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Abstract 

Hardersen R, Enebakk T, Christiansen D, Bergseth G, Brekke OL, Mollnes TE, Lappegård 

KT, Hovland A. Granulocyte and monocyte CD11b expression during plasma separation is 

dependent on complement factor 5 (C5) - an ex vivo study with blood from a C5 deficient 

individual.  

The aim of the study was to investigate the role of complement factor 5 (C5) in reactions 

elicited by plasma separation using blood from a C5 deficient (C5D) individual, comparing it 

to C5 deficient blood reconstituted with C5 (C5DR) and blood from healthy donors. Blood 

was circulated through an ex vivo plasma separation model. Leukocyte CD11b expression and 

leukocyte-platelet conjugates were measured by flow cytometry during a 30-minute period. 

Other markers were assessed during a 240-minute period. Granulocyte and monocyte CD11b 

expression did not increase in C5D blood during plasma separation. In C5DR samples 

granulocytes CD11b expression, measured by mean fluorescence intensity (MFI), increased 

from 10481±6022 (SD) to 62703±4936, and monocytes CD11b expression changed from 

13837±7047 to 40063±713. Granulocyte-platelet conjugates showed a 2.5-fold increase in the 

C5DR sample compared to the C5D sample. Monocyte-platelet conjugates increased 

independently of C5. In the C5D samples platelet count decreased from 210 x109/L (201-219) 

(median and range) to 51x109/L (50-51), and C3bc increased from 14 CAU/mL (21-7) to 198 

CAU/mL (127-269), whereas TCC formation was blocked during plasma separation. In 

conclusion, upregulation of granulocyte and monocyte CD11b during plasma separation was 

C5 dependent. The results also indicate C5 dependency in granulocyte-platelet conjugates 

formation. 

 

Keywords: C5 deficiency; bioincompatibility; plasma separation; CD11b/CD18; leukocyte-

platelet conjugate. 
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Introduction  

CD11b is part of the integrin heterodimer containing CD11b (integrin αм) and CD18 (integrin 

β2). CD11b/CD18 (CR3) has approximately 40 reported protein ligands. Biologic functions 

during the inflammatory response include adhesion of leucocytes, regulation of cytokine 

secretion, and there are indications of direct adhesion to platelets (1). In commonly accepted 

biocompatibility models activated leukocytes expressing CD11b/CD18 binds iC3b molecules 

included in the initial protein layer bound to the artificial surface, which is considered one of 

the first steps in the bioincompatibility reaction (2, 3).  

Studies have shown that hemodialysis upregulates the adhesion molecule CD11b on 

leukocytes, corresponding to elevated platelet-leukocyte aggregate counts, concluding that 

expression of CD11b is a reliable marker of leukocyte activation during hemodialysis (4). 

When plasma separation is used in treatment of e.g. vasculitis, the plasma fraction is disposed 

and substituted with either fresh frozen plasma or a Ringer/albumin solution before it is 

merged with the cellular component and  returned to the patient. In plasma separation used in 

LDL apheresis systems the cell fraction is merged with the plasma fraction before returned to 

the patient after LDL removal has taken place from the plasma fraction. If the plasma 

separation process in itself has adverse effects on the cellular components, either directly or 

by activation of the innate immunesystem, this may prove disadvantageous to the patient.  

It has previously been demonstrated that plasma separation induces complement activation 

during ex vivo low-density lipoprotein (LDL) double filtration apheresis (5), and that CD11b 

upregulation is dependent on the presence of complement factor 5 (C5) in an ex vivo model 

with polyvinylchloride tubing (PVC) (6). Studies have also shown upregulation of CD11b on 
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monocytes and granulocytes, and an increase in monocyte- platelet and granulocyte- platelet 

conjugates after circulating blood through PVC tubing. Furthermore, blocking of C5a receptor 

1 (C5aR1, CD88) on granulocytes and monocytes largely counteracted the CD11b 

presentation. Thus, CD11b upregulation by PVC is mediated trough complement activation, 

mainly by C5a (7), and CD11b upregulation on granulocytes is thus to some extent a proxy 

for complement activation. Crosstalk between parts of the innate immune systems 

(complement system, coagulation system and contact activation system) in plasma separation 

procedures leads to activation of the cellular component of the immune system, and thus 

enhancement of the immune response. The result is an inflammatory response in the patient 

undergoing treatment including blood exposure to artificial surfaces, also involving the 

cellular component of the immune system (2). This treatment-induced systemic response may 

have unwanted consequences for the patient. 

The aim of the present study was to investigate the role of complement in leukocyte activation 

during plasma separation, as measured by expression of CD11b and formation of leukocyte-

platelet conjugates. We developed an ex vivo model of plasma separation and compared blood 

from an individual with C5 deficiency (C5D) with C5 deficient blood reconstituted with C5 

(C5DR), and blood from healthy donors as control (CTR).  C5 deficiency is extremely rare, 

with only a few dozen individuals reported worldwide (8), but as these individuals represent 

nature´s own knock-outs their blood is well suited to study the role of complement in general 

and the role of C5 in particular in various models of inflammation.  
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Material and methods 

Ethics:  

The regional ethics committee approved the study and all blood donors signed an informed 

consent. 

Donors:  

Blood from a previously described C5 deficient individual (9), and blood from three healthy 

donors was used. Blood was drawn four times from the C5 deficient donor, and twice from 

each healthy donor. The individuals donated 450 mL of blood on each occasion. Time 

duration between blood donations was approximately six months. 

Blood sampling and plasma separation:  

Lepirudin (Refludan®, Celgene, Marburg, Germany), 25mg in 50 mL of 0.9% NaCl, was 

added to a 600 mL filterless Blood Pack Unit (Fenwal, Lake Zürich, USA, made from 

polyvinylchloride copolymer plasticized with di-2-ethylhexyl phthalate, without other 

additives, before blood donation, giving a final concentration of 0.05 mg lepirudin/mL blood 

and a final volume of 500 mL in the blood pack unit. Lepirudin in this concentration gives 

efficient anticoagulation without affecting complement activation (10). 

Fifty mL of blood was then transferred to an empty blood pack to serve as a control for time-

dependent, contact-induced activation (no-plasma separation blood reservoir, NPS). The 

remaining 450 mL served as the reservoir for blood circulating in the plasma separation 

model (plasma separation blood reservoir, PS) (Fig. 1). Both blood packs were placed in a 

temperature controlled heater (Binder, Binder GmBH, Tuttlingen, Germany) set at 37°C, with 

constant movement by means of a modified test tube rotator (Rock ’n Roller, Labinco BV, 

Breda, The Netherlands). The blood reservoir was attached to the plasma separation system 

which consisted of an Octo-Nova (MeSys Gmbh, Hannover, Germany) machine with a 

PlasmaFlo OP-05W column (Asahi Kasei Medical Europe) plasma separation column and 
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PVC tubing. The flow rates were 100 mL/min for the blood pump and 20 mL/min for the 

plasma pump. Blood samples for flow cytometry were obtained at 0, 5, 15, and 30 minutes 

(T0-T30), while the other markers were obtained at 0, 5, 30, 120 and 240 minutes (T0-T240).  

All blood samples were drawn simultaneously (within a time frame of one minute) for each 

sample time and location. Blood samples were drawn into polystyrene tubes containing 

EDTA (to block any further complement activation) to a final concentration of 10 mM and 

then placed on ice before centrifugation for 15 min at 3220g at 4°C. The plasma was frozen in 

aliquots at -80°C until analysis in batches. Blood smears were made immediately after blood 

sampling, at T0 and at T240. 

Flow cytometric studies of CD11b:   

Flow cytometric studies were performed with an LSRII (Becton Dickinson (BD), San Jose, 

Ca, USA). At each point of time blood (100 μL) was fixed with 100 μL 0.5% 

paraformaldehyde for 4 minutes at 37°C, and 25 μL fixed blood was then incubated for 15 

minutes at room temperature in the dark with anti-CD11b-PE (BD) or the isotype control 

IgG2a-PE (BD). For threshold for the nuclear stain LDS-751 (Molecular Probes, Life 

Technologies) was added. In addition anti-CD14 FITC (BD) was used for gating purpose. 

One mL PBS was added and samples were acquired after 15 minutes. Granulocytes and 

monocytes were gated in an SSC/anti-CD14-dotplot, and the mean fluorescent intensity 

values for CD11b were calculated (Fig. 2). The antibody used in our study (mouse anti 

human-CD11b-Phycoerythrin, clone D12, Becton Dickinson, San Jose, Ca, USA) is specific 

for the 165-kilodalton (kd) α subunit of the CD11b/CD18 antigen heterodimer, and is as such 

unable to disclose if the CD11/CD18 integrin is conformationally changed into its active 

form. However, the same anti human CD11b antibody is used by our and other groups in 

studies exploring CD11b upregulation in inflammation, and taken into account for the 
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conformational change of the heterodimer into its active form and activation of leukocytes 

(11-14). 

Leukocyte-platelet conjugates:  

Fixed blood cells were stained with anti-CD14 PE (BD), anti-CD61 FITC (BD), LDS-751 and 

re-suspended as described above. Granulocytes and monocytes were gated in an SSC/anti-

CD14-dotplot, and the mean fluorescent intensity values for CD61 were calculated.  

Routine biochemistry:  

Hemoglobin, leukocytes and platelets were analyzed using a Siemens ADVIA® 2120 

Hematology System (Siemens Healthcare Diagnostics Ltd., Camberly, UK). Total protein, 

albumin, C4, IgG, IgM and IgA were analyzed in an ADVIA®1800 system (Siemens Medical 

Solutions Diagnostics, Japan) with reagents from Siemens Healthcare Diagnostics Ltd.    

Complement components and functional activity assays:  

Purified human complement protein C5 was obtained from Quidel (Quidel Corporation, San 

Diego, USA). Purified C5 was added to C5 deficient blood to give a final plasma 

concentration of 80 µg/mL, corresponding to the concentration of C5 in normal individuals 

(15). The complement activation products C3bc and the terminal complement complex (TCC) 

were measured using enzyme immunoassays based on capture antibodies reacting with 

neoepitopes exposed selectively in the activation product and not in the native component as 

described in detail previously (16).  

Correction for dilution:  

A small amount of priming solution (isotonic saline) was used to prepare the tubing and 

columns before the ex vivo loop was started. Hematocrit was used to correct the concentration 

for the plasma parameters, according to a standardized formula (17). 
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Statistics:   

Formation of leukocyte-platelet conjugates and CD11b expression was measured as mean 

fluorescent intensity ± standard deviation (SD), all other measurements are median ± range. 

The rarity of the C5-deficiency precluded use of many repeated samples in this study. Due to 

the few numbers of observations we have presented the data without further tests of statistical 

significance.  All calculations presented were performed with Prism 5.0 for Windows, 

Graphpad software (San Diego, California, USA).  

 

Results 

Expression of CD11b on leukocytes (Fig 3):                                                 

Granulocytes (Fig 3A): Blood from control individuals showed an increase in CD11b 

expression in the plasma separation sample from 2621±498 (mean and SD) at T0 to 

30727±9165 at T30 (CTR-PS: Fig.2 A, left panel). In contrast the C5 deficient blood (C5D) 

showed no increase in granulocyte CD11b expression in the plasma separation sample 

changing from 5351±919 at T0 to 7935±1648 at T30, (C5D-PS: Fig 3A, left panel). After 

reconstituting the C5 deficient blood with purified C5 (C5DR), granulocyte CD11b 

expression in the plasma separation sample increased from 10481±6022 at T0 to 62703±4936 

at T30 (C5DR-PS: Fig.2 A, left panel).  

In the time-dependent, spontaneous activation, no-plasma separation sample (NPS) there was 

a small increase in CD11b expression in blood from the control persons from 2443±725 at T0 

to  6419±218 at T30, (CTR-NPS: Fig. 3A, right panel). Similarly there was a small increase in 

C5 deficient blood from 5351±919 at T0 to 10537± 890 at T30 (C5D-NPS; Fig. 3A right 

panel).  After reconstitution there was an increase in CD11b expression from 10481±6022 at 

T0 to 47080±17186 at T30, (C5DR-NPS: Fig. 3A, right panel).  
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Monocytes (Fig. 3B): In blood from control individuals the plasma separation sample showed 

a marked increase in monocyte CD11b expression from 3894±285 at T0 to 23575±6765 at 

T30, (CTR-PS; Fig. 3B, left panel). In C5 deficient blood there was no increase in  CD11b 

expression as it changed from 9027±456 at T0 to 11478±1461 at T30, (C5D-PS: Fig 3B, left 

panel) similar to that seen for the granulocytes. Upon reconstitution with C5 monocyte 

expression of CD11b in C5 deficient blood also increased, from 13837±7047 at T0 to 

40063±713 at T30, (C5DR-PS: Fig. 3B, left panel).  

In the no-plasma separation samples there was a small and equal increase in CD11b 

expression on monocytes for controls and C5D (CTR-NPS and C5D-NPS: Fig. 3B, right 

panel). Similar to the granulocytes, there was an increase in CD11b expression in the 

monocyte C5DR-NPS samples from 13837±7047 at T0 to 40532±543 at T30, (Fig. 3B, right 

panel). 

Formation of leukocyte-platelet conjugates (Fig.4):                                     

Granulocyte-platelet conjugates (Fig. 4A): In blood from control individuals the plasma 

separation sample showed an increase in granulocyte-platelet conjugate formation from 

1325±250 at T0 to 5633±3199 at T30, (CTR-PS: Fig. 4A, left panel). In C5D blood 

granulocyte-platelet conjugate formation during plasma separation increased from 1931±337 

at T0 to 3247±1066 at T30, (C5D-PS: Fig 4A, left panel). The reconstituted C5 deficient 

blood increased from 1851±805 at T0 to 4743±485 at T30, (C5DR-PS: Fig. 4A, left panel).  

In the no-plasma separation samples (Fig. 4A, right panel), there were a small and equal 

increase during the observation time in the three groups. 

Monocyte-platelet conjugates (Fig. 4B): There were increases in monocyte-platelet conjugate 

formation for all groups during plasma separation from T0 to T30 (Fig. 4B left panel). The 

increases seen in the no-plasma separation samples during the 30 minute observation time 
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were less than in plasma separation samples and also similar in all groups (Fig. 4B right 

panel). 

Platelet and leukocyte counts (Fig.5): 

Platelet count was reduced in all groups during plasma separation (T0-T240); CTR: 235 109/L 

(218-246) (median and range) to 67 109/L (26-68), C5D: 210 109/L (201-219) to 51 109/L 

(50-51), C5DR: 191 109/L (158-224) to 31 109/L (26-36), (Fig. 5A, left panel).  Blood smears 

obtained from the plasma separation samples at the end of the apheresis session showed 

platelet agglutination (data not shown). None of the groups changed in platelet count in the 

no-plasma separation samples (Fig. 5A right panel). Furthermore there were no significant 

changes in the leucocyte counts during plasma separation or in the no-plasma separation 

samples in the different groups (Fig. 5B). 

Total protein and complement factor 4 (C4) (Fig.6): 

In the plasma separation control sample there was a reduction in total protein from T0 53 g/L 

(45-54) (median and range) to 25 g/L (18-31) at T5 with no further reduction at T240 (CTR-

PS: fig 6A, left panel). There were similar reductions in total protein for all groups during 

plasma separation (C5D-PS and C5DR-PS: fig. 6A, left panel). No such reduction was seen in 

the no-plasma separation samples (fig. 6A, right panel). The same pattern was seen for 

albumin, IgG, IgM and IgA (data not shown).  

Resembling the pattern for total protein, there were reductions in C4 for all groups during 

plasma separation starting at T5, with no further reduction at T240 (Fig. 6B, left panel), 

whereas the levels in the no-plasma separation samples remained unchanged during time (Fig 

6B, right panel). 

Complement activation (Fig.7): 

In all plasma separation samples there were increases in the complement activation product 

C3bc, starting at 5 min with further increase after 30 min (Fig. 7A, left panel). In the no-
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plasma separation samples the increase occurred later, starting at 30 min and continuing up to 

240 min, however not reaching the same maximum as in the plasma separation samples (Fig. 

7A, right panel). 

The terminal C5b-9 complement complex (TCC) was measured to assess endpoint 

complement activation. In the controls and in the C5 reconstituted samples there was a 

fifteen-fold increase in TCC during plasma separation (CTR-PS, C5DR-PS: Fig. 7B, left 

panel), and as expected there was no TCC formation in the C5D sample consistent with the 

lack of C5 (C5D-PS: Fig. 7B, left panel). Similarly, in the no-plasma separation samples, 

there was a ten-fold TCC increase in the CTR sample and a twenty-fold increase in the C5DR 

sample, while there was no TCC formation in the C5D sample (Fig. 6B, right panel).  

 

Discussion 

We have previously shown that individuals deficient of C5, nature’s own knock-outs, can be 

used as a robust model for exploring the role of C5 in different experimental settings (14). In 

the present study, using C5D blood compared to controls in an ex vivo model of plasma 

separation, we demonstrate that CD11b expression was C5 dependent both for granulocytes 

and monocytes supporting previous published observations. Formation of granulocyte-platelet 

conjugates was to some extent C5 dependent. Monocyte-platelet conjugates, however, were 

C5 independent. These findings underscore the importance of the complement system in 

leukocyte activation during extra-corporeal treatments involving surface activation.  

Expression of CD11b on leukocytes: 

Our finding that CD11b expression on granulocytes is C5 dependent in our model of ex vivo 

plasma separation is supported by previous studies. Rinder et al showed that C5aR1 blockade 

significantly decreased CD11b upregulation on granulocytes and that anti-human C5 antibody 

blocks CD11b upregulation on granulocytes in an ex vivo model with simulated 
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extracorporeal circulation (18, 19), and  it has also been demonstrated that blocking the 

C5aR1 in a model with PVC tubing counteracted the CD11b expression on granulocytes (7). 

Our group has previously demonstrated that CD11b expression on granulocytes in a Neisseria 

meningitides model using blood from a C5 deficient donor only occurred after reconstitution 

of C5, also indicating the importance of C5 in CD11b expression on granulocytes (14) and 

Bergseth et al showed that C5 deficiency decreased CD11b expression on granulocytes in a 

model with C5 deficient and C5 reconstituted blood in PVC tubes (6).  

Our findings also indicate that CD11b expression on monocytes in the plasma separation 

samples is C5 dependent. This is also partly in accordance with former studies. Rinder et al 

found that anti C5a only trended towards blocking CD11b expression on monocytes (19). We 

have previously shown that CD11b expression on monocytes to some extent was dependent 

on C5 in a model using C5aR1 antagonist for blocking C5 effect on monocytes in a PVC 

tubing model (7), and Bergseth et al found that lack of C5 decreased monocyte CD11b 

expression in a PVC tubing model, using C5D deficient blood reconstituted with C5 (6). 

Rinder et al also demonstrated that CD11b expression on monocytes can be reduced by down 

regulating both classical and alternative C3/C5 convertases using the complement activation 

blocker (CAB-2; CD46-CD55 conjugate). Thus, blocking formation of C3 cleavage products 

points to C3a and probably other C3 fragments as additional candidates possibly able to 

facilitate upregulation of CD11b expression on monocytes (20).  This indicates that 

biocompatibility between different materials cannot be readily compared, and that every 

material and model has to be evaluated separately. The main difference between our study and 

others is the presence of the plasma separation column and the blood and plasma flow rates. 

Since plasma separation involves shear stress and shear force, this could also affect CD11b 

expression. 
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Formation of leukocyte-platelet conjugates: 

Formation of leukocyte-platelet conjugates is recognized as a component of inflammation in 

many circumstances, and conjugate formation can be induced by artificial surfaces and thus 

seen as a marker of bioincompatibility (21, 22). In an in vitro model of artificial surface 

induced inflammation using monoclonal antibodies and small peptides as complement 

inhibitors, we have previously shown that conjugate formation is mediated by activation of 

complement and the formation of C5a, which also upregulates CD11b on leukocytes (7).  

In the present study, formation of granulocyte-platelet conjugates increased fairly equal in the 

C5DR-PS and C5D-PS samples until T15. From T15 to T30 there was a 2.5-fold increase in 

granulocyte-platelet conjugate formation in the C5DR-PS sample compared to the C5D-PS  

sample. In the CTR-PS sample there was a 4-fold increase in granulocyte-platelet conjugate 

formation. Other studies have shown increase in formation of granulocyte-platelet conjugates 

in models including PVC tubing and a membrane oxygenation device and at the same time 

also shown that granulocyte-platelet conjugate formation can be reduced either by blocking 

C5aR1 or by blocking cleavage of C5 (7, 19).  

We found an increase in monocyte-platelet conjugate formation in the plasma separation 

samples in our study, and this increase appeared to be C5 independent. Previous studies have 

indicated C5 dependence to a certain degree in the formation of monocyte-platelet conjugate 

formation (6, 7, 19).  

The difference in result from other studies regarding formation of leukocyte-platelet 

conjugates indicate that the plasma separation column and the blood bag or the model as a 

whole can mediate conjugate formation also trough mechanisms other than complement C5a 

generation and CD11b expression on leukocytes.  Previous studies have pointed out the 

ability of shear stress and shear force in blood circulating circuits both ex vivo and in vivo to 

activate cellular components of the blood (23-25). Gutensohn et al described, in a model of 
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platelet apheresis, interaction between platelets and monocytes simultaneously as 

upregulation of P-selectin and CD63 was observed on platelets (26). At the same time 

activated platelets binding CD41a+ leukocytes forming conjugates was observed. 

Importantly, they noticed that most of the binding between the platelets and leukocytes 

happened during the first 5 min of circulation. This was also the case in our study with regard 

to the monocyte platelet conjugate formation in the plasma separation samples.  

The plasma separation column used in the current study has been described to mediate 

complement activation, but not to activate cellular components of the blood (27). By 

measuring C3, C3a and C5a in models with different types of lipoprotein apheresis and in 

lone plasmapheresis models, other studies have also concluded that the plasmapheresis 

column activates complement (5, 28). Taken together, these findings indicate that shear stress 

and shear force also mediate conjugate formation trough mechanisms other than C5 

activation.   

Platelets and leukocytes:  

Activation, adherence and clotting of platelets are recognized as bioincompatibility in 

artificial devices. Primary activation of platelets and secondary activation as a result of 

activation of the coagulation and immune systems have been discussed as possible 

mechanisms (2, 3). In our study there was a marked reduction in platelets in the plasma 

separation samples compared to the no-plasma separation samples, but the reduction was not 

C5 dependent. The observation of C5 independence is not in alignment with earlier studies 

stating that inhibiting C5 did preserve the platelet count in a cardiopulmonary bypass model 

(18). On the other hand it is clearly demonstrated that platelets bind vigorously to PVC used 

in the tubing in our model (29, 30). Shear stress and shear forces can activate platelets 

enhancing adhesion of platelets to biomaterials (31, 32). Platelet agglutination was also 

clearly shown in blood smear taken from the plasma separation samples at T240. This is 
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probably part of the explanation for the observed platelet reduction in the plasma separation 

samples in our study, despite the use of lepirudin as an anticoagulant. The plasma separation 

column used in our study is not yet known to interact with the platelets (27). The leukocyte 

count remained stable and unchanged in all samples in our study despite formation of 

conjugates and the change in platelet count in the plasma separation samples, indicating that 

leukocytes did not adhere to the plasma filtration column or the tubing.   

Plasma proteins:  

We observed a reduction in circulating plasma proteins (albumin, immunoglobulins, and C4) 

in the plasma separation samples independent of C5. When blood interacts with foreign 

material the first step in the bio-incompatibility cascade is that a layer of plasma proteins 

binds to the surface (33). These proteins, bound to the material, undergo conformational 

changes making the proteins able to activate inflammatory cascade and network systems (34). 

In the no-plasma separation samples there were no or only marginal changes in protein 

concentration, consistent with the different biomaterials in the blood bag and in the plasma 

separation system and the different mode of contact between blood and plasma circulating  in 

the plasma separation column causing shear stress with increased binding of protein to the 

biomaterial. Thus testing of bio-incompatibility for any material should take place under the 

same conditions as the biomaterials are supposed to be used in clinical practice.    

Complement activation: 

Generation of C3bc is formed by C3 cleavage irrespective of which initial pathway(s) that are 

activated (35). A model for activation of complement on artificial surfaces has been suggested 

by several authors (2, 36, 37). Put together it is possible for both classical, lectin and 

alternative pathway to activate the amplification loop of complement and secondly lead to the 

generation of the terminal complement complex.  In accordance with this, we observed an 

increase in C3bc in our study whereas the lack of C5 as expected prevented the generation of 
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TCC in the C5 deficient samples. When C5D blood was reconstituted with purified C5, we 

observed an enhanced activation reflected by increased TCC formation compared to the 

controls also in the no-plasma separation control sample. The most likely explanation for this 

is the fact that purified proteins may undergo changes in configuration enhancing their 

biological effects, in addition to the inherent risk of contamination. We have experienced this 

with the purified C5 in our laboratory (non-published observations) and it has been described 

that different forms of C5b have different potency in generating TCC (38). Our data indicate 

that the purified C5 might have increased capacity to generate TCC. 

 

Conclusion 

In an ex vivo model of plasma separation the upregulation of leukocyte CD11b was C5 

dependent both on granulocytes and monocytes. The results also indicate a possible C5 

dependency of granulocyte-platelet conjugate formation. Platelet count was reduced during 

plasma separation whereas the leukocyte count was unchanged. Further improving 

biocompatibility and reducing complement activation by materials used in routine plasma 

separation could prove to be of clinical benefit. 

We acknowledge that the findings are not new as such and our results are based on a small 

sample size and conclusions should be drawn with care, however, previous studies in the field 

have used inhibitors of the complement system, such as purified or monoclonal antibodies or 

smaller peptides. Such experimental approaches always carry the risk of contamination and 

cross-reaction. To our knowledge, our study is the first using blood from a C5 deficient 

individual to investigate complement activation in a model with plasma separation, and in our 

opinion this model adds important information even if confirming previous findings. 

Furthermore, although C5 deficiency is extremely rare, the increasing clinical use of 
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inhibitors of C5 (e.g. eculizumab) emphasises the importance of studying mechanisms related 

to complement activation in more depth. 
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Fig. 1 Schematic drawing of the ex vivo model. The plasma separation blood bag served as 

the reservoir for the plasma separation circuit. Plasma separation blood samples were obtained 

from the tubing blood sample outlet after the plasma separation blood reservoir. The arrows 

show the direction of blood flow and plasma flow in the system. The no-plasma separation 

blood reservoir was kept at 37°C on the test tube rotator next to the plasma separation blood 

reservoir. No-plasma separation blood samples were drawn directly from the no-plasma 

separation blood reservoir.  
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Fig 2 Flowcytometric readouts at 30 min of granulocyte and monocyte CD11b. During 

acquisition threshold was set on the nuclear stain LDS 751 (A). Granulocytes and monocytes 

were gated for in a CD14 FITC/SSC dotplot (B). Granulocyte CD11b expression in samples 

C5DR-PS and C5D-PS shown in a histogram (C).  

 

 

Fig. 3 CD11b expression. Expression of CD11b on granulocytes (A) and monocytes (B). 

CD11b expression from baseline (T0) through 30 minutes (T30) expressed as mean 

fluorescent intensity and standard deviation in the C5D, C5DR and CTR samples in the 

plasma separation blood samples (PS) and in the no-plasma separation blood samples (NPS). 
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Fig. 4 Leukocyte-platelet conjugates. Granulocyte-platelet (A) and monocyte-platelet (B) 

conjugate formation from baseline (T0) trough 30 minutes (T30) expressed as mean 

fluorescent intensity and standard deviation in the C5D, C5DR and CTR samples in the 

plasma separation blood samples (PS) and in the no-plasma separation blood samples (NPS).  

 

 

Fig. 5 Platelet and leukocyte counts. Platelet (A) and leukocyte (B) from baseline (T0) 

trough 240 minutes (T240) expressed as median and range in the C5D, C5DR and CTR 
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samples in the plasma separation blood samples (PS) and in the no-plasma separation blood 

samples (NPS).   

 

 

Fig. 6 Plasma protein concentrations. Total protein (A) and complement factor 4 (B) from 

baseline (T0) trough 240 minutes (T240) expressed as median and range in the C5D, C5DR 

and CTR samples in the plasma separation blood samples (PS) and in the no-plasma 

separation blood samples (NPS).  
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Fig. 7 Complement activation. Complement activation products C3bc (A) and TCC (B) 

from baseline (T0) trough 240 minutes (T240) expressed as median and range in the C5D, 

C5DR and CTR samples in the plasma separation blood samples (PS) and in the no-plasma 

separation blood samples (NPS).  

 


