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Abstract 16 

The Quaternary sedimentary record in the Arctic captures a diverse and evolving range of 17 

landscapes reflecting climate changes. Here we study the geological landform assemblage of 18 

the Upper Regional Unconformity (URU) in the SW Barents Sea. The aims are (i) to 19 

characterize buried geological landforms on a meter-scale resolution, ii) to understand their link 20 

with underlying structures, and (iii) to reconstruct paleo-ice-sheet dynamics and configurations. 21 

The data consist of a high-resolution three-dimensional (3D) P-Cable seismic cube with an 22 

extent of c. 200 km2 and an inline separation of 6 m. Dominant frequencies of c. 150 Hz allow 23 

to image landforms at URU with a vertical resolution of 1-5 m and a horizontal resolution of 3-24 

6 m. We conduct detailed horizon-picking and seismic attribute analysis of the buried URU 25 

horizon. We identified four sets of mega-scale glacial lineations, and shear band ridges located 26 

to the west of a shear margin moraine. Other characteristic features include hill-hole pairs, 27 

transverse ridges, rhombohedral ridges and depressions, iceberg ploughmarks and pockmarks. 28 

Polygonal faults below URU and deeper faults have a strong effect on the location of structures 29 

observed on URU. Bedrock packages deformed down to 30 m below URU and up to 5 m-high 30 

transverse ridges at URU are imprints of glacio-tectonic activity. Deformed strata below URU 31 

indicate normal faulting superimposed by glaciotectonic deformation. The four sets of mega-32 

scale glacial lineations indicate four streaming events with thawed glacial beds, with shear band 33 

ridges forming in the shearing zone during one of these streaming events. Hill-hole pairs and 34 

rhombohedral ridges are frozen-bed features which indicate a polythermal regime at the base 35 

of the Barents Sea Ice Sheet during multiple streaming phases. This study therefore shows that 36 

paleo-ice streams have been temporarily frozen to the ground in the SW Barents Sea, and that 37 

landforms evidencing this freezing are associated with underlying faults.  38 

Keywords: Upper Regional Unconformity, Barents Sea, Thermokarst, Hill-hole pair, Glacial shearing, 39 

Seismic geomorphology  40 



3 
 

1. Introduction 41 

High-latitude continental shelves have been intensively eroded during Pleistocene glaciations (Laberg 42 

et al., 2012). Ice streams transported large amounts of sediments from these shelves to the continental 43 

slopes (Nygård et al., 2007). Most of the eroded sediments are deposited in trough mouths fans, which 44 

are glaciated depocenters comprising several 1000 km3 of sediments (Vorren and Laberg, 1997; Nygård 45 

et al., 2005; Hjelstuen et al., 2007). Buried paleo-seabed surfaces corresponding to prominent erosional 46 

unconformities include a large variety of geological landforms and are valuable records of past 47 

glaciations (Bentley and Anderson, 1998; Dowdeswell and Ottesen, 2013). Landforms identified along 48 

glacial surfaces indicate changes in ice-stream dynamics and variable thermal regimes at the bottom of 49 

an ice stream (Rise et al., 2004; Winsborrow et al., 2016). Mega-scale glacial lineations evidence warm-50 

base ice streams, whereas hill-hole pairs are typical subglacial landforms in cold-base ice regimes (Clark 51 

et al., 2003; Andreassen and Winsborrow, 2009; Bøe et al., 2016). Iceberg ploughmarks commonly 52 

express episodes of ice disintegration (Dowdeswell et al., 2008; López-Martínez et al., 2011), which are 53 

followed by fluid escape events evidenced by pockmarks (Mazzini et al., 2017; Tasianas et al., 2018). 54 

Thermokarst develops as a consequence of thawing permafrost as a response to climate warming 55 

(Hassol, 2004). Thermokarst geomorphologies, documented in periglacial regions of the Earth and Mars 56 

(e.g., Kvenvolden, 1988; Costard and Kargel, 1995), indicate the presence of ice-rich sedimentary 57 

deposits in the subsurface. Gas hydrates are ice-like deposits found underneath the oceans (Maslin et 58 

al., 2010; Serov et al., 2017), and below permafrost on shallow Arctic continental shelves and land areas 59 

(Kvenvolden, 1988). Thermokarst has played an important role in shaping permafrost landscapes 60 

(French, 2007; Murton, 2009), and thawing permafrost is known to emit methane and to have global 61 

environmental implications (Zimov et al., 1997). Landforms indicative of thermokarst include 62 

detachment slides, thaw slumps, thermal erosion gullies, as well as thermokarst lakes, pits and troughs 63 

(Kokelj and Jorgenson, 2013).  64 

Glaciated petroleum provinces are preconditioned to sequester large fluxes of methane subglacially 65 

(Andreassen et al., 2017). Gas hydrates below the seabed have been proposed to act as sticky spots at 66 

the base of the Barents Sea Ice Sheet, and consequently affect the flow dynamics of ice streams 67 
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(Winsborrow et al., 2016) (Fig. 1a). Freeze-on processes at the base of ice streams favorably occur in 68 

ice stream shearing zones (Bøe et al., 2016), but could also be a common behavior of marine ice streams 69 

(Andreassen and Winsborrow, 2009). Subglacial shearing is documented by structures in outcrops, 70 

microstructural analysis of glacial tills, and interpretation of seismic geomorphologies (Phillips et al., 71 

2011; Bellwald et al., 2018a).  72 

The decay and growth of the North Atlantics major ice sheets is documented by ice cores as well as 73 

marine and terrestrial records (Hughes et al., 2016). The characteristics and distribution of glacial 74 

landforms that develop at the margin and beneath a glacier reflect prevailing climate and glacier-bed 75 

conditions at the time of formation (Clayton and Moran, 1974; Attig et al., 1989; Kleman and Borgström, 76 

1996; Stroeven et al., 2016). Knowledge about thermokarst, gas hydrates and shallow gas is relevant for 77 

slope stability assessments, ecosystem analysis, carbon cycling and greenhouse gas budgets (Walter et 78 

al., 2007; Schuur et al., 2008; Sannel and Kuhry, 2011). Gas is inferred to migrate from the shallow 79 

subsurface to the seabed, and kilometer-wide craters and mounds at the seabed of the central Barents 80 

Sea are associated with large-scale methane expulsions (Andreassen et al., 2017) (Fig. 1a). Detailed 81 

knowledge about glacial unconformities and related geological landforms in the subsurface is demanded 82 

by offshore industries to assess drilling hazards and guarantee infrastructure stability (Huuse et al., 2012; 83 

Bellwald and Planke, 2018). Ignoring small-scale subsurface expressions, for example, may have severe 84 

costly consequences like shearing of well-casing due to fault reactivation or sinkholes at a later stage 85 

(Otto, 2018). The Barents Sea Ice Sheet further offers a good geological analogue to the contemporary 86 

West Antarctic Ice Sheet. Landforms related to ice shearing allow conclusions about past ice-stream 87 

regimes and comparisons with ongoing climate change.  88 

Geophysical data are powerful tools to characterize the geomorphology of glacial surfaces (Rise et al., 89 

2004; Montelli et al., 2017). Acoustic methods based on marine echo-sounding principles are currently 90 

the most widely used techniques for mapping submarine glacial landforms (Jakobsson et al., 2016). New 91 

3D seismic technologies allow mapping of buried horizons in a resolution similar to the seabed 92 

(Bellwald et al., 2018a), and the data can thus be used as hints for the glacial development of the area. 93 

Three-dimensional seismic data has given birth to the discipline of seismic geomorphology, and allow 94 
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to characterize paleo-seabed features (Posamentier et al., 2007). Streamlined grooves with lengths of 95 

tens of kilometers have been mapped along Upper Regional Unconformity (URU), a buried paleo-96 

seabed, in conventional seismic data covering ~13,000 km2 of the region (Piasecka et al., 2016) (Fig. 97 

1b). Glacial landforms and fluid-related structures with dimensions less than 10 m have been identified 98 

along glacial (paleo)surfaces in high-resolution P-Cable 3D seismic data of the Barents Sea (Bellwald 99 

et al., 2018; Tasianas et al., 2018). These studies showed that high-resolution 3D landform 100 

characterization results in a better geological understanding, and that glacial landforms could provide 101 

Pleistocene analogues to present-day processes and climate changes (Andreassen et al., 2017). Here we 102 

map a variety of meter-scale glacial landforms and bedrock structures at URU, which are not resolvable 103 

in conventional seismic data. We interpret a ~200 km2 high-resolution P-Cable 3D seismic cube of the 104 

Hoop Fault Complex area in the SW Barents Sea (Fig. 1b), and aim to improve the understanding of the 105 

processes active at a paleo-seabed surface. Small subglacial landforms identified in this study provide 106 

information about the thermal regime of the former Barents Sea Ice Sheet, the occurrence of shallow 107 

gas and gas hydrates, and have thus implications for both offshore investigations and ice-sheet 108 

reconstructions. 109 

2. Study area 110 

The SW Barents Sea shelf experienced high erosion rates by repeated glaciations during the Pleistocene 111 

(Laberg et al., 2012). These erosive episodes shaped URU (Sættem et al., 1992), which divides Lower 112 

Cretaceous/Jurassic seaward-dipping stratified sedimentary rocks from sub-parallel layered unlithified 113 

Quaternary sediments in the Barents Sea (Solheim and Kristoffersen, 1984; Vorren et al., 1986; Solheim 114 

et al., 1996). The bedrock formation directly underlying URU in the study area is the Kolmule 115 

Formation, which is dated to the Aptian/middle Cenomanian time period (www.npd.no). The Kolmule 116 

Formation is considered to be dominated by mudstones with thin siltstones, limestone interbeds and 117 

dolomite stringers deposited in an open marine environment (www.npd.no). Glacio-erosive processes 118 

at the base of the former Barents Sea Ice Streams transported sediments from the continental shelf to the 119 

Bear Island Trough Mouth Fan, which comprises a volume of c. 670,000 km3 and is location of large 120 

slides (Vorren et al., 1991; Laberg and Vorren, 1995; Hjelstuen et al., 2007). The large sediment volume 121 
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of the Bear Island Trough Mouth Fan implies considerable erosion of the source region, but the timing 122 

and mechanisms of this erosion are not yet well understood (Ktenas et al., in press). The pre-Quaternary 123 

relief of the SW Barents Sea has been estimated to several hundreds of meters above sea level (Dimakis 124 

et al., 1998; Butt et al., 2002). 125 

During the Last Glacial Maximum (LGM), the Eurasian ice sheet complex as a whole attained its 126 

maximum extent and volume at c. 21 ka (Hughes et al., 2016). However, details on the changing extent 127 

of the Eurasian ice sheet complex are poorly documented in the Barents Sea compared to the coastlines 128 

of Svalbard and Scandinavia (Hughes et al., 2016). The study area was ice-covered from c. 24 ka until 129 

c. 16 ka, whereas there is not a lot known about the spatial extent of the Barents Sea glaciation pre-25 130 

ka. According to few existing radiocarbon dates, the last major deglaciation started at c. 16.9 ka, and 131 

was followed by stepwise retreat from the SW Barents Sea to a location east of Svalbard by c. 11.3-12 132 

ka (Salvigsen, 1981; Rüther et al., 2011, 2017). This ice sheet retreat was highly asynchronous, with the 133 

most rapid retreat experienced across the Barents Sea sector after 17.8 ka when this marine-based ice 134 

sheet disintegrated at a rate of c. 670 gigatonnes per year and with surface velocities of c. 400 m/a 135 

(Patton et al., 2017). 136 

The use of crustal rebound information to construct the Eurasian ice-sheet dimensions has been widely 137 

used for the LGM and post-LGM periods (Boulton et al., 2001; Siegert et al., 2001). Glacial rebound 138 

modeling is well established for the post-LGM period in Scandinavia, as the observational evidence is 139 

relatively abundant and well distributed spatially and in time (Lambeck et al., 2010). For the pre-LGM 140 

time periods, however, evidence becomes increasingly sparse and uncertain (Arnold et al., 2002; 141 

Lambeck et al., 2010). Fjeldskaar and Amantov (2018) modeled an isostatic response of 800 m for the 142 

last million years in the Barents Sea. The estimated amount of glacial erosion during the Quaternary 143 

varies by several magnitudes, from tens of meters in the central Barents Sea to 1000 m close to the shelf 144 

break (Fjeldskaar and Amantov, 2018). 145 

The SW Barents Sea is location of several oil and gas discoveries, including Snøhvit and Goliat close 146 

to the mainland and Wisting in the Hoop Fault Complex area (Fig. 1a) (www.npd.no). This study focuses 147 

on the Hoop Fault Complex area, which is located in an overdeepened cross shelf trough, named 148 
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Bjørnøyrenna (Bear Island Trough) (Fig. 1a). Ice-stream flow-sets of mega-scale glacial lineations on 149 

both seabed and URU surfaces in the Hoop Fault Complex area indicate that the area has been affected 150 

by highly-dynamic, warm-based ice streams of variable flow orientation (Piasecka et al., 2016) (Fig. 151 

1b). 152 

 153 

Fig. 1. Study area. a) Western Barents Sea Ice Sheet with ice-flow vectors at Last Glacial Maximum 154 

(Patton et al., 2016), petroleum discoveries (green dots, www.npd.no), location of sticky spots 155 

(Winsborrow et al., 2016), and large pockmarks (blow-out craters, Andreassen et al., 2017). BeTMF: 156 

Bear Island Trough Mouth Fan. b) Sets of mega-scale glacial lineations and ploughmarks mapped out 157 

in conventional 3D seismic data of the Hoop Fault Complex area (Piasecka et al., 2016) (lineations 158 

indicated by different colors), location of high-resolution P-Cable 3D seismic cube (black box), and 159 

petroleum wells (www.npd.no). 160 

3. Data and methods 161 

Seismic data are acquired by different technologies and setups, and high-resolution imaging of the 162 

shallow subsurface is strongly dependent on the system configurations (Lebedeva-Ivanova et al., 2018). 163 

The strength of high-resolution P-Cable 3D seismic data is to image meter-scale glacial landforms, 164 

which are not resolved by conventional 3D seismic data (Bellwald and Planke, 2018). Therefore these 165 

technologies are discussed in detail in the following section. 166 

http://www.npd.no/
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Conventional 3D seismic data of the Hoop Fault Complex area have been collected using a dual-source 167 

3400 in3 airgun and a streamer spread of 8 x 100 m x 6000 m. Conventional 3D seismic data cover an 168 

area of c. 13,000 km2 in the Hoop Fault Complex area (Fig. 1b), with typical bin sizes of 169 

6.25/12.5x18.75/25 m. The P-Cable data of this study were acquired using a 300 in3 airgun source and 170 

16 streamers separated by 12.5 m and a length of 25 m, and a sailing line distance of 70 m. The P-Cable 171 

data cover an area of c. 200 km2 (21x11 km), and have a bin size of 6.25x4.75 m, and short offsets of 172 

120-165 m. With short offsets between source and receiver, the P-Cable 3D data provide higher 173 

frequencies than conventional 3D seismic systems. The acquisition parameters of these two technologies 174 

are listed in Table 1.  175 

Table 1. Typical settings of 3D seismic data in the SW Barents Sea. Frequencies have been calculated 176 

for a water depth of 450 m, an URU depth of 50 m below seabed and a P-wave velocity of 1700 m/s for 177 

glacial sediments. The seismic data were provided by TGS, VBPR and WGP. 178 

Parameter P-Cable 3D Conventional 3D 

Streamers 

Number of streamers 

Streamer length [m] 

Streamer separation [m] 

Streamer tow depth [m] 

 

16 

25 

12.5 

2.5 

 

8 

6000 

100 

8-12 

Source 

Volume [in3] 

Source tow depth [m] 

 

300 

2.5 

 

3400 

6 

Source spectrum 

Dominant [Hz] 

Maximum [Hz] 

 

120 

c. 300 

 

50-70 

c. 100 

Shot point interval [m] 12.5 18.75 

Bin size [m] 6.25 x 4.75 6.25/12.5 x 18.75/25 

Fold for conventional bin size 16 8-12 

 179 



9 
 

The raw P-Cable data have a dominant frequency of c. 50 Hz and a maximum frequency of c. 300 Hz 180 

for -20 dB of minimal reliable amplitude of the seismic signal at URU depths (Fig. 2). The frequency 181 

bandwidths of the raw data can be increased by later processing of the seismic data. TGS and DECO 182 

processed the P-Cable seismic data, and thereby increased the frequency and resolution of the shallow 183 

subsurface (Fig. 2).  Processed P-Cable data have a bandwidth of up to 350 Hz in the shallow subsurface. 184 

For an average URU depth of 50 m bsf, the processed P-Cable data have a dominant frequency of c. 120 185 

Hz and a maximum frequency of c. 280-320 Hz (Tab. 1, Fig. 2). Conventional 3D seismic data of the 186 

same area are characterized by dominant frequencies of 50-70 Hz and maximum frequencies of 100 Hz 187 

(Tab. 1). 188 

 189 

Fig. 2. Single channel raw (upper panel) and processed (lower panel) P-Cable 3D seismic data, and 190 

frequency bandwidths on the right for both datasets, respectively. The data example is from the Hoop 191 

Fault Complex area. Top moraine is a reflection within the glacial package described in Bellwald and 192 

Planke (2018) and Bellwald et al. (2018a). Fdom: Dominant frequency, Fmax: Maximum frequency. 193 
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Resolution means the minimum distance by which two features must be separated as distinct entities 194 

(Sheriff, 1999), and is often defined by the Rayleigh resolution limit as quarter of a wavelength (λ/4; 195 

Kallweit and Wood, 1982). The wavelengths for prominent glacial reflections of the studied data are 196 

displayed in a wiggle-trace profile of processed seismic data in Fig. 3a. Using quarter of a wavelength 197 

as the resolution limit, structures as small as 1.5-3.5 m can be vertically resolved in P-Cable data at URU 198 

depths. Such a high resolution at URU depths is supported by increased values in the instantaneous 199 

frequency plot (Fig. 3b). 200 

Resolution can also be defined when dividing the P-wave velocity by the frequency. Using the 201 

instantaneous frequency (Fig. 3b), structures can vertically be resolved by c. 5 m at seabed (70 Hz) and 202 

by c. 3 m at URU (120 Hz). The improvements in resolution in the shallow subsurface compared to the 203 

seabed are caused by the migration of the seismic data. These estimates are consistent with the results 204 

obtained using the quarter-of-a-wavelength criteria. The rough and hard seabed of the SW Barents Sea 205 

(e.g., Gudlaugsson et al., 2013) could be another reason for lower frequencies at the seabed compared 206 

to the shallow subsurface (Figs. 2, 3), as the high-frequency signal might be scattered at this horizon. 207 

The vertical resolution used in the following has been calculated by quarter of a wave length, and the 208 

horizontal resolution of migrated seismic data is twice the vertical resolution. Seismic profiles show that 209 

features along, atop and below URU can be imaged in much more detail using high-resolution P-Cable 210 

3D seismic data compared to conventional 3D (Fig. 4). 211 
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 212 

Fig. 3. Vertical resolution on processed P-Cable 3D seismic data at different glacial surfaces. a) Wiggle-213 

trace profiles. The wavelengths at different levels are determined by measuring the time between two 214 

troughs or peaks of a wiggle-trace profile as shown by arrows in the plot. The vertical resolution can be 215 

defined as quarter of a wavelength. Features along the seabed can be resolved in c. 2 m, whereas URU 216 

structures can be resolved in up to 1 m. b) Instantaneous frequency of vertical resolution. The vertical 217 

resolution, calculated by the division of P-wave velocity (1700 m/s) by instantaneous frequency, is 218 

estimated to c. 5 m for the seabed and c. 3 m at URU depths. Main seismic horizons are indicated by 219 

black stippled lines. 220 

The interpretation of the seismic data has been done in Kingdom V.2015 based on the concept of seismic 221 

geomorphology (Posamentier et al., 2007). The URU reflection of the Hoop Fault Complex area is 222 

defined as the positive amplitude reflection separating semi-continuously deposited glacial sediments 223 

from westward-dipping bedrock of Lower Cretaceous age (Fig. 4). URU has been picked in depths of 224 

640-680 ms for every 10th inline (62.5 m spacing) throughout the P-Cable cube and up to every second 225 

inline (12.5 m spacing) in selected areas. URU is often overlain a negative-amplitude reflection (Figs. 226 

4c, d), which is called soft reflection in the following. 227 

The structure maps are generated by snapping an interpolated grid to the maximum amplitude reflection 228 

of a vertical window of 5 ms. Time has been converted to depth using a velocity of 1500 m/s for water 229 
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and 1800 m/s for glacial sediments. Seismic attributes, such as the peak seismic amplitude (Fig. 5), have 230 

been used to better image geological structures. Amplitude information allows to laterally trace 231 

geological expressions (Fig. 5c). 232 

 233 

Fig. 4. Comparison of vertical resolution of the URU reflection. a) P-Cable 3D seismic profile across 234 

an area dominated by active ice-streaming. Glacial landform assemblage indicates changing thermal 235 

regimes. Mound of hill-hole pair, glaciotectonically deformed strata and shallow faults are visible. b) 236 

Conventional 3D seismic profile across the area dominated by active ice-streaming. Only main 237 

structures can be imaged. c) P-Cable 3D seismic profile across an area dominated by thermokarst. 238 

Rhombohedral ridges and pockmarks are clearly distinguishable landforms, and soft reflection shows 239 

lateral variability. The glacial sediment package atop URU includes a shear margin moraine and mass 240 

transport deposits. d) Conventional 3D seismic profile across the area dominated by thermokarst. 241 

Structures along URU cannot be imaged in high resolution. The soft reflection is more continuous. 242 

Seismic data by TGS, WGP and VBPR. 243 
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 244 

Fig. 5. Comparison of imaging quality of URU by commonly used 3D seismic technologies over the 245 

same area. a) URU structure map based on conventional 3D seismic data with a bin size of 12.5x18.75 246 

m. b) URU structure map based on P-Cable 3D seismic data with a bin size of 6.25x4.75 m. c) Peak 247 

seismic amplitude of interpreted URU reflection of the P-Cable 3D seismic data. 248 

4. Geomorphology of glacial landforms 249 

The following section describes the seismic geomorphology of small-scale URU features. It discusses 250 

the imaging possibilities by high-resolution P-Cable 3D seismic data and geological processes involved 251 

in the formation of these geomorphologies. As any form of image interpretation has its natural limits 252 

due to lacking opportunities for ground checks or other methods that could be applied at terrestrial study 253 

sites, we compare the URU landforms with morphologies from terrestrial archives for the interpretation 254 

of the individual landforms. 255 

4.1 Large structures 256 

 257 

Description: The main URU structures include several southeast-northwest trending channels along a 258 

1200-2300 m wide depression in the northeastern part of the cube (Fig. 6). A 3 m high and 2000-2500 259 

m wide northeast-southwest-oriented topographic step shapes URU southeast of the study area. The 260 
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terrains at and southeast of the topographic step are dominated by trough-transverse, linear ridge 261 

segments, rhombohedral networks of ridges, and circular to oval-shaped depressions. Both the 262 

topographic step and the major depression are also imaged in conventional 3D seismic data (Fig. 5). 263 

 264 

Interpretation: The channels along the major depression have previously been interpreted as a proglacial 265 

braided channel system, which was named Bjørnelva and formed in a time period when the Barents Sea 266 

Ice Sheet was melting (Bellwald et al., in review). Rhombohedral landforms and rimless circular to oval-267 

shaped lakes on Mars, in Canada and Siberia are documented to form related to thermokarst (e.g., Soare 268 

et al., 2008; Morgenstern et al., 2011; Grosse et al., 2013; Lobkovsky et al., 2016). Following these 269 

interpretations, we suggest the rhombohedral, circular and oval-shaped expressions characterizing the 270 

topographic high to represent a landscape generated by thermokarstic processes. The individual 271 

landforms are described and interpreted in section 4.2 272 

 273 

Fig. 6. URU structure map generated using P-Cable 3D seismic data. Extent shear margin moraine from 274 

Bellwald and Planke (2018). 275 

 276 

 277 
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4.2 Seismic geomorphology of meter-scale structures 278 

4.2.1 Glacial lineations 279 

Description: Elongated V-shaped grooves with lengths of 1-5 km occur all over the study area, and can 280 

be categorized in four sets with orientations varying from NNE-SSW to E-W. Having widths of 20-200 281 

m, the grooves have an average length:width ratio of 25:1.A first type of grooves is 100-200 m wide 282 

and 5-10 m deep with up to 4 m high rims (Figs. 7a, b). A second type of grooves is 20-100 m wide and 283 

1-5 m deep, and is only occasionally associated with rims (Figs. 7c, d). The second type of grooves is 284 

often characterized by multiple depressions (Fig. 7c). There is no correlation between groove depth and 285 

groove orientation. A total of 103 grooves has been identified in the study area, with 2 grooves 286 

associated to set 1, 35 associated to set 2, 52 associated to set 3, and 14 associated to set 4. The reflections 287 

below the grooves are bended and inclined (Fig. 7). 288 

Interpretation: Linear, wide and shallow ridge-groove features are interpreted as mega-scale glacial 289 

lineations (MSGL; Andreassen et al., 2004; Ó Cofaigh et al., 2005; Shaw et al., 2006; Jakobsson et al., 290 

2011). The identified lineation lengths of 1-5 km of our study correlate with MSGLs identified in large 291 

terrestrial datasets with lengths of 1-2 km (Spagnolo et al., 2014). Lineation widths of 20-200 m fit with 292 

the mean width of >17,000 lineations from the central trunk of Dubawnt Lake paleo-ice stream bed 293 

(Stokes et al., 2013), whereas the lineations of our study are characterized by an increased elongation 294 

ratio. We suggest the first type of elongated grooves along URU to represent glacial lineations, 295 

indicating four ice-stream flow directions along URU. The rims are most likely the result of subglacial 296 

sediment deformation, as suggested by Tulaczyk et al. (2001) (Fig. 7a). Elongated landforms that are 297 

narrower than mega-scale glacial lineations have been interpreted as glacial flutes based on statistical 298 

analysis using a global database (Ely et al., 2016). Glacial flutes with similar dimensions as this second 299 

flute-type of grooves are documented in the Weedsport drumlin field, New York State, USA (Gentoso 300 

et al., 2011). However, even if MSGL generally include both grooves and ridges, they could also only 301 

consist of a groove (Spagnolo et al., 2014). Thus, we interpret this second type of narrower and shallower 302 

grooves to represent MSGLs as well, and that these MSGLs are formed through scouring of hard 303 
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bedrock by fast-flowing ice streams. Deformed reflections below the MSGLs indicate that the Lower 304 

Cretaceous bedrock below URU underwent glacio-tectonic deformation. 305 

 306 

Fig. 7. P-Cable seismic profiles perpendicular to linear grooves showing the different expressions of 307 

mega-scale glacial lineations (MSGL) along URU (indicated by white stippled line). a) MSGL with 308 

large rims. b) MSGL with small rims. c) MSGLs with densely-spaced parallel glacial grooves. d) Single, 309 

narrow MSGL without ridges. Deformed layers below the MSGLs are highlighted in blue. Profile 310 

locations are indicated in Fig. 6. 311 

 312 

4.2.2 Shear band ridges 313 

Description: Forty N-S-oriented regular ridges are identified in several areas west of a shear margin 314 

moraine identified atop URU (Fig. 6) (Bellwald et al., 2018a). These 1-5 m high ridges have wavelengths 315 

of ~50-100 m, and can be followed for c. 1 km (Figs. 8a, b, c). The ridges commonly dip westwards, 316 

and their positive-amplitude reflections can be traced below URU (Fig. 8b). Most of these ridges can be 317 

related to polygonal faults within Lower Cretaceous bedrock below URU (Fig. 8b, c). 318 

Interpretation: As we only identified these expressions west of the shear margin moraine, we interpret 319 

these ridges to represent shear band ridges formed in the shearing zone of an active ice stream. The link 320 



17 
 

with the underlying polygonal faults indicates an inherited structural geological preconditioning aspect. 321 

Variations in the geology below URU are indicated by geophysical well analysis of the area (Faleide et 322 

al., in review), and we suggest that structurally weaker rocks were probably more vulnerable to erosion 323 

in a phase when the former Barents Sea Ice Stream was predominantly flowing north-southwards (Figs. 324 

8d, e). The thrust-and-fold belts could have formed by a similar ice-stream configuration as the one 325 

forming the shear margin moraine (predominantly N-S-wards) (Bellwald et al., 2018a), as they only 326 

occur to the west of the moraine. The dip of the strata could also be caused by the overloading ice stream 327 

itself, producing similar landforms as the push moraines of Nørre Lyngby formed by ice-marginal 328 

deformation (Pedersen, 2012). Thrust sheets of similar dimensions (c. 10 m in height with a spacing of 329 

200 m) are identified in the Jasmund Glacitectonic Complex, where they are suggested to be formed by 330 

local ice push in a proglacial rather than subglacial environment (Gehrmann and Harding, 2018). As 331 

faults are locations of fluid accumulation (Weinberger and Brown, 2006; Cook et al., 2008) and gas 332 

hydrate accumulations are wide-spread in the Barents Sea (e.g., Serov et al., 2017), the troughs of the 333 

ridges might have been generated by ice freezing on the subsurface gas hydrates at the base of the ice 334 

stream. An alternative interpretation of the landforms could be ribbed moraine landscapes, which are 335 

large ridges of sediment produced transverse to ice-flow directions (Kleman and Hättestrand, 1999; 336 

Dunlop et al., 2008).  337 
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 338 

Fig. 8. Shear band ridges at URU. a) Structure map of shear band ridges, located in the west of the shear 339 

margin moraine. b+c) P-Cable seismic profiles across shear band ridges at URU. Polygonal faults below 340 

URU (white stippled line) correlate with the troughs. d+e) Sketch illustrating the formation of shear 341 

band ridges. Smooth URU before the last glaciation, with different bands of inclined Lower Cretaceous 342 

bedrock outcropping. Glacial erosion was more efficient along soft beds, and formed an URU locally 343 

dominated by ridges consisting of hard beds. See Fig. 6 for location. 344 

 345 

4.2.3 Rhombohedral ridges and depressions 346 

Description: A series of 50-150 m wide depressions with 2-5 m high ridges surrounding most of these 347 

is identified in the thermokarst-dominated area of the cube (Figs. 6, 9). These ridges, seven in total, have 348 

a reticulate or rhombohedral planform geometry, and occur both as single landforms and in networks. 349 
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The depressions are not flat, but consist of predominantly eastwards-dipping beds. The deepest part of 350 

these roughly circular expressions coincides with the location of polygonal faults. 351 

Interpretation: Ridges with similar geometries offshore Svalbard are interpreted to have been formed 352 

by the filling of basal crevasses with deforming diamictic sediments at the marine margin of a surging 353 

ice cap (Dowdeswell and Ottesen, 2016; Dowdeswell et al., 2016). Similar landforms at the seabed of 354 

the central Barents Sea have been interpreted as polygonal stagnation ridges, indicating crevasse-355 

squeezing during ice-stream stagnation after surging (Andreassen et al., 2014; Bjarnadóttir et al., 2014). 356 

Crevasse-squeezing or deformation of diamictic sediments are rather unlikely processes for the observed 357 

rhombohedral ridges, as URU reflects here hard sedimentary bedrock rather than reworked glacial 358 

sediments (Fig. 9b). The association between underlying polygonal faults and the deepest depressions 359 

of the rhombohedral ridges indicate a link with pre-existing structural elements rather than with filling 360 

of ice-stream crevasses. Gas hydrates are documented to accumulate along polygonal faults (Weinberger 361 

and Brown, 2006; Cook et al., 2008), and thus ice frozen to the Lower Cretaceous bedrock could have 362 

removed material along the depressions of the rhombohedral ridges (Fig. 9c). Freezing and thawing 363 

permafrost leaves voids in fragmented bedrock, and we suggest surface collapses to create the deepest 364 

depressions along the polygonal faults (Fig. 9d). Thus the gas hydrates could have had a similar role as 365 

frost blisters formed by injection ice (Åkerman and Boardman, 1987) or permafrost for thermokarst 366 

lakes and pingos (Mackay, 1998; Grosse et al., 2013). The dimensions of the rhombohedral ridges and 367 

depressions correlates with the extent of 2327 thermokarst lakes within the Yedoma landscapes of the 368 

Lena Delta (Morgenstern et al., 2011). 369 

The presence of an ice sheet does not allow vertical fluid dissipation, but rather adds fluids into the 370 

underlying substrate (Grasby et al., 2000). Water could even be introduced by ice streams and by 371 

permafrost, causing or contributing to weakening of the paleo-seabed. We interpret the rhombohedral 372 

ridges along URU to consist of bedrock and to be the product of structural failure with water present in 373 

the underlying rocks (Figs. 9c, d). The softer reflections below could indicate gas accumulations still 374 

present today (Figs. 9b, d). Alternative explanations are collapsed pingos or pockmarks. The ridge-375 

depression morphologies show similarities to collapsed pingos surrounded by collapse ramparts 376 
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(Mackay, 1998). Pingos are elongate to circular, ice-cored mounds, which form periglacial in 377 

thermokarst landscapes, and reach heights of some tens of meters before they collapse (Mackay, 1998; 378 

Soare et al., 2008). Bjørnelva, a braided river along URU (Fig. 6) (Bellwald et al., in review), shows 379 

that expressions at this glacial unconformity can also have formed in a subaerial environment. Thus, the 380 

rhombohedral ridges could represent ancient thermokarst lakes or collapsed pingos. 381 

 382 

Fig. 9. Rhombohedral ridges at URU. a) Structure map. See Fig. 6 for location. b) P-Cable seismic 383 

profile across rhombohedral ridges. URU reflection (red stippled line) and polygonal faults (black 384 

stippled lines) are indicated. c) Formation of rhombohedral ridges. Gas migrating along shallow faults 385 

is trapped in deformed strata below URU and forms gas hydrates when the area was covered by the 386 

Barents Sea Ice Sheet. The ice sheet is suggested to be frozen due to gas hydrate accumulations that act 387 

as sticky spots. d) Formation of rhombohedral ridges. Gas hydrates melt during deglaciation, and the 388 

gas-hydrate collapse forms rhombohedral ridges and depressions. The infill of the rhombohedral 389 

depressions is dominated by sediments previously hold together by existing gas hydrates. Soft 390 

reflections below URU still indicate gas accumulations, but gas is supposed to escape periodically. 391 

Inconsistencies along the soft reflection above URU could represent fluid escape pathways. 392 
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4.2.4 Transverse ridges 393 

Description: Two groups of ridges form positive-relief landforms relative to the surrounding URU. The 394 

73 ridges of the first group are 2-5 m high with a smooth top, 50-100 m wide, closely-spaced and 395 

symmetric in cross profiles (Fig. 10a). These semi-linear ridges commonly confluence and create 396 

circular to oval-shaped depressions. The subsurface of these ridges has an acoustically chaotic signature, 397 

with deformed beds. 398 

The second group consists of 51 ridges with heights of 1-5 m and sharp tops, widths of 20-100 m, and 399 

asymmetric cross-profiles with steeper flanks in the east (Fig. 10b). These ridges can horizontally be 400 

traced for 200-1000 m, and often consist of several 50-200 m-long ridge segments. The horizontal 401 

spacing of this parallel, trough-transverse second group of ridges varies from 100 to 300 m, and the base 402 

of their eastern flank correlates with polygonal faults below URU (Fig. 10b). The subsurface of these 403 

ridges is characterized by eastwards-dipping positive-amplitude reflections. 404 

Interpretation: Referring to similar expressions at the base of Bråsvellbreen (Solheim and Pfirman, 405 

1985), the first group of ridges could be formed by squeezing soft diamictic sediments into basal 406 

crevasses and hollows. Similar longitudinal banding has been observed in the Central Bjørynøyrenna 407 

(Bjarnadóttir et al., 2014), where such landforms have been interpreted as linear stagnation ridges 408 

formed by crevasse filling and indicate ice stagnation. Ribbed moraines, which are fields of till ridges 409 

produced transverse to ice flow (Kleman and Hättestrand, 1999; Dunlop et al., 2008), are other features 410 

indicating former frozen-bed features, with detachment and rotation similar to the first type. Ribbed 411 

moraines consist of ridges that are mostly curved or anastomosing (Hättestrand and Kleman, 1999), but 412 

the ridges of ribbed moraines are higher and wider than the transverse ridges of this study (Hättestrand 413 

and Kleman, 1999). Similar to the rhombohedral ridges, this first group of transverse ridges reflects 414 

sedimentary bedrock. As these features dominate the thermokarst landscape, we interpret them to have 415 

a permafrost-related origin. A freezing-thawing dominated area is supported by the seismically chaotic, 416 

low-amplitude reflection in the subsurface of these ridges. 417 
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The second group of ridges shows a similar geomorphology to suites of seabed moraines in Northern 418 

Scotland (Bradwell and Stoker, 2016) and NW Spitsbergen (Burton et al., 2016), where these landforms 419 

have been interpreted as recessional and retreat moraines. Ridges with steeper ice-proximal slopes have 420 

been documented from a surging ice cap in Svalbard (Dowdeswell et al., 2016). As the expressions of 421 

our study most likely consist of deformed bedrock, a process such as mobile sedimentary pushing or 422 

submarine mud apron cannot explain the features. Flat-topped mounds partly aligned in chains have 423 

been interpreted as glaciotectonic rafts in the Barents Sea (Andreassen et al., 2004; Andreassen et al., 424 

2007; Rüther et al., 2013). The absence of a clear base reflection, the geometry of the ridges themselves 425 

and the link to the polygonal faults makes us suggest that they represent bedrock outliers, and not 426 

deformed soft sediments. However, eastwards-dipping reflections below URU support glaciotectonic 427 

deformation of Lower Cretaceous sedimentary bedrock below an east-west flowing Barents Sea Ice 428 

Sheet (Fig. 10b). They could thus represent compressional ridges in bedrock related to periodical ice 429 

stagnation with a temporarily cold basal thermal regime. 430 
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 431 

Fig. 10. Transverse ridges. See Fig. 6 for location. a) P-Cable seismic profile and structure map of first 432 

group of transverse ridges at URU. b) P-Cable seismic profile and structure map of second group of 433 

transverse ridges at URU, which have asymmetric cross-profiles. 434 

 435 

  436 
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4.2.5 Iceberg ploughmarks 437 

Description: Five chaotically-oriented grooves with widths of c. 50 m and depths of c. 5 m are 438 

crosscutting some of the transverse ridges (Fig. 11, profile B). The grooves can be V-shaped or flat-439 

bottomed, and have 1 m high rises on both sides. 440 

Interpretation: Variably-oriented curvilinear grooves are interpreted to be iceberg ploughmarks, formed 441 

by sediment ploughing by keels of grounded icebergs (Dowdeswell et al., 2008). The ploughmark shown 442 

in Fig. 11 is formed by a flat-bottomed iceberg. A correlation between gas sand and ancient iceberg 443 

ploughmarks was proposed by Gallagher and Braaten (1990), suggesting that sand was trapped in these 444 

shallow depressions. As the ploughmarks of this study are less than 5 m deep, we cannot draw 445 

conclusions about their infill. 446 

 447 

Fig. 11. a) Structure map of the thermokarst-dominated area with seismic profiles across different 448 

geomorphologies. See Fig. 6 for location. P-Cable seismic profiles show b) iceberg ploughmark, c) 449 

circular rimmed pockmark, and d) elongated rimmed pockmark. Smaller pockmarks are indicated as 450 

depressions in the structure map. Scale is 5 m in vertical and 100 m in horizontal dimension. 451 

 452 

  453 
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4.2.6 Pockmarks 454 

Description: Semi-circular to circular and elongated, 20-100 m wide and up to 5 m deep depressions 455 

have been identified in the thermokarst-dominated area (Fig. 11). They are not completely flat at their 456 

bottom, and can have ~1 m high rims. The continuous soft reflection atop URU, interpreted as a soft 457 

bed or gas-charged coarser-grained layer (Bellwald and Planke, 2018), is distorted at the locations of 458 

these depressions (Fig. 11, profiles B and C). 459 

Interpretation: Rounded to oval-shaped depressions with diameters <100 m are often related to 460 

subsurface fluid-flow, and interpreted as pockmarks (King and MacLean, 1970; Solheim and Elverhøi, 461 

1985). Elongated pockmarks have their long axis orientation parallel to the prevailing bottom current 462 

direction (Farin, 1980; Bøe et al., 1998). Oval-shaped craters on the seabed of the northern Bjørnøyrenna 463 

are interpreted as giant craters etched into sedimentary bedrock of Triassic age (Andreassen et al., 2017). 464 

Circular pockmarks at URU have been identified in P-Cable data of the Snøhvit area (Tasianas et al., 465 

2018). Following these interpretations, we suggest the rounded to oval depressions in our study area to 466 

be pockmarks formed after deglaciation. The presence of gas below URU is likely due to the location 467 

within the thermokarst landscape, and gas escape from frozen gas hydrates could act as a potential fluid 468 

source. Bellwald et al. (2018a) further mapped shallow gas accumulations and seabed pockmarks in this 469 

area. Interruptions in the soft reflection atop the pockmarks could indicate fluid escape events both 470 

before (Fig. 11b) and after (Figs. 11c, d) the deposition of this layer. Due to the size of the pockmarks, 471 

these would be rather high-magnitude degassing events. 472 

 473 

4.2.7 Hill-hole pairs 474 

Description: Six pairs of ridges and depressions are observed in the northwestern part of the study area 475 

(Figs. 6, 12). The c. 7 m deep depressions in the northwest of the study area are characterized by a 476 

steeper-dipping northern flank and a more gentle-dipping southern flank, and cover an area of c. 100,000 477 

m2 (0.1 km2) per depression (Fig. 12c). The ridges are elongated and trend NNE-SSW, with a maximal 478 

length of 1000 m and an average width of 200 m (0.2 km2 in areal extent). The up to 5 m high ridges 479 
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have average heights of 3 m and thin out southwards (Fig. 12d). While small depressions can be 480 

identified in conventional 3D seismic data, the ridges cannot always be imaged by this technology (Fig. 481 

12a).  482 

A pair consisting of c. 10 m deep depressions and rims rising c. 5 m, but of much smaller extent than 483 

the mounds of hill-hole pairs documented before, has been identified in the south-west of the seismic 484 

cube (Fig. 12e). The rim consists of deposits which overthrusted URU in a southwest-wards direction 485 

(Fig. 12f). A feature with a similar depression and the same orientation, but lacking any rim, is identified 486 

to the east of this pair (Fig. 6). 487 

Interpretation: Linked sets of individual depressions and adjacent ridges are interpreted as hill-hole 488 

pairs (Bøe et al., 2016). Hill-hole pairs are glaciotectonic features formed by rafting of subglacial 489 

hydrate-bearing sediment and shallow bedrock. The source depression is created by sediment slabs 490 

frozen on to the glacier bed. Transported with the overlying ice, the material is dumped close by and 491 

downstream. Subsequent melting and release cause the formation of these irregular hills (Bøe et al., 492 

2016). The paired ridge and depression features are therefore interpreted as hill-hole pairs, formed when 493 

a grounded Bjørnøyrenna Ice Stream was locally frozen to its bed. The volume of excavated sediment 494 

(0.1 km2 x 7 m) approximately equals the deposit (0.2 km2 x 3 m) (Fig. 12b). The axes of hill-hole pairs 495 

are sub-parallel to inferred ice-flow directions, and we suggest them to originate during phases 496 

dominated by a NW-SE-flowing Bjørnøyrenna Ice Stream. 497 

Hill-hole pairs in the Skagerrak are reported to be formed close to the main ice stream shear margin 498 

(Bøe et al., 2016). A shear margin moraine located in the east of the hill-hole pairs (Fig. 6b) in the Hoop 499 

Fault Complex area indicates a link between glacier shearing and hill-hole pairs. Slower flowing ice 500 

close to the shear margin (Bellwald et al., 2018a) probably facilitated freeze-on and glaciotectonic 501 

processes at the base of the glacier. While a hole of much smaller dimension is detectable in the 502 

conventional seismic data, the hill is not traceable there at all using conventional 3D seismic (Fig. 12a). 503 

The extent of a typical hill-hole pair in the study area (0.3 km2) is three magnitudes smaller compared 504 

to hill-hole pairs identified in Håkjerringdjupet, SW Barents Sea (Winsborrow et al., 2016) (Fig. 1b), 505 
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and one magnitude smaller to the potential terrestrial hill-hole pair forming Lake Esrum Sø, located in 506 

the glacial landscape of NE Sjælland (Pedersen and Boldreel, 2017). 507 

Similar landforms as the smaller hill-hole pair (Fig. 12e) have been observed in the previously glaciated 508 

Norwegian continental shelf (Rise et al., 2016) and in the Djuprenna, SW Barents Sea (King et al., 509 

2016). Underlain by glacial till, King et al. (2016) interpreted the landforms as crescentic ridges formed 510 

by calving and rotating icebergs. Rise et al. (2016), on the other hand, interpreted similar features as 511 

hill-hole pairs, formed by glaciotectonic activity at hard bedrock. As URU is supposed to truncate Lower 512 

Cretaceous bedrock, we follow Rise et al. (2016) and interpret these features as hill-hole pairs, noting 513 

that the depressions may not always be associated with hills downstream. The hills comprise thrust-514 

block deposits (reworked Lower Cretaceous shale) sourced from the holes (Fig. 12e). A link between 515 

the location of hill-hole pairs and shallow faults has previously been documented (Bellwald et al., 516 

2018b). Correlations between hill-hole pairs and fault escarps and folds have also been discussed in 517 

terrestrial environments (Pedersen and Boldreel, 2017). 518 
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 519 

Fig. 12. Hill-hole pairs. See Fig. 6 for location. a) Structure map generated in conventional 3D seismic 520 

data only showing the hole of a hill-hole pair. b) Structure map generated in P-Cable 3D seismic data 521 

showing the complete hill-hole pair indicated in Fig. 12a. The footprints aligned parallel to the course 522 

of the survey vessel (E-W) are artefacts related to the acquisition of the seismic data. c) P-Cable seismic 523 

profile across the hole. d) P-Cable seismic profile across the hill, which is not visible in conventional 524 

seismic data. e) Structure map generated in P-Cable seismic data showing a rimmed hill-hole pair. 525 

Arrows indicate glacial grooves. f) P-Cable seismic profile along the hill-hole pair shown in Fig. 12e. 526 

Note thrust of sediment block from the base to the ice flow direction. 527 

  528 
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5. Discussion 529 

5.1 URU landform assemblage and its implications 530 

The P-Cable data reveal a well-preserved URU landform assemblage with no to minimal morphological 531 

alterations by subsequent overriding ice sheets for expressions identified at that paleo-surface. The 532 

landscapes at URU therefore contain key evidence on the configuration and evolution of the Barents 533 

Sea Ice Stream. Glacial landforms at URU consist of glacio-tectonically deformed and reworked 534 

bedrock, glacio-erosive bedrock imprints, permafrost-degraded depressions, fluvial channels, and fluid-535 

flow related features (Fig. 13). 536 

The URU landform assemblage in the Hoop Fault Complex area reveals a complex and dynamic former 537 

Barents Sea Ice Sheet, and is dominated by subglacial landforms that indicate several flow-switching 538 

events and changes in basal thermal regimes (Fig. 13). The Barents Sea has a low density of dates and 539 

ice-sheet pattern information on the contemporary seabed (Hughes et al., 2016), and reliable ages for 540 

different streaming events at URU are not existing. However, the URU landform assemblage indicates 541 

four main ice-flow directions prior to the formation of glacial till atop URU and the glacial landforms 542 

shaping the contemporary seabed (Fig. 13): 543 

(1) E-W-directed ice flow indicated by glacial lineations of streaming set 1,  544 

(2) ENE-WSW-directed ice flow indicated by glacial lineations of streaming set 2, a topographic 545 

high, ridges parallel to the topographic high and transverse ridges in the area southeast of the 546 

topographic high, 547 

(3) NNE-SSW-directed ice flow indicated by a third set of (overprinting) glacial lineations 548 

(streaming set 3), streamlined hill-hole pairs, shear band ridges, and a shear margin moraine, 549 

and 550 

(4) NE-SW-directed ice flow indicated by a fourth set of glacial lineations (streaming set 4), and 551 

streamlined hill-hole pairs. 552 

 553 
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These landform assemblages lead us to draw conclusions about the genesis of different types of terrains. 554 

Streamlined terrains in the west of the study area have been formed by erosion of the substrate related 555 

to basal sliding in the thawed-bed zone when the glacier bed was at the melting point. The four sets of 556 

mega-scale glacial lineations (MSGLs) indicate four periods of grounded fast-flowing ice streams and 557 

subsequent sediment deformation, with set 1 representing the relatively oldest and set 4 the relatively 558 

youngest period. These ice-stream flow-sets have been identified in several larger seismic cubes of the 559 

region, and helped to reconstruct the paleo-ice-sheet configurations of the Barents Sea Ice Sheet 560 

(Piasecka et al., 2016). MSGLs with length:width ratios >10:1 are indicative of fast ice flow (Stokes and 561 

Clark, 2002), and the MSGLs of this study thus indicate fast ice-flow. We conclude that hill-hole pairs 562 

have been formed by plucking of large blocks of material from Lower Cretaceous bedrock 563 

(www.npd.no). Therefore, we suggest temporary and locally frozen-bed conditions for ice-streaming 564 

flow-set 3 and 4, and ice movement of the Barents Sea Ice Sheet to primarily have occurred by internal 565 

deformation of ice. The hill-hole pairs deposited within the frozen-bed zone have been preserved more 566 

or less unmodified (Fig. 12). Subglacial landforms identified in the P-Cable data indicate polythermal 567 

subglacial regimes along URU, which is evidence that cannot be found at the seabed of the area 568 

(Bellwald et al., 2018a). 569 

Different sets of MSGLs and a shear margin moraine (Piasecka et al., 2016; Bellwald et al., 2018a) 570 

indicate that the study area was located in a shear zone between ice streams and slower-flowing regions 571 

of an ice sheet. Glacier-thrust terrains in Saskatchewan and Alberta are interpreted to be located along 572 

former ice-marginal positions (Moran et al., 1980). Meter-scale glacial landforms such as shear band 573 

ridges and hill-hole pairs (Figs. 8, 12) support this setting to be dominated by glacial shearing. 574 

Streamlined bedrock features may survive wet-based reoriented ice flow for long periods of time, in 575 

contrast to till lineations (Kleman and Borgström, 1996). Thus, we suggest the positive-amplitude 576 

reflection defining URU is mainly representing the contrast between bedrock and glacial sediments, and 577 

only occasionally reflecting underlying glacial till (e.g., rim of MSGL in Fig. 7a). The hill-hole pairs 578 

and the second type of transverse ridges are examples where the URU reflection most likely represents 579 

glacio-tectonically deformed sediments (Figs. 10b, 12).  580 
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Topography and water depth have previously been discussed to partly control subglacial landforms 581 

(Anandakrishnan et al., 1998; Philipps et al., 2010; Winsborrow et al., 2010). The URU surface of the 582 

study area is a slightly dipping surface, and water depth can be ruled out as a controlling factor for the 583 

variety in the URU landform assemblage. However, topographical elements such as the NE-SW-584 

oriented high are supposed to have affected paleo-ice streaming and the resulting landforms. 585 

The locations of shear zones are reported to be controlled by topography in previous studies (Kleman 586 

and Glasser, 2007). The topographic high along URU, which has a glaciotectonic or structural origin, 587 

could thus control the location of ice shearing in the study area. The thermokarst landscape in the 588 

southeast of the cube excludes streamlined subglacial landforms, and supports more stagnant glacial ice 589 

with permafrost in the subsurface (Fig. 13). 590 

Holes interpreted as excavated frozen-bed patches are suggested to be important for the stability of ice 591 

sheets (Kleman and Glasser, 2007; Stokes et al., 2007), as they act as localized sticky spots and affect 592 

the basal resistance. Such sticky spots are reported to coincide with subsurface shallow gas 593 

accumulations and related to gas hydrates (Winsborrow et al., 2016). Desiccating gas hydrates are 594 

suggested to strengthen the subglacial sediment, promoting high traction, which regulates ice-stream 595 

flow (Winsborrow et al., 2016). Present-day pressure and temperature conditions in the Barents Sea are 596 

outside the stability field of methane hydrates (Tishchenko et al., 2005). However, high-pressure and 597 

low-temperature conditions favoring gas hydrate formation could certainly have prevailed beneath the 598 

Barents Sea Ice Sheet. Gas migration from Jurassic hydrocarbon reservoirs, such as the Gemini North 599 

(Polteau et al., 2018), and linked to the built-up of polygonal faults would have favored the generation 600 

of widespread gas hydrates subglacially. The presence of strong seismic reflections with a phase-601 

reversed polarity compared with seabed reflections has been interpreted as free gas accumulations in the 602 

subsurface sediments (Fig. 14) (Andreassen et al., 2017). The presence of gas hydrates has been 603 

suggested for the formation of the hill-hole pairs, and the rhombohedral ridges and depressions (Figs. 9, 604 

12). 605 

Several 10s of meters (>30 m) of bedrock below URU are characterized by folded, faulted and 606 

overthrusted reflections (Figs. 7, 14), favorably within 100-300 m wide blocks laterally defined by 607 
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polygonal faults (Fig. 14). Proglacial stacking and folding patterns have been described in terrestrial 608 

archives (Aber, 1982; Houmark-Nielsen, 1988). We suggest that the Barents Sea Ice Stream most likely 609 

deformed the Lower Cretaceous bedrock below URU down to at least 30 m during multiple glacial 610 

advances. Similar geometries as the glacio-tectonically deformed strata in the Lower Cretaceous of this 611 

study (Fig. 14) are conjugate normal faults developed in the Lønstrup Klint Formation with an offset of 612 

about 1 m (Pedersen, 2005). 613 

We suggest a strong link between transverse ridges, rhombohedral ridges and hill-hole pairs with 614 

variations in the underlying geology (Figs. 9, 10, 12). The geometry and location of landforms expressed 615 

at URU have previously been discussed to be defined by deeper faults (Bellwald et al., 2018b), and 616 

associations between glacial landforms and faults have also been suggested in terrestrial outcrops 617 

(Pedersen and Boldreel, 2017). The depressions of hill-hole pairs and rhombohedral ridges indicate that 618 

the Barents Sea Ice Sheet froze down to a bedrock depth of 5-10 m (Figs. 9, 12). Mechanical fracturing 619 

related to unloading is reported to increase porosity, permeability and create fluid migration pathways 620 

(Mohammedyasin et al., 2016). This could be a possible explanation for the pockmark formation atop 621 

URU. 622 
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 623 

Fig. 13. Glacial landforms associated to four ice-streaming events (SE 1-4) identified in this study. a) 624 

URU structure map. b) Interpreted URU structure map. SE1 correlates with flow-set 1 of Piasecka et al. 625 

(2016), 2 with 3, 3 with 2, and 4 with 4.  Hill-hole pairs indicate stages when the Barents Sea Ice Sheet 626 

was temporarily frozen to the ground. The topographic high and the thermokarst landscape are formed 627 

related to the NE-SW-oriented ice-streaming event (SE2). These landforms indicate permafrost and 628 

partly frozen basal ice in the SE of the cube. The topographic high most likely acted as a pinpoint for 629 

the formation of the shear margin moraine during SE3. Evidence of SE4 can only be found in the west 630 

of the cube. During SE3 and SE4, the Barents Sea Ice Sheet was locally frozen to the ground. 631 
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 632 

Fig. 14. Glacio-tectonically deformed strata below URU. a) P-Cable seismic profile. b) Interpreted 633 

seismic profile. Shear band ridges are identified west of the shear margin moraine. Glaciotectonic 634 

deformation can be identified down to >30 m below URU. Folding and faulting of underlying bedrock 635 

preferentially occurred within blocks laterally defined by polygonal faults. c) Expression of shear band 636 

ridges in P-Cable 3D seismic profile. 637 

5.2 What do high-resolution 3D seismic data add to the understanding of glacial processes? 638 

High-resolution 3D seismic data allow to make conclusions about the degree of preservation of meter-639 

scale glacial landforms at a paleo-surface, which reveal a complex and dynamic ice sheet. The data help 640 

to evaluate if the URU reflection represents a contrast between sedimentary bedrock, glacio-tectonically 641 

deformed sediments, or glacial sediments. The geometries and the links with the subsurface of these 642 

expressions cannot be interpreted in conventional seismic data (Figs. 4, 5). Structures as small as 1.5 m 643 
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can be vertically resolved in P-Cable data at URU depths, which is up to five times higher than 644 

conventional 3D seismic data. While geological structures with horizontal extensions of less than 12 m 645 

cannot be resolved in conventional 3D seismic data, P-Cable 3D seismic data have a horizontal 646 

resolution of c. 5-6 m (Figs. 15, 16). Such a horizontal resolution is comparable to conventional keel-647 

mounted multi-beam echosounders (Bellwald et al., 2018a), and shows that buried surfaces can be 648 

mapped in seabed-quality using high-resolution 3D seismic data. Thereby we can image paleo-649 

landscapes in a quality comparable to landscapes imaged on GoogleEarth (Figs. 15c, 16c). This high-650 

resolution imaging allows to use modern landforms as analogues for processes active in the formation 651 

of structures identified in seismic data (Figs. 15c, 16c).  652 

High-resolution 3D seismic data allow to map thermokarst landscapes (Figs. 6, 10). Thermokarst 653 

incorporates the presence of permafrost, which include frozen ice and gas hydrates (Kvelvolden, 1988; 654 

Kargel, 1995; Hassol, 2004). Abundant gas-hydrate accumulations are proposed to exist beneath the 655 

Antarctic and Greenland ice sheets (Wadham et al., 2012; Wallmann et al., 2012), and their release can 656 

occur in a catastrophic way (Kennett et al., 2003). Gas hydrates have been discussed for the formation 657 

of rhombohedral ridges and hill-hole pairs based on the P-Cable data of this study (Figs. 9, 12). The 658 

observation of large pockmarks at URU (Fig. 11) supports large quantities of gas and gas hydrates at 659 

the time of the URU formation. Circular to elongated lakes in Northern Siberia have a thermokarst origin 660 

(Fig. 15) (e.g., Morgenstern et al., 2013), and we infer similar conditions for the formation of 661 

rhombohedral ridges and the thermokarst-dominated landscape in general. However, the fact that 662 

thermokarst lakes usually have flat floors and lack rims (e.g., Soare et al., 2008) shows that such 663 

analogues have to be applied with caution. 664 

While multiple sets of glacial lineations mapped in conventional 3D seismic data of the Hoop Fault 665 

Complex area indicate thawed glacier beds (Fig. 1b) (Piasecka et al., 2016), the identification of hill-666 

hole pairs in P-Cable data indicates a polythermal regime at the base of the Barents Sea Ice Sheet during 667 

multiple streaming events (Fig. 13). The association between shearing-related landforms and the shear 668 

margin moraine (Bellwald and Planke, 2018) highlight that freeze-on processes at the base of the ice 669 
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sheet favorably have occurred in shearing zones, which has also been suggested for streamlined ridges 670 

and depressions in the glacial sediment of the Norwegian Skagerrak (Bøe et al., 2016). 671 

Ice-streaming events 1 and 4 correlate with previous chronologies (Piasecka et al., 2016) (Fig. 14). The 672 

ice-streaming flow-set 2 of this study can be associated with ice-streaming event 3 of that study, and 673 

ice-streaming flow-set 3 with ice-streaming event 2. MSGLs of ice-streaming event 2 below the 674 

moraine, which is formed related to ice-streaming event 3, make us conclude that high-resolution 3D 675 

seismic technologies can help to improve the relative chronology of the area. Ice-streaming event 4 to 676 

be the last event is further supported by NE-SW-directed MSGLs identified on the top of the shear 677 

margin moraine (Bellwald and Planke, 2018). 678 

Trough-transverse ridges, imaged by structure maps and the use of seismic attributes (Fig. 16a), correlate 679 

with polygonal faults identified in high-resolution 3D seismic data and highlight the inherited structural 680 

geological aspect for landform generation. The example of transverse ridges shows that individual sets 681 

of ridges can be linked together using the peak seismic amplitude (Fig. 16b), and that these ridges occur 682 

in bands. Moraines along the SW Finnish coast show very similar expressions as the flow-transverse 683 

ridges of this study (Fig. 16c). Thus, the transverse ridges could also consist of a thin layer of glacial 684 

till, with a vertical extent below the resolution limit of this study. 685 

Improvements in high-resolution 3D seismic technologies allow to visualize landforms with a lateral 686 

resolution of 3 m (Lebedeva-Ivanova et al., 2018). Such a configuration has been used for the 687 

neighboring Wisting area (Fig. 1b), and is supposed to image features even smaller than those of this 688 

study in future. 689 
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 690 

Fig. 15. Thermokarst landscapes identified in different technologies. a) Structures identified in 691 

conventional 3D seismic data. b) Structures identified in P-Cable 3D seismic data at the same location 692 

as Fig. 15a. c) Thermokarst lakes of the Lena Delta as analogue for thermokarst landscape identified in 693 

P-Cable data. Image from GoogleEarth. 694 

 695 

Fig. 16. Analogues of flow-parallel ridges imaged at URU. a) Structure map using P-Cable 3D seismic 696 

data. b) Peak seismic amplitude of URU pick using P-Cable 3D seismic data. c) Moraines identified in 697 

Svedjehamn, SW Finland. Image from GoogleEarth. 698 
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6. Conclusions 699 

The complexity of buried Quaternary landforms has been successfully imaged using high-resolution 3D 700 

seismic data. Meter-scale horizontal and vertical resolution of the shallow subsurface of the SW Barents 701 

Sea allowed to image geological structures at Upper Regional Unconformity (URU) in a quality 702 

comparable to conventional multi-beam echosounders.  703 

The URU geomorphology reveals a variety of landforms, which are indicative of ice-sheet erosion and 704 

the presence of permafrost and gas hydrates below. Four sets of mega-scale glacial lineations, with 705 

associated hill-hole pairs for two of them, give valuable information about ice-sheet dynamics and 706 

indicate polythermal regimes at the base of the ice sheet. Shear band ridges seem to reflect strata of 707 

different erosional resistivities. Hill-hole pairs and rhombohedral ridges indicate depths of 5-10 m for 708 

ice-sheet freezing, which could reflect the level of the paleo gas hydrate stability zone. Pockmarks with 709 

a variety of shapes represent the fluid-flow events sourced either directly from deeper Jurassic 710 

reservoirs, or from gas related to a gas hydrate seal below URU. Hill-hole pairs, rhombohedral ridges 711 

and shear band ridges all correlate with polygonal faults in the underlying geology. Thus, the high-712 

resolution P-Cable 3D seismic data show that the faults in the shallow subsurface have an important, 713 

inherited effect on the occurrence of glacio-tectonic features along URU. However, landforms related 714 

to ice-streaming, such as mega-scale glacial lineations, do not correlate with any faults, and depend on 715 

ice-streaming directions. 716 

The loading and compaction of sediments by ice resulted in the imposition of Lower Cretaceous 717 

sedimentary bedrock. Sedimentary layers have subsequently been deformed within the uppermost 30 m 718 

below URU. The presence of permafrost and gas hydrates below URU is suggested based on landforms 719 

related to thermokarst, such as rhombohedral ridges, transverse ridges and pockmarks.   720 
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