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EXCEPTIONALLY SIMPLE PDE

DENNIS THE

ABSTRACT. We give local descriptions of parabolic contact structures and show how their flat models yield
explicit PDE having symmetry algebras isomorphic to all complex simple Lie algebras except sla. This
yields a remarkably uniform generalization of the Cartan-Engel models from 1893 in the G2 case. We give a
formula for the harmonic curvature of a G2-contact structure and describe submaximally symmetric models
for general G-contact structures.

1. INTRODUCTION

The Cartan—Killing classification of all complex simple Lie algebras was one of the great milestones
of 19th century mathematics. In addition to the classical series of type Ay, By, Cy, Dy (corresponding to
the complex matrix Lie algebras sly, 1,509, 1, 5Py, 509¢), five surprising “exceptional” Lie algebras of type
G, Fy, Eg, E7, Eg of dimensions 14, 52, 78, 133, 248 were discovered. Since Lie algebras arose from the
study of transformation groups, one can naturally ask for geometric structures whose symmetry algebra is
a given simple Lie algebra. In 1893, Cartan [5] and Engel [11] announced the first explicit (local) geometric
realizations for G2 (see Table , most of which can be formulated as differential equations.

Later, in his 5-variables paper [7], Cartan established remarkable correspondences between:

e contact (external) symmetries of (non-Monge-Ampere) parabolic Goursat PDE in the plane;

e contact (external) symmetries of nonlinear involutive pairs of PDE in the plane;

e symmetries of (2,3, 5)-distributions.
In a tour-de-force application of his method of equivalence, Cartan then solved the equivalence problem
for (2,3, 5)-distributions. Nowadays, we formalize this as a (regular, normal) parabolic geometry of type
(Ga, P1). (For the parabolic subgroup P; c G, see “Conventions” below.) This yields a notion of curva-
ture for such geometries and there is a (locally) unique “flat” model with maximal symmetry dimension
dim(G3) = 14. The 1893 Go-models &, &, F are associated to the flat case of this general curved story.

’ Dim ‘ Geometric structure ‘ Model ‘

9(tgz)? + 12(uyy)? (Ugztyy — (Uzy)?)
+32(Ugy ) — 36UggUsyUyy = 0

7 Parabolic Goursat PDE F

6 Involutive pair of PDE & Ugpy = %(uyy)g’, Ugy = 2 (uyy)?
— dro — xadxy, dxs — vodry, dvs — x4d
5 (2,3, 5)-distribution & T2 TAGTL, Qs T AL, (G5 T A
(equivalently, Hilbert-Cartan: Z' = (U")?)
dz + z1dy1 — y1dxy + zadys — yadzoy = 0,
5 Go-contact structure d:L‘% + \/gdyldyg =0,
(contact twisted cubic field) dxodys — 3dx1dy; = 0,

dy% + \/gdxldm =0
TABLE 1. The Cartan—Engel G2 models
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2 D. THE

Yamaguchi [30] generalized the reduction theorems underlying Cartan’s correspondences in [7, 8]. For
all G # Ay, Cy, he identified the reduced geometries analogous to Ga/P; (see [30, pg.310]) and proved the
existence of corresponding (nonlinear) PDE admitting external symmetry g. However, these PDE were
not explicitly describedE] Exhibiting these models is one of the results of our article.

Notably absent in the Cartan—Yamaguchi story is Engel’s 1893 model, namely a contact 5-manifold
whose contact distribution is endowed with a twisted cubic field, which is the flat model for Gs-contact
structures, i.e. Go/Ps geometries. Our article will focus on its generalization to structures called G-contact
structures (or parabolic contact structures), modelled on the adjoint variety G/P =~ G — P(g) of a
(connected) complex simple Lie group G. This adjoint variety is always a complex contact manifold except
for Aj/Py = P!, so G = A; =~ SLy will be henceforth excluded. Letting dim(G/P) = 2n + 1, a G-contact
structure consists of a contact manifold (M?"*1 C) (locally, the first jet-space J'(C",C)) with C (a field
of conformal symplectic spaces) equipped with additional geometric data.

Restrict now to G # Ay, Cy. Earlier formulations of G-contact structures identified C as a tensor product
of one or more auxilliary vector bundles: in the G5 case, C =~ S3E where E — M has rank two, and similarly
for the exceptional cases [4, §4.2.8]; for the By, Dy cases (Lie contact structures), see [25]. While these
abstract descriptions were sufficient for solving the equivalence problem, no concrete local descriptions
were given in these works. Recently, a local description in terms of a conformal quartic tensor [Q] on C
was used by Nurowski [22] and Leistner et al. [I8]. But this viewpoint does not naturally lead to PDE.

We start from Engel’s algebro-geometric perspective: G-contact structures can be described in terms
of a sub-adjoint variety field V < P(C). But V naturally induces other fields VeVe MDY and (V) =
{Q =0} < P(C), and it turns out that these essentially give equivalent descriptions of the same G-contact
structure. In particular, their symmetry algebras are the same. Here, M) — M is the Lagrange—
Grassmann bundle, whose fibre over m € M is the Lagrangian-Grassmannian LG(C,,). Locally, M1 is
isomorphic to the second jet-space J2(C", C), so Vand V yield second-order PDE £ and F. (Note £ < F.)
Since the equivalence problem for G-contact structures is solved (see [4] for details) via a (regular, normal)
parabolic geometry of type (G, P), the maximal symmetry dimension is dim(G), and the (locally unique)
flat G-contact structure realizes it. In this way, the flat structure yields G-invariant PDE £ and F (fibred
over M = G/P) with (external / contact) symmetry algebra precisely g.

To make £ and F explicit locally, we use (see the parametric description of a sub-adjoint variety
due to Landsberg and Manivel [19] in terms of a (complex) Jordan algebra W with cubic form € e S3W*.
Let n = 1+dim(W). Pick any basis {w,}"Z] on W (with dual basis {w?}) and let {z*}?" be corresponding
linear coordinates adapted to C" =~ C @ W. Extend this to standard jet-space coordinates (z°, w, Ui, Wij)
on J2(C",C). Then Theorem gives our generalization in a uniform manner (see Tables [2| and .

= by, — 2€ (3
F < J2(C,C) doo =8 Pla (2)
Ugy = T Ugh — §€a(t )

C(t3) | 3y (¢?

Ec JQ((CTL,(C) (UU) _ ( U0 | Uob > _ ( ) 2 b( )

UaO | Uab %Q:a(tQ) 3€ab(t)

V={[VI\t)]:[\t]eP(COW)} < P(C), where
(Jicr,0),c,v) V(A1) = XX — A29X, — 3€(t3)UY — 3a¢, (13U,

and X; = 0, + ui0y, U’ =0,
Q= (wiﬁi)2 + 2906(93) - 2w0€*(@3) - 9€a(92)(€*)“(@2),
where W' = dz?, 0; = du;, Q= w* @wg, O =0, Qw

(JH(C",C),c,[Q])

(t=t'woeW; n=1+dim(W); 0<i,j<n—1; 1<a,b<n-—1)
TABLE 2. Equivalent descriptions of the flat G-contact structure (G # Ay, Cy)

n [31] Sec.6.3], Yamaguchi gave explicit linear PDE with Fs and E7 symmetry, but these are not the PDE from [30].
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G B, (t=3)|D, (¢=5] G Du Fy Es E; s
Cubic Jordan algebra W || JSar—5 | JSa2—6 | J3(F) J3(0) | Js(Re) | J3(Ce) | T3(He) | J5(Oc)
n =1+ dim(W) 2% -3 | 20-4 2 4 7 10 16 28
Model G/P & By/P, | DyP, | Go/Py | Dua/P, | Fu/P, | Es/Ps | E+/P. | Es/Ps
dim(G/P) = 2n + 1 A5 | -7 5 9 15 21 33 57
CC reduction &€ of £ Bi/P13 | Di/Prs | Gof/P1 | Dy/Py 34 | Fu/Po | Eg/Py | E7/Ps | Eg/Pr
& dim(g) =3n—1 6/ — 10 60— 13 5 11 20 29 47 83

TABLE 3. Data associated with the flat G-contact structure (G # Ay, Cy)

Remarkably, the PDE F and £ admit an even simpler description: they are respectively the first
and second-order envelopes of the family of inhomogeneous linear PDE ugy — 2t%uq + t%%uq, = €(t3)
parametrized by t = t*w, € W, i.e. a (generalized) Goursat parameterization.

Computing symmetries of PDE [23] [17] is algorithmic, but it is virtually impossible for most of our
PDE & and F using standard techniques (even with the aid of computer algebra). In stark contrast,
symmetries of V can be efficiently computed by-hand (Theorem and uniform formulas for g represented
as contact vector fields are given in Table[7} These make explicit some statements made in [6], e.g. Cartan
briefly writes: “Endlich habe ich eine einfache 248-gliedrige Beruhrungstransformationsgruppe Gagg in Rag
gefunden.” (Cartan is actually referring to a representation of Eg on the 57-dimensional contact manifold
Fg/Pg; this has local coordinates (2%, u,u;), and Rag refers to the coordinates (z%,u), despite the fact that
there is no natural fibration.) Our formulas generalize those of [I8] §4.4] for G2 and Bs obtained via [Q].
Similar uniform descriptions appeared in work of Giinaydin and Pavlyk [12, §4.1]. Our approach identifies
a rich geometric / PDE perspective underlying these descriptions.

The canonical distribution C") on M) induces a distribution D on £. The tableau associated to (£, D)
is involutive (in the sense of Cartan—Ké&hler) only in the G5 or Bs cases (Theorem [.10). Also, (£,D)
has infinite-dimensional (internal) symmetry algebra because of a rank one distribution Ch(D) of Cauchy
characteristics, i.e. symmetries of (£, D) contained in D itself. The (local) leaf space & = £/ Ch(D) inherits
a distribution D (see (3.24))), which can be expressedﬂ as the mixed order, vector PDE £ < J%2(C"~ 1, C?):

(1.1)
Here, we regard Z,U as functions of X% and Z,, U, refer to aaXZav a)fngb. The PDE (1.1 provides

a fifth model with symmetry g, and generalizes the Hilbert—Cartan equation in the Go case, which is a
second-order Monge equation. (See [2] for Monge geometries of first-order.) All solutions to are given
in and these lead to solutions of £. Involutivity in the Go or Bg cases leads to solutions depending
on one or two functions of one variable respectively, but only on arbitrary constants in the general case.

While the PDE F and £ in the flat case are indeed those implicitly referred to by Yamaguchi, this is
a priori not clear since we obtained these in a completely different manner via fibrewise constructions on
V. This is discussed in and where the associated reduction theory is illustrated in detail. In
particular, (£,D) is the flat model for the reduced geometries identified by Yamaguchi. Most of these
geometries are rigid: only the G2 and Bjs cases admit curved deformations.

Following our initial arXiv post of this article, other (hypersurface) PDE with symmetry g, alternative
to our F, were found [I]. While these are equivalent representations of the flat G-contact structure, their
relationship to the sub-adjoint variety field V is unclear. Uncovering such natural geometric constructions
would allow these new PDE to be written explicitly, analogous to what we have done here. The reduction
theory for these PDE would be an interesting topic for investigation.

In we discuss the geometry associated with the exceptional type A and C' cases. We have:

3
Za = §€a(T2), Uab = 3Q:ab(T)7 where T e W.

e u;; =0, 1 <14,j <n has point symmetry A,;1, i.e. the flat A, ;-contact structure.
o ujp =0, 1 <4i,j,k <n has contact symmetry Cy, 41, i.e. the flat Cy,41/Py 41 structure.

2The expression ((I.1)) is only a mnemonic device: “symmetries” refer to internal symmetries of (£, D), independent of .J L2,
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Via a twistor correspondence [3], the latter can be viewed as the flat C),;1-contact structure. Indeed, all
(complex) parabolic contact structures admit a description in terms of PDE.

All G-contact structures are non-rigid geometries and we briefly discuss the non-flat case in For
(G9-contact structures (, we give a formula for the harmonic curvature and give some symmetry
classification results. We then conclude with some submaximally symmetric models in the general case
( and . In general, the PDE £ and F for non-flat G-contact structures do not satisfy the Cartan—
Yamaguchi reduction criteria, which explains the absence of V in their story.
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CONVENTIONS

We will work exclusively with complex Lie groups and Lie algebras, complex manifolds and jet-spaces,
etc. (However, all our results are analogously true for split-real forms.)

Given a rank ¢ complex simple Lie algebra g, a Borel subalgebra is assumed fixed. Let h be the Cartan
subalgebra, root system A c h*, simple roots A = {a;}¢_, (use the Bourbaki / LiE ordering), and dual
basis {Z;}{_, = b. Let g, be the root space for a € A. Let {\;}{_; be the fundamental weights.

A parabolic subalgebra p g is marked by crosses on the nodes I, = {i : g_o, ¢ p} < {1,...,£} of the
Dynkin diagram of g. A parabolic subgroup P < G with Lie algebra p is denoted by Pp,. (For the closed G-
orbit G/P — P(V), where the G-irrep V has highest weight A = Zle 7i(A)Ai, we have I, = {i : r;(\) # 0}.)
The grading element Z = Zie]p Z; gives a grading g = P, __, gk, where gi, = @z(a):k ga, With p = g=o.

2. SUB-ADJOINT VARIETIES AND NATURAL CONSTRUCTIONS

2.1. The Lagrangian-Grassmannian. Let n > 2 and let (V,7) be a 2n-dimensional symplectic vector
space. A subspace L < V' is Lagrangian if dim(L) = n and n|;, = 0. The Lagrangian-Grassmannian LG(V)
consists of all such subspaces and depends only on the conformal class [n]. The Lie groups Sp(V') and
CSp(V') consist of linear transformations of V' that preserve n and [n] respectively. These act transitively
on the manifold LG(V). Since Tp,(LG(V)) = S?L*, then dim(LG(V)) = (";1)

A basis {eq,...,ean} of (V,n) is conformal symplectic (a “CS-basis”) if n is represented in this ba-

sis by a multiple of (_%n i%”). Then sp,, = {(a b

c —a
span{ey, ..., e,} has stabilizer P, = {(‘g (ATB)—l) :A7'B symmetric} c Sp(V) with Lie algebra p,, < sp,,.

T) ca,b,ce Mat,xn; b, c symmetric}. Now o =

We obtain standard coordinates about o by mapping the symmetric matrix X to span{e; + Xjjen4;}" .
For g = (A B) € CSp(V) near the identity, (A 5)- (£ 9)/P, = ()I} ?)/Pn, where

(2.1) X = (C+DX)(A+BX)™".

2.2. Adjoint and sub-adjoint varieties. Let G be a (connected) complex simple Lie group with Lie
algebra g. The unique closed G-orbit G/P =~ G® < P(g) is the adjoint variety of G. This is a complex
contact manifold except when G = A; (henceforth excluded). Otherwise, the reductive part Go < P
induces a Go-invariant contact grading on g, induced by a grading element Z € 3(go) (see “Conventions”):

e g=0g 2@g_1DgoD g1 D gz, where p = g>¢ and (g_)* = gi for k # 0 (via the Killing form);

* [9,9;] < gitj for i,j € Z (take g; = 0 for |i| > 2);

e g_ is a Heisenberg algebra, i.e. dim(g_2) = 1 and the bracket 7 : /\2 g—1 — g—o is non-degenerate.
In particular, V' = g_; is a CS-vector space and Gy < CSp(V). We have that V is Go-irreducible iff
G # Ay; also, go # esp(V) iff G # Cy.

For G # Ay, Cy, we have A = \; (i.e. j is the “contact node”), P = P; is maximal parabolic, and

go = 3(g0) @ g’ with 3(go) spanned by Z = Z;. The sub-adjoint variety V for G is the unique closed
Go-orbit in P(V'). The stabilizer in the semisimple part F' = G of the highest weight line lp € V < P(V) is



EXCEPTIONALLY SIMPLE PDE 5

a parabolic subgroup @ < F', and this induces a |1|-grading §f = f_1 ®fo D f1 with q = fo D f1. Furthermore,
VY < P(V) is smooth, irreducible, and Legendrian, i.e. T}V € LG(V') at any [ € V. Here, the affine tangent
space T}V < V is the span of [ and the tangent space to the cone over V at any nonzero point along [.

G/P  Range F/Q V=g-18s dim(V) Y cP(V)
an f-module

By/Py A1/Pr % Bpa/ Py C*BVa, 2(20—3)  Seg(P! x Q*9)

= A1/Py x A1/Py C? x 5%C?
Dy/P, (> A1/P; x Dy_y/P C2xVy, 2(20 —4)  Seg(P! x Q*-9)
Go/Py - A1/Py S3¢? 4 twisted cubic v3(P!)
Dy/Py - (A1/Py)3 C’rC?xC? 8 Seg(P! x P! x P1)
F/P - Cs/P; Vi, 14 LG(3,6)
Eg/ Py — As/Ps Vg 20 Gr(3,6)
E;/P — Dg/Ps Vg 32 Dg-spinor variety
Eg/Pg — E;/P; V. 56 Freudenthal variety

TABLE 4. Sub-adjoint varieties

We can arrive at Table 4| in a uniform manner via the Dynkin diagram ©(g):

e Given P = P; c G, remove the contact node j from D(g) to obtain D(¥).

e For every node i connected to j in ©(g): inscribe a 1 over 4 if the bond is simple or is directed from
i to j; otherwise inscribe the multiplicity of the bond. This yields V' = g_; as an f-module.

e Crossed nodes for @) ¢ F correspond to the neighbouring nodes N(j) to j in ©(g).

3
Example 2.1. ==< ~~ o indicates that for Go/Py, V = g_1 = S3C? as an irrep of Ay = sly.

We have several naturally associated objects inheriting Gg-invariance from V < P(V):

(1) Let V denote the image of the embedding V — LG(V) given by [ — T}V

(2) Let V:=Jep{L e LG(V) : l cL}c LG(V) (This is a hypersurface.)

(3) The tangential variety 7(V) = ;e P( c P(V) is a quartic hypersurface, so 7(V) = {Q = 0}
for some symmetric tensor Q e SV, Let [ ] = {cQ : ¢ # 0} denote its conformal class.

Example 2.2 (Go/Ps). Here, V = g_1 = S3C? as a module for gy = gly. Let C?> = span{r,s}, so gl is
spanned by | = r0, +s0s, E = rds, H = r0, — s0s, F = s0,. Then V has a GLy-invariant CS-form [n], where

1
(2'2) 77(f79) = g(frrrgsss - 3frrsgssr + 3frssgsrr - fsssgrrr)'

The twisted cubic V = {[v3] : [v] € P!} < P(V) is GLy-invariant. In 'V, differentiating v(t) = (r + ts)® at
t = 0 yields the osculating sequence VO c V1 c V=2 c V=3 =V, where V? = span{r3}, V=1 := f[xs]V =
span{r3,r?s} is Legendrian, and V=2 = span{r?,r?s,rs2}. In the dual basis 0*,602%,63,0* to (r3,3r%s, 3rs?,s3),
we have n = 6(61 A 0* — 3602 A 03). The discriminant of f = air® + 3asr®s + 3asrs® + ass® is:

(2.3) Q = (0M)2(6%)% — 60'0%0%0* + 401 (%) + 4(6)%0* — 3(6%)%(6°)?,

and this is conformally Go-invariant. The locus Q = 0 consists of all binary cubics with a multiple root.
When G = Dy, Q is Cayley’s hyperdeterminant.

Lemma 2.3. If G # Ay, Cy, then § = g & sp(V') is a mazimal subalgebra.

Proof. There are no proper f-invariant subspaces of V', so the inclusion § < sp(V') is irreducible. From
Dynkin [I0] (see also [24, Chp. 6, Thms. 3.1-3.3]), the maximal subalgebras m < sp(V') are:
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e m non-simple: sp(V) = sp(V; ® Vo) and m = sp(Vy) x s0(V3), where d; = dim(V;) satisfy dy > 2;
4 # dy =3 or (dy,d2) = (2,4). This is true for f when G = By or Dy with d; = 2.

e m simple: Aside from the exceptions in [24, Table 7], all non-trivial irreps ¢ : m — sp(V') yield
(m) < sp(V') a maximal subalgebra. This is true for f when G is exceptional.

0

Proposition 2.4. Given the sub-adjoint variety V < P(V) for G # Ay, Cy, any of V, 17, V, or [Q] reduces
the structure algebra csp(V') to go.

Proof. Let s < ¢sp(V') be the Lie algebra of the stabilizer of any of the given objects, so gg = 5. We have
esp(V) = C x sp(V) with C = 3(go). Since f < sp(V') is maximal, the result follows. O

2.3. Jordan algebras and sub-adjoint varieties. Sub-adjoint varieties V < P(V) admit a remarkably
uniform description in terms of Jordan algebras, which we review here.

Fixing lp € V, we have V =~ F/Q. Let V0O « V7! <« V=2 ¢ .. ¢ V = g_; be the corresponding
(Q-invariant) osculating sequence at ly. (In particular, V=1 = JA}OV.) In all our cases, V=3 = V. This
filtration has as its associated-graded gr(V) = @, Vi, where V; := V*/V**! and this is naturally an
Fo-module. Since f = f_1 ®@q and V! = § -y, then the (intrinsic) tangent space T},V =~ T,(F/Q) = f_1 -l
is identified with W := V_; as fp-modules.

In [19, §5.1], Landsberg and Manivel gave the following f§-module descriptionsﬁ of f and V:

(2.4) f=f-1@fo@hHh =Wof®@W*,

(2.5) V%V()(-BV_l(-BV_z(—BV_géC@W@W*®C,

where W is the (complex) Jordan algebraﬁ corresponding to G (Table , which admits a natural cubic
form @ € S3W* with symmetry algebra fo¢ (Table . Such W and € are given below:

(i) 3x3 A-hermitian matrices W = J3(A), where A is a complex composition algebra, i.e. A = Ag®rC
where Ag is 0 (trivial algebra) or R, C,H, Q. Here, €(3) = det(t) is the determinant, defined via
the Cayley-Hamilton identity (see [26] eq (5.7)]): 3 — tr()t? — 1(tr(¢?) — tr(t)?)t — det(t)id = 0.
(i) W = J3(&) := C equipped with €(#3) = &
(iii) Spin factor W = JS,, := C" @ C, m > 1, where C™ carries a non-degenerate symmetric bilinear
form (-, -). Here, €(t*) = (v, v)\, where t = (v, \). We will often use an adapted basis: Let we, = 1
span the C-factor and pick a basis {w,}72; of C™ with Cyap = (Wa, W) = 0 o, where a’ := m+1—a.

A, 4y, Cs F

i B3 Dy 3 Ay A x Ay As  FEg
f=05| A1 xBpa A1 xDyp_g A A x A1 xA Cs As D¢ Er
g By Dy Go Dy Fy Eg E; Eg

TABLE 5. A magic rectangle

On V = gr(V), we have the structure of a graded f-algebra [20, Cor.3.8] (induced from V and the
choice of ly). The non-degenerate pairing V_; x V_o — V_3 =~ C then identifies V_o =~ W*  while € arises
from the (symmetric) pairing V_; x V_; — V_5. The highest weight of W =~ §_; as a f*-module is obtained
from F'/Q) analogous to how the highest weight of V' = g_; as gi’-module was obtained from G/P.

Lemma 2.5. ¢ : W — S2W* is injective.

Proof. This is immediate for the spin factor, J3(&), and J3(0) cases. For W = J3(A), S?°W* = S2W*@W
as a sum of f-irreps (SEW* < S2W* denotes the highest weight component), e.g. when G = Eg, we have
S = Eg, and W, W*, SZW* have §&-weights \g, A1, 2A1. The claim follows by Schur’s lemma. O

3In [19, §5.1], note that our f,fo are their g, [ respectively. Also, while [I9] mainly concentrates on the exceptional cases,
the first sentence of [I9] p.496] indicates that the spin factor cases similarly satisfy (2.4)—(2.5).
4The Jordan algebra structure will not play any explicit role in this article. Instead, € will play a fundamental role.



EXCEPTIONALLY SIMPLE PDE 7

Fix a basis {w, 2;11 of W and {w*}._ 1 its dual basis. On V =C® W @ C @ W*, take the basis

(2.6) bg =1, by,=—6w,, b’=—4 b*=—4w?

Notation: Given t = t®w, € W, write €(t3) := €(t,1,1) = Cupt®t?t¢ € C, while €, (t2) 1= Copet’t =
200 (€(13)) and Cop(t) 1= Capet® = §01a 0 (€(13)).

We have the following descriptions of V, V,V, and [Q], which are derived from Landsberg—Manivel [19].

Proposition 2.6. The basis (2.6) is a CS-basis on V' for the (f-invariant) symplectic form given in [19]
Prop.5.4]. In this basis, V is locally parametrized about ly = [1,0,0,0] by t = t*w, € W via

(2.7) ¢:t— [1,—ta,—1

3
e —Sea)].
In standard coordinates (u;j) (see §2.1) about o = C@ W € LG(V) induced from (2.6), we locally have

(2.8) Vi (uy) = ( Uoo | Uob ) _ (t) ‘ 58 ()
tao | tad 3¢a(1%) | 3€u(1)
(2.9) v { oo = ey~ 2E(1
uao—tuabf—ﬁ( )

In particular, dim(V) = dim(W) and Codim(V) = 1.

Proof The first claim is clear and ( follows from ¢ in [I9, Sec.1.2]. Put the components of I = ¢(t)
and atb into the rows of a matrix and then row reduce to obtain V:

e (0l )= (0 s ).
0 =& | —=% —3Ca(t) 0 60 | =5— 3C€u(t)
Now for V, let L € LG(V) have standard coordinates (uij). Then row reduce
1 0 Ugo UQgq, 1 0 Q0 UQq,
0 & | Ubq ~ 1 0 &° o Upq
1 —ge | U0 3% 0 0 | —ugo+ tPupo — L gy + toup, — 2
For the incidence condition | < L, the bottom row must be zero, and this yields V. O

Remarkably, Y and V can also be derived via an envelope construction:

Corollary 2.7. Consider the family of hypersurfaces &; = ugy — 2t%Uq + 1% ug, — €(t3) = 0 in LG(V)
parametrized by t € W. Its first and second order envelopes are V and V respectively.

= 0}tew and V = {&; = 0, %8 = 0, 28 = O}y O

To describe Q, we use the dual cubic €* € S3W (see Table @, induced from € € S3W* via a multiple of
the trace form t — tr(¢?) on the Jordan algebra W. To fix this multiple, we use the normalizatiorﬁ

Proof. We readily verify that V = (&, =0,2

Ot‘l

. abc 4 a
(2.11) CH(e(t?)?) = ﬁc:(tf") e (€%)"C4Capy = 57 C(derd9)"

(Rescaling € by A forces €* to rescale by }.) Note that €*(€(t?)3) = %@(t?’)Q. But setting s = ¢(r?) and
t = r in the equation preceding [19, Lemma 5.6] yields €*(¢(r?)%) = 2¢(r3)?, so our €* is 2= times theirs.

Proposition 2.8. Let (a,rq, 8%, s%) be coordinates wrt (2.6) and let r = r®w, and s* = s,w®. Then
(2.12) Q(a, 7%, B*, 54) = (af* + (1, 5*))% + 2B*€(r?) — 2a€*((s*)3) — 9(C(r?), €*((s*)?)).

5See [26, Lemma 5.2.1(iv)] or [21} §4.3] for why the identity (2.11)) (up to scale) exists.
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’ W ‘ Trace form on W ‘ Induced §: W* - W ‘ ¢(t3) ‘ c*((s%)3) ‘
AL U1 va A1 U1 %”UZ
\.73(A) t— tr(tQ) <111 A2 v3 ) — (;111 A2 11}3) det(t) 4det((s*)#)
U2 U3 As 1o 103 A
T3(F) t— 12 Lo ¢ % (%)’
ISm_ |t = (v,A) = (v, 0) + N (v*, 1) = ((v*)*, ) A | {(0)F, (v*)Hp

TABLE 6. Dual cubic €* € S3W in our normalization (2.11))

Proof. This follows from [19, Prop.5.5] by replacing their €* by %Qﬁ* to get to our normalization. Then
substitute v = (a, —6r, —4s*, —45*) and rescale Q. O

Example 2.9 (Gy/P,). Continuing Example let €(t3) = g In the CS-basis (bg,b1,b% bl) =
(r3, =3r%s, —6s>, —6rs2), [(r + ts)3] takes the form in and Q from takes the form in (2.12).

On N2V, define (-,-) by (f1 A far g1 A g2) = voly (f1, f2, 91, 92), where 0 # voly € A*V*. The Plicker
embedding identifies LG(2,4) with Q = {[z] : (=, z) = O} c P( /\0 =~ P4, where elements of /\SV
contract trivially with n. Then Ve QcPt and T(V) V. (The latter does not hold for other G.)

About o = span{bg, b1}, standard coordinates (ugo, uo1, u11) on LG(2,4) correspond to span{bg + ugob® +
up1bt, by 4+ up1b® + ui1b'}. Via Plicker, this is (1,uo0,uo1, 11, UooU11 — (u01) ) with respect to the basis
bo A b1, b2 A by, bg A b% — by A b, by A b, b% A b on /\OV Using ., V is a twisted quartic given

by (t) = (1,t§,t§,t,%), and (1) + py'(t) is given by uoo = & + pt?, ugr = § + pt, upy =t + p is its

tangent developableﬁ Eliminating p yields (2.9) for V. Note that V is a null curve and V is a null surface
in LG(2,4) for the conformal structure [dugoduii — (dugr)?].

3. PARABOLIC CONTACT STRUCTURES AND FLAT MODELS

3.1. Contact geometry. We now summarize the geometric construction of jet spaces [27, 23, [17].
Given a contact manifold (M?"*! C), the corank one contact distribution C = T'(T' M) is completely non-
integrable. For any local defining 1-form o (unique up to a conformal factor), this means that o A (do)™ # 0
everywhere and so 17 = (do)|c yields a CS-form on C. Define the Lagrange-Grassmann bundle 7 : M) —
M by letting LG(C,,) be its fibre over m € M. Any m™) € M) such that w(m?)) = m corresponds to a
Lagrangian subspace L,,1) < Cy,, so this tautologically defines the canonical distribution C N} (TM (1))
(1

via C, o)) = (m4)"Y(L,,1)). (For higher-order prolongations M®*), see e.g. [27].)

By Pfaff’s theorem, there are local coordinates (z%,u, u;) on M such that o = du — widz?, i.e. locally, M
is the first jet space J1(C", C). With respect to n = do = dz* A du;, C has standard CS-framing

(3.1) Opi + Uilu, Ou,-

On MW, take m-adapted coordinates (2, u,ui,u;j): about o = span{0d,: + u;0,}, let fibre coordinates
ui; = uj; correspond to the Lagrangian subspace span{d,: + ;0 + u;j0y ;} so that W is given by

(3.2) span{d,i + u;iOy + Uij0u;, Ou;;} = ker{du — widx’, du; — u,-jdxj}.

Locally, M™) is the second jet space J2(C™,C).

Given a distribution D on a manifold N, we may form its weak derived flag D =: D™! < D2 < ...
Its associated-graded g_(n) = D(n) ® (D~2(n)/D~'(n)) @ ... at n € N is the symbol algebra. This is a
nilpotent graded Lie algebra, whose (tensorial) bracket is induced from the Lie bracket of vector fields on

6In 5 [5], Cartan only briefly alluded to the Goursat parabolic PDE as the tangent developable for Wthh the 1nv01ut1ve system

is the singular variety. See [7, p.161 — eq.(7)] for the explicit model, which should read: r 4+ z5s — 61‘5 =0, s+ a5t + x5 = 0.
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N. The symbol algebras for (M, C) and (M), C(M) are respectively modelled on:
(3-3) g- =9 1®g2=2VaC,
(3.4) g- =g 1@Dg2@g3= (LS’ L)@ L*@®C,

where dim(V) = 2n and dim(L) = n. The former is the Heisenberg Lie algebra, while the non-trivial
brackets on the latter are all natural contractions. We note that S?L* corresponds to a distinguished
subbundle of C(V), namely the vertical bundle for = : M1 — M.

A contact transformation of (M, C) is a diffeomorphism ¢ : M — M such that ¢,(C) = C. Infinitesimally,
X € T(TM) is contact if LxC < C. These definitions apply similarly for (M ™), (M), but more can be said:
by Bicklund’s theorem, any contact transformation [vector field] of (M), (M) is the prolongation of one
on (M,C). (See [23] for the standard prolongation formula yielding X1 e D(TM M) from X.)

On JY(C",C), any contact vector field is uniquely determined by a function on M called its generating
function. Conversely, any f = f(2%,u,u;) is a generating function for a contact vector field via

d d
(3.5) St = —fu;Opi + (f = wifu;)0u + (fri +Uifu)Ou, = —fui@ + fou + d—iiaui,
where d?:i = 0yi + u;0y. If g is another generating function, the commutator [Sy,Sy] is a contact vector
field Sps ), where the Lagrange bracket [f, g] is given by
daf dg
(3.6) [fr9) = fou=9fu+ S50 = 25 fu

A (system of) second order PDE in one dependent variable and n-independent variables corresponds to
a submanifold R ¢ LG(C) = MM transverse to m. The distribution C(!) and its derived system (C(}))~2
induce distributions D and € on R, and (R;D,C) is called a PD-manifold [27]. By [30, Thm.4.1], all sym-
metries of (R;D,C) correspond to (external) contact symmetries of R = M1 i.e. contact transformations
of MM preserving R. Define R( as the collection of n-dimensional integral elements for (R, D) transverse
tom: M1 — M. From [30, Thm.4.2], 27, Prop.5.11], if RM) — R is surjective, then for any v € R,

(3.7) dim(C(v)) — dim(D~2(v)) = dim(Ch(D)(v)),
where Ch(D) = {X e I'(D) : LxD < D} is the Cauchy characteristic space of D.

3.2. G-contact structures. Given a contact manifold (M,C) with symbol algebra g_(m) at m € M
modelled on the Heisenberg algebra g_, the graded frame bundle Fy.(M) — M has fibre over m € M
consisting of all graded Lie algebra isomorphisms ¢ : g— — g_(m). Its structure group is CSp(g_1).

Definition 3.1. Let G # A1, Cy be a complex simple Lie group and G*! =~ G/P. Let Gy = P be the
reductive part. A G-contact structure is a contact manifold (M,C) of dimension dim(G/P) whose graded
frame bundle Fyr(M) — M has structure group reduced according to the homomorphism Gy — CSp(g_1).

A (local) equivalence of G-contact structures is a (local) contact transformation whose pushforward
preserves the graded frame bundle reductions. The fundamental theorem of Tanaka, Morimoto, and Cap—
Schichl (see [4] for definitions and references) establishes an equivalence of categories between G-contact
structures and (regular, normal) parabolic geometries of type (G, P). Well-known consequences [4] are:

e Any such structure has symmetry dimension at most dim(g).

e There is a unique local model (the “flat model”) with maximal symmetry dimension dim(g) and
this has symmetry algebra isomorphic to g.

e (G-contact structures are all non-rigid geometries, i.e. there exist non-flat models.

In spite of these general results arising from the broader theory of parabolic geometries, concrete local
descriptions of G-contact structures have been lacking in the literature. Indeed, we only know of Engel’s
twisted cubic model [I1] and the (contact) conformal quartic description [22] [18].

Restrict now to G # A;,Cyp. Since go & csp(g_1) is a mazimal subalgebra (Proposition [2.4)), the
required structure group reduction (up to possibly a discrete subgroup) is mediated by a field of sub-
adjoint varieties V or any of 9,9, [Q], e.g. we require any graded isomorphism ¢ : g— — g_(m) to map
the model V < P(g_;) projectively onto V,, < P(Cp,). In these were given in a CS-basis, so a
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(local) G-contact structure is determined by a (local) CS-framing {X;, U*}?_ on C or its dual coframing

{wi,Gi}?:_ol. The former induces fibre coordinates p;; = pj; on M (1) corresponding to the Lagrangian
subspace span{X; + p;; U’} = ker{6; — p;;w’}. Thus, a G-contact structure is equivalently any of:
e a field of sub-adjoint varieties V < IP(C), given by the projectivization of the vector fields
3
2
e a field of tangential varieties 7(V) = {Q = 0} < P(C). Letting Q = w* @ w, and © = 0, ® w?, the
(conformal) quartic Q € S*C* is given by
(3.9) Q = (W'6;)* + 200€(23) — 2L€*(03) — 9€,(2?)(€*)*(02).

e a 2nd order PDE (system) & := V< LG(C) = MM, given in the CS-framing {X;, U’} by

e(r’) | $eu(r?)
Poo | Pob 2
(3.10) (pij) = (+> -
Pa0 | Pab 3€,(t7) | 3€a(1)
e asingle 2nd order PDE F := V < LG(C) = M, given in the CS-framing {X;, U} by
= 1°t"pqp — 2€(t3
(3.11) { Poo Pap (%)

(3.8) V(A1) = XX — N219X, — %Qﬁ(t?’)UO (U, Y[\t eP(COW).

Pa0 = tbpab - %Q:a(tz)

Now (Mi,C1,V1) and (Ma,Co,Va) are (locally) equivalent if there is a (local) contact transformation
¢ : My — My such that ¢, (V1) = Va. A symmetry is a self-equivalence of (M,C,V). A similar formulation
holds for [Q]. For £ ¢ MM, a symmetry is a contact transformation ® : M) — M@ such that ®(€) = &,
i.e. external symmetries. By Béacklund’s theorem, ® = ¢, for some contact transformation ¢ : M — M.
Thus, symmetries of £ regarded as a field m — &, = f)m < LG(Cy,) on M are in 1-1 correspondence with
external symmetries of £ ¢ M) regarded as a submanifold (PDE). A similar formulation holds for F.

If S € I(TM) is a contact vector field with prolongation S e I'(TM (M), then the infinitesimal sym-
metry condition for each of V, [Q], £, F is correspondingly:

(3.12) Ls(V(\t)) e fMA,mv; LsQ = uQ on C; Lgn€ =0on & LguyF =0on F.

Proposition 3.2. The symmetry algebra of (M,C) endowed with any of V, or any of the induced fields
E=V, F=V, or7(V)={Q =0} is the same.

Proof. By Proposition each structure reduces the structure algebra of Fg (M) — M according to the
homomorphism gy — ¢sp(g—1) and these reductions are compatible since they are all induced from V. At
the group level, the reductions could potentially differ, but only by the action of a discrete group, which
does not affect the (infinitesimal) symmetry algebra. O

This simple observation dramatically simplifies the (contact) symmetry computation for the PDE £ or
F. In particular, we avoid the complicated prolongation formula that yields SM from S and instead we
can equivalently find symmetries of V or [Q] on M itself.

3.3. Harmonic curvature and the flat G-contact structure. A fundamental tensorial invariant for
all (regular, normal) parabolic geometries is harmonic curvature kg. It is a complete obstruction to flatness
of the geometry. Given the Go-reduction Gy < Fy (M ) for a G-contact structure, kg is a Go-equivariant
function valued in a cohomology space H?r (g—, g), or equivalently it is a section of the associated vector
bundle Gy xg, H i (g—,g) over M. Concretely [4, Chp.5], for G-contact structures we find xkp as follows:
(i) Given any CS-framing {X;, U’} of C, define a partial connection V : I'(T'M) x I'(C) — T'(C) for
which all frame vector fields are parallel. Then V(V(A,t)) = 0 for any [\, t] € P(C@® W), so the
Go-structure reduction is preserved. Writing [X;, U7] = §*,Tmod C, we have Tmod C € I'(TM/C)
parallel for the induced connection on T'M/C.
(ii) Let /\3C be kernel of the map A*C — TM/C induced from the Lie bracket. The torsion
TV(X,Y) = VxY — VyX — [X,Y] restricts to a map TV : F(/\%C) — T'(C). In particular,
its components in the CS-framing {X;, U*} above involve only the Lie bracket.
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(iii) #p is obtained by projecting TV e I'( /\2 C* ®C) to certain go irreducible components obtained
from a standard application of Kostant’s theorem [14], 4]. (See §4.1| for the Ga-contact case.)

This information is sufficient to identify the flat model for G-contact structures.

Theorem 3.3. Let G # Ay, Cy be a complex simple Lie group. Consider (M,C) = (JY(C",C),C) with
standard jet space coordinates (z*,u,u;), 0 < i < n — 1, standard CS-framing {X; = 0i + w0y, U* = 0y, }
on C, and dual coframing {w® = dx',0; = du;}. Any of the models in Table @ equivalently describes the flat
G-contact structure. This has (contact) symmetry algebra isomorphic to g.

Proof. For the given CS-framing, p;; = w;; in (3.8)—(3.11)), so we obtain Table The only non-trivial
brackets among {X;, U’} are [X;, U’] = §,70,, so /\3 C = span{X; rX;, U AU’ and X; AU =67 (XA UY)}.
Pick V for which the CS-framing is parallel. Then TV | A2C = 0, so kg = 0 and the model is flat. O

3.4. Symmetries of the flat G-contact structure. Computing all symmetries of the flat G-contact
structure via the PDE & or F is in general a hopeless task, but we will efficiently compute them via V (see
Table . We have [S¢, V(A t)] YA“V( A1)V, where f is a generating function for a contact symmetry (see
(3.5))). The space of all such is equipped with the Lagrange bracket .

Clearly, 1,2%, u;, and Z = 2u — z'u; are all (generating functions for) symmetries. Indeed, S; = 0,
S,i = Oy, + 704, and S,, = —0,: all commute with V(\,t), while Sz = 290, + 2ud, + u;0,, satisfies
[Sz, V(A 1)] = V(\,t). (Alternatively, their prolongations to J?2 act trivially on all u;;, while the defining
equations for £ and F only involve w;;.) Recall from that (G, P) induces a contact grading g =
g 2@Dg-1DgDg1 Dg2. At o= {2' = u =u; = 0}, C is spanned by all S,: and S,,,, so these correspond
to g_1. Also, [2%,u;] = 6", so 1 € g_o. Since Z acts by —1 on g_; and —2 on g_o, this will serve as our
grading element. Because g_ is known, and the brackets g_1 x go — g1 and g_1 X g1 — go are surjective,
it suffices to determine gs, which is only 1-dimensional.

Theorem 3.4. Let G # Ay, Cy be complex simple Lie group. The flat G-contact structure from Theorem
admits the following symmetry that spans the top slot go of the contact grading g = g_o@® ... D ga:

- 1 1 9
(3.13) f=uu—2'u;) — §€(X3)uo + 5@*(133)3:0 + Z¢a(X2)(¢*)a(P?),
where X = 2w, and P = uaw®. Via the bracket [3.6), {z',u;, f} generate all of g. (See Table @)
Proof. The gp-invariant pairing g2 x g_o — go surjects onto 3(go), so there exists f € go such that Z =

[1, f] = fu. Since Z = 2u — x'y;, then f = u(u — x'u;) + g(at, u;). By.7

- d
S = ¢ —_— )T
f (1. U guz)dxl +
We require that [Z, f] = 2f, which implies 2°g,: + u;gy, = 4g, i.e. g is homogeneous of degree 4.
Fix t € W and let V := V(1,t) € I'(C). Let [V,Sy] € T'(C) have components (p°, p?, uo, f14) in the

CS-framing {X; = 0, + u;0y, U" = 0,,}. Since V(u — zFuy) = xo%g) + 3¢(t,t,x), we have
o = da¥([V, 1) = u+ 2%t — ) — V(gup)
o = ds®([V, 85]) = —t%u + 29 (g — Pup) — Vi(gu,)

e(t?)

(u(u — z'u;) + 9)0y + (uz(u — xPuy) + gxi) Ou; -

3
(—u + zPup + 2%ug) + inC(t, t,x) + V(gyo)

3¢, (%) 0 €(t3)
2 2

po = duo([V, Sy]) =

3
pa = dug([V,Sy]) = — (u — zFup) + uq ( + §€(t,t, :E)) + V(gza)
R 10 ed) 2e,t?) R
Using (3.10) for TjvqV, we row reduce | 0 6.% €q(t?) 3¢,(t) | so that [V,Sy] € TV if and only if

p° P o b
3
(3.14) 0 = po = €(t°)p" = €a(t?)p",

3
(3.15) 0= ptg — 5¢a(t2),00 — 3Ca(t)p°
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These equations are polynomial in ¢. Extracting the t-degree 6,5,1,0 parts from (3.14)) yields
Guouo = Juauo = Gz0ze = gpop0 =0 = g = A(maa ub) + B(xa)u() + é(ua)xo + ’)/$OU().

Since g is homogeneous of degree 4, then A, B, B are homogeneous of degrees 4,3, 3. In (3.14])[t-degree 4],
set 29 = 0, then differentiate with respect to u. to obtain 0 = €, (#?)€(t?) Ay, uyu.- Since w, = €, (t?) is
arbitrary, then Ay, 4. = 0. Now consider (3.15))[t-degree 1]:

0 = 3 () (Guyao — 2Pug) — 12,000 = 3€ap(t) (B, — 2u0) — t°(Aybga + Bybgatio),

which splits according to ug-degree. Differentiation yields Ba b = —3€q(z) and Ajapp = 3€abc§uc- Since
Aupupu. = 0 and since g is homogeneous of degree 4, this implies that:
1 3 ~
B= —§€(X3), A= §Qia(X2)Bua

Observe that ([3.14))[t-degree 4,3] is a contraction of (3.15)[t-degree 3,2], so only the latter equations remain.
Setting z° = 0 in (3.15)[t-degree 2] yields v = 0. Now (3.15)[t-degree 3] is at most linear in 2°, with

3 ~
(3.16) 0= (ﬂ; 5.0+ §¢a<t2>tb) wy — S (1) By,

its 29-degree 1 part. This determines the x°-degree 0 part (differentiate by ug and contract with %Qd(X )
as well as the t-degree 2 part of (3.15) - (differentiate by td and contract with 2%). Thus, only - 3.16)) remains.
Since B is cubic, write B= By upue. Contract ( with ¢* and differentiate by u. to obtain:

(3.17) 0 = 2¢(t3)t° — 27@1,(752)@6(#)6”“, Le. B(e(t?)?) = %et(ﬁ)t.

By ,Aﬁ = %6*, so we obtain (3.13). Finally, for V := V(0,¢) (which is a multiple of UY), the condition
[V,Sy] € Tjv)V = span{U’} readily follows from observing that fuu, = 0. O
92 f u(u —z'u;) — 3€(X%)ug + 5€* (P2 + 3¢, (X?)(€*)*(P?)

g1 [, f] 20 (u — z'u;) — 3€(X°)
[z, f] w(u — a'u;) + 3(€*)*(P?)a’ + §€(X?)(€*)*(P)
[uo, f] uug — 5€*(P?)
[ua, /] uug + §€(X*)up — §Caub(X)(€*)"(P?)
3(90) [1, f] Z := 2u — z'u;
gy | h [, [uo, f]] ztug — §((’3*)a(P2)
fo [2°, [uo, f]] — %Z 70 .= fa: ug + x “uc € 3(fo)
fo | [2% [up, f1] = 0%(3Z + 5219) Py = xupy + 505U — 9 (X)(CF)*(P)
f-1 [Ua, [xo’ il uaxo + %Qa(XQ)
g1 x' Uy
g2 1

TABLE 7. Generating functions for any complex simple g not of type A or C

Assign weighted degree +1 to 2%, u; and +2 to u, so g, are polynomials of weighted degree k + 2.

Corollary 3.5. Let g be a complex simple Lie algebra not of type A or C. Then g embeds into the space
of polynomials in x*,u,u; (0 <i<n—1) of weighted degree < 4, equipped with the Lagrange bracket.

Remark 3.6. Theorem [3.4 and Corollary [3.5] are also valid for G = A,41 with € = 0 and 1 < i < n, i.e. the
0-th coordinate is not distinguished (§3.8.1)). It is also valid for G = A;: {1,2u,u?} is a standard slo-triple.
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All generating functions for g are given as linear combinations of those specified in Table [7}
e Z=2Z;and 20 = 2ien(j) Zi» where N (j) are neighbouring nodes to the contact node j.

e )% € fo are the only functions quadratic in {z¢, u.} and independent of u, 2%, ug. Hence, their span
is closed under the Poisson bracket [f, g] = fregu. — gze fu., 1-€. restriction of the Lagrange bracket.

Corollary 3.7.
(i) G = Fy, Eg, E7, Es: {{%}1<ab<dimw) spans f§ = Az, Ag x AQ,A5,E6 respectwely, dim(3(fo)) =
(i) G=SO0meg, m=1: W = IS, =C"@C, h*, = )2 = 0, Z(*) := p® =7ac uw—%xua
o m > 3: fi = s0,, is the span of all x®up — zpu®. (See the adapted basis {wa}m n - 2.5 and
use (-,-> and its inverse to lower and raise indices.) Also, 3(fo) = span{Z(©) Z(OO)}.
e m=1o0rm=2:f=0 and 3(fo) = span{Z®,Z(*), Z(l)}, where Z0) = x1u1 — ryul.

Proof. Table [5| yields the assertions for fi°. For (ii), if (Iab are the components of {-,-) with respect to
{wg}, then for t = (v, ), we have €(t3) = Capt® Pt = qapv2v°\, so Cp(t) = ;,Qab)\ and € (1) = %qabvb.
Consulting Table@, we have for s* = (v*, p), (€%)2P(s*) = 1 ab,u and (€*)2%(g*) = 1qabvb. Substitution
into 1%, then yields the result. (In particular, ¢?, + %5%2(00) = 2%up — wpud.) O

Example 3.8 (g = Fy, & = A2). On W = J3(Rc), €(t3) = det(t). Let e denote the 3 x 3 matriz with
1 in the (i,7)-position and 0 otherwise. Consider the ordered basis of W = J3(R¢) given by
wi=ely, wy=¢%, wy=e’5, wyi=els+e’;, ws=elzt+e’, we=e’3+e%.

This basis determines coordinates {z*} on W and dual coordinates {u.} on W*. A Lie algebra isomorphism
from Ay = sl3 to span{y®}1<q p<dim(w) 18 given by

diag(2 —%, —%) — Pl = %xlul — %mng — %I3U3 + %x‘lm + l955U5 §x6u6,
dlag(3, 3 f%) — —1)2y = 3£L' uy — 33021@ + §x3u3 — 31‘ Ug + 21:5U5 — %xﬁu(g,
elo1p?s = 22%u; + 25uy + 23us; e21—pls = zlus + zhug + 22%us;
e23-1%5 = ztus + x2ug + 225us; e39—13g = 2ouy + 22%us + 23ug;
els—?y = 220y + 22ug + 2%us; e3>ty = rluy + 2200 + 2Pue.

The following result will be used in §3.5.1] and §3.6.2]
Proposition 3.9. Consider the map U : End(W) — W* @ A*W* given by A% — CapfcA%q)- Then

span{idyy}, if W # JS1;
span{idy, (w1)* @ we}, if W = JS;.

Proof. Let A € ker(¥). The W = J3(¥) case is trivial and the W = JS; case follows easily.

(1) W =J8n, m=>2:1fb=d=00 #c, then A, =0, where  =m+1—c. Let 1 <b,c <
e c#d="b": We have A, = 0. (Note m > 2 was used here.)
o d=o0: Ifc# b/, then AY. = 0. If c = b/, then A%, = A, (no sum).
(2) W = TJ3(A), A # 0: End(WW) contains fy and the Cartan product Endg(W) of W and W*.

ker(¥) = {

%S A2 AQ X A2 A5 E6
ss_weight of 1V 21 A1+ A A2 A6
o-weight of Endg(W) | 2A1 +2X 2 A+ XA+ A+ X5 X+ A+ Xg
dim(Endo(W)) 27 64 189 650

By comparing dimensions, it follows that End(W) = C @ §§ @ Endo(W) as f§-irreps. By Schur’s
lemma, it suffices to verify that ¥ # 0 on f§ and Endy(W).
e Endy(WW): take highest weight vectors for W and W*, so their product is a highest weight
vector A € Endg(W). In an adapted weight basis, we have A%, = 0 except for A, _; # 0.
Injectivity of € : W — S2W* implies that W(A) # 0.
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e §5*: From we know [f_1,Vo] = Vo1 = W. Explicitly, Vy = span{up}, W = V_; =
span{ug}, f-1 = span{u,z® + 3€,(X?)}, and [uaz® + 3€4(X?), ug] = uq. Referring to Table
let A =% € fo, so [A, ug] = A¥qui, where A%y = §746%, + 269,04 — 9€pcq(€*)?F. Evaluate
U(A). Use (2.11)) and set a = d # c¢. Then

1 1

ConeA"a) = Cned® a6ty + g%h[c(;kdﬁab — 9 Cape (€)= by = 5 one # 0.

O

3. 5 The PDE system &. Let G # Ay, Cy. Consider the PDE & J? for the flat G-contact structure. As
in § we obtain a PD-manifold (£; D C) whose symmetries correspond to external symmetries of £  J2.

We have local coordinates (2%, u,u;, t%) on € adapted to & — M?"*1 5o dim(€) = 3n. While Cis given
by ann{du — u;dz'} = span{d,i + u;0y, Oy,, Ota }, D has rank 2n — 1 and is spanned by

¢(t?) \ 3¢, (2)
%Q:a(tQ) ‘ 3€ab(t)

(318) T, =0, X;= ﬁmz + w0y + ul-jé’uj, where (U”) =

Let us consider the subordinate structure (&, D).

3.5.1. Involutivity. The dual Pfaffian system to D is Z = span{o, 6;}, where
(3.19) o =du—widx’, 6= dug— C(t*)dz® — g@a(tQ)da:“, 0, = dug — g(’ia(tQ)dxo — 3Cq(t)dat.

Defining fo = 0 — 19y, W0 = da¥, Wb = 3(dz® + t*dx®), and 7¢ = dt¢, we have
(3.20) do=0, dip=0, df,=Cope’ A T° mod Z.

Letting J = span{o, 0;,w}, then (Z,J) is a linear Pfaffian system, i.e. dZ = 0mod J. Its corresponding
tableau is involutive (in the sense of Cartan-Kahler [23] [13]) only in two cases:

Theorem 3.10. Given G # Ay, Cy a complex simple Lie group, the tableau for (Z,J) is involutive if and
only if G = Gy or Bs. These cases have single nonzero Cartan character s; =1 or s; = 2 respectively.

Proof. The degree of indeterminacy V) of (Z,J) is the dimension of the space of all A such that the
replacements 7¢ — 7¢ + A%w’ preserve , ie. 0 = &A% (Clearly, A% = 0% solves this.) Thus,
A% =0, 80 0 = €y p A Temains. By Proposition r(M = 1if G # Bz and r(V) = 2 if G = Bs.

The only non-trivial part of the tableau associated to (Z, J) is the 1-form valued submatrix with symmet-
ric entries Ty = €€, The Cartan characters s, ss, ... are obtained as follows: s; is the maximal number
of linearly independent 1-forms in the first column, so is the maximal number of independent 1-forms in
the second column that are independent of the first column, etc. These characters are computed under
the assumption of working in a generically chosen basis for the tableau, and we have s; = s9 = ... = 0.
Cartan’s test for involutivity of (Z,J) is that s; + 2s9 + 3s3 + ... = r),

Suppose G # Bs, so r) = 1. Involutivity forces s; = 1 and sy = s3 = ... = 0, so all entries of the
tableau are linearly dependent. But € : W — S?W* is injective (Lemma [2.5)), so dim(W) = 1, i.e. G = Gs.

Suppose G = B, so r(Y) = 2. Thus, W = JS; and the only non-trivial component of € is €11, = 1, so

T = (“Of 0 ) The only nonzero Cartan character is s; = 2 and Cartan’s test is satisfied. O

In the involutive cases W = J3(J) and W = JS1, the general integral manifold of will depend
on s1 functions of one variable. In all non-involutive cases, we need to prolong the system: consider the
bundle £ — € with 1-dimensional fibres, fibre coordinate \, equipped with 7 consisting of (the pullback
of) T together with the forms 7 := 7¢ + Aw®. Then dZ = 0mod Z, but

d7 = (dX\ + 3X2dz°) A w® mod Z.

This system has torsion, so we must restrict to any submanifold €~0 < & on which dX + 3A2dz°® = 0. Then
7| A is a rank 2n Frobenius system on the 3n-manifold &. Together with an additional arbitrary constant

parametrizing the possible go, the general integral manifold of Z will depend on 2n + 1 arbitrary constants.
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3.5.2. Homogeneous space description. Let G # Ay, Cp and G* ~ G/Pj. In the Dynkin diagram of G,
let N(j) denote the neighbouring nodes to the contact node j, and let Zy ;) = ZieN(j) Z;. Refine the

Zj-grading on g with the (Zy;), Z;)-bigrading. From (2.4)—(2.5), we have:
(3.21) f-1=0-10 08200=23(90)®a, F1=010, Vok=9-+k-1 (k=0,1,23).

The symplectic form on V pairs V with V_3 and V_; with V_5. This yields a 1-dimensional subspace
g—3,—o transverse to V. (See Figure 1| for the Ga-case.)

Ch(D)
Exceptionally simple PDE £

frre——%—H

o7 § (. Te
|

Vig Vo Vo W
I

Flat G9-contact structure

FIGURE 1. Some geometric structures encoded on the Gs-root diagram

~

Proposition 3.11. Let G # Ay, Cy and consider the PD-manifold (€;D,C) for the flat G-contact structure
on M = G* = G/P;. As G-homogeneous spaces, £ = G/Pp;j), where B(j) = {j} U N(j). Fiz o€ G/Pj,
1 € P(C,) the highest weight line, and p = T)V, € LG(C,). With respect to the (Zn(j), Zj)-bigrading,

¢ Dy=g 10Dg,-1DPg-1,-1 =WDgo—1D®W. In particular, go,—1 < Ch(D),.

¢ C, =g 100001 Dg-1,1@®g21@gs_1=WOCEWOW*SC.
With respect to the Zp(j)-grading, these are g—1 @ g—2 and g—1 @ ... ® g4 respectively.

Proof. The parabolic Q < F = G is the stabilizer of [. Since the map V, — LG(C,) is an embedding,
then Q < F is also the stabilizer of p = JA}VO. As remarked in the crossed nodes for @) are N(j).
Hence, the stabilizer in G of p is Pp;), so £ = G/PB(j).

In the Lagrange-Grassmann bundle M ™) over (M,C), we restrict C 1) and (c (1))_2 to & to obtain D and C
respectively. Referring to , we have p = V@ V_1 and C, is identified with V = Vi@ V_1®V_o @ V_s.
The vertical subspace at p € M) is isomorphic to f—1 = g-1,0. By definition, the pullback under the
projection &€ — M of: (i) C, yields (Z,, and (ii) p < C, yields D,. This yields the stated decompositions. [

We emphasize that the subordinate structure (£, D):

e is not the underlying structure for a (G, Ppg;))-geometry. (It is not finite-type since Ch(D) # 0.)
e has no distinguished vertical subspace (corresponding to f_1 = g—1,0). This is determined from the

additional data of C. Namely, this vertical subspace is Ch(C) = Ch(CV) n TE.
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3.6. Cauchy characteristics and second-order Monge geometries.

3.6.1. Cauchy characteristic reduction. We know that (£, D) admit Cauchy characteristics. More precisely:

~

Proposition 3.12. rank(Ch(D)) =1 (so Ch(D), = go,—1) and Ch(D) ¢ Ch(C) is spanned by

(1) 3¢, (%)

(3.22) Z = Oy + uody — 1 (o +uad) = = 2

Ouo —

O -

Proof. From (§3.18)), the non-trivial commutator relations are
[Tar Xs] = 3€u(t)0uy + 3€abcducs  [Tar Xo] = 1°[Ta, Xy)-

By injectivity of ¢ : W — S?W*, rank(D~2) = 3n — 2. By (3.20), £V — £ is onto, so by (3.7),
rank(Ch(D)) = 1. Since [Z, T,] = X, and [Z,X¢] = [Z,X,] = 0, then Z € Ch(D). Also, Z ¢ Ch(C). O

Tautologically, P(Ch(D)) is V < P(C) on M. The vector field Z has the 3n — 1 invariants

t3 o(t2
€(2 )(‘TO)27 Uy = Uq + 362( )xov

X% =z +t"2°, U =wu— (up— t"uq)z’ +
T =t*, Z=wug+ Q:(Qt?))xo,
which yields local coordinates (X%, U, U,, T%, Z) on the leaf space £. Pulling back Z by the section o : £ — &
determined by 2% = 0 yields the differential system
(3.23) w=—dZ— gca(:ﬂ)dxa, 0 = dU — UpdX?, 0, = dU, — 3¢u(T)dX", 1<ab<n—1.

Its dual vector distribution D is spanned by

3
2
Note [07a, Y] = 3€ape0u, + 3€ap(T)0z. Since € : W — S2W* is injective, we may take m_s =~ D~2/D to
be spanned by dy, + 170z (mod D). We obtain the symbol algebra g_ = g_1 ® g_2 ® g_3, where

(3.24) Ora, Y = Oxa + Usly + 3€au(T)dy, + ~Ca(T?)d7.

(3.25) g xWeWw=~Wwe«C?, g_o = WH, g_3 =~ C2

With respect to the bracket /\2 g-1 — g—2, each copy of Win g_; = W@W is isotropic, while cross terms
yield a map W ® W — W™ expressed via €. The bracket g_1 x g_o — g_3 is the natural contraction.

More abstractly, referring to the (Zy;), Z;)-bigrading used in Proposition we have Ch(D), = go,—1,
so quotienting by this only retains the Zy;)-grading and we may re-express (3.25) as

(3.26) g-1=9-10Dg-1,-1, g2=9g21, g-3=0-3-1Dg_32.

Thus, the symbol algebra for the distribution D on & corresponding to g_1 matches that for the underlying
structure for (regular, normal) (G, Py ;))-geometries. (From [29], this structure comes from the filtration;
no additional structure group reduction is required.) We refer to these as second-order Monge geometries.

Proposition 3.13. Let G # Ay, Cy. The structure (€,D) in (3.23)) is the flat model for (G, Pngj))-
geometries. If moreover G # Ga, By, then any (regular, normal) (G, Py, )-geometry is (locally) flat.

Proof. All symmetries of (€;D,C) preserve Ch(D), so are projectable over €. Since Ch(D) n Ch(C) = 0,
then g injects into the symmetry algebra of (£, D). But all (G, Py (j))-geometries have symmetry dimension
at most dim(g). The flat model is uniquely maximally symmetric, which implies the first claim.

The second claim is due to Yamaguchi [30, pg.313]. Namely, almost all (G, Py;)) satisfy H%(g_,g) =0,
hence kg = 0 for regular, normal geometries. The only exceptions are (Gz, P1) and (B3, P 3). O
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3.6.2. Second order Monge equations and their solutions. Integral manifolds of (3.23)), i.e. submanifolds
upon which w, 6, 6, vanish, have maximal dimension dim(W) and we may take these to be parametrized by
X% These are the solutions to the second order Monge equations (L.1)), where T¢ = T°(X€). On integral
manifolds, dw, df, df, also vanish. Since dw = T%df,, the compatibility condition is

oT*

oxe’

Proposition 3.14. If W # J5(&) and W # JS1, the only solutions to (3.27) are T = AX° + u¢, where
A and p are constants. In these cases, the solution of (|1.1)) is

(3.27) CocpT ) =0, where T¢. =

A2 A

(3.28) Z = ?Q:(X?’) + §Qfa(X2)/ﬂ + Cop(X)pu® + const
A 1

(3.29) U= §¢(X3) + §€a(X2)ua + 1, X + const,

depending on 2n + 1 arbitrary constants.
Proof. By Proposition TC e = A%, so T° = A\X© + p¢ as claimed, and the rest easily follows. O

For G = Ga, i.e. W = J3(&), (3.27) is trivial. Eliminating 7', (T.I)) becomes Z’ = 1(U”)? (equivalent to
Hilbert-Cartan). When G = Bs, i.e. W = JS1, €(t3) = v2)\ for t = (v, \), and (1.1]) becomes
1

(330) Ly = Umcnya Zy = i(Ux’y)27 Uyy =0.

This has solution Z = %f’(m)Qy +§ ' (2)g" (x)dx, U = f(z)y + g(z).

3.7. The parabolic Goursat PDE F. Let G # Ay,Cy. For the flat G-contact structure, consider
F < MW and its associated PD-manifold (F ;D,CN). We now verify that F has parabolic Goursat type
and show how the first-order covariant system A [30] leads to the sub-adjoint variety field V.

The hypersurface F < M® has local coordinates (x,u, uj, uqp, t*) adapted to F — M2"*+1. While
C = ann{du — u;dz'} = span{dyi + u;0y, Ou;, Ou,y, Ota }, D has rank 2n — 1 and is spanned by

Uupo = tatbuab — 2@:(753)

3.31 Ora, Oy ,, Oyi+ U;jOy+ U;i0y., Where
( ) t ab J YU { Ugo = tbuab _ %Qa(tZ)

Off of ugy, = 3€4(t), i.e. £ = F, we have D2 = C, so Ch(D) = 0 by (37). (We verify that F) — F

is onto.) Hence, (F,D) and (F;D,C) share the same symmetries (which are the external symmetries of
FcM®D: see E) The symbol algebr of (F;D,C) at v € F is the subalgebra of g_ in (3.4) given by
(3.32) 5(v) =5_1(v)Ds_2v)Ds_3(v) = (LDr(v))®L*DC,
where t(v) = S2L* has codimension one. This corresponds to the vertical subspace spanned by differenti-
ating the parametric equations for F by ¢ and 0,,_,. If {x;} is a basis of L and {x'} its dual basis, then
S2L* is spanned by x'x? (corresponding to dy,,). Let I(v) = xo — t*Xq € L. Then v'(v) = ann(r(v)) =
span{l?} = S?L, i.e. F is of parabolic type. (If F = {F(a?, u,u;, u;;) = 0}, then rank(aaT':j) = 1 everywhere.)
We have a distinguished [+ < L* and a corresponding first-order covariant system N' < D2 spanned
by D together with t%0,, + 0u,. The (graded Lie algebra) automorphism group A(s) of s distinguishes a

subspace span{¢(l) : ¢ € A(s)} < s_1 and we let M < D be the corresponding distribution, called the
Monge characteristic system. (See [27), §7.3] for more details.) Explicitly, N' and M are spanned by

1
N : azo + ’I,L(]au — §€(t3)8u0, 6;5‘1 + uaé’u — %Qa(tQ)é’uO, ata, 0uab, ta(?uO + é’ua;

¢(t3) 3¢,(1?)
2 2
Since M = Ch(N), then M is completely integrable, i.e. F is of Goursat type.

M : 0p0 + up0Oy — t*(Oga + UgOy) — Ouy — Ouas  Ougy-

"The symbol algebra of a PD-manifold should not be confused with the symbol algebra of a distribution.
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The vertical bundle for F — M is Ch(C) = span{0ss, dy,,}. We have Ch(N) n Ch(C) = span{d,,, }, and
the projection of Ch(N) to M recovers the sub-adjoint variety field V < P(C). Since N and Ch(N\) are
covariant for D, this confirms that all symmetries of (F, D) are inherited by (M,C, V).

3.8. Degenerate cases. In this section, we treat the exceptional type A and C cases.

3.8.1. Type A. For G = A, 41, Any1/Prp1 = G? < P(g) and g_ is reducible for gg = C? x sl,,. Here, the
corresponding geometric structure is a Legendrian contact structure, i.e. (M?"*! C) with a decomposition
C = E@F into complementary Legendrian subspaces. When F' is integrable, we can introduce coordinates
(2%, u,u;), 1 <i < n,sothat C = ann(du—u;dz’) and F = span{dy, } (see [9]). Now E specifies a section of
M@ — M, so such structures can be regarded as complete systems of 2nd order PDE Ujj = fij(a:k, u, Ug)
up to point transformations, i.e. contact transformations preserving span{d,, }.

Proposition 3.15. The PDE system u;; = 0, 1 < 4,j < n has point symmetry algebra g = A, 1. Its
generating functions are:

g-2 g-1 9o g1 g2

g-1,-1 1| 9-1,0 | 90,—1 90,0 g1,0 go,1 g1,1

. Z = 2u — z'u; , , ,
1 x U wu | 2t (u— 2luy) | w(u — 2l uy)

29
T U

Here, Z = Z1 + Zy 41, where the bi-grading element (Z1,Z,+1) = (u,u — x'u;) acts as indicated above.

The top slot is a special case of (3.13) when € = 0. (Here, 2°, uy are no longer distinguished.)

Harmonic curvature obstructs flatness and corresponds to H JQF (g—, ). We summarize its components:

e n = 1: Relative invariants Iy, I (Tresse invariants).
e n > 2: Two torsions 7g, 7r (obstructing the integrability of E, F') and a curvature . For semi-

integrable structures, u;; = fi;(z", u,u), W has components ijl = trfr (aizk%i); see [9].

3.8.2. Type C. For G = Cpy1, Cpy1/P1 = G — P(g) and G =~ Sp(g_1) acts transitively on LG(g_1), so
instead examine the stabilizer P; 41 of a Lagrangian subspace. This induces a |3|-grading g = g_3®...®g3
with go = C? x A,,_1 and g_ having the same commutator relations as for (J2(C™,C),CW), where
dim(L) =n:=/f—1. Ing_y = LOS?L*, both L and S?L* are distinguished subspaces under the Go-action.

By [28, Cor.6.6], any (NN, D) with symbol algebra modelled on g_ (and D modelled on g_;) is locally
isomorphic to (J2(C",C),C™M). The structure underlying a regular, normal (Cj, 1, P 1) geometry is a
further choice of subbundle E = D complementary to V = Ch(D~2) < D. (These correspond to L and
S2L* in g_;.) Locally, D =~ CW) is given by and V' = span{d,,; }. Hence,

E = span{0yi := 0y + 40y + UijOu; + fijkOujy}s

for some functions fijk (2!, u, us, ) (Symmetric in i, 4, k). Equivalently, the geometric structure corre-
sponds to the contact geometry of a complete system of 3rd order PDE

(333) Uik = fijk(ajl)u’ulaulm)v 1< iajak7l7m < n.
The n = 1 case is the contact geometry of a 3rd order ODE. The flat model is:

Proposition 3.16. The PDE system u;j;, = 0, 1 <4, j,k < n has contact symmetry algebra g = Cy, 1 and
isotropy Py 41 on the second jet space (x',u,u;, u;;). The generating functions are:

g-3|9-2 g-1 dgo g1 g2 g3

u; u o' (27uj — 2u)

1 | 2 o . ui(@Iuj — 2u) | (29u; — 2u)?
xtad xT'u; Uil
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Harmonic curvature kg can be computed in a similar fashion as in On C, define a partial
connection V such that V(d,:) = 0 and V(0u,,,) = 0, which clearly preserves the splitting C1) = E@® V.
Restricting ton > 2, H _% (g—, g) decomposes into two gg-irreps, both of homogeneity +1 and comprised of
torsion. (If n = 1, a curvature appears, so this case is different.) Hence, kp is comprised of two components
7r and Ty of torsion TV and these are obtained as follows:

(i) In g, V is modelled on S2L*. The Cartan product A*L* ® S2L* is the kernel of the skew-
symmetrization map on the first three factors of /\2 L* ® S2L*. We calculate

—TV (@, Dam) = [0yt Bom] = (Dat i) = Fom (i) ) Quge = Thomsiuy

Thus, 7 € F(/\2 E* © V) has components (7g)umjk = Timjk — Timj)k-
(ii) Let (E®V)g be the kernel of the Levi-bracket restricted to EQV. Then gy € trir((E®V)o)*@V),
where all traces have been removed. We calculate

afuk

TV (O, Ouyyy) = [Ousyys Ogi ] = 000, + 070, + o lma -
Now we need to remove all traces. Let RZ’}C = gi ’lij, Sj"l; RT";g and T}, = 5], . Define
0 fijk 6 (1gm) 6 (1 ¢m)
=trfr [ =22 ) =RM — — 6087 4 ——————— 6.6,
(TEV)z]k rir (aulm> Rz]k n+3 (i ]k) (TL+2)(TL+3) (77 k)

Since kg completely obstructs flatness, we have:

Theorem 3.17. Let n > 2. The complete 3rd order PDE system is contact equivalent to the flat
model uijr, =0, 1 < 4,5,k <n if and only if T = 0 and Tgy = 0.

In Definition we omitted Cj,41-contact structures (contact projective structures; Cpy1/P; geome-
tries) since these are instead encoded via a class of contact connections. Such structures are equivalent,
via Cap’s theory of correspondence and twistor spaces [3], to complete systems of 3rd order PDE (i.e.
Cr+1/P1 n+1 geometries) satisfying 7py = 0.

4. NON-FLAT STRUCTURES

4.1. G2-contact structures. Following §3.3] we exhibit a formula for kg for GGo-contact structures, and
then we establish some symmetry classification results. We follow notation introduced in Example
Here, V = g_1 = S3C?, gy = gl,, the grading element is Z = —%I, and we find (via Kostant) that:

e H2(g_,g) arises as a go-irreducible component of /\g V*® V. (In particular, Z acts as +1.)

o H2(g_,g) = STC?>® (A*(C?)*)5 as go-modules, i.e. (weighted) binary septics.
Let T, denote the sly-module S¥C2. Then /\(2) V*QV =2Iy@I's =2 7®@s @3 ®I'1. The sly-equivariant
projection I'y ® I's — I'7 is simply multiplication of polynomials, i.e. f® g — fg.

Let us exhibit A2 V* = Ty explicitly. Consider the sly-basis (e, e1,e2,e3) = (r?,3r%s, 3rs?,s%) of V. Let

w2, wh w?, w3 be its dual basis. Then 7 from is a multiple of w® A w? — 3w! A w?. Hooking with the
latter yields an slp-isomorphism V = V*, which identifies (w°, w!,w?, w?) = (—s3,rs%, —r?s, r3). Hence,

Element of /\(2) Ve wraw? wdawl JOAwd +3w Aw?) w? AW Wl Aw!
(4.1) Element of AJV: P Ar?s 13 ars? S A +3r2s Ars?) r’sas® rs?as?
Element of T'y: rt 2r3s 3r2s? 2rs? st

Next, note that a CS-basis of (V,[n]) is given by (r?, —3r%s, —6s®, —6rs?). We can pointwise identify this
with a given CS-framing (Xo, X1, U%, U') defining a Ga-contact structure.

Theorem 4.1. Consider the Ga-contact structure on (M?,C) for a CS-framing Xo, X1, U?, U of C. Define

1 1
(42) EO = XO; El = _X17 E2 = _iUl, E3 = —6U0
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Given Y € T'(C), define p(Y) = r3po(Y) +3r?sp1(Y) + 3rs2pa(Y) + 53 p3(Y), where {p;(Y)} are components
with respect to {B;}. Then kp is (up to a constant) the tensor product of 0 # vol® € (A*(C?)*)® with

(4.3)  r'p([E2, Es]) + 2r%p([Es, E1]) + r*s%p (3[Eo, Es] + [E1, Eo]) + 2rs’ p([E2, Eo]) + s* p([Eo, E1]).
The Ga-contact structure is flat iff kg = 0.

Proof. The framing (4.2)) corresponds to the sly-basis (e, e1, ez, e3) = (3, 3r%s, 3rs?,s3). As in pick V
that leaves the CS-framing, hence (4.2)), parallel. The basis for /\3 V*in (4.1) has dual basis ez A e3, ez A

el, l(Seo Aes3+el Aner), ex A€, e Aer. Evaluate T Voon corresponding bivectors (formed from the framing

(4.2)) and find their components via p. Multiply with corresponding elements of I'y to obtain (4.3]). O

One can naturally classify non-flat Ga-contact structures according to the root type of xkp. Some
homogeneous examples are given in Table |8, with V, [Q], £, F determined by f. Note that to
write £ (or F) in standard jet-coordinates, we identify the CS-element g specifying the frame change from
the standard CS-framing (corresponding to g, = %, Upy = %, Uyy = t) to the given one, and then
use . These PDE satisfy additional compatibility conditions. A case analysis shows that the solution
space generally depends on 3 arbitrary constants. However, our type [7] PDE example is inconsistent, while
our type [2,2,1,1,1] PDE example has general solution u(z,y) = ¢1 + cox + ¢3y or an arbitrary function
f(y). For all these examples, (£, D) does not admit any Cauchy characteristics.

Proposition 4.2. Consider a non-flat Go-contact structure on (M®,C) with harmonic curvature ky and
symmetry algebra S. Fiz any m € M. Then:

(i) If kg (m) has root type [7], then dim(S) < 7.
(i1) If kg (m) has root type [6,1],[5,2], or [4,3], then dim(S) < 6.
(iii) If kg (m) has = 3 distinct roots, then dim(S) < 5.

For all root types except possibly [1,1,1,1,1,1,1], these upper bounds are sharp.

Proof. We have dim(S) < 5 + dim(ann(kg(m))). This follows immediately from [I6, Thm.3.3] (Tanaka
prolongation dimension gives a pointwise upper bound) and [I5, Cor.3.4.8] (G2/P» is prolongation-rigid).
For (i) and (ii), take GLo-representative elements r’~?s® ® vol®, which have annihilators in gy spanned by:

a="T:T7—-=3H,Y; a=06: 5l —3H; a=5:1—H; a=4:1—3H.
This proves (i) and (ii). For (iii), the annihilator is trivial. The final statement follows from Table O
We do not know any homogeneous Ga-contact structures of root type [1,1,1,1,1,1,1]. The CS-framing
Xo = 0y + plu, X1 =0, +qd, +ud;,, U°=20, U= (1+up)d,+p(d,+qd)

determines a type [1,1,1,1, 1,1, 1] structure with 4-dimensional symmetry algebra spanned by p, q,e™¥, €Y.

4.2. Submaximally symmetric G-contact structures. Let G # Ay, Cy with associated Jordan algebra
W (Table |3]) and basis {w,}. Fix 1 < ¢ < dim(WW) and take the G-contact structure for the CS-framing

(44) Xg = axo + U0y + J:Cauov Xy = Oga + Ug 0Oy, U’ = aum U = aua-
As in we can find the corresponding £ and F in standard jet-coordinates:

(4.5) £ (wy) = ( oo | Uob ) _ ¢(#3) + 2¢ | 3, (2)
. : ij U0 | Uab %%(tQ) ‘ 3Ca(t)

(4.6)

I

. ugy = t%%ugqy — 2€(3) + z°
Ug) = tbuab - %Q:a(tQ)

which are also the first and second-order envelopes determined by the parametrization

PBi o uoo — 2t a0 + t4 4 ugqy = C(£3) + 2°.
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0 1 Gao-contact structure
Root type Xo X1 U U )
symmetries
1, z, y, p, > — 3y% — 6qz,
[7] 00+ pOu + Yy 2y + g o 2, hr ro
2
2q —x°, Tu — 2px — 3qy
[6,1] Oz + POu + q0p Oy + q0y Op 0Oq 1, z, p, q, €2 + 2y, 5u — px — 2qy
[5,2] 0w + pOu + POy Oy + q0u Op q Ly, p g e, 3u—qy
[47 3] aﬂc + pau ay + qau + qaq ap aq 17 Z, P g, €y7 u + pT
[57 17 1] aﬂ? + pau + (p + Q)ap au + qau ap aq 17 b, q, ex7 y—x
[47 23 1] az + pau + pap ay + qau - qaq ap aq 17 b, q, €7y7 ea:
[37 37 1] az +pau ay + qau + (p + Q)aq ap aq 17 D, q, ey7 y -
[37272] (q+ %)(a&c +pau) y(au +qau) yap (q+ %)aq 17 T, U —pr,u—qy, y+6p
[47 17 17 1] aﬂc + pau ay + qau + (33 + Q)aq aiﬂ aq 17 z,q,p + Y, ey
[3,2,1,1] ( + q)(0z + pdu) Y(0y + q0u) Y0p (z+q)0q Lz, y+p u—pr,u—qy
(2,2,2,1] (g — §)(0s + pou) (p+ 4)(0y + qou) P+%)0p | (a—%)0 | 1,x+42q,y—6p,u—pz,u—qy
[3,1,1,1,1] Oz + POy, Oy + qOu + (x +p+ q)0q Op 0Oq 1,q, e, 2—y,p+y
[2,2,1,1,1] x(0z + p0u) p(0y + q0u) Lop %é’q 1, y, q, 4px — 3u, 4qy — 3u
[27171717171] q(az +pau) +pap p(ay +qau) pap qaq 1,]77 q,qYy — U, pT — U
’ Root type ‘ Ga-contact structure PDE £ associated to the models above
[7] Uge = %(uyy)g +Y, Uzy = %(uyy)Q
[67 1] Uge = %(uyy)g + Uy, Uzy = %(uyy)Q
[5,2] Uzge = %(Uyy)d + Uz,  Ugy = %(uyy)Q
[4:3] Uze = %(uyu - uy)sv Uy = %(uyy - uy)2
[5,1,1] Upe = 5 (Uyy)® + Uz + Uy,  Uzy = 5(Uyy)?
[4,2,1] Uge = %(uyy tuy)® e, Usy = %(uyy + “y)2
[373: 1] Uz = %(uyy Uz Uy) sy Uzy = %(uyy — Uz — uy)2
3,2,2] | tew = L, = L)
» 4 TT — 3(uy+%)47 Ty — 2(uy+%)2
[4,1,1,1] Uze = %(Uyy_x_uy)ga Uzy = %(Uyy_x_uy)Q
[3 2.1 1] _ (uyy)3y4 _ (uyy)2y2
b Yoo = 3luy+a)t YoV = 3uy+0)?
1 3 um"’% 4 1 2 um+% 2
[272727 1] Uge = §(uyy) (uy_%> y  Uzy = E(uyy) (M_%)
[3,1,1,1,1] Upz = %(Uyy —T = Uz — “y)37 Uzy = %(“yy — T = Uz — uy)2
uy)® Uy
[2> 2,1,1, 1] Uge = %(uyy)3 ( ;2> y  Uzy = %(Uyy)z ( z)
Ug ¥ Ug Uy 2
(2,111, 1,1] | uee = 3(uyy)” 807 + 22, gy = J(uyy)* ey

TABLE 8. Some homogeneous Ga-contact structures on (J1(C2, C), [du — pdx — qdy])

Proposition 4.3. The symmetry algebra of the G-contact structure (4.4) is spanned by

i L ,0(330)2 6.0, a.a 0 3 2 _1 c(,.0\3
(4.7) 1, 2, w;—0; 5 Tu — 2z °ug — 31%Ug, T Uq + 2Qa(X ) 65a (x”)?,
(4.8) TA%2bug — k (3x0u0 + x“ua) , where 0=A%Cq), and Ay = ki,

and0<i<n—1landl <a,b<n-—1.

Proof. This calculation is similar to that for Theorem We have V := V(1,t) as in (3.8) and V=T vV
as in (3.10). Let p* := dz*([V,Sy]) = =V (fu,) and p; := du;([V,Sy]) =V (dgi) + ;9 fu.- Then

[V.Sy] = p"Xg + p"Xa + (10 — p°2°)U° + U
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Using (3.10)), the condition [V, S¢] € f[V]V, expressed in the CS-framing {X;, U} is

49 0= o= P ) = 300 = V (4 ) + VU ) - V(I

2 dz®
The t-degree 6 and 5 components of (£.9) imply fugue = fuou; = 0, 50 f = g(x?, u, ug) + h(x?, u)ug. Setting
uo = 0 in (4.9)) [t-degree 1] implies
(4.11) 0 = (hga + ughy)zc, 0 = gpazo + UgGyz0-
The first equation in (4.11)) implies » = h(2°). Furthermore, the equations (4.9)[(t,ug)-degree (0,2)],
[LT0)[(¢, uo)-degree (0, 1)], (E9) t-degree 4], and [ETO)[(t, uo)-degree (1, 1] imply
(412) Guze = 0, Guu = 0, Gupue = 07 Guuy, = 0.
The third of these follows from (£.9)[t-degree 4] and 2-II): 0 = —t Xy (fuo)E(3) + €. () (1) fuuy =

F3(€*) %X (fuo) + fupue)€(t2)€c(t?). Since €,(t?) is arbitrary and fu,uy = fuu, = 0, then fy,u, = 0.
Now combine (4.11)) and (4.12)), and after a straightforward calculation, we obtain

(110) 0= o = 506 = 390u(t) = V (5 ) + SV U)El) ~ 3V (0

(4.13) h=h("), g=G"z")uq+ a(z®) + B(x°) + v(2°)u.
Using (4.10|)[¢-degree 1] and the coefficients of u, u,, and ug in (4.9)[t-degree 0], these must satisfy
(414) 0= (Gb)xaxo + (Sab’}/zo, (Gb)xewa = O, Qpegpa — 3<Gb)$0¢abe = 0,
(4.15) V020 = 0, (G*)poz0 =0, hg0.0 + 27,0 =0,
(4.16) Bpogo + x°(2hz0 +v) + G¢ = 0.
(The first equation in (4.14)) is a residual equation from ([4.11)).) Differentiating (4.16]) with respect to 2°, z¢
yields 0 = 2h,0,0 + 7,0 + (G)g04c = —47,0 (no sum on ¢). Hence, we must have
(4.17) v =790, h=ki"+hy, G*=A%"+ B%+C% A% = —5%(2k + o)
3 1 1
(4.18) a= §Bb€b(X2) + apr’ + ag, B = —EBC($O)3 - §Cc(x0)2 + Br®.
Define ﬁab = A% + %5%(% —90). Then A%, = (—%% — %70)5‘31, and (4.9)[t-degree 3] yields 0 = A%, €ge)q-
Setting k = —%'yo and A%, = 0 yields the symmetry u— %xouo—%x“ua. Now relabel k = —%k and set v9 =0
for the remaining symmetries. The V := V(0,t) case quickly follows from the condition f,,., = 0. O

w, — AP, wy, must be a symmetry of € € S3W*, so from §2.3|is contained in §&. Moreover, it must preserve
the line [w®] € P(W*). To maximize the solution space of (4.8]), we should examine the minimal Fy-orbit(s)
in P(W*). (Recall that W is reducible in type B and D.)

The number of symmetries in (4.7) is dim(M)+1+dim(W) = 3n+1. By (4.8)), the linear transformation
t

G/P By/P> (€= 3) Dy/Py (€= 4)
S 202 — 50+ 8 202 — 70+ 11
(21) YT G/P || Go/Py | F4/Py, | Eg/Py | E7/Py | Eg/Ps
202 — 70+ 15, (>4, S 7 28 43 76 147
S(23) 1, (>3 (same for & o)
when ¢ = 4)

TABLE 9. Submaximal symmetry dimensions & for G-contact structures (see [15])

Theorem 4.4. If [w°] lies in a minimal Fy-orbit in P(W*), then the G-contact structure (4.4)) is submaz-
imally symmetric.

Proof. We give the proof for g = Fg and g = D, (¢ > 5). The other cases are treated similarly.
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o g= Eg, f = Es, n = 28: The Eg-highest weights of W and W* are A\¢ and \;. The dimension of
P © Eg is 62. Adding this to 3n + 1 = 85 agrees with & = 147.

e g=D S =Dp3,n=20—4: Here3n+1=6/—-11,m=2{—-6and W =C"PC = W* as
Dy_s-reps. Also, dim(3(fo)) = 2, so one element acts non-trivially on €, and the other preserves it.
There are two harmonic curvature branches:

(i) C™: highest weight A1, so (3n + 1) + 1 + dim(P;) = (6 — 11) + 1 + (262 — 15 + 29) =
202 — 90+ 19 = S 93).
(i) C: Bn+1)+1+dim(Dp_g) =60 —11+ 1+ ({=3)(20—=7) = 20> =T + 11 = S 3y).
O

4.3. Type A and C. In Table we give submaximally symmetric PDE (for n > 2) in the type A and
C cases. The n = 1 cases are the classically known 2nd and 3rd order ODE cases.

’ G/P ‘ Invariants ‘ Submax sym dim Model ‘ Symmetries ‘
Anar/P TE # 0, u; =0 1, % ug (k#n), zw (1#I1#n),
n+1/P1n+1
(n>2) T =0, S = n?+4 except (zH? = 2un, xlu, — %(ml)s,
W=0 u =" zluy — 22"y, w— ztu + 2ty
T8 =0, u;; =0 1, zf(k#n), w, zuw (E#n;l#1),
Ant1/Pinta 2 1\2 ; 1
( 2) T =0, Sinery =n" +4 except un(z7)* + 2", u—2'ui — 52" Un,
n =
W #0 w11 = (un)? ztul + 2 un
Uik =0 1, 2%, wuk (k#£2), 227, 2w l>=3,
Crns1/Prns1 T8 # 0, 9 " . : 2 l 143
Suyy=2n"—n+5 except ugw (k1= 3), uw—xuz, 6uz— ()7,
(n=>2) ey =0 2 1 1\4 1 2
U111 =T 24z uz — (z7)%,  x ur — 3z us
Uik =0 1, 2% w, w, <zt (k#£1%1),
Cnt1/P1n+1 8 =0, 3n24n+8 ’ k l ( :
Snt1) = 5 except z uy (k # 1;1 #n),
(n>=2) Tev # 0 12 3 1
Unnn = U11 3(z")? + (2™)°, 3z'ui + 22"u, — Su

TABLE 10. Submaximally symmetric PDE for A, 11/Pi n41 and Cpy1/P1 py1 geometries

APPENDIX A. SOME EXPLICIT PDE £ FOR THE FLAT G-CONTACT STRUCTURE

G B or D, G2 Dy
w IS, =C"a@C T3() J3(0)
Coordinate (v, ) A diag(t1,t2,t3)
2212223 | A2A3 A1Az ArAe
= | % A2 A3 0 A3 Az

(uij) AN | oA |G
%(v,v} o) 0

ICE) YU RCEHIN %<v,v> (Xg ﬂ)

A

2

A1 A3 A3 0 A1
A1A2 A2 A1 0

Given A = (a,s) € Matsy3(C), let C,5(A) be its (r, s)-th cofactor.
o G=F;: W=UT3(Rc), s0 ars = agy.

det(A) | 3Ci11(A) 2Co2(A) 1Cs3(A) | Ci2(4) Ciz(A) Cas(A)

$Ci(4) 0 as3 a2 0 0 —as3
%ng(A) %a33 0 %an 0 —a13 0
(uij) = %C33(A) %GQQ %au 0 —ai2 0 0
Ci2(A) 0 0 —ai2 —as3 a23 a13
Ci3(4) 0 —a13 0 a3 —a22 a2
Ca3(A) —az3 0 0 a1 a1z —ai
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(1]

2]
Bl
(4]

[5]
(6]
(7]

(8]

27]
(28]
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e G = Eg: Since W has weight Ay + A| for ff = Ay x Ay, we may use W = Matz.3(C) as an
alternative model to W = J3(Cc).

2det(A4) | C11(A) Ci2(4A) Ciz(A4) | Car(A) Ca2(A) Ca3(A4) | Cs1(4A) Cs2(A4) Cs3(4)
Ci1(A) 0 0 0 0 ass —aszo 0 —ao3 92
Ci2(A) 0 0 0 —as3 0 asi a23 0 —az1
Ci3(4) 0 0 0 as2 —as1 0 —ag2 as 0

(i) = Ca1(A) 0 —as3 aso 0 0 0 0 a3 —ai2
Ca2(A) ass 0 —as1 0 0 0 —a13 0 a1
Ca3(A) —as2 as1 0 0 0 0 a2 —a11 0
Cs1(A) 0 a23 —a22 —ais ai2 0 0 0
Cs2(A) —a93 0 as1 a3 0 —a1 0 0 0
Cs3(A) a22 —a21 0 —ai12 a1 0 0 0 0
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