or 6- substituted benzothiazole 

fragments18 ), but differs by an additional nitrogen in the six membered ring. AC20 is a 6-

substituted pyridothiazole; analogous to the benzothiazole interactions , the pyridothiazole binds 

alongside the hinge instead of making sulfur aromatic ring interactions with the gatekeeper as 

seen for INDY23 or the 5-substituted fragments of benzothiazoles18 (Figure 7B).   

The three thiazole compounds AC24, AC25 and AC28 show intermediate binding strengths 

and selectivity. Compound AC24 represents the core scaffold in this group, whereby compounds 

AC25 and AC28 have terminal acrylamide functions added to the terminal arene at para and meta 

positions, respectively. The addition of the acrylamide in AC25 and AC28 shifted the binding 

affinity away from DYRK towards CLK2, and also decreases the overall selectivity. Acrylamides 

as functional groups are typically used to introduce covalent binding of inhibitors via addition to 

cysteines. (These compounds were previously synthesized as inhibitors of kinases other than 

DYRK1A) Because of the absence of cysteine at the ATP pocket in DYRK1A, the acrylamides 

in AC25 and AC28 are not expected to introduce covalent binding, but nonbonded interactions 

still affect binding strengths. The functional acrylamide group might stabilize binding to related 

off-targets. AC25 was the only compound that did not inhibit DYRK1A in the NFATluc assay, 

instead showing toxicity.  

As described above, the crystal structure of AC25 showed that the additional acrylamide was 

associated with a shift of its parent phenyl ring away from its position in AC24, presumably to 

avoid a steric clash with D307 (of DFG), but possibly colliding with V173. Two characteristics 

distinguish AC28 from AC24 and AC25: the acrylamide functional group at the meta position, 

and the lack of a 2-methoxy substituent in aniline. These properties changed the inhibition 
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selectivity pattern significantly, eliminating their inhibitory activity against many CAMK family 

kinases, JNK kinases, and adding the binding to the pseudokinase domains of JAK1 and TYK2. 

Moreover, the cross reactivity towards MAST1 in the AGC group of AC24 and AC25 was lost in 

AC28. These clear and specific dependencies warrant further more detailed structural studies. 

AC23 and AC27 have a potential bridging water molecule in the binding pocket that could be 

an important affinity determinant. In fact, for AC27 the water in the binding pocket is the only 

apparent interaction that anchors AC27 to the hinge. The waters are unambiguous only in chain B 

(AC23) or chain D (AC27) in the electron density of the DYRK1A tetramer. Despite the missing 

electron density, a water bridging interaction may however be important, because multiple 

bridged geometries may exist. Optimization of these compounds can take this into account 

(Figure 3 and 8).   

 

 

Figure 8 Water mediated binding of AC23 (PDB: 6EIP) and AC27 (PDB: 6EIS) to DYRK1A. 

The structure of the inhibitor in the ATP pocket of DYRK1A includes a water molecule that 

enables bridging interactions between the inhibitor and the K188, E203 and D307 for AC23, and 

between the inhibitor and the hinge carbonyl of E239 and amide nitrogen of L241 for AC27. 

There is no clear electron density for a water in the other chains; however, some diffuse electron 

density suggests it to be present there also. 
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AC23 and especially AC27 were the most active compounds in the cell line assay (NFATluc, 

Figure 6). These compounds were active at lower concentrations compared to harmine. AC23 

reached a twofold activity increase at 1 µM, and AC27 reached twofold activation already at 

0.1 µM. In contrast, harmine reaches this level only at ~5 µM, i.e. AC23 and AC27 may be seen 

as 5x and 50x as active, respectively. On the other hand, both AC23 and AC27 show reduced 

activity at concentrations above 10 µM. This could be an indication that these higher 

concentrations introduce toxicity to the cells, while harmine continues to exhibit dose dependent 

inhibition at these concentrations.  

As mentioned above, several DYRK1A inhibitors were identified in the recent past, but none of 

these compounds has met the selectivity standards needed for use as probe molecules. Harmine, 

one of the most commonly used inhibitors in DYRK1A related research, has strong cross 

inhibition of monoamine oxidase that would create severe side effects. The low selectivity also 

makes harmine unsuitable as a probe to test DYRK1A inhibition in cell lines. Efforts to eliminate 

the MAO inhibition while keeping the DYRK1A inhibition lead to the harmine derivative 

AnnH7525. Another DYRK1A inhibitor, green tea flavonol epigallocatechin-gallate (EGCG), was 

shown to correct cognitive deficits in Down syndrome mouse models and in humans26. However, 

it also potentially has multiple targets (and correspondingly is under consideration for use a broad 

range of disorders) and cannot be considered a DYRK specific inhibitor. The compounds 

EHT1610 and EHT5372 are among the most selective DYRK inhibitors identified so far27, 28. 

Crystal structures of these compounds in complex with a kinase are available for DYRK2 (5LXD 

and 5LXC). A comparison of this scaffold to AC27, one of the more selective compound in our 

series, shows some remarkable similarities. First, a structural comparison of the EHT1610 and 

EHT5372 compound bound to DYRK2 suggests that the canonical hinge binding may be less 
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essential for high affinity binding in DYRK28 as it is for AC27, because its hinge interaction is 

only indirect, via a bridging water molecule. Secondly, all three compounds interact with the P-

loop, and the trifluoromethyl in AC27 or the 2-fluoro- and 2-chloro-benzyl group of EHT1610 

and EHT5372 occupy the same space. One major difference is in the overall orientation of the 

inhibitors.   Considering them "U" or horse-shoe shaped, the opening of the "U" for AC27 points 

toward the P-loop aryl F160, while the orientation is reversed for the EHT inhibitors. The benzyl 

rings of AC27 and the EHT inhibitors are roughly perpendicular to each other. (Figure 9) 

 

 

Figure 9 Comparison of the binding of AC27 (light green, PDB: 6EIS) with EHT1610 (red, 

PDB: 5LXD) and EHT5372 (magenta, PDB: 5LXC); (DYRK1A, salmon; DYRK2, gray). 

 

 

 Additional inhibitors of DYRK1A discussed in the literature include a derivative of a marine 

sponge alkaloid Leucettine L41, which has shown some efficacy in mice to prevent memory 

impairment29. Benzothiazole fragments18, 30 and the independently developed benzothiazoles 

INDY23 and BINDY24  are also effective inhibitors of DYRK1A. FINDY is a selective inhibitor 

of the kinase DYRK1A that targets its folding process31. A detailed review article of the most 
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recent DYRK1A inhibitors summarizes these results22. The lead compounds we present here, 

along with their binding poses as seen in the crystal structures, represent valuable additional 

resources for DYRK1A inhibitor development and optimization of drug likeness and selectivity 

profiles. 

 

CONCLUSIONS 

 

Twenty-two new compounds were tested for their ability to inhibit and bind to DYRK1A. 

These compounds belong to diverse chemical scaffolds of kinase inhibitors and their inhibitory 

strengths (Ki) vary between 200 nM and >10 µM. Kinase profiling showed that some of the 

compounds (e.g. AC12 and AC15) have a broad spectrum of kinase inhibition, while others are 

much more specific against DYRK and CLK2. These new scaffolds offer novel opportunities to 

design DYRK1A inhibitors. Their inhibitory properties vary across the characterization methods 

and the results of in vitro vs cellular assays, especially the pT212-tau phosphorylation vs. the 

NFAT Luc reporter assays, were less strongly correlated for the compounds. However, this only 

underlines the importance to study inhibitors in multiple approaches to find the most effective 

inhibitor.  Newly revealed binding features, such as the CH-O interaction with Asn292, or the 

bound waters that serve as anchors to the catalytic lysine or the hinge, may provide valuable 

information for optimization of these inhibitors against DYRK1A and related kinases, targeting 

Alzheimer’s disease and diabetes.  
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EXPERIMENTAL SECTION 

 

1. Synthesis of the inhibitors 

 

AC15
32, AC20

33, AC23
34, AC27

35 and AC28
36 were previously reported as TRK, Bcr-Abl, 

ERK5, mTOR, and HIPK2 inhibitors, respectively. AC12
32  and AC22

37 were synthesized 

following procedure described in references. AC24 and AC25 were generated from a common 

intermediate 1-(4-isothiocyanato-3-methoxyphenyl)-4-methylpiperazine 2, which was obtained 

from reaction of 2-methoxy-4-(4-methylpiperazin-1-yl)aniline with triphosgene under basic 

condition (Scheme 1). This isothiocyanate intermediate was allowed to react with cyanamide in 

the presence of t-BuOK, followed by addition of phenacyl bromide to give the desired 2,4-

diaminothiazoles AC24 in one-pot synthesis with 96% yield. Intermediate 3 was synthesized by 

similar procedure with 4-nitrophenacyl bromide and subjected to primary amine protection to 

generate 4. Reduction of nitro group by platinum dioxide gave rise to corresponding aniline 

analog, which was subjected to acrylation and Boc deprotection to afford AC25. 
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Scheme 1. Synthesis of AC24 and AC25
a 

 

 

aReaction conditions: (a) 1.0 equiv of thiophosgene, 5.0 equiv of TEA, CHCl3, rt, 3 h, 94%; (b) 1) 

2.4 equiv of NH2CN,  1.5 equiv of t-BuOK, acetonitrile, 0 oC to rt, 1 h; 2) 1.0 equiv of 2-bromo-

1-phenylethan-1-one, rt, 4 h, 96%; (c) 1) 2.4 equiv of NH2CN,  1.5 equiv of t-BuOK, acetonitrile, 

0 oC to rt, 1 h; 2) 1.0 equiv of 2-bromo-1-(4-nitrophenyl)ethan-1-one, rt, 4 h, 47%; (d) 1.0 equiv 

of (Boc)2O, 0.3 equiv of DMAP, 2.0 equiv of DIEA, CH2Cl2, rt, 2 days, 89%; (e) 1) 1.05 equiv of 

PtO2, H2, MeOH, rt, 1 h; 2) 1.27 equiv acryloyl chloride, CH2Cl2, 0 oC, 0.5 h; 3) TFA, 0 oC to rt, 

1 h, 46%. 
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2. Chemistry.  

Unless otherwise noted, reagents and solvents were obtained from commercial suppliers and 

were used without further purification. 1H NMR and 13C NMR were recorded on Bruker Ascend 

500. 1H NMR spectra were 500 MHz, and chemical shifts are reported in parts per million 

(ppm,δ) downfield from tetramethylsilane (TMS). Coupling constants (J) are reported in Hz. 

Spin multiplicities are described as s (singlet), d (doublet), t (triplet), m (multiplet), and br 

(broad). IR spectra were recorded on a Bruker ALPHA II Platinum single reflection diamond 

ATR Module. High-resolution mass spectra (HRMS) were recorded on a Bruker Impact HD q-

TOF Mass Spectrometer. Preparative HPLC was performed on a Waters Symmetry C18 column 

(19 x 50 mm, 5 μM) using a gradient of 5-95% acetonitrile in water containing 0.05% 

trifluoroacetic acid (TFA) over 8 min (10 min run time) at a flow rate of 30 mL/min. Analytic 

HPLC was performed on a SunFire C18 column (4.6 x 150 mm, 3.5 μM) using a gradient of 5-

95% acetonitrile in water containing 0.05% trifluoroacetic acid (TFA) over 15 min (17 min run 

time) at a flow rate of 1.0 mL/min. Purities of compounds were greater than 95% unless indicated 

otherwise, as determined by analytical HPLC.  

4-[3-(Pyridin-3-yl)-1H-pyrrolo[2,3-b]pyridin-5-yl]benzene-1-sulfonamide (XMD7-117, 

AC-12). 
1H NMR (500 MHz, DMSO-d6) δ 12.47 (s, 1H), 9.36 (br, 1H), 9.08 – 8.48 (m, 4H), 8.29 

(d, J = 2.0 Hz, 1H), 8.05 (d, J = 8.3 Hz, 2H), 7.99 – 7.77 (m, 3H), 7.43 (s, 2H). 13C NMR (126 

MHz, DMSO-d6) δ 149.5, 143.2, 143.2, 142.2, 142.5, 142.4, 138.6, 128.5, 128.1, 127.8, 126.7, 

126.6, 117.4, 110.3. IR ν max (neat): 3299, 3007, 2862, 1586, 1527, 1476, 1329, 1156, 1095, 909, 

670, 589, 544 cm-1. HRMS (ESI) m/z: calcd for C18H14N4O2S [M + H]+, 351.0910; found 

351.0909.  
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5-(5-Amino-2-methoxyphenyl)-3-(pyridine-3-carbonyl)pyrazin-2-amine (XMD8-49, AC-

22). 
1H NMR (500 MHz, CD3OD) δ 9.27 (d, J = 1.2 Hz, 1H), 8.84 (s, 1H), 8.70 (d, J = 4.9 Hz, 

1H), 8.47 (d, J = 7.9 Hz, 1H), 7.61 (dd, J = 7.9, 5.0 Hz, 1H), 7.10 (d, J = 2.8 Hz, 1H), 6.94 (d, J = 

8.7 Hz, 1H), 6.79 (dd, J = 8.6, 2.8 Hz, 1H), 3.83 (s, 3H). 13C NMR (126 MHz, CD3OD) δ 192.9, 

154.7, 150.8, 150.7, 150.3, 149.6, 141.0, 139.9, 138.7, 134.5, 127.6, 125.9, 123.3, 117.1, 116.9, 

113.00, 55.3. IR ν max (neat): 3424, 3252, 3124, 2836, 1632, 1585, 1503, 1222, 1207, 1032, 798, 

679, 442 cm-1. HRMS (ESI) m/z: calcd for C17H15N5O2 [M + H]+, 322.1299; found 322.1299.  

1-(4-Isothiocyanato-3-methoxyphenyl)-4-methylpiperazine (2) To a solution of 2-methoxy-

4-(4-methylpiperazin-1-yl)aniline (1) (663 mg, 3.0 mmol) and triethylamine (2.10 mL, 15.0 

mmol) in 10 mL CHCl3 at 0 oC, thiophosgene (0.23 mL, 3.0 mmol) was added. After 15 minutes, 

the reaction mixture was stirred at room temperature. Once the reaction completed (about 3 

hours), the reaction mixture was diluted with ethyl acetate, washed with ice water and brine. 

After the organic layer was dried with MgSO4, the solvent was removed. The crude product of 

title compound (747 mg, 94%) was used directly for next step without purification (84.9 % 

purity). 1H NMR (500 MHz, CDCl3) δ 6.93 (d, J = 8.6 Hz, 1H), 6.38 – 6.26 (m, 2H), 3.81 (s, 

3H), 3.20 (t, J = 5.1 Hz, 4H), 2.56 (t, J = 5.0 Hz, 4H), 2.33 (s, 3H). 13C NMR (126 MHz, CDCl3) 

δ 156.7, 151.3, 137.8, 128.8, 126.1, 107.4, 99.6, 55.9, 54.7, 48.4, 45.9. IR ν max (neat): 2936, 

2794, 2703, 2099, 1595, 1565, 1510, 1417, 1263, 1252, 1211, 1203, 1134, 1025, 1008, 969, 815, 

556 cm-1. HRMS (ESI) m/z: calcd for C13H17N3OS [M + H]+, 264.1165; found 264.1165. HPLC: 

84.9 % at 254 nM. 

(4-Amino-2-((2-methoxy-4-(4-methylpiperazin-1-yl)phenyl)amino)thiazol-5-yl)(phenyl) 

methanone (XMD14-124, AC24). To a solution of 1-(4-isothiocyanato-3-methoxyphenyl)-4-

methylpiperazine (2) (30 mg, 0.12 mmol) in 1.0 mL acetonitrile at 0 oC cyanamide (10 mg, 

0.24 mmol) was added, followed by potassium tert-butoxide (0.15 mL 1M solution in THF, 
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0.15 mmol). After 10 minutes, the reaction mixture was stirred at room temperature. Once the 

reaction completed (about one hour), 2-bromo-1-phenylethan-1-one (20 mg, 0.1 mmol) was 

added at room temperature. The reaction completed in about four hours. The reaction mixture 

was diluted with ethyl acetate, washed with ice water and brine. After the organic layer was dried 

with MgSO4, the solvent was removed and the residue was purified by column purification 

(CH2Cl2/3.5 N Ammonia in MeOH) to afford desired  compound (40.7 mg, 96%). 1H NMR (500 

MHz, CD3OD) δ 7.56 – 7.51 (m, 2H), 7.47 (d, J = 8.7 Hz, 1H), 7.40 – 7.24 (m, 3H), 6.56 (d, J = 

2.5 Hz, 1H), 6.44 (dd, J = 8.8, 2.5 Hz, 1H), 3.75 (s, 3H), 3.18 (t, J = 5.0 Hz, 4H), 2.74 (t, J = 5.0 

Hz, 4H), 2.42 (s, 3H). 13C NMR (126 MHz, CD3OD) δ 183.8, 172.5, 167.00, 152.8, 150.1, 141.9, 

130.1, 128.0, 126.6, 124.4, 120.5, 107.6, 100.4, 94.4, 54.9, 54.2, 48.1, 44.0. IR ν max (neat): 2806, 

1602, 1537, 1213, 1350, 1262, 1241, 737, 699, 509 cm-1. HRMS (ESI) m/z: calcd for 

C22H25N5O2S [M + H]+, 424.1802; found 424.1802.  

(4-Amino-2-((2-methoxy-4-(4-methylpiperazin-1-yl)phenyl)amino)thiazol-5-yl)(4-

nitrophenyl)methanone (3). To a solution of 1-(4-isothiocyanatophenyl)-4-methylpiperazine (2) 

(157.8 mg, 0.6 mmol) in 5.0 mL acetonitrile at 0 oC cyanamide (50 mg, 1.19 mmol) was added, 

followed by potassium tert-butoxide (0.75 mL 1M solution in THF). After 10 minutes, the 

reaction mixture was stirred at room temperature. Once the reaction completed (about one hour), 

2-bromo-1-(4-nitrophenyl)ethan-1-one (122 mg, 0.5 mmol) was added at room temperature. The 

reaction completed in about four hours. The reaction mixture was diluted with ethyl acetate, 

washed with ice water and brine. After the organic layer was dried with MgSO4, the solvent was 

removed and the residue was purified by column purification (CH2Cl2/3.5 N Ammonia in MeOH) 

to afford desired compound (219 mg, 47%). 1H NMR (500 MHz, CDCl3) δ 8.17 (d, J = 8.3 Hz, 

2H), 7.93 (s, 1H), 7.78 (d, J = 8.3 Hz, 2H), 7.39 (d, J = 8.6 Hz, 1H), 6.49 – 6.36 (m, 2H), 3.78 (s, 
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3H), 3.13 (t, J = 5.0 Hz, 4H), 2.50 (t, J = 5.0 Hz, 4H), 2.28 (s, 3H). 13C NMR (126 MHz, CDCl3) 

δ 181.5, 170.8, 165.9, 151.2, 150.2, 148.7, 147.3, 128.2, 123.7, 122.1, 119.5, 107.7, 100.0, 55.8, 

55.0, 49.1, 46.1. IR ν max (neat): 2808, 1597, 1533, 1417, 1339, 1262, 1242, 972, 735, 705, 473 

cm-1. HRMS (ESI) m/z: calcd for C22H24N6O4S [M + H]+, 469.1653; found 469.1652. 

tert-Butyl (2-((2-methoxy-4-(4-methylpiperazin-1-yl)phenyl)amino)-5-(4-nitrobenzoyl) 

thiazol-4-yl)carbamate (4). To a stirred suspension of (4-amino-2-((2-methoxy-4-(4-

methylpiperazin-1-yl)phenyl)amino) thiazol-5-yl)(4-nitrophenyl)methanone (3) (72 mg, 

0.15 mmol) in 4.0 mL dichloromethane at room temperature, 4-dimethylaminopyridine (6.0 mg, 

0.05 mmol), N,N-diisopropylethylamine (0.06 mL, 0.3 mmol), and di-tert-butyl dicarbonate 

(34 mg, 0.15 mmol) were added. After 10 minutes, the reaction mixture turned clear. When the 

reaction completed (about 2 days), the reaction mixture was concentrated and the residue was 

purified by column purification (CH2Cl2/3.5 N Ammonia in MeOH) to afford titled compound 

(93.1% purity, 77 mg, 89%). 1H NMR (500 MHz, CD3OD) δ 8.39 (d, J = 8.4 Hz, 2H), 7.99 (d, J 

= 8.4 Hz, 2H), 7.14 (d, J = 8.5 Hz, 1H), 6.77 (d, J = 2.5 Hz, 1H), 6.68 (dd, J = 8.7, 2.5 Hz, 1H), 

4.07 – 3.92 (m, 2H), 3.84 (s, 3H), 3.72 – 3.60 (m, 2H), 3.32 – 3.05 (m, 4H), 3.02 (s, 3H), 1.40 (s, 

9H). 13C NMR (126 MHz, CD3OD) δ 184.0, 167.9, 163.9, 155.4, 152.7, 151.5, 149.1, 146.8, 

129.7, 128.2, 123.4, 120.5, 107.8, 100.7, 83.9, 54.9, 53.3, 46.5, 42.2, 26.6. IR ν max (neat): 1717, 

1676, 1610, 1520, 1345, 1293, 1127, 1091, 847, 433 cm-1. HRMS (ESI) m/z: calcd for 

C27H32N6O6S [M + H]+, 569.2177; found 569.2182. 

N-(4-(4-Amino-2-((2-methoxy-4-(4-methylpiperazin-1-yl)phenyl)amino)thiazole-5-

carbonyl)phenyl)acrylamide (XMD15-27, AC25). A suspension of tert-butyl (2-((2-methoxy-

4-(4-methylpiperazin-1-yl)phenyl)amino)-5-(4-nitrobenzoyl)thiazol-4-yl)carbamate (4) (50 mg, 

0.088 mmol) and platinum dioxide (21 mg, 0.093 mmol) in 6.0 mL methanol was stirred at room 

temperature under hydrogen atmosphere. After one hour, the reaction mixture was filtered. The 
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solvent of the filtrate was removed and the residue was dried under vacuum. The crude product 

was used directly without purification. To its solution in 3.0 mL dichloromethane at 0 oC acryloyl 

chloride (9 µL, 0.11 mmol) was added. Once the reaction completed (in about 30 minutes), 1.0 

mL trifluoroacetic acid was added at 0 oC. The temperature of reaction mixture gradually 

increased to room temperature. When the reaction completed, reaction mixture was concentrated 

and the resulting residue was purified by reverse-phase prep-HPLC using a water 

(0.05%TFA)/methanol (0.05% TFA) gradient to afford the desired compound (20.5 mg, 46%). 

1H NMR (500 MHz, DMSO-d6) δ 10.32 (s, 1H), 9.86 (s, 1H), 7.71 (t, J = 9.8, 8.3 Hz, 2H), 7.59 

(d, J = 8.3 Hz, 2H), 7.41 (s, 1H), 6.62 (d, J = 2.5 Hz, 1H), 6.51 - 6.41 (m, 2H), 6.28 (dd, J = 17.0, 

2.0 Hz, 1H), 5.79 (dd, J = 10.0, 1.9 Hz, 1H), 3.79 (s, 3H), 3.17 (t, J = 4.9 Hz, 4H), 2.45 (t, J = 5.0 

Hz, 4H), 2.23 (s, 3H). 13C NMR (126 MHz, DMSO-d6) δ 181.8, 166.7, 163.8, 141.1, 137.5, 

132.2, 128.1, 127.8, 119.1, 107.25, 100.3, 92.9, 56.0, 55.1, 48.5, 46.2. IR ν max (neat): 2920, 

2849, 1672, 1594, 1517, 1409, 968, 762, 727 cm-1. HRMS (ESI) m/z: calcd for C25H28N6O3S [M 

+ H]+, 493.2016; found 493.2016.  

 

3. Expression and purification 

A DYRK1A construct comprising the kinase domain (126-490) was cloned into pEXP17 with 

N-terminal 6x(HIS) affinity tags and TEV protease cleavage sites17, 18. Expression was done in 

shaker flask cultures overnight at 17.8 °C in TB media. For the purification of DYRK1A the cells 

were resuspended in a lysis buffer containing 50 mM sodium phosphate buffer pH 8.0 with 500 

mM NaCl and of 0.5% Tween20. Purification was done via NiNTA columns and an imidazole 

gradient (10-500 mM), followed by a TEV cleavage overnight and a second NiNTA to separate 

the kinase from uncut protein and the protease. Final purification for DYRK1A was done via size 

exclusion chromatography (SEC buffer: 50 mM MOPS pH 6.8, 50 mM KCl, 2 mM β-Me). 
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4. Crystallization  

DYRK1A was concentrated to 7-10 mg/mL in SEC buffer and mixed with inhibitor solutions 

in DMSO to achieve approximately a 5-10 fold excess of inhibitor. The final concentration of 

DMSO was ~5%. The protein/inhibitor mixture was than mixed 1:1 with the crystallization 

solution (100 mM KSCN, 50-100 mM LiCl (or NaCl, or KCl), 10-20% PEG3350) for a final 

drop size of 4 µl. Crystallization was done in 24 well hanging drop plates. Octahedron shaped 

crystals appeared within 1-7 days at room temperature. Crystals were cryo-protected with 30% 

ethylene glycol and flash frozen in liquid nitrogen.  

 

5. Structure solving and refinement 

Crystals were measured at the ESRF Grenoble, France. The images were integrated using the 

software XDSapp38. The structure was solved by molecular replacement using the DYRK1A 

structure 5A4T as a search model. Refinement was done by Phenix39 and the CCP440 program 

Refmac541. The waters were placed by the program Coot 0.7.242.  The crystallographic data and 

model statistics are summarized in Table S2. 

 

6. Activity assay  

The determination of the IC50 constants for DYRK1A was done by an ATP regenerative 

NADH consuming assay16. The enzyme velocity was measured at 340 nm over a time period of 

300 s at room temperature. ATP and the peptide RRRFRPASPLRGPPK (DYRKtide) were used 

as substrates. The reaction mixture was composed of 75 µl of 100 mM MOPS buffer pH 6.8, 10 

mM KCl, 10 mM MgCl, 1 mM phosphoenolpyruvate, 1 mM DYRKtide, 1 mM β-ME, 

15 units/mL lactate dehydrogenase, 10 units/ml pyruvate kinase and 10.7 mM NADH.  10 µl of 
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~5-20 µM DYRK1A, 2 µL of inhibitor in DMSO in concentrations ranging from 4 nM and 20 

µM and 10 µL of ATP 128 µM were added to a total volume of 97 µL. All measurements were 

done in triplicate at room temperature. All other in vitro kinase assays were conducted using the 

SelectScreen Kinase Profiling Service at Thermo Fisher Scientific (Madison, WI). The protocols 

are available from Thermo Fisher Scientific website. 

 

7. Cell culture, transfections and treatments 

DNA constructs: The plasmid encoding EGFP-tagged DYRK1A has been described earlier43 

and was a kind gift from Dr. D'Arcangelo (Rutgers, USA). The expression vector encoding the 

FLAG-tagged tau44 was a kind gift from Dr. Paudel (McGill University, Canada). 

NCI-H1299 cells (ATCC-CRL-5803) were maintained in Dulbecco’s modified Eagle’s 

medium supplemented with 10% fetal bovine serum (Invitrogen), 2 mM L-glutamine, penicillin 

(100 U/mL), and streptomycin (100 µg/mL). Lipofectamine LTX (Life Technologies) reagent 

was used to transfect the cells according to the manufacturer’s instructions. The cells were treated 

for 2 hours with the indicated concentration of compound the day after transfection before they 

were harvested in MKK-lysis buffer (50 mM Tris/HCl pH 7.5, 1 mM EGTA, 1 mM EDTA, 1% 

(w/v) Triton-X 100, 1 mM sodium orthovanadate, 50 mM sodium fluoride, 5 mM sodium 

pyrophosphate and 0.27 M sucrose) and processed for immunoblotting. 

 

8. Immunoblotting 

For detection of ectopically expressed FLAG-TAU or EGFP-DYRK1A, the samples were 

analyzed by SDS-PAGE (4–12% NUPAGE, Life Technologies), transferred to a nitrocellulose 

membrane (Li-Cor) and probed with a rabbit anti- Phospho-tau-T212 (1:1000) antibody or a 

mouse monoclonal anti-FLAG antibody. Detection and quantification were performed either 
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directly using anti-GFP Dylight 800-conjugated antibody or IRDye 800CW-conjugated goat anti-

rabbit IgG (H&L) (1:10000) or IRDye 680LT-conjugated donkey anti-mouse IgG (H&L) 

(1:10000) and the Odyssey Infrared Imaging System (Li-Cor Biosciences). Protein molecular 

mass was estimated using the MagicMark Western protein standard (Life technologies). 

 

9. Antibodies 

The polyclonal antibody against tau phosphorylated at threonine 212 (44-740G) was purchased 

from (Life Technologies). The monoclonal antibody against FLAG (F1804) was purchased from 

Sigma-Aldrich. The anti-GFP Dylight 800-conjugated antibody (600-145-215) was purchased 

from Rockland. The IRDye 800CW-conjugated goat anti-rabbit IgG (H&L) and IRDye 680LT-

conjugated donkey anti-mouse IgG (H&L) were purchased from Li-Cor Bioscience. 

 

10. Generation of DYRK1A-NFAT-luc reporter cell line. 

The pDEST-LTR-EGFP, a mammalian transfection vector for stable and doxycycline 

controlled inducible expression of N-terminal-EGFP tagged fusion constructs under the control 

of a truncated CMV promoter, was a kind gift from Dr. Trond Lamark UiT, Tromsø, Norway45. 

The cDNA encoding human DYRK1A was amplified from the IMAGE clone; 

IMAGE:100061742 with the following primers: 

 5-CACCATGCATACAGGAGGAGAGACTTCAGC-3` and 

5-TCACGAGCTAGCTACAGGACTCTG-3,  

cloned into the pENTR using the pENTR topo cloning kit (Thermo Fischer Scientific). The final 

pENTR-DYRK1a construct was verified by DNA sequencing. The DYRK1A was transferred 

from the pENTR-DYRK1A to the vector pDEST-LTR-EGFP to generate the retroviral 
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expression vector pEXP-LRT-EGFP-DYRK1A using the Gateway LR reaction (Thermo Fischer 

Scientific).   

 

Phoenix HEK cells were transfected with the pEXP-LRT-EGFP-DYRK1A plasmid using 

TransIT-LT1 transfection agent (Mirus Bio LLC) following the manufacturer´s protocol. Forty-

eight and seventy-two hours later the supernatant were collected and filtered through a 0.45 µm 

filter. The supernatant was  supplemented with 5 µg/mL proteome sulphate and used to transduce 

the NFAT / LUCPorter™ Stable Reporter HEK Cell Line (Novus Biologicals), which contains 

express a stable renilla reporter gene under control of a NFAT response element. Two day after 

the transduction the cell were reseeded in medium containing 5µg/mL blasticidine and 

blasticidine resistant pools of cells were propagated and tested for expression of EGFP-DYRK1 

fusion protein in absence and presence of 1 µg/ml doxycycline. (Supporting information) 

 

11. Kinome Profiling.  

Kinome profiling was performed using KinomeScan ScanMAX at compound concentration of 

10 µM or 1 µM. Data was reported in Supplementary data. Protocols are available from 

DiscoverX.  
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