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Abstract 

 

Vertical stacking of monolayers via van der Waals assembly is an emerging field that opens promising 

routes toward engineering physical properties of two-dimensional (2D) materials. Industrial exploitation 

of these engineering heterostructures as robust functional materials still requires bounding their measured 

properties so to enhance theoretical tractability and assist in experimental designs. Specifically, the short-

range attractive van der Waals forces are responsible for the adhesion of chemically inert components and 

are recognized to play a dominant role in the functionality of these structures. Here we reliably quantify 

the strength of ambient van der Waals forces in terms of an effective Hamaker coefficient for CVD-

grown graphene and show how it scales by a factor of two or three from single to multiple layers on 

standard supporting surfaces such as copper or silicon oxide. Furthermore, direct measurements on 

freestanding graphene provide the means to discern the interplay between the van der Waals potential of 

graphene and its supporting substrate. Our results demonstrated that the underlying substrates could be 

controllably exploited to enhance or reduce the van der Waals force of graphene surfaces. We interpret 

the physical phenomena in terms of a Lifshitz theory-based analytical model.  
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Introduction 

The development of graphene and the entire class of 2D materials1-2 over the last decade has 

raised tantalizing application possibilities that leverage on the unique physics of 2D crystal 

structures to engineer materials at the nanoscale. In recent years interest in this area has turned 

towards the concept of “van der Waals heterostructures3,” in which multiple 2D layers are 

stacked with precise orientations to yield the desired properties. An example relates to electronic 

band gaps which can be tuned by varying the constituent layers and their orientation4-6. 2D layers 

can be seen as building blocks to construct  novel atomic scale metamaterials7 that open up a 

new paradigm of “2D manufacturing”. In short, new structures are engineered from the atomic 

level up by the combination of 2D building blocks to yield the desired properties. Besides their 

atomic flatness, such structures are unique in that the component layers join by other than 

chemical bonds. The so called  “glue” that binds these blocks is the ubiquitous van der Waals 

VdW force8 that arises from plane to plane interactions. The VdW forces are therefore bringing 

2D manufacturing of materials to fruition in a very elegant and unorthodox way. In this work we 

quantify the VdW interaction of CVD-grown graphene by means of the Hamaker coefficient that 

quantifies the strength of the VdW interactions. Hamaker9 demonstrated that the VdW force 

between two bodies could be split into a purely geometrical component and a parameter that 

depends solely on material chemistry i.e. polarizabilities and atomic densities of the atoms in the 

two interacting bodies9. The material chemistry is contained in the Hamaker coefficient, that is 

here treated as a coefficient because of the small interaction range that we consider. We use the 

standard terminology and term this coefficient A. Lifshitz10 presented a more rigorous approach 

that incorporated the many-body effects neglected by Hamaker and based on thermodynamic 
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considerations of the interacting bodies as a continuum described by dielectric properties. As the 

VdW interaction ultimately results from the fluctuations of the electromagnetic field between 

two macroscopic bodies, the Lifshitz theory can still be described by an effective Hamaker 

coefficient A11.  In this way, A offers a more general picture of surface properties than other 

measured physical quantities such as adhesion or surface energy. Despite the clear relevance of 

these forces to understand the interactions of 2D structures, the Hamaker coefficient - and indeed 

the VdW force profiles that it generates - of graphene and other 2D materials remains poorly 

studied. In particular, we refer to direct quantification that allows to gain experimental access to 

physical insight while keeping the experiments relatively simple. There is a lack of studies even 

if the volume of work dedicated to this investigation is substantial12-14. For example, while there 

have been many papers in the literature that have provided numerical experimental values for the 

Hamaker coefficient of similar systems based on AFM experiments, these rely very strongly on 

approximations and low throughput, so robust validation is many times lacking15. Other methods 

are otherwise overcomplicated and might provide indirect methods to quantify VdW forces 

rather than a single parameter that provides physical insight such as the Hamaker coefficient16. In 

the present work we directly quantify the van der Waals interactions of graphene surfaces by 

using the observables of a recently developed15, 17 bimodal AFM  methodology  to map the 

Hamaker coefficient in the non-retarded regime11.We note that an important factor in surface 

characterization of 2D materials, which we account for in this study, is the impact of the 

substrate on the measured values. As the sample thickness is in the order of Angstroms, surface 

force measurements may be influenced by the underlying substrate as well as by the sample. We 

perform measurements of samples on a variety of substrates to evaluate the impact of the 

substrate on the measured VdW strength of the 2D graphene systems. We note that the 
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experimental methodology followed to produce the samples might be of relevance for future 

experimentation and results critical in isolating to real measured forces. We have employed 

nanofabrication techniques to create patterned substrates that support regions of free-standing 

graphene where the graphene-substrate distance is in the order of microns. By performing 

measurements on these suspended regions, we characterize the graphene itself, thus removing the 

effect of the substrate. With these results we have succeeded in directly measuring the VdW 

strength of graphene surfaces on the nanoscale. We emphasize however that the values that we 

provide in this work are relevant to ambient conditions implying that they are not ideal. That is, 

deviation from ideal Hamaker coefficient values might result from the presence of pollutants, 

inter-layer water presence or other.  

 

 

Experiment 

The graphene for our measurements is grown on Cu substrates in-house via chemical vapor 

deposition (CVD). Varying the gas precursor flow rates as described in the methods section 

controlled the number of layers. Confirmation of the number of graphene layers was done by 

Raman spectroscopy via the ratio of the 2D and G peaks in a Raman spectrum, which varies 

from about 3 in single-layer graphene and decreases to less than 1 in multilayer samples18-19. We 

take Raman spectra of both graphene-on-Cu (as-grown) and graphene transferred onto both flat 

SiO2 and patterned SiO2 substrates that support regions of suspended graphene as described in 

the introduction. The patterned substrate was created via focused ion beam etching to create a 

pattern of “holes” over which the graphene layers are transferred (details in supplementary).  In 
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this way, atomic force microscopy (AFM) measures the Hamaker of graphene alone emerging 

from these suspended regions and without the influence of the substrate. 

After the Raman measurements, deposited and transferred graphene samples were measured by 

AFM where 100x100nm2 maps of the surface were collected in bimodal operation (see Methods 

section). The mapped regions fell inside the area where the Raman spectrum was taken. The 

Hamaker coefficient was mapped based on a method described in detail in previous works17, 20 

and summarized in the methods section here. In summary, the Hamaker coefficient A can be 

derived from raw bimodal AFM observables obtained directly from images. That implies that 

each pixel from the AFM image results in a value of A thus preserving both resolution and speed. 

The expression is: 

! = −3%&'!(' cos,-'.0.8323'!'
456789 !:																										,1. 

where R is the tip radius, km and Qm the spring constant and quality factor of the mth mode 

respectively, dmin the minimum distance of approach, Am the oscillation amplitude of the mth 

mode and A0m the free amplitude of the mth mode. Only the first and the second modes, i.e. m=1 

and m=2, are to be excited as typical in bimodal AFM.  We further note that the minimum 

distance of approach dmin refers to the minimum tip-surface distance per cycle. That is, as the 

cantilever oscillates there is one minimum distance in each complete cycle. Such minimum 

distance is what we term dmin. The expression we employ correspond to the approximation dmin ≈ 

zc-A1 where zc is the mean cantilever-surface distance.  It is also worth noting that there will 

always be a true minimum tip-surface distance coinciding with an intermolecular distance a0. 

These distances are typically taken to be 0.16-0. 2 nm (we take 0.165 nm in our derivations) and 

imply that matter cannot interpenetrate due to electron cloud repulsion. Thus, when we write 

dmin=0 the implication is that there has already been mechanical contact and tip-surface 
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deformation equal to a0. In addition to the bimodal mapping, force spectra were taken in standard 

single-mode operation. The force vs. distance profiles were reconstructed using the Sader-Jarvis-

Katan method from which an effective Hamaker coefficient can be obtained by fitting the 

attractive part of the force with an inverse squared power law. In addition to these experimental 

measurements we performed density functional theory (DFT) simulations to generate, from first 

principles, force-distance profiles for 1-, 2- and 3-layer suspended graphene. The simulations 

assisted in our interpretation by providing cause-effect controllable relationships even though we 

acknowledge the limitations of such prediction in experimental set-ups. In fact, such limitations 

motivate our experimental study that turns to direct experimental quantification.  

 

 

 

Results 

The value of the Hamaker coefficient for graphene on Cu is mapped as shown in Figure 1.  The 

three Hamaker coefficient maps, Figure 1a, b, c, show regions of single, double and multi-layer 

graphene as confirmed by Raman spectra, Figure 1e. Hamaker coefficient values for each pixel 

are extracted and the distribution of these values for each of the three samples is reported in 

Figure 1d. The results show for the first time a clear difference between the VdW strength of 

mono, bi and multi-layer graphene. Moreover, the Hamaker coefficient maps provide an 

indication of graphene continuity at far higher resolution (nm scale) than Raman spectroscopy. 

This provides additional insight into the origin of the observed Hamaker coefficient values.  For 

example, the regions in the maps of single and multi-layer graphene where the measured 
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Hamaker coefficient abruptly changes, are likely to represent Cu grain boundaries that would 

impact graphene growth and the measured strength of the VdW interaction. Clearly the mean 

Hamaker coefficient values are affected by the substrate, as the variations in the measured values 

between the grain boundaries and bulk crystal regions demonstrates. Thus, the Hamaker 

coefficient values are to be looked upon as effective values that include the effect of the substrate. 

Considering further the influence of the substrate, we note that the substrate itself can be 

modified during the CVD process (e.g. by promoting hydrogenation of the surface). While it is 

clear that the influence of the substrate on measured graphene surface properties presents an 

additional challenge for characterization, it also provides an extra degree of freedom to 

selectively modifying the effective properties of graphene. That is, one must specify the substrate 

in order to understand the properties of graphene. The implication is that graphene, in that sense, 

should not be considered as the whole of the physical entity from which properties arise. Thus, it 

must be reported as a substrate-graphene system instead. Furthermore, growth processes may 

also play a role, the differences in the measured surface properties between different graphene 

samples may, in this understanding, be in part related to differences in the substrate induced by 

the variations in the growth process. The trends observed in Figure 1 are confirmed with 

different samples and different tips of radius R < 7 nm20 (see methods section) . 
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Figure 1a, b, c) 100 nm × 100 nm Hamaker coefficient maps for monolayer, bilayer and multilayer graphene on Cu 

substrate respectively. d) Distribution of Hamaker coefficient values belonging to monolayer, bilayer and multilayer 

graphene. The Hamaker coefficient distributions present the raw data where no filter is applied see SI. e) Raman 

spectra plots of regions where monolayer, bilayer and multilayer graphene are identified. No filter is applied and the 

curves represent the raw data collected. The 532nm laser source has a spot size with radius ≈ 5 µm making the area 

extension several order of magnitude larger than the Hamaker coefficient maps see SI. 

 

Figure 2 shows a summary of the Hamaker coefficient distributions and Raman spectra for mono, 

bi and multilayer samples on all of the substrates considered, namely Cu in Figure 2a, b, SiO2in 

Figure 2c, d and freestanding graphene Figure 2e, f (see supporting information). One of the first 

observations one can derive from the results in Figure 2 is the reduced strength of the VdW 

forces for non-metal substrate or freestanding graphene. Strikingly, the measured Hamaker 

coefficient for graphene on SiO2 is lower than that for the suspended graphene with no substrate 

at all. We hypothesize that this reduced Hamaker coefficient might relate to variations in the 
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dielectric/refractive properties of the effective Silicon-graphene surface alone, rather than in 

material density since it is clear that the presence of the substrate would lead to an additive atom 

density increase according to Hamaker’s method. Roughly speaking wave interference might 

lead to absorption and emission resonance affecting the effective dielectric constant of the 

Hamaker-substrate surface. We will provide experimental evidence supporting this claim below. 

One can also notice in Figure 2d, a strong peak just below 1000cm-1, which indicates the 

presence of the SiO2substrate. The strong Raman signal in the region 800-1000cm-1 may also 

indicate the presence of PMMA residual. This last assumption cannot be entirely ruled out. On 

the other hand, the dominating contribution is from the SiO2 substrate itself. As explained in the 

SI file, the transfer process is tedious and may also leave residuals of water between the 

graphene and the SiO2 in addition to PMMA. The presence of a strong SiO2 signal though might 

suggest that the presence of a strong SiO2 signal between 900 and 1000 cm-1 serving as a proof 

that our graphene is successfully transferred and coated on SiO2 substrate. It is possibly to have 

some water residuals at the graphene/SiO2 interface, and the presence of residual could further 

provide some screening effect and thus reduce the measured effective Hamaker coefficient, 

however this reduction in the effective Hamaker coefficient on non-metal substrates can be 

explained even without invoking screening effect of the PMMA residue or water, as will be 

elaborated later in the manuscript 
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Figure 2a, c, e) Distribution of Hamaker coefficient values belonging to the different Hamaker coefficient maps 

directly measured by bimodal AFM and comparison to Raman spectra for graphene on Cu, SiO2 and free standing b, 

d, f). It is worth noticing that the Raman spectra represent an area that is almost 3 orders of magnitude greater that 

the area observed in our AFM maps.  

For SiO2 substrate, Figure 2c, and the freestanding graphene Figure 2e, the distribution for the 

monolayer sample is very sharp indicating a high homogeneity of the graphene film, while in the 
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case of bilayer and multilayer samples the distributions are much broader indicating possible 

heterogeneity in the graphene coverage. As before, this heterogeneity can be observed thanks to 

the high spatial resolution of our Hamaker coefficient maps where regions of single, double and 

multi-layer graphene can be observed see Figure 3a, b, c and SI for more details. The suspended 

graphene has no noticeable SiO2 signal reinforcing the fact that the graphene is sufficiently 

isolated from the substrate and can be considered as free standing21. Figure 2e also exhibits a 

clear distinction between monolayer and bilayer graphene directly quantifying the interlayer van 

der Waals interaction strength. The distinction between bilayer and multilayer graphene is less 

pronounced for the suspended graphene, but similar trends are observed in all the samples. 

Furthermore, it is worth reflecting on how the substrate influences the Hamaker coefficient maps 

versus the results in the Raman spectrum. In the Raman, the Cu substrate presence is detected as 

noise that reduces the overall signal-to-noise ratio and cannot be effectively decoupled. However, 

in the Hamaker coefficient, the substrate increases, in the case of metal substrates, and decreases, 

in the case of non-metal substrate, the total measured value of the effective Hamaker coefficient, 

providing a means to quantify the strength of the probe-substrate interaction. Therefore, this 

approach offers the possibility of separating the measured surface properties into a graphene-

dependent and a substrate-dependent component. 

 

Before proceeding our results are corroborated by collecting force-distance profiles for the 

suspended graphene (see Figure 3d).  The Hamaker coefficient values derived by fitting the 

force-profile in Figure 3d with an inverse squared power law (in line with the assumption of a 

force distance relationship F ≈ RA/d2) were 11×10-20 J, 17×10-20 J and 36×10-20 J for the 

monolayer, bilayer and multiple layer respectively. We recall that 100s of data points were 
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collected for each force curve and the values we provide are the mean values obtained in the 

experiments.  These values fall inside the Hamaker coefficient distributions reported in Figure 2e 

and obtained in bimodal AFM. The results further corroborate that the Hamaker coefficient 

values obtained with the two different methods, i.e. force reconstruction and bimodal mapping, 

are statistically consistent.  

 

We further corroborate our experimental observations by means of DFT calculations. The 

computationally expensive DFT AFM scanning is performed with a typical pyramid silicon tip 

on graphene surface by using PBE-D2 method. Owing to the limited DFT simulation domain, we 

use the pyramid silicon tip with a dangling bond at the apex and hydrogen terminated base rather 

than a real AFM tip. However, the used pyramid silicon tip is able to generate similar magnitude 

as the experimental AFM tip did during the DFT AFM scanning, even if its size is much smaller 

than that of experimental AFM tip22. The DFT derived interaction energy and force-distance 

profiles are reported in the Figure 3d and SI respectively, where interaction energy ∆E(d) = 

Etot(d)−Etip– Egraphene between the tip and the graphene layers are directly taken from the energy 

difference between the total system with different tip-surface distance and individual 

tip/graphene. The force profiles are taken from the gradient of total energy of the tip-graphene 

system, which is given by F = −�(Etot(d)). As the number of graphene layers increases, the 

magnitude of the adhesion force and Hamaker coefficient also increase. We acknowledge that in 

the description of graphene-related systems, the PBE-D2 method gives less accuracy as 

compared to the van der Waals functional methods, such as vdW-DF2-C0923, due to its 

simplified pair-wise force field; however, the DFT-AFM predicted force-distance curves still 

give reasonable agreement with the experimental data, as indicated by Fig. 3(d-e).  
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Figure 3a, b, c) 100 nm × 100 nm Hamaker coefficient maps for free-standing monolayer, bilayer and multilayer 

graphene respectively. d)Force profile for Monolayer, Bilayer and Multilayer suspended graphene samples 

reconstructed by AM-AFM. e) DFT predicted interaction energy vs distance of tip to freestanding graphene with 

different layers see SI for more information. 

 

While useful for confirming trends, the DFT simulations are not so well suited to investigate the 

role of the substrate; consider the computational intensiveness of the problem. In order to discern 

the effect of the substrate we revert to an analytical effective Hamaker coefficient model based 

on the Lifshitz theory. The complicated geometrical problem in the derivations is avoided by 

assuming that the interaction energy between the AFM tip and graphene coated substrate is 

similar to that between a flat silica substrate and graphene coated substrate. By considering the 

relative refractive index of silica, graphene24, and substrate, the equations can be separated into 

two simplified equations for metal and non-metal substrates, respectively, by taking two leading 

terms. The detailed derivations are included in Supporting Information.  
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    (2) 

 (3) 

where Aeff is the effective Hamaker coefficient, A402 is the Hamaker coefficient between AFM 

tip and graphene in air (obtained by our experiment see Figure 2 e since data is no available) and 

A102 is the Hamaker coefficient between the SiO2 tip and Substrate in air. Equation 2 and 3 refer 

respectively to metal and non-metal substrates (see SI for the derivations). Let R be the tip radius, 

L be the distance between graphene and AFM tip, b the graphene thickness and η the retractive 

index where the meaning of the suffixes 0-4 is given below. The values of L and b corresponding 

to monolayer graphene sample are 3.8Å and 3.35 Å, respectively, as predicted by our DFT 

simulations. In this work, materials 0, 1, 2, and 4 are vacuum/air, substrate (Cu or SiO2), SiO2, 

and graphene, respectively. To calculate the effective Hamaker coefficient, the parameter A402 is 

taken from the experimental values of the suspended graphene since to our knowledge no value 

is available in the literature (see Table I). The values of A102 are taken from the Hamaker 

coefficient of Cu25and SiO2
25, respectively. The comparison with the experimental (AFM 

measured) Hamaker coefficients, are shown in Table I. In the table, we provide the mean values 

obtained over 65 k data points (approx.) and the standard deviation. We also account for 

systematic errors in the measurements that might result from the calibration of the spring 

constant, the tip radius, the optical lever sensitivity and other. In our system the lever sensitivity 

error might be up to 5%, and together with the tip radius calibration, this is probably the highest 

source of systematic errors in our experiments. All parameters that have length units in our 

equations are affected by the lever sensitivity error. We have assumed however that the overall 

402 102
2 2 2

A A A RF=
6 6 6( )

eff R R
L L L b

− ≅ − −
+

2 22 2
402 102 1 01 4

2 2 2 2 2 2 2
1 4 1 0
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error, including any propagations, is approximately 5%. While this is by far not a conservative 

approach, it gives an indication of the range in the uncertainty in the mean that we provide, i.e. in 

all cases the error is several times smaller than the standard deviation. Random errors would be 

much smaller due to the large number of data points that we have acquired and can be ignored. 

The error in the mean accounting for this 5% is provided in Table I in parenthesis in all cases. 

Despite the great deal of assumptions necessary to feed equations (2) and (3), our calculations on 

copper agree surprisingly well with experimental data. On the SiO2 substrate, the prediction 

qualitatively agrees with the experimental data despite being less accurate. This reduced 

accuracy may be due to the residuals left on the surface or between the surfaces by the transfer 

process (PMMA and water respectively), that we do not account for in our model. Nevertheless, 

the model captures the fact that the effective Hamaker coefficient of graphene on SiO2 substrate 

is weaker than those of suspended graphene layers, something that can be explained by the 

negative value of  for SiO2 substrate (refractive index n1~1.45), which indicates 

that the VdW force on top of the graphene layer is reduced by the SiO2 substrate while it is 

enhanced on the metal substrates.   

 

Table I. A comparison of effective Hamaker coefficient between experiment and our theoretical 

prediction. The mean and standard deviation are provided in the table. The number in the 

parenthesis indicates the upper band of the systematic errors which is mostly due to the error in 

the measurement of the sensitivity of the cantilever, i.e. approximately 5%26-27. 

Method Substrate Monolayer  Bilayer MultiLayer 

2 2 2
1 4 1
2 2 2
1 4 1

1( / )
1

n n n
n n n
− −
+ +
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10-20 J 10-20 J 10-20 J 

 Suspended 7.5±0.8 (0.4) 20.9±6.1 (1.0) 26.9±12.8 (1.3) 

Experiment Cu 17.1±3.8 (0.9) 24.6±4.1 (1.23) 36±12.3 (1.8) 

SiO2 5.9±1.2 (0.3) 8.0±3.1 (0.4) 21.3±16.2 (1.1) 

Calculation Cu 15.22 21.71 26.87 

 SiO2 4.16 16.58 23.92 

 

This also explains in terms of van der Waals potentials the wetting transparency of monolayer 

graphene reported in the literature28 since the measured effective Hamaker coefficient for the 

monolayer graphene on the Cu substrate, reported in Table I, is strikingly similar to the tabulated 

value for Hamaker coefficient of the SiO2-Cu pair, i.e. 15.611.  

Furthermore, our findings support a recently proposed hypothesis that tries to provide an analytic 

thermodynamic criterion for subsequent layer CVD-growth that depends among others on the 

VdW interaction energies29.The large number of reports on CVD-growth of graphene on metal 

substrate shows how this process is routinely achieved and extendable to large-scale 

fabrication30-33 thanks to the strong van der Waals potential of the metal substrates support that 

constructively help in the growth of monolayer graphene. This is not the case for SiO2substrates. 

Equation 3 points out that if not properly matched (refractive index), the substrate may reduce 

the strength of the van der Waals interaction thereby inhibiting direct CVD-growth of single 

monolayers. Despite the oversimplification of equation 3 and realizing that there are many more 

effects that might independently participate in the overall phenomena, equation 3 can be used as 

a general rule of thumb to assess whether direct CVD-growth on non-metal substrate is feasible 

simply by looking at the substrate refractive index.  
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Conclusions 

Direct measurement of the strength of the VdW forces of graphene has long been challenging, 

posing a problem for the application of graphene and other 2D materials, whose most promising 

potential uses (e.g. “VdW stack” applications) often depend on the precise manipulation of 

surface forces. In this study we have leveraged on the power of atomic force microscopy to 

measure the Hamaker coefficient of in-house-grown CVD graphene samples, thereby 

quantifying the strength of the VdW interaction. The use of AFM allows the Hamaker coefficient 

to be directly probed with nanoscale resolution, addressing a significant difficulty in prior studies 

which is the inability to distinguish “true” properties of single, double and triple layer graphene 

from the average properties that a measurement with low spatial resolution will detect when 

characterizing a sample with micro- or nano-scale variations in the graphene thickness. To 

resolve a further challenge, the effect of the substrate on the measured surface forces, we have 

conducted studies on different substrates, including a specially-fabricated substrate that supports 

regions of suspended graphene where the effect of the substrate is eliminated. DFT calculations 

are used to corroborate the measurements and show qualitative agreement with our observations 

on suspended graphene.  An analytical model is developed from the theory of Lifshitz to explain 

the observed values and provide a means of quantifying the impact of the substrate, leading to 

the recognition that the substrate may, depending on its dielectric properties, either significantly 

reduce or enhance the VdW interaction measured at the graphene surface. The AFM-based 

techniques described here, as they can be easily implemented in any laboratory, without 

sophisticated equipment or involved sample preparation, provide a means of efficiently 

collecting large quantities of data that will be valuable in resolving the persistent questions and 
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uncertainties regarding the surface properties of graphene and other 2D materials. We emphasize 

however that the values that we provide in this work are relevant to ambient conditions implying 

that they are not ideal. That is, deviation from ideal Hamaker coefficient values might result 

from the presence of pollutants, inter-layer water presence or other.  

 

 

 

Methods 
Graphene growth:   

We use a planar TECH planarGROW-2S thermal CVD system with parallel heaters to synthesize 

graphene on Cu foil substrates. Sigma Aldrich Cu substrates (25 µm thick, 2× 2 cm2, 99.999% 

pure) for all experiments. Cu foils were cleaned prior to each growth by sonication for a total of 

10 min in acetone, IPA, and DI water sequentially followed by drying (nitrogen blowing) before 

loaded into the CVD chamber. The growth of mono-layer graphene was carried out with a 

relatively low methane flow rate of 2 sccm and a hydrogen flow rate of 20 sccm at 1000 °C.  The 

process starts by annealing the copper substrate surface for 15 min using hydrogen flow (5 sccm, 

0.1 Torr, and 1000 °C). Following the high-temperature annealing, methane is introduced to the 

process for 120 minutes (2 sccm, 0.2 Torr, and 1000 °C), with a hydrogen flow of 20 

sccm.  Before cooling the chamber, an additional growth process was introduced to obtain 

graphene layers stacking in one sample. A higher methane flow (20 sccm, 2 Torr, and 1000 °C) 

was then introduced for 5 minutes while the hydrogen flow remained the same at 20 sccm. After 

the two-step growth process, the exposure to methane and hydrogen, the sample was cooled to 

room temperature and removed. See SI for more information.     
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Table II: Graphene deposition parameters 

Step Time (minutes) Hydrogen Methane Temperature Pressure 

1st step 120 20 2 1000 °C 0.2 

2nd step 5 20 20 1000 °C 2 

 

 

Graphene transfer: 

We use a standard process whereby the graphene-on-Cu sample is spin coated with PMMA and 

then immersed in an aqueous solution of ferric chloride to etch the Cu.  When the Cu is dissolved 

in the etchant, the graphene/PMMA stack is transferred into DI water to remove the unwanted 

Cu residues. Finally, the exposed graphene side is brought into contact with the SiO2 substrate 

and the PMMA is etched away in acetone. 

 

Raman Analysis: 

A Witec Alpha 300 RAS Raman spectroscopy with 532nm laser source is employed in our 

experiments. During the measurement, the laser spot size diameter is kept constant and measures 

approximately 5 µm. 

 

AFM cantilever calibration: 

The cantilevers are calibrated through thermal analysis in the proximity of the sample surface 

(~50 nm). The resonance frequencies were obtained by fitting the thermal peaks. The software 

provided by Asylum Research would then automatically calculating the spring constant and the 

quality factor.  
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Bimodal operation: 

An Asylum Research Cypher AFM and standard AC240TS cantilevers with spring constants k, 

Q factors and resonant frequencies f of k(1)≈ 1.5-3 N/m, k(2)≈ 60-90 N/m, Q(1)≈ 100, Q(2) ≈ 400, 

f(1) ≈ 70 kHz and f(2) ≈ 450 kHz were employed. The subscripts stand for mode number, i.e. 1 

and 2. Standard AC240TS cantilevers were oscillated at the first 2 modal resonance frequencies 

while the frequencies were determined with thermal analysis when the cantilevers were close to 

the sample surface (~30nm). Cypher AFM was set to operate in attractive regime, that is, first 

mode free amplitude A01 was set at ~0.5Ac and the setpoint was set at ~0.7A01
15, 17. First two 

modes’ oscillation amplitude and phase channel (A1, A2, φ1, and φ2) were recorded. We then 

employed  

     (4) 

and Eq. 1 to obtain Hamaker coefficient values. See SI for more information. 

Since the Hamaker coefficient is a parameter that we derive from the force at a distance, one 

would wonder what the distance really is for a rough substrate. Topography variations could in 

principle cancel out by Hamaker coefficient variations over such effective area. We recently 

recovered apparent height losses using such principles34. On the other hand, we assume in our 

model an effective flatness for the tip-sample area of interaction acknowledging that apparent 

variations in A could indeed occur in such area due to topographically induced artifacts. A 

general introduction of bimodal AFM can refer to the work by Garcia et al35. 
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Force reconstruction: 

A Cypher AFM from Asylum Research was operated in amplitude modulation (AM) mode and 

standard AC240TS cantilevers (k ≈ 2N/m, Q ≈ 100, and f0 ≈ 70 kHz) were used for all the AFM 

experiments. For force reconstruction, sample rate of 1 Hz, free oscillation amplitude ≈70 nm, 

and trigger point of 68nm were used. This relatively high set point enables us to avoid the 

bistability between the attractive and repulsive region during tip approach and yields a smooth 

transition between the two regimes. Amplitude A and phaseφversus tip-sample separation 

distance d were recorded to employ the Sader-Jarvis-Katan formalism36-38 to reconstruct the 

conservative forces. Since it is well-known that the tip radius R significantly affects the tip-

sample interaction force, R was monitored in all experiments with critical amplitude (Ac) 

method20 to make sure that R remains constant throughout the experiment. A minimum of 100 

force profiles is reconstructed on each sample on at least 5 different locations within each sample. 

 

 

Experimental errors and validation of results 

Force curve profiles consist of mapping the net force, one to one, to the tip surface distance. 

Force curve profiles39 are typically exploited in AFM to quantify parameters such as adhesion, 

surface energy and Hamaker coefficient, even though the latter is typically indirectly obtained 

from the adhesion force or other14. While indirect measurements of VdW forces have been 

studied from such force profiles for almost 50 years40, these are still relatively slow and imply 

taking a force curve point by point and recovering the desired parameter by either inspection of 

the curve, fitting a model with approximations where there are more unknowns than expressions, 

or a combination of both. The advent of dynamic AFM for force reconstruction allowed 
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obtaining experimental points from the full range of distances, including distances close to the 

nm where instability had been a major issue that typically led to data loss38, 41-42.  

In summary, force curves, especially in quasi-static AFM, have several disadvantages in terms of 

errors and throughput. First, the cantilever might snap into contact and the relevant information 

that would be otherwise obtained near the surface, i.e. below a few nm of distance, is lost. This 

has clear implications for recovering the Hamaker coefficient at such distances which are, in fact, 

the main distances discussed in our work. Second, since force curves, both in the quasi-static and 

in the dynamic modes, take times in the order of 1 second to be obtained, statistics and 

approximations are typically exploited. It is, in any case, time consuming and statistically 

significant results might involve many hours of data collection. In our recently developed 

bimodal method, the Hamaker coefficient is mapped pixel by pixel as an image is collected, or 

straight after collection.  For example, a 256 by 256 pixel image of 1µm2 will take approximately 

5 minutes to be collected. The processing of the data will take approximately 1 extra minute if 

not done simultaneously – we note we processed the data after collection. That implies that 

approximately 60 k data points can be collected from the inspected area in minutes. The 

distributions resulting from the 60 k points are approximately Gaussian (see Fig. 1). Standard 

statistics can be easily performed on these distributions, i.e. such as providing the mean, median 

and standard deviations to summarize and interpret the data. A summary of the results is given in 

the table below. 
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Table III. Summary of the distributions of data obtained in bimodal AFM for the figures shown 

in the article. We summarize the distributions which are close to Gaussian with the mean, 

standard deviation (std) and median values below.  

 

 MonoLayer (10-20 J) BiLayer (10-20 J) MultiLayer (10-20 J) 
Graphene on Cu mean = 17.1 

median = 16.3 
std = 3.8 

mean = 24.6 
median = 24.0 
std = 4.1 

mean = 36.0 
median = 33.2 
std = 12.3 

Graphene on SiO2 mean = 5.9 
median = 5.7 
std = 1.2 

mean = 8.0 
median = 7.4 
std = 3.1 

mean = 21.3 
median = 16.5 
std = 16.3 

Free-standing 
Graphene 

mean = 7.5 
median = 7.4 
std = 0.8 

mean = 20.9 
median = 19.9 
std = 6.1 

mean = 26.9 
median = 25.1 
std = 12.8 

 

 

 

 

On the other hand, repeatability and reproducibility might still be an issue. With reproducibility 

and repeatability, we mean to consider the conditions for which the data, including the mean and 

standard deviation values, will be compatible with future experiments carried out under similar 

conditions. The force reconstruction also consisted of 100 data points per sample and per 

experiment. We have previously demonstrated43 that this results in robust mean and standard 

deviation values for this type of experiment including reproducibility and repeatability.  
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To deal with this repeatability and reproducibility for the bimodal experiments we conducted the 

force reconstruction experiments and the bimodal experiments over ten times with different tips 

and samples. The patterns and results presented in our Fig. 1 and 2 were consistent. In this sense 

our experiments were consistent throughout all data acquisition.  
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