
EXCEPTIONALLY SIMPLE PDE

DENNIS THE

Abstract. We give local descriptions of parabolic contact structures and show how their flat models yield
explicit PDE having symmetry algebras isomorphic to all complex simple Lie algebras except sl2. This
yields a remarkably uniform generalization of the Cartan–Engel models from 1893 in the G2 case. We give a
formula for the harmonic curvature of a G2-contact structure and describe submaximally symmetric models
for general G-contact structures.

1. Introduction

The Cartan–Killing classification of all complex simple Lie algebras was one of the great milestones
of 19th century mathematics. In addition to the classical series of type A`, B`, C`, D` (corresponding to
the complex matrix Lie algebras sl``1, so2``1, sp2`, so2`), five surprising “exceptional” Lie algebras of type
G2, F4, E6, E7, E8 of dimensions 14, 52, 78, 133, 248 were discovered. Since Lie algebras arose from the
study of transformation groups, one can naturally ask for geometric structures whose symmetry algebra is
a given simple Lie algebra. In 1893, Cartan [5] and Engel [11] announced the first explicit (local) geometric
realizations for G2 (see Table 1), most of which can be formulated as differential equations.

Later, in his 5-variables paper [7], Cartan established remarkable correspondences between:

‚ contact (external) symmetries of (non-Monge-Ampère) parabolic Goursat PDE in the plane;
‚ contact (external) symmetries of nonlinear involutive pairs of PDE in the plane;
‚ symmetries of p2, 3, 5q-distributions.

In a tour-de-force application of his method of equivalence, Cartan then solved the equivalence problem
for p2, 3, 5q-distributions. Nowadays, we formalize this as a (regular, normal) parabolic geometry of type
pG2, P1q. (For the parabolic subgroup P1 Ă G2, see “Conventions” below.) This yields a notion of curva-
ture for such geometries and there is a (locally) unique “flat” model with maximal symmetry dimension
dimpG2q “ 14. The 1893 G2-models E , E ,F are associated to the flat case of this general curved story.

Dim Geometric structure Model

7 Parabolic Goursat PDE F
9puxxq

2 ` 12puyyq
2puxxuyy ´ puxyq

2q

`32puxyq
3 ´ 36uxxuxyuyy “ 0

6 Involutive pair of PDE E uxx “
1
3puyyq

3, uxy “
1
2puyyq

2

5 p2, 3, 5q-distribution E
dx2 ´ x4dx1, dx3 ´ x2dx1, dx5 ´ x4dx2

(equivalently, Hilbert–Cartan: Z 1 “ pU2q2)

5
G2-contact structure

(contact twisted cubic field)

$

’

’

’

’

&

’

’

’

’

%

dz ` x1dy1 ´ y1dx1 ` x2dy2 ´ y2dx2 “ 0,

dx22 `
?

3dy1dy2 “ 0,

dx2dy2 ´ 3dx1dy1 “ 0,

dy22 `
?

3dx1dx2 “ 0

Table 1. The Cartan–Engel G2 models
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2 D. THE

Yamaguchi [30] generalized the reduction theorems underlying Cartan’s correspondences in [7, 8]. For
all G ‰ A`, C`, he identified the reduced geometries analogous to G2{P1 (see [30, pg.310]) and proved the
existence of corresponding (nonlinear) PDE admitting external symmetry g. However, these PDE were
not explicitly described.1 Exhibiting these models is one of the results of our article.

Notably absent in the Cartan–Yamaguchi story is Engel’s 1893 model, namely a contact 5-manifold
whose contact distribution is endowed with a twisted cubic field, which is the flat model for G2-contact
structures, i.e. G2{P2 geometries. Our article will focus on its generalization to structures called G-contact
structures (or parabolic contact structures), modelled on the adjoint variety G{P – Gad ãÑ Ppgq of a
(connected) complex simple Lie group G. This adjoint variety is always a complex contact manifold except
for A1{P1 – P1, so G “ A1 – SL2 will be henceforth excluded. Letting dimpG{P q “ 2n ` 1, a G-contact
structure consists of a contact manifold pM2n`1, Cq (locally, the first jet-space J1pCn,Cq) with C (a field
of conformal symplectic spaces) equipped with additional geometric data.

Restrict now to G ‰ A`, C`. Earlier formulations of G-contact structures identified C as a tensor product
of one or more auxilliary vector bundles: in the G2 case, C – S3E where E ÑM has rank two, and similarly
for the exceptional cases [4, §4.2.8]; for the B`, D` cases (Lie contact structures), see [25]. While these
abstract descriptions were sufficient for solving the equivalence problem, no concrete local descriptions
were given in these works. Recently, a local description in terms of a conformal quartic tensor rQs on C
was used by Nurowski [22] and Leistner et al. [18]. But this viewpoint does not naturally lead to PDE.

We start from Engel’s algebro-geometric perspective: G-contact structures can be described in terms

of a sub-adjoint variety field V Ă PpCq. But V naturally induces other fields pV Ă rV Ă M p1q and τpVq “
tQ “ 0u Ă PpCq, and it turns out that these essentially give equivalent descriptions of the same G-contact

structure. In particular, their symmetry algebras are the same. Here, M p1q Ñ M is the Lagrange–
Grassmann bundle, whose fibre over m P M is the Lagrangian–Grassmannian LGpCmq. Locally, M p1q is

isomorphic to the second jet-space J2pCn,Cq, so pV and rV yield second-order PDE E and F . (Note E Ă F .)
Since the equivalence problem for G-contact structures is solved (see [4] for details) via a (regular, normal)
parabolic geometry of type pG,P q, the maximal symmetry dimension is dimpGq, and the (locally unique)
flat G-contact structure realizes it. In this way, the flat structure yields G-invariant PDE E and F (fibred
over M “ G{P ) with (external / contact) symmetry algebra precisely g.

To make E and F explicit locally, we use (see §2.3) the parametric description of a sub-adjoint variety
due to Landsberg and Manivel [19] in terms of a (complex) Jordan algebra W with cubic form C P S3W ˚.
Let n “ 1`dimpW q. Pick any basis twau

n´1
a“1 on W (with dual basis twau) and let txiun´1i“0 be corresponding

linear coordinates adapted to Cn – C ‘W . Extend this to standard jet-space coordinates pxi, u, ui, uijq
on J2pCn,Cq. Then Theorem 3.3 gives our generalization in a uniform manner (see Tables 2 and 3).

F Ă J2pCn,Cq

#

u00 “ tatbuab ´ 2Cpt3q

ua0 “ tbuab ´
3
2Capt

2q

E Ă J2pCn,Cq puijq “

˜

u00 u0b

ua0 uab

¸

“

¨

˝

Cpt3q 3
2Cbpt

2q

3
2Capt

2q 3Cabptq

˛

‚

pJ1pCn,Cq, C,Vq
V “ trVpλ, tqs : rλ, ts P PpC‘W qu Ă PpCq, where

Vpλ, tq “ λ3X0 ´ λ
2taXa ´

1
2Cpt

3qU0 ´ 3
2λCapt

2qUa,

and Xi “ Bxi ` uiBu, Ui “ Bui

pJ1pCn,Cq, C, rQsq
Q “ pωiθiq

2 ` 2θ0CpΩ
3q ´ 2ω0C˚pΘ3q ´ 9CapΩ

2qpC˚qapΘ2q,

where ωi “ dxi, θi “ dui, Ω “ ωa b wa, Θ “ θa b wa

pt “ tawa PW ; n “ 1` dimpW q; 0 ď i, j ď n´ 1; 1 ď a, b ď n´ 1q

Table 2. Equivalent descriptions of the flat G-contact structure pG ‰ A`, C`q

1In [31, Sec.6.3], Yamaguchi gave explicit linear PDE with E6 and E7 symmetry, but these are not the PDE from [30].
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G B` p` ě 3q D` p` ě 5q G2 D4 F4 E6 E7 E8

Cubic Jordan algebra W JS2`´5 JS2`´6 J3pHq J3p0q J3pRCq J3pCCq J3pHCq J3pOCq

n “ 1` dimpW q 2`´ 3 2`´ 4 2 4 7 10 16 28

Model G{P &

dimpG{P q “ 2n` 1

B`{P2

4`´ 5

D`{P2

4`´ 7

G2{P2

5

D4{P2

9

F4{P1

15

E6{P2

21

E7{P1

33

E8{P8

57

CC reduction E of E
& dimpEq “ 3n´ 1

B`{P1,3

6`´ 10

D`{P1,3

6`´ 13

G2{P1

5

D4{P1,3,4

11

F4{P2

20

E6{P4

29

E7{P3

47

E8{P7

83

Table 3. Data associated with the flat G-contact structure pG ‰ A`, C`q

Remarkably, the PDE F and E admit an even simpler description: they are respectively the first
and second-order envelopes of the family of inhomogeneous linear PDE u00 ´ 2taua0 ` tatbuab “ Cpt3q
parametrized by t “ tawa PW , i.e. a (generalized) Goursat parameterization.

Computing symmetries of PDE [23, 17] is algorithmic, but it is virtually impossible for most of our
PDE E and F using standard techniques (even with the aid of computer algebra). In stark contrast,
symmetries of V can be efficiently computed by-hand (Theorem 3.4) and uniform formulas for g represented
as contact vector fields are given in Table 7. These make explicit some statements made in [6], e.g. Cartan
briefly writes: “Endlich habe ich eine einfache 248-gliedrige Berührungstransformationsgruppe G248 in R29

gefunden.” (Cartan is actually referring to a representation of E8 on the 57-dimensional contact manifold
E8{P8; this has local coordinates pxi, u, uiq, and R29 refers to the coordinates pxi, uq, despite the fact that
there is no natural fibration.) Our formulas generalize those of [18, §4.4] for G2 and B3 obtained via rQs.
Similar uniform descriptions appeared in work of Günaydin and Pavlyk [12, §4.1]. Our approach identifies
a rich geometric / PDE perspective underlying these descriptions.

The canonical distribution Cp1q on M p1q induces a distribution D on E . The tableau associated to pE ,Dq
is involutive (in the sense of Cartan–Kähler) only in the G2 or B3 cases (Theorem 3.10). Also, pE ,Dq
has infinite-dimensional (internal) symmetry algebra because of a rank one distribution ChpDq of Cauchy
characteristics, i.e. symmetries of pE ,Dq contained in D itself. The (local) leaf space E “ E{ChpDq inherits
a distribution D (see (3.24)), which can be expressed2 as the mixed order, vector PDE E Ă J1,2pCn´1,C2q:

Za “
3

2
CapT

2q, Uab “ 3CabpT q, where T PW.(1.1)

Here, we regard Z,U as functions of Xa, and Za, Uab refer to BZ
BXa , B2U

BXaBXb . The PDE (1.1) provides
a fifth model with symmetry g, and generalizes the Hilbert–Cartan equation in the G2 case, which is a
second-order Monge equation. (See [2] for Monge geometries of first-order.) All solutions to (1.1) are given
in §3.6.2, and these lead to solutions of E . Involutivity in the G2 or B3 cases leads to solutions depending
on one or two functions of one variable respectively, but only on arbitrary constants in the general case.

While the PDE F and E in the flat case are indeed those implicitly referred to by Yamaguchi, this is
a priori not clear since we obtained these in a completely different manner via fibrewise constructions on
V. This is discussed in §3.6 and §3.7 where the associated reduction theory is illustrated in detail. In
particular, pE ,Dq is the flat model for the reduced geometries identified by Yamaguchi. Most of these
geometries are rigid: only the G2 and B3 cases admit curved deformations.

Following our initial arXiv post of this article, other (hypersurface) PDE with symmetry g, alternative
to our F , were found [1]. While these are equivalent representations of the flat G-contact structure, their
relationship to the sub-adjoint variety field V is unclear. Uncovering such natural geometric constructions
would allow these new PDE to be written explicitly, analogous to what we have done here. The reduction
theory for these PDE would be an interesting topic for investigation.

In §3.8, we discuss the geometry associated with the exceptional type A and C cases. We have:

‚ uij “ 0, 1 ď i, j ď n has point symmetry An`1, i.e. the flat An`1-contact structure.
‚ uijk “ 0, 1 ď i, j, k ď n has contact symmetry Cn`1, i.e. the flat Cn`1{P1,n`1 structure.

2The expression (1.1) is only a mnemonic device: “symmetries” refer to internal symmetries of pE ,Dq, independent of J1,2.
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Via a twistor correspondence [3], the latter can be viewed as the flat Cn`1-contact structure. Indeed, all
(complex) parabolic contact structures admit a description in terms of PDE.

All G-contact structures are non-rigid geometries and we briefly discuss the non-flat case in §4. For
G2-contact structures (§4.1), we give a formula for the harmonic curvature and give some symmetry
classification results. We then conclude with some submaximally symmetric models in the general case
(§4.2 and §4.3). In general, the PDE E and F for non-flat G-contact structures do not satisfy the Cartan–
Yamaguchi reduction criteria, which explains the absence of V in their story.

Acknowledgements

We thank I. Anderson, R. Bryant, L. Manivel, and K. Sagerschnig for helpful discussions. An extremely
useful tool throughout this project was the DifferentialGeometry package in Maple. D.T. was supported
by a Lise Meitner Fellowship (project M1884-N35) of the Austrian Science Fund (FWF).

Conventions

We will work exclusively with complex Lie groups and Lie algebras, complex manifolds and jet-spaces,
etc. (However, all our results are analogously true for split-real forms.)

Given a rank ` complex simple Lie algebra g, a Borel subalgebra is assumed fixed. Let h be the Cartan
subalgebra, root system ∆ Ă h˚, simple roots ∆0 “ tαiu

`
i“1 (use the Bourbaki / LiE ordering), and dual

basis tZiu
`
i“1 Ă h. Let gα be the root space for α P ∆. Let tλiu

`
i“1 be the fundamental weights.

A parabolic subalgebra p Ă g is marked by crosses on the nodes Ip “ ti : g´αi Ć pu Ă t1, ..., `u of the
Dynkin diagram of g. A parabolic subgroup P Ă G with Lie algebra p is denoted by PIp . (For the closed G-

orbit G{P ãÑ PpVq, where the G-irrep V has highest weight λ “
ř`
i“1 ripλqλi, we have Ip “ ti : ripλq ‰ 0u.)

The grading element Z “
ř

iPIp
Zi gives a grading g “

Àν
k“´ν gk, where gk “

À

Zpαq“k gα, with p “ gě0.

2. Sub-adjoint varieties and natural constructions

2.1. The Lagrangian-Grassmannian. Let n ě 2 and let pV, ηq be a 2n-dimensional symplectic vector
space. A subspace L Ă V is Lagrangian if dimpLq “ n and η|L ” 0. The Lagrangian-Grassmannian LGpV q
consists of all such subspaces and depends only on the conformal class rηs. The Lie groups SppV q and
CSppV q consist of linear transformations of V that preserve η and rηs respectively. These act transitively

on the manifold LGpV q. Since TLpLGpV qq – S2L˚, then dimpLGpV qq “
`

n`1
2

˘

.
A basis te1, ..., e2nu of pV, ηq is conformal symplectic (a “CS-basis”) if η is represented in this ba-

sis by a multiple of
´

0 idn
´idn 0

¯

. Then sp2n “
!´

a b
c ´aJ

¯

: a, b, c P Matnˆn; b, c symmetric
)

. Now o “

spante1, ..., enu has stabilizer Pn “
!´

A B
0 pAJq´1

¯

: A´1B symmetric
)

Ă SppV q with Lie algebra pn Ă sp2n.

We obtain standard coordinates about o by mapping the symmetric matrix X to spantei `Xijen`ju
n
i“1.

For g “
`

A B
C D

˘

P CSppV q near the identity,
`

A B
C D

˘

¨
`

I 0
X I

˘

{Pn “
´

I 0
rX I

¯

{Pn, where

rX “ pC `DXqpA`BXq´1.(2.1)

2.2. Adjoint and sub-adjoint varieties. Let G be a (connected) complex simple Lie group with Lie
algebra g. The unique closed G-orbit G{P – Gad ãÑ Ppgq is the adjoint variety of G. This is a complex
contact manifold except when G “ A1 (henceforth excluded). Otherwise, the reductive part G0 Ă P
induces a G0-invariant contact grading on g, induced by a grading element Z P zpg0q (see “Conventions”):

‚ g “ g´2 ‘ g´1 ‘ g0 ‘ g1 ‘ g2, where p “ gě0 and pg´kq
˚ – gk for k ‰ 0 (via the Killing form);

‚ rgi, gjs Ă gi`j for i, j P Z (take gi “ 0 for |i| ą 2);

‚ g´ is a Heisenberg algebra, i.e. dimpg´2q “ 1 and the bracket η :
Ź2 g´1 Ñ g´2 is non-degenerate.

In particular, V “ g´1 is a CS-vector space and G0 Ă CSppV q. We have that V is G0-irreducible iff
G ‰ A`; also, g0 ‰ csppV q iff G ‰ C`.

For G ‰ A`, C`, we have λ “ λj (i.e. j is the “contact node”), P “ Pj is maximal parabolic, and
g0 “ zpg0q ‘ gss0 with zpg0q spanned by Z “ Zj . The sub-adjoint variety V for G is the unique closed
G0-orbit in PpV q. The stabilizer in the semisimple part F “ Gss

0 of the highest weight line l0 P V Ă PpV q is
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a parabolic subgroup Q Ă F , and this induces a |1|-grading f “ f´1‘ f0‘ f1 with q “ f0‘ f1. Furthermore,

V Ă PpV q is smooth, irreducible, and Legendrian, i.e. pTlV P LGpV q at any l P V. Here, the affine tangent

space pTlV Ă V is the span of l and the tangent space to the cone over V at any nonzero point along l.

G{P Range F {Q
V “ g´1 as

an f-module
dimpV q V Ă PpV q

B`{P2
` ě 4

` “ 3

A1{P1 ˆB`´2{P1

A1{P1 ˆA1{P1

C2 b Vλ1
C2 b S2C2

2p2`´ 3q SegpP1 ˆQ2`´5q

D`{P2 ` ě 5 A1{P1 ˆD`´2{P1 C2 b Vλ1 2p2`´ 4q SegpP1 ˆQ2`´6q

G2{P2 ´ A1{P1 S3C2 4 twisted cubic ν3pP1q

D4{P2 ´ pA1{P1q
3 C2 b C2 b C2 8 SegpP1 ˆ P1 ˆ P1q

F4{P1 ´ C3{P3 Vλ3 14 LGp3, 6q

E6{P2 ´ A5{P3 Vλ3 20 Grp3, 6q

E7{P1 ´ D6{P6 Vλ6 32 D6-spinor variety

E8{P8 ´ E7{P7 Vλ7 56 Freudenthal variety

Table 4. Sub-adjoint varieties

We can arrive at Table 4 in a uniform manner via the Dynkin diagram Dpgq:

‚ Given P “ Pj Ă G, remove the contact node j from Dpgq to obtain Dpfq.
‚ For every node i connected to j in Dpgq: inscribe a 1 over i if the bond is simple or is directed from
i to j; otherwise inscribe the multiplicity of the bond. This yields V “ g´1 as an f-module.

‚ Crossed nodes for Q Ă F correspond to the neighbouring nodes Npjq to j in Dpgq.

Example 2.1. indicates that for G2{P2, V “ g´1 – S3C2 as an irrep of A1 – sl2.

We have several naturally associated objects inheriting G0-invariance from V Ă PpV q:
(1) Let pV denote the image of the embedding V Ñ LGpV q given by l ÞÑ pTlV.

(2) Let rV :“
Ť

lPVtL P LGpV q : l Ă Lu Ĺ LGpV q. (This is a hypersurface.)

(3) The tangential variety τpVq “
Ť

lPV Pp pTlVq Ă PpV q is a quartic hypersurface, so τpVq “ tQ “ 0u
for some symmetric tensor Q P S4V ˚. Let rQs “ tcQ : c ‰ 0u denote its conformal class.

Example 2.2 (G2{P2). Here, V “ g´1 – S3C2 as a module for g0 – gl2. Let C2 “ spantr, su, so gl2 is
spanned by I “ rBr ` sBs, E “ rBs, H “ rBr ´ sBs, F “ sBr. Then V has a GL2-invariant CS-form rηs, where

ηpf, gq :“
1

3!
pfrrrgsss ´ 3frrsgssr ` 3frssgsrr ´ fsssgrrrq.(2.2)

The twisted cubic V “ trv3s : rvs P P1u Ă PpV q is GL2-invariant. In V , differentiating γptq “ pr ` tsq3 at

t “ 0 yields the osculating sequence V 0 Ă V ´1 Ă V ´2 Ă V ´3 “ V , where V 0 “ spantr3u, V ´1 :“ pTrx3sV “
spantr3, r2su is Legendrian, and V ´2 “ spantr3, r2s, rs2u. In the dual basis θ1, θ2, θ3, θ4 to pr3, 3r2s, 3rs2, s3q,
we have η “ 6pθ1 ^ θ4 ´ 3θ2 ^ θ3q. The discriminant of f “ a1r

3 ` 3a2r
2s` 3a3rs

2 ` a4s
3 is:

Q “ pθ1q2pθ4q2 ´ 6θ1θ2θ3θ4 ` 4θ1pθ3q3 ` 4pθ2q3θ4 ´ 3pθ2q2pθ3q2,(2.3)

and this is conformally G0-invariant. The locus Q “ 0 consists of all binary cubics with a multiple root.

When G “ D4, Q is Cayley’s hyperdeterminant.

Lemma 2.3. If G ‰ A`, C`, then f “ gss0 Ĺ sppV q is a maximal subalgebra.

Proof. There are no proper f-invariant subspaces of V , so the inclusion f ãÑ sppV q is irreducible. From
Dynkin [10] (see also [24, Chp. 6, Thms. 3.1–3.3]), the maximal subalgebras m ãÑ sppV q are:
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‚ m non-simple: sppV q “ sppV1 b V2q and m “ sppV1q ˆ sopV2q, where di “ dimpViq satisfy d1 ě 2;
4 ‰ d2 ě 3 or pd1, d2q “ p2, 4q. This is true for f when G “ B` or D` with d1 “ 2.

‚ m simple: Aside from the exceptions in [24, Table 7], all non-trivial irreps ψ : m Ñ sppV q yield
ψpmq Ă sppV q a maximal subalgebra. This is true for f when G is exceptional.

�

Proposition 2.4. Given the sub-adjoint variety V Ă PpV q for G ‰ A`, C`, any of V, pV, rV, or rQs reduces
the structure algebra csppV q to g0.

Proof. Let s Ă csppV q be the Lie algebra of the stabilizer of any of the given objects, so g0 Ă s. We have
csppV q “ Cˆ sppV q with C “ zpg0q. Since f Ă sppV q is maximal, the result follows. �

2.3. Jordan algebras and sub-adjoint varieties. Sub-adjoint varieties V Ă PpV q admit a remarkably
uniform description in terms of Jordan algebras, which we review here.

Fixing l0 P V, we have V – F {Q. Let V 0 Ă V ´1 Ă V ´2 Ă ... Ă V “ g´1 be the corresponding

(Q-invariant) osculating sequence at l0. (In particular, V ´1 “ pTl0V.) In all our cases, V ´3 “ V . This
filtration has as its associated-graded grpV q “

À

iď0 Vi, where Vi :“ V i{V i`1, and this is naturally an

F0-module. Since f “ f´1‘ q and V ´1 “ f ¨ l0, then the (intrinsic) tangent space Tl0V – TopF {Qq – f´1 ¨ l0
is identified with W :“ V´1 as f0-modules.

In [19, §5.1], Landsberg and Manivel gave the following fss0 -module descriptions3 of f and V :

f “ f´1 ‘ f0 ‘ f1 –W ‘ f0 ‘W
˚,(2.4)

V – V0 ‘ V´1 ‘ V´2 ‘ V´3 – C‘W ‘W ˚ ‘ C,(2.5)

where W is the (complex) Jordan algebra4 corresponding to G (Table 3), which admits a natural cubic
form C P S3W ˚ with symmetry algebra fss0 (Table 5). Such W and C are given below:

(i) 3ˆ3 A-hermitian matrices W “ J3pAq, where A is a complex composition algebra, i.e. A “ ARbRC
where AR is 0 (trivial algebra) or R,C,H,O. Here, Cpt3q “ detptq is the determinant, defined via
the Cayley–Hamilton identity (see [26, eq (5.7)]): t3 ´ trptqt2 ´ 1

2ptrpt
2q ´ trptq2qt´ detptqid “ 0.

(ii) W “ J3pHq :“ C equipped with Cpt3q “ t3

3 .
(iii) Spin factor W “ JSm :“ Cm ‘ C, m ě 1, where Cm carries a non-degenerate symmetric bilinear

form x¨, ¨y. Here, Cpt3q “ xv, vyλ, where t “ pv, λq. We will often use an adapted basis: Let w8 “ 1
span the C-factor and pick a basis twau

m
a“1 of Cm with C8ab “ xwa,wby “ δb,a1 , where a1 :“ m`1´a.

A1 A2 C3 F4

fss0 B`´3 D`´3 A2 A2 ˆA2 A5 E6

f “ gss0 A1 ˆB`´2 A1 ˆD`´2 A1 A1 ˆA1 ˆA1 C3 A5 D6 E7

g B` D` G2 D4 F4 E6 E7 E8

Table 5. A magic rectangle

On V – grpV q, we have the structure of a graded fss0 -algebra [20, Cor.3.8] (induced from V and the
choice of l0). The non-degenerate pairing V´1 ˆ V´2 Ñ V´3 – C then identifies V´2 – W ˚, while C arises
from the (symmetric) pairing V´1ˆV´1 Ñ V´2. The highest weight of W – f´1 as a fss0 -module is obtained
from F {Q analogous to how the highest weight of V “ g´1 as gss0 -module was obtained from G{P .

Lemma 2.5. C : W Ñ S2W ˚ is injective.

Proof. This is immediate for the spin factor, J3pHq, and J3p0q cases. For W “ J3pAq, S2W ˚ “ S2
0W

˚‘W
as a sum of fss0 -irreps (S2

0W
˚ Ă S2W ˚ denotes the highest weight component), e.g. when G “ E8, we have

fss0 “ E6, and W,W ˚, S2
0W

˚ have fss0 -weights λ6, λ1, 2λ1. The claim follows by Schur’s lemma. �

3In [19, §5.1], note that our f, f0 are their g, l respectively. Also, while [19] mainly concentrates on the exceptional cases,
the first sentence of [19, p.496] indicates that the spin factor cases similarly satisfy (2.4)–(2.5).

4The Jordan algebra structure will not play any explicit role in this article. Instead, C will play a fundamental role.
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Fix a basis twau
n´1
a“1 of W and twaun´1a“1 its dual basis. On V “ C‘W ‘ C‘W ˚, take the basis

b0 “ 1, ba “ ´6wa, b0 “ ´4, ba “ ´4wa.(2.6)

Notation: Given t “ tawa P W , write Cpt3q :“ Cpt, t, tq “ Cabct
atbtc P C, while Capt

2q :“ Cabct
btc “

1
3BtapCpt

3qq and Cabptq :“ Cabct
c “ 1

6BtaBtbpCpt
3qq.

We have the following descriptions of V, pV, rV, and rQs, which are derived from Landsberg–Manivel [19].

Proposition 2.6. The basis (2.6) is a CS-basis on V for the (f-invariant) symplectic form given in [19,
Prop.5.4]. In this basis, V is locally parametrized about l0 “ r1, 0, 0, 0s by t “ tawa PW via

φ : t ÞÑ

„

1,´ta,´
1

2
Cpt3q,´

3

2
Capt

2q



.(2.7)

In standard coordinates puijq (see §2.1) about o “ C‘W P LGpV q induced from (2.6), we locally have

pV : puijq “

˜

u00 u0b

ua0 uab

¸

“

¨

˝

Cpt3q 3
2Cbpt

2q

3
2Capt

2q 3Cabptq

˛

‚;(2.8)

rV :

#

u00 “ tatbuab ´ 2Cpt3q

ua0 “ tbuab ´
3
2Capt

2q
.(2.9)

In particular, dimppVq “ dimpW q and codimprVq “ 1.

Proof. The first claim is clear and (2.7) follows from φ in [19, Sec.1.2]. Put the components of l “ φptq

and Bφ
Btb

into the rows of a matrix and then row reduce to obtain pV:
˜

1 ´ta ´
Cpt3q
2 ´

3Capt2q
2

0 ´δb
a ´

3Cbpt
2q

2 ´3Cbaptq

¸

 

˜

1 0 Cpt3q 3Capt2q
2

0 δb
a 3Cbpt

2q

2 3Cbaptq

¸

.(2.10)

Now for rV, let L P LGpV q have standard coordinates puijq. Then row reduce
¨

˚

˝

1 0 u00 u0a

0 δb
a ub0 uba

1 ´ta ´
Cpt3q
2 ´

3Capt2q
2

˛

‹

‚

 

¨

˚

˝

1 0 u00 u0a

0 δb
a ub0 uba

0 0 ´u00 ` t
bub0 ´

Cpt3q
2 ´u0a ` t

buba ´
3Capt2q

2

˛

‹

‚

.

For the incidence condition l Ă L, the bottom row must be zero, and this yields rV. �

Remarkably, pV and rV can also be derived via an envelope construction:

Corollary 2.7. Consider the family of hypersurfaces Gt “ u00 ´ 2taua0 ` tatbuab ´ Cpt3q “ 0 in LGpV q

parametrized by t PW . Its first and second order envelopes are rV and pV respectively.

Proof. We readily verify that rV “ tGt “ 0, BGt
Bta “ 0utPW and pV “ tGt “ 0, BGt

Bta “ 0, B
2Gt

BtaBtb
“ 0utPW . �

To describe Q, we use the dual cubic C˚ P S3W (see Table 6), induced from C P S3W ˚ via a multiple of
the trace form t ÞÑ trpt2q on the Jordan algebra W . To fix this multiple, we use the normalization5

C˚pCpt2q2q “
4

27
Cpt3qt, i.e. pC˚qabcCbdeCcfg “

4

27
Cpdefδgq

a.(2.11)

(Rescaling C by λ forces C˚ to rescale by 1
λ .) Note that C˚pCpt2q3q “ 4

27Cpt
3q2. But setting s˚ “ Cpr2q and

t “ r in the equation preceding [19, Lemma 5.6] yields C˚pCpr2q3q “ 2Cpr3q2, so our C˚ is 2
27 times theirs.

Proposition 2.8. Let pα, ra, β
˚, saq be coordinates wrt (2.6) and let r “ rawa and s˚ “ saw

a. Then

Qpα, ra, β˚, saq “ pαβ
˚ ` xr, s˚yq2 ` 2β˚Cpr3q ´ 2αC˚pps˚q3q ´ 9xCpr2q,C˚pps˚q2qy.(2.12)

5See [26, Lemma 5.2.1(iv)] or [21, §4.3] for why the identity (2.11) (up to scale) exists.
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W Trace form on W Induced 7 : W ˚ ÑW Cpt3q C˚pps˚q3q

J3pAq t ÞÑ trpt2q

ˆ

λ1 v1 v2
v1 λ2 v3
v2 v3 λ3

˙

ÞÑ

˜

λ1
1
2
v1

1
2
v2

1
2
v1 λ2

1
2
v3

1
2
v2

1
2
v3 λ3

¸

detptq 4 detpps˚q#q

J3pHq t ÞÑ t2 t ÞÑ t t3

3
4ps˚q3

9

JSm t “ pv, λq ÞÑ xv, vy ` λ2 pv˚, µq ÞÑ ppv˚q7, µq xv, vyλ xpv˚q7, pv˚q7yµ

Table 6. Dual cubic C˚ P S3W in our normalization (2.11)

Proof. This follows from [19, Prop.5.5] by replacing their C˚ by 27
2 C

˚ to get to our normalization. Then
substitute v “ pα,´6r,´4s˚,´4β˚q and rescale Q. �

Example 2.9 (G2{P2). Continuing Example 2.2, let Cpt3q “ t3

3 . In the CS-basis pb0, b1, b
0, b1q “

pr3,´3r2s,´6s3,´6rs2q, rpr ` tsq3s takes the form in (2.7) and Q from (2.3) takes the form in (2.12).

On
Ź2 V , define p¨, ¨q by pf1 ^ f2, g1 ^ g2q “ volV pf1, f2, g1, g2q, where 0 ‰ volV P

Ź4 V ˚. The Plücker

embedding identifies LGp2, 4q with Q “ trzs : pz, zq “ 0u Ă Pp
Ź2

0 V q – P4, where elements of
Ź2

0 V

contract trivially with η. Then pV Ă Q Ă P4 and τppVq “ rV. (The latter does not hold for other G.)
About o “ spantb0, b1u, standard coordinates pu00, u01, u11q on LGp2, 4q correspond to spantb0`u00b

0`

u01b
1, b1 ` u01b

0 ` u11b
1u. Via Plücker, this is p1, u00, u01, u11, u00u11 ´ pu01q

2q with respect to the basis

b0 ^ b1, b
0 ^ b1, b0 ^ b0 ´ b1 ^ b1, b0 ^ b1, b0 ^ b1 on

Ź2
0 V . Using (2.8), pV is a twisted quartic given

by γptq “
´

1, t
3

3 ,
t2

2 , t,
t4

12

¯

, and γptq ` µγ1ptq is given by u00 “
t3

3 ` µt2, u01 “
t2

2 ` µt, u11 “ t ` µ is its

tangent developable.6 Eliminating µ yields (2.9) for rV. Note that pV is a null curve and rV is a null surface
in LGp2, 4q for the conformal structure rdu00du11 ´ pdu01q

2s.

3. Parabolic contact structures and flat models

3.1. Contact geometry. We now summarize the geometric construction of jet spaces [27, 23, 17].
Given a contact manifold pM2n`1, Cq, the corank one contact distribution C Ă ΓpTMq is completely non-

integrable. For any local defining 1-form σ (unique up to a conformal factor), this means that σ^pdσqn ‰ 0

everywhere and so η “ pdσq|C yields a CS-form on C. Define the Lagrange–Grassmann bundle π : M p1q Ñ

M by letting LGpCmq be its fibre over m P M . Any mp1q P M p1q such that πpmp1qq “ m corresponds to a

Lagrangian subspace Lmp1q Ă Cm, so this tautologically defines the canonical distribution Cp1q Ă ΓpTM p1qq

via Cp1q
mp1q

“ pπ˚q
´1pLmp1qq. (For higher-order prolongations M pkq, see e.g. [27].)

By Pfaff’s theorem, there are local coordinates pxi, u, uiq on M such that σ “ du´ uidx
i, i.e. locally, M

is the first jet space J1pCn,Cq. With respect to η “ dσ “ dxi ^ dui, C has standard CS-framing

Bxi ` uiBu, Bui .(3.1)

On M p1q, take π-adapted coordinates pxi, u, ui, uijq: about o “ spantBxi ` uiBuu, let fibre coordinates

uij “ uji correspond to the Lagrangian subspace spantBxi ` uiBu ` uijBuju so that Cp1q is given by

spantBxi ` uiBu ` uijBuj , Buiju “ kertdu´ uidx
i, dui ´ uijdx

ju.(3.2)

Locally, M p1q is the second jet space J2pCn,Cq.
Given a distribution D on a manifold N , we may form its weak derived flag D “: D´1 Ă D´2 Ă ....

Its associated-graded g´pnq “ Dpnq ‘ pD´2pnq{D´1pnqq ‘ ... at n P N is the symbol algebra. This is a
nilpotent graded Lie algebra, whose (tensorial) bracket is induced from the Lie bracket of vector fields on

6In [5], Cartan only briefly alluded to the Goursat parabolic PDE as the tangent developable for which the involutive system
is the singular variety. See [7, p.161 – eq.(7)] for the explicit model, which should read: r`x5s´

1
6
x35 “ 0, s` x5t`

1
2
x25 “ 0.
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N . The symbol algebras for pM, Cq and pM p1q, Cp1qq are respectively modelled on:

g´ “ g´1 ‘ g´2 – V ‘ C,(3.3)

g´ “ g´1 ‘ g´2 ‘ g´3 – pL‘ S
2L˚q ‘ L˚ ‘ C,(3.4)

where dimpV q “ 2n and dimpLq “ n. The former is the Heisenberg Lie algebra, while the non-trivial
brackets on the latter are all natural contractions. We note that S2L˚ corresponds to a distinguished
subbundle of Cp1q, namely the vertical bundle for π : M p1q ÑM .

A contact transformation of pM, Cq is a diffeomorphism φ : M ÑM such that φ˚pCq “ C. Infinitesimally,

X P ΓpTMq is contact if LXC Ă C. These definitions apply similarly for pM p1q, Cp1qq, but more can be said:

by Bäcklund’s theorem, any contact transformation [vector field] of pM p1q, Cp1qq is the prolongation of one

on pM, Cq. (See [23] for the standard prolongation formula yielding Xp1q P ΓpTM p1qq from X.)
On J1pCn,Cq, any contact vector field is uniquely determined by a function on M called its generating

function. Conversely, any f “ fpxi, u, uiq is a generating function for a contact vector field via

Sf “ ´fuiBxi ` pf ´ uifuiqBu ` pfxi ` uifuqBui “ ´fui
d

dxi
` fBu `

df

dxi
Bui ,(3.5)

where d
dxi

:“ Bxi ` uiBu. If g is another generating function, the commutator rSf ,Sgs is a contact vector
field Srf,gs, where the Lagrange bracket rf, gs is given by

rf, gs “ fgu ´ gfu `
df

dxi
gui ´

dg

dxi
fui .(3.6)

A (system of) second order PDE in one dependent variable and n-independent variables corresponds to

a submanifold R Ă LGpCq “ M p1q transverse to π. The distribution Cp1q and its derived system pCp1qq´2
induce distributions D and rC on R, and pR;D, rCq is called a PD-manifold [27]. By [30, Thm.4.1], all sym-

metries of pR;D, rCq correspond to (external) contact symmetries of R ĂM p1q, i.e. contact transformations

of M p1q preserving R. Define Rp1q as the collection of n-dimensional integral elements for pR,Dq transverse

to π : M p1q ÑM . From [30, Thm.4.2], [27, Prop.5.11], if Rp1q Ñ R is surjective, then for any v P R,

dimprCpvqq ´ dimpD´2pvqq “ dimpChpDqpvqq,(3.7)

where ChpDq “ tX P ΓpDq : LXD Ă Du is the Cauchy characteristic space of D.

3.2. G-contact structures. Given a contact manifold pM, Cq with symbol algebra g´pmq at m P M
modelled on the Heisenberg algebra g´, the graded frame bundle FgrpMq Ñ M has fibre over m P M
consisting of all graded Lie algebra isomorphisms ι : g´ Ñ g´pmq. Its structure group is CSppg´1q.

Definition 3.1. Let G ‰ A1, C` be a complex simple Lie group and Gad – G{P . Let G0 Ă P be the
reductive part. A G-contact structure is a contact manifold pM, Cq of dimension dimpG{P q whose graded
frame bundle FgrpMq ÑM has structure group reduced according to the homomorphism G0 Ñ CSppg´1q.

A (local) equivalence of G-contact structures is a (local) contact transformation whose pushforward
preserves the graded frame bundle reductions. The fundamental theorem of Tanaka, Morimoto, and Čap–
Schichl (see [4] for definitions and references) establishes an equivalence of categories between G-contact
structures and (regular, normal) parabolic geometries of type pG,P q. Well-known consequences [4] are:

‚ Any such structure has symmetry dimension at most dimpgq.
‚ There is a unique local model (the “flat model”) with maximal symmetry dimension dimpgq and

this has symmetry algebra isomorphic to g.
‚ G-contact structures are all non-rigid geometries, i.e. there exist non-flat models.

In spite of these general results arising from the broader theory of parabolic geometries, concrete local
descriptions of G-contact structures have been lacking in the literature. Indeed, we only know of Engel’s
twisted cubic model [11] and the (contact) conformal quartic description [22, 18].

Restrict now to G ‰ A`, C`. Since g0 Ĺ csppg´1q is a maximal subalgebra (Proposition 2.4), the
required structure group reduction (up to possibly a discrete subgroup) is mediated by a field of sub-

adjoint varieties V or any of pV, rV, rQs, e.g. we require any graded isomorphism ι : g´ Ñ g´pmq to map
the model V Ă Ppg´1q projectively onto Vm Ă PpCmq. In §2.3, these were given in a CS-basis, so a
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(local) G-contact structure is determined by a (local) CS-framing tXi,U
iu
n´1
i“0 on C or its dual coframing

tωi, θiu
n´1
i“0 . The former induces fibre coordinates pij “ pji on M p1q corresponding to the Lagrangian

subspace spantXi ` pijU
ju “ kertθi ´ pijω

ju. Thus, a G-contact structure is equivalently any of:

‚ a field of sub-adjoint varieties V Ă PpCq, given by the projectivization of the vector fields

Vpλ, tq “ λ3X0 ´ λ
2taXa ´

1

2
Cpt3qU0 ´

3

2
λCapt

2qUa, @rλ, ts P PpC‘W q.(3.8)

‚ a field of tangential varieties τpVq “ tQ “ 0u Ă PpCq. Letting Ω “ ωa b wa and Θ “ θa b wa, the
(conformal) quartic Q P S4C˚ is given by

Q “ pωiθiq
2 ` 2θ0CpΩ

3q ´ 2ω0C˚pΘ3q ´ 9CapΩ
2qpC˚qapΘ2q.(3.9)

‚ a 2nd order PDE (system) E :“ pV Ă LGpCq “M p1q, given in the CS-framing tXi,U
iu by

ppijq “

˜

p00 p0b

pa0 pab

¸

“

¨

˝

Cpt3q 3
2Cbpt

2q

3
2Capt

2q 3Cabptq

˛

‚.(3.10)

‚ a single 2nd order PDE F :“ rV Ă LGpCq “M p1q, given in the CS-framing tXi,U
iu by

#

p00 “ tatbpab ´ 2Cpt3q

pa0 “ tbpab ´
3
2Capt

2q
.(3.11)

Now pM1, C1,V1q and pM2, C2,V2q are (locally) equivalent if there is a (local) contact transformation
φ : M1 ÑM2 such that φ˚pV1q “ V2. A symmetry is a self-equivalence of pM, C,Vq. A similar formulation

holds for rQs. For E ĂM p1q, a symmetry is a contact transformation Φ : M p1q ÑM p1q such that ΦpEq “ E ,
i.e. external symmetries. By Bäcklund’s theorem, Φ “ φ˚ for some contact transformation φ : M Ñ M .

Thus, symmetries of E regarded as a field m ÞÑ Em “ pVm Ă LGpCmq on M are in 1-1 correspondence with

external symmetries of E ĂM p1q regarded as a submanifold (PDE). A similar formulation holds for F .

If S P ΓpTMq is a contact vector field with prolongation Sp1q P ΓpTM p1qq, then the infinitesimal sym-
metry condition for each of V, rQs, E , F is correspondingly:

LSpVpλ, tqq P pTrVpλ,tqsV; LSQ “ µQ on C; LSp1qE “ 0 on E ; LSp1qF “ 0 on F .(3.12)

Proposition 3.2. The symmetry algebra of pM, Cq endowed with any of V, or any of the induced fields

E “ pV, F “ rV, or τpVq “ tQ “ 0u is the same.

Proof. By Proposition 2.4, each structure reduces the structure algebra of FgrpMq Ñ M according to the
homomorphism g0 Ñ csppg´1q and these reductions are compatible since they are all induced from V. At
the group level, the reductions could potentially differ, but only by the action of a discrete group, which
does not affect the (infinitesimal) symmetry algebra. �

This simple observation dramatically simplifies the (contact) symmetry computation for the PDE E or

F . In particular, we avoid the complicated prolongation formula that yields Sp1q from S and instead we
can equivalently find symmetries of V or rQs on M itself.

3.3. Harmonic curvature and the flat G-contact structure. A fundamental tensorial invariant for
all (regular, normal) parabolic geometries is harmonic curvature κH . It is a complete obstruction to flatness
of the geometry. Given the G0-reduction G0 Ă FgrpMq for a G-contact structure, κH is a G0-equivariant
function valued in a cohomology space H2

`pg´, gq, or equivalently it is a section of the associated vector
bundle G0 ˆG0 H

2
`pg´, gq over M . Concretely [4, Chp.5], for G-contact structures we find κH as follows:

(i) Given any CS-framing tXi,U
iu of C, define a partial connection ∇ : ΓpTMq ˆ ΓpCq Ñ ΓpCq for

which all frame vector fields are parallel. Then ∇pVpλ, tqq “ 0 for any rλ, ts P PpC ‘W q, so the
G0-structure reduction is preserved. Writing rXi,U

js “ δijT mod C, we have T mod C P ΓpTM{Cq
parallel for the induced connection on TM{C.

(ii) Let
Ź2

0 C be kernel of the map
Ź2 C Ñ TM{C induced from the Lie bracket. The torsion

T∇pX,Y q “ ∇XY ´ ∇YX ´ rX,Y s restricts to a map T∇ : Γp
Ź2

0 Cq Ñ ΓpCq. In particular,
its components in the CS-framing tXi,U

iu above involve only the Lie bracket.
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(iii) κH is obtained by projecting T∇ P Γp
Ź2

0 C˚ b Cq to certain g0-irreducible components obtained
from a standard application of Kostant’s theorem [14, 4]. (See §4.1 for the G2-contact case.)

This information is sufficient to identify the flat model for G-contact structures:

Theorem 3.3. Let G ‰ A`, C` be a complex simple Lie group. Consider pM, Cq “ pJ1pCn,Cq, Cq with
standard jet space coordinates pxi, u, uiq, 0 ď i ď n´ 1, standard CS-framing tXi “ Bxi ` uiBu,U

i “ Buiu

on C, and dual coframing tωi “ dxi, θi “ duiu. Any of the models in Table 2 equivalently describes the flat
G-contact structure. This has (contact) symmetry algebra isomorphic to g.

Proof. For the given CS-framing, pij “ uij in (3.8)–(3.11), so we obtain Table 2. The only non-trivial

brackets among tXi,U
iu are rXi,U

js “ δi
jBu, so

Ź2
0 C “ spantXi^Xj ,U

i^Uj and Xi^Uj´δi
jpX0^U0qu.

Pick ∇ for which the CS-framing is parallel. Then T∇|Ź2
0 C
“ 0, so κH “ 0 and the model is flat. �

3.4. Symmetries of the flat G-contact structure. Computing all symmetries of the flat G-contact
structure via the PDE E or F is in general a hopeless task, but we will efficiently compute them via V (see

Table 2). We have rSf ,Vpλ, tqs Ă pTVpλ,tqV, where f is a generating function for a contact symmetry (see
(3.5)). The space of all such is equipped with the Lagrange bracket (3.6).

Clearly, 1, xi, ui, and Z “ 2u ´ xiui are all (generating functions for) symmetries. Indeed, S1 “ Bu,
Sxi “ Bui ` xiBu, and Sui “ ´Bxi all commute with Vpλ, tq, while SZ “ xiBxi ` 2uBu ` uiBui satisfies
rSZ,Vpλ, tqs “ Vpλ, tq. (Alternatively, their prolongations to J2 act trivially on all uij , while the defining
equations for E and F only involve uij .) Recall from §2.2 that pG,P q induces a contact grading g “
g´2 ‘ g´1 ‘ g0 ‘ g1 ‘ g2. At o “ txi “ u “ ui “ 0u, C is spanned by all Sxi and Sui , so these correspond
to g´1. Also, rxi, ujs “ δij , so 1 P g´2. Since Z acts by ´1 on g´1 and ´2 on g´2, this will serve as our
grading element. Because g´ is known, and the brackets g´1 ˆ g2 Ñ g1 and g´1 ˆ g1 Ñ g0 are surjective,
it suffices to determine g2, which is only 1-dimensional.

Theorem 3.4. Let G ‰ A`, C` be complex simple Lie group. The flat G-contact structure from Theorem
3.3 admits the following symmetry that spans the top slot g2 of the contact grading g “ g´2 ‘ ...‘ g2:

f “ upu´ xiuiq ´
1

2
CpX3qu0 `

1

2
C˚pP 3qx0 `

9

4
CapX

2qpC˚qapP 2q,(3.13)

where X “ xawa and P “ uaw
a. Via the bracket (3.6), txi, ui, fu generate all of g. (See Table 7.)

Proof. The g0-invariant pairing g2 ˆ g´2 Ñ g0 surjects onto zpg0q, so there exists f P g2 such that Z “
r1, f s “ fu. Since Z “ 2u´ xiui, then f “ upu´ xiuiq ` gpx

i, uiq. By (3.5),

Sf “ px
iu´ guiq

d

dxi
` pupu´ xiuiq ` gqBu `

´

uipu´ x
kukq ` gxi

¯

Bui .

We require that rZ, f s “ 2f , which implies xigxi ` uigui “ 4g, i.e. g is homogeneous of degree 4.
Fix t P W and let V :“ Vp1, tq P ΓpCq. Let rV,Sf s P ΓpCq have components pρ0, ρa, µ0, µaq in the

CS-framing tXi “ Bxi ` uiBu,U
i “ Buiu. Since Vpu´ xkukq “ x0 Cpt

3q

2 ` 3
2Cpt, t, xq, we have

ρ0 “ dx0prV,Sf sq “ u` x0pu0 ´ t
auaq ´Vpgu0q

ρa “ dxaprV,Sf sq “ ´t
au` xapu0 ´ t

bubq ´Vpguaq

µ0 “ du0prV,Sf sq “
Cpt3q

2
p´u` xkuk ` x

0u0q `
3

2
u0Cpt, t, xq `Vpgx0q

µa “ duaprV,Sf sq “ ´
3Capt

2q

2
pu´ xkukq ` ua

ˆ

x0
Cpt3q

2
`

3

2
Cpt, t, xq

˙

`Vpgxaq

Using (3.10) for pTrVsV, we row reduce

˜

1 0 Cpt3q 3
2
Cbpt

2q

0 δab
3
2
Capt2q 3Cabptq

ρ0 ρb µ0 µb

¸

so that rV,Sf s P pTrVsV if and only if

0 “ µ0 ´ Cpt3qρ0 ´
3

2
Capt

2qρa,(3.14)

0 “ µa ´
3

2
Capt

2qρ0 ´ 3Cabptqρ
b.(3.15)
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These equations are polynomial in t. Extracting the t-degree 6,5,1,0 parts from (3.14) yields

gu0u0 “ guau0 “ gx0xa “ gx0x0 “ 0 ñ g “ Apxa, ubq `Bpx
aqu0 ` rBpuaqx

0 ` γx0u0.

Since g is homogeneous of degree 4, then A,B, rB are homogeneous of degrees 4, 3, 3. In (3.14)[t-degree 4],
set x0 “ 0, then differentiate with respect to uc to obtain 0 “ Capt

2qCbpt
2qAuaubuc . Since wa “ Capt

2q is
arbitrary, then Auaubuc “ 0. Now consider (3.15)[t-degree 1]:

0 “ 3Cabptqpgubx0 ´ x
bu0q ´ t

bgxbxa “ 3Cabptqp rBub ´ x
bu0q ´ t

bpAxbxa `Bxbxau0q,

which splits according to u0-degree. Differentiation yields Bxaxb “ ´3Cabpxq and Axaxb “ 3Cabc rBuc . Since
Auaubuc “ 0 and since g is homogeneous of degree 4, this implies that:

B “ ´
1

2
CpX3q, A “

3

2
CapX

2q rBua .

Observe that (3.14)[t-degree 4,3] is a contraction of (3.15)[t-degree 3,2], so only the latter equations remain.
Setting xb “ 0 in (3.15)[t-degree 2] yields γ “ 0. Now (3.15)[t-degree 3] is at most linear in x0, with

0 “

ˆ

Cpt3q

2
δa
b `

3

2
Capt

2qtb
˙

ub ´
9

2
Ccpt

2qCabptq rBubuc(3.16)

its x0-degree 1 part. This determines the x0-degree 0 part (differentiate by ud and contract with 1
2CdpX

2q)

as well as the t-degree 2 part of (3.15) (differentiate by td and contract with xa). Thus, only (3.16) remains.

Since rB is cubic, write rB “ βabcuaubuc. Contract (3.16) with ta and differentiate by ue to obtain:

0 “ 2Cpt3qte ´ 27Cbpt
2qCcpt

2qβbce, i.e. βpCpt2q2q “
2

27
Cpt3qt.(3.17)

By (2.11), β “ 1
2C
˚, so we obtain (3.13). Finally, for V :“ Vp0, tq (which is a multiple of U0), the condition

rV,Sf s P pTrVsV “ spantUiu readily follows from observing that fu0ui “ 0. �

g2 f upu´ xiuiq ´
1
2CpX

3qu0 `
1
2C
˚pP 3qx0 ` 9

4CapX
2qpC˚qapP 2q

g1 rx0, f s x0pu´ xiuiq ´
1
2CpX

3q

rxa, f s xapu´ xiuiq `
3
2pC

˚qapP 2qx0 ` 9
2CbpX

2qpC˚qabpP q

ru0, f s uu0 ´
1
2C
˚pP 3q

rua, f s uua `
3
2CapX

2qu0 ´
9
2CabpXqpC

˚qbpP 2q

zpg0q r1, f s Z :“ 2u´ xiui

gss0 f1 rxa, ru0, f ss xau0 ´
3
2pC

˚qapP 2q

f0 rx0, ru0, f ss ´
1
2Z Zp0q :“ 3

2x
0u0 `

1
2x

cuc P zpf0q

f0 rxa, rub, f ss ´ δ
a
bp

1
2Z`

1
3Z
p0qq ψab :“ xaub `

1
3δ
a
bx
cuc ´ 9CbcpXqpC

˚qacpP q

f´1 rua, rx
0, f ss uax

0 ` 3
2CapX

2q

g´1 xi, ui

g´2 1

Table 7. Generating functions for any complex simple g not of type A or C

Assign weighted degree `1 to xi, ui and `2 to u, so gk are polynomials of weighted degree k ` 2.

Corollary 3.5. Let g be a complex simple Lie algebra not of type A or C. Then g embeds into the space
of polynomials in xi, u, ui p0 ď i ď n´ 1q of weighted degree ď 4, equipped with the Lagrange bracket.

Remark 3.6. Theorem 3.4 and Corollary 3.5 are also valid for G “ An`1 with C “ 0 and 1 ď i ď n, i.e. the
0-th coordinate is not distinguished (§3.8.1). It is also valid for G “ A1: t1, 2u, u

2u is a standard sl2-triple.
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All generating functions for g are given as linear combinations of those specified in Table 7.

‚ Z “ Zj and Zp0q “
ř

iPNpjq Zi, where Npjq are neighbouring nodes to the contact node j.

‚ ψab P f0 are the only functions quadratic in txc, ucu and independent of u, x0, u0. Hence, their span
is closed under the Poisson bracket rf, gs “ fxcguc ´ gxcfuc , i.e. restriction of the Lagrange bracket.

Corollary 3.7.

(i) G “ F4, E6, E7, E8: tψabu1ďa,bďdimpW q spans fss0 – A2, A2 ˆA2, A5, E6 respectively; dimpzpf0qq “ 1.

(ii) G “ SOm`6, m ě 1: W “ JSm “ Cm ‘ C, ψ8a “ ψa
8 “ 0, Zp8q :“ ψ88 “

4
3x
8u8 ´

2
3x

aua.
‚ m ě 3: fss0 – som is the span of all xaub ´ xbu

a. (See the adapted basis twau
m
a“1 in §2.3 and

use x¨, ¨y and its inverse to lower and raise indices.) Also, zpf0q “ spantZp0q,Zp8qu.
‚ m “ 1 or m “ 2: fss0 “ 0 and zpf0q “ spantZp0q,Zp8q,Zp1qu, where Zp1q :“ x1u1 ´ x1u

1.

Proof. Table 5 yields the assertions for fss0 . For (ii), if qab are the components of x¨, ¨y with respect to
twau, then for t “ pv, λq, we have Cpt3q “ Cabct

atbtc “ qabv
avbλ, so Cabptq “

1
3qabλ and Ca8ptq “

1
3qabv

b.

Consulting Table 6, we have for s˚ “ pv˚, µq, pC˚qabps˚q “ 1
3q

abµ and pC˚qa8ps˚q “ 1
3q

abvb. Substitution

into ψab then yields the result. (In particular, ψa
b `

1
2δ

a
bZ
p8q “ xaub ´ xbu

a.) �

Example 3.8 (g “ F4, f
ss
0 “ A2). On W “ J3pRCq, Cpt

3q “ detptq. Let eij denote the 3 ˆ 3 matrix with
1 in the pi, jq-position and 0 otherwise. Consider the ordered basis of W “ J3pRCq given by

w1 “ e11, w2 “ e22, w3 “ e33, w4 “ e12 ` e21, w5 “ e13 ` e31, w6 “ e23 ` e32.

This basis determines coordinates txau on W and dual coordinates tuau on W ˚. A Lie algebra isomorphism
from A2 “ sl3 to spantψabu1ďa,bďdimpW q is given by

diagp23 ,´
1
3 ,´

1
3q ÞÑ ψ1

1 “
4
3x

1u1 ´
2
3x

2u2 ´
2
3x

3u3 `
1
3x

4u4 `
1
3x

5u5 ´
2
3x

6u6;

diagp13 ,
1
3 ,´

2
3q ÞÑ ´ψ2

2 “
2
3x

1u1 ´
4
3x

2u2 `
2
3x

3u3 ´
1
3x

4u4 `
2
3x

5u5 ´
1
3x

6u6;

e12 ÞÑψ
3
5 “ 2x5u1 ` x

6u4 ` x
3u5; e21 ÞÑψ

1
5 “ x1u5 ` x

4u6 ` 2x5u3;

e23 ÞÑψ
2
6 “ x4u5 ` x

2u6 ` 2x6u3; e32 ÞÑψ
3
6 “ x5u4 ` 2x6u2 ` x

3u6;

e13 ÞÑψ
2
4 “ 2x4u1 ` x

2u4 ` x
6u5; e31 ÞÑψ

1
4 “ x1u4 ` 2x4u2 ` x

5u6.

The following result will be used in §3.5.1 and §3.6.2.

Proposition 3.9. Consider the map Ψ : EndpW q ÑW ˚ b
Ź2W ˚ given by Aab ÞÑ CabrcA

a
ds. Then

kerpΨq “

#

spantidW u, if W ‰ JS1;

spantidW , pw1q
˚ b w8u, if W “ JS1.

Proof. Let A P kerpΨq. The W “ J3pHq case is trivial and the W “ JS1 case follows easily.

(1) W “ JSm, m ě 2: If b “ d “ 8 ‰ c, then Ac1
8 “ 0, where c1 “ m` 1´ c. Let 1 ď b, c ď m.

‚ c ‰ d “ b1: We have A8c “ 0. (Note m ě 2 was used here.)

‚ d “ 8: If c ‰ b1, then Ab1
c “ 0. If c “ b1, then A88 “ Ac

c (no sum).
(2) W “ J3pAq, A ‰ 0: EndpW q contains f0 and the Cartan product End0pW q of W and W ˚.

fss0 A2 A2 ˆA2 A5 E6

fss0 -weight of W 2λ1 λ1 ` λ
1
1 λ2 λ6

fss0 -weight of End0pW q 2λ1 ` 2λ2 λ1 ` λ2 ` λ
1
1 ` λ

1
2 λ2 ` λ4 λ1 ` λ6

dimpEnd0pW qq 27 64 189 650

By comparing dimensions, it follows that EndpW q – C ‘ fss0 ‘ End0pW q as fss0 -irreps. By Schur’s
lemma, it suffices to verify that Ψ ‰ 0 on fss0 and End0pW q.
‚ End0pW q: take highest weight vectors for W and W ˚, so their product is a highest weight

vector A P End0pW q. In an adapted weight basis, we have Aab “ 0 except for A1
n´1 ‰ 0.

Injectivity of C : W Ñ S2W ˚ implies that ΨpAq ‰ 0.
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‚ fss0 : From §2.3, we know rf´1, V0s “ V´1 “ W . Explicitly, V0 “ spantu0u, W “ V´1 “
spantuau, f´1 “ spantuax

0` 3
2CapX

2qu, and ruax
0` 3

2CapX
2q, u0s “ ua. Referring to Table 7,

let A “ ψab P f0, so rA, uds “ Akduk, where Akd “ δadδ
k
b `

1
3δ
a
bδ
k
d ´ 9CbedpC

˚qaek. Evaluate
ΨpAq. Use (2.11) and set a “ d ‰ c. Then

CkhrcA
k
ds “ Ckhrcδ

a
dsδ

k
b `

1

3
Ckhrcδ

k
dsδ

a
b ´ 9CkhrcCdsbepC

˚qaek “ Cbhrcδds
a “

1

2
Cbhc ı 0.

�

3.5. The PDE system E. Let G ‰ A`, C`. Consider the PDE E Ă J2 for the flat G-contact structure. As

in §3.1, we obtain a PD-manifold pE ;D, rCq whose symmetries correspond to external symmetries of E Ă J2.

We have local coordinates pxi, u, ui, t
aq on E adapted to E ÑM2n`1, so dimpEq “ 3n. While rC is given

by anntdu´ uidx
iu “ spantBxi ` uiBu, Bui , Btau, D has rank 2n´ 1 and is spanned by

Ta “ Bta , Xi “ Bxi ` uiBu ` uijBuj , where puijq “

¨

˝

Cpt3q 3
2Cbpt

2q

3
2Capt

2q 3Cabptq

˛

‚.(3.18)

Let us consider the subordinate structure pE ,Dq.

3.5.1. Involutivity. The dual Pfaffian system to D is I “ spantσ, θiu, where

σ “ du´ uidx
i, θ0 “ du0 ´ Cpt3qdx0 ´

3

2
Capt

2qdxa, θa “ dua ´
3

2
Capt

2qdx0 ´ 3Cabptqdx
b.(3.19)

Defining rθ0 “ θ0 ´ t
aθa, ω

0 “ dx0, ωb “ 3pdxb ` tbdx0q, and πc “ dtc, we have

dσ ” 0, drθ0 ” 0, dθa ” Cabcω
b ^ πc mod I.(3.20)

Letting J “ spantσ, θi, ω
iu, then pI,J q is a linear Pfaffian system, i.e. dI ” 0 mod J . Its corresponding

tableau is involutive (in the sense of Cartan–Kähler [23, 13]) only in two cases:

Theorem 3.10. Given G ‰ A`, C` a complex simple Lie group, the tableau for pI,J q is involutive if and
only if G “ G2 or B3. These cases have single nonzero Cartan character s1 “ 1 or s1 “ 2 respectively.

Proof. The degree of indeterminacy rp1q of pI,J q is the dimension of the space of all Aci such that the
replacements πc ÞÑ πc ` Aciω

i preserve (3.20), i.e. 0 “ CacrbA
c
is. (Clearly, Aci “ δciλ solves this.) Thus,

Ac0 “ 0, so 0 “ CacrbA
c
ds remains. By Proposition 3.9, rp1q “ 1 if G ‰ B3 and rp1q “ 2 if G “ B3.

The only non-trivial part of the tableau associated to pI,J q is the 1-form valued submatrix with symmet-
ric entries Tab “ Cabcπ

c. The Cartan characters s1, s2, ... are obtained as follows: s1 is the maximal number
of linearly independent 1-forms in the first column, s2 is the maximal number of independent 1-forms in
the second column that are independent of the first column, etc. These characters are computed under
the assumption of working in a generically chosen basis for the tableau, and we have s1 ě s2 ě ... ě 0.
Cartan’s test for involutivity of pI,J q is that s1 ` 2s2 ` 3s3 ` ... “ rp1q.

Suppose G ‰ B3, so rp1q “ 1. Involutivity forces s1 “ 1 and s2 “ s3 “ ... “ 0, so all entries of the
tableau are linearly dependent. But C : W Ñ S2W ˚ is injective (Lemma 2.5), so dimpW q “ 1, i.e. G “ G2.

Suppose G “ B3, so rp1q “ 2. Thus, W “ JS1 and the only non-trivial component of C is C118 “ 1, so

T “
´

π8 π1

π1 0

¯

. The only nonzero Cartan character is s1 “ 2 and Cartan’s test is satisfied. �

In the involutive cases W “ J3pHq and W “ JS1, the general integral manifold of (3.19) will depend
on s1 functions of one variable. In all non-involutive cases, we need to prolong the system: consider the

bundle rE Ñ E with 1-dimensional fibres, fibre coordinate λ, equipped with rI consisting of (the pullback

of) I together with the forms rπc :“ πc ` λωc. Then dI ” 0 mod rI, but

drπc ” pdλ` 3λ2dx0q ^ ωc mod rI.

This system has torsion, so we must restrict to any submanifold rE0 Ă rE on which dλ` 3λ2dx0 “ 0. Then
rI|

rE0 is a rank 2n Frobenius system on the 3n-manifold rE0. Together with an additional arbitrary constant

parametrizing the possible rE0, the general integral manifold of I will depend on 2n`1 arbitrary constants.
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3.5.2. Homogeneous space description. Let G ‰ A`, C` and Gad – G{Pj . In the Dynkin diagram of G,
let Npjq denote the neighbouring nodes to the contact node j, and let ZNpjq “

ř

iPNpjq Zi. Refine the

Zj-grading on g with the pZNpjq,Zjq-bigrading. From (2.4)–(2.5), we have:

f´1 “ g´1,0, gě0,0 “ zpg0q ‘ q, f1 “ g1,0, V´k “ g´k,´1 pk “ 0, 1, 2, 3q.(3.21)

The symplectic form on V pairs V0 with V´3 and V´1 with V´2. This yields a 1-dimensional subspace
g´3,´2 transverse to V . (See Figure 1 for the G2-case.)

Figure 1. Some geometric structures encoded on the G2-root diagram

Proposition 3.11. Let G ‰ A`, C` and consider the PD-manifold pE ;D, rCq for the flat G-contact structure
on M “ Gad – G{Pj. As G-homogeneous spaces, E – G{PBpjq, where Bpjq “ tju YNpjq. Fix o P G{Pj,

l P PpCoq the highest weight line, and p “ pTlVo P LGpCoq. With respect to the pZNpjq,Zjq-bigrading,

‚ Dp – g´1,0 ‘ g0,´1 ‘ g´1,´1 –W ‘ g0,´1 ‘W . In particular, g0,´1 Ă ChpDqp.
‚ rCp – g´1,0 ‘ g0,´1 ‘ g´1,´1 ‘ g´2,´1 ‘ g´3,´1 –W ‘ C‘W ‘W ˚ ‘ C.

With respect to the ZBpjq-grading, these are g´1 ‘ g´2 and g´1 ‘ ...‘ g´4 respectively.

Proof. The parabolic Q Ă F “ Gss
0 is the stabilizer of l. Since the map Vo Ñ LGpCoq is an embedding,

then Q Ă F is also the stabilizer of p “ pTlVo. As remarked in §2.2, the crossed nodes for Q are Npjq.
Hence, the stabilizer in G of p is PBpjq, so E – G{PBpjq.

In the Lagrange–Grassmann bundle M p1q over pM, Cq, we restrict Cp1q and pCp1qq´2 to E to obtain D and rC
respectively. Referring to (3.21), we have p “ V0‘V´1 and Co is identified with V “ V0‘V´1‘V´2‘V´3.

The vertical subspace at p P M p1q is isomorphic to f´1 “ g´1,0. By definition, the pullback under the

projection E ÑM of: (i) Co yields rCp, and (ii) p Ă Co yields Dp. This yields the stated decompositions. �

We emphasize that the subordinate structure pE ,Dq:
‚ is not the underlying structure for a pG,PBpjqq-geometry. (It is not finite-type since ChpDq ‰ 0.)
‚ has no distinguished vertical subspace (corresponding to f´1 “ g´1,0). This is determined from the

additional data of rC. Namely, this vertical subspace is ChprCq “ ChpCp1qq X TE .
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3.6. Cauchy characteristics and second-order Monge geometries.

3.6.1. Cauchy characteristic reduction. We know that pE ,Dq admit Cauchy characteristics. More precisely:

Proposition 3.12. rankpChpDqq “ 1 (so ChpDqp “ g0,´1) and ChpDq Ć ChprCq is spanned by

Z “ Bx0 ` u0Bu ´ t
a pBxa ` uaBuq ´

Cpt3q

2
Bu0 ´

3Capt
2q

2
Bua .(3.22)

Proof. From (3.18), the non-trivial commutator relations are

rTa,Xbs “ 3CabptqBu0 ` 3CabcBuc , rTa,X0s “ tbrTa,Xbs.

By injectivity of C : W Ñ S2W ˚, rankpD´2q “ 3n ´ 2. By (3.20), Ep1q Ñ E is onto, so by (3.7),

rankpChpDqq “ 1. Since rZ,Tas “ Xa and rZ,X0s “ rZ,Xas “ 0, then Z P ChpDq. Also, Z R ChprCq. �

Tautologically, PpChpDqq is V Ă PpCq on M . The vector field Z has the 3n´ 1 invariants

Xa “ xa ` tax0, U “ u´ pu0 ´ t
auaqx

0 `
Cpt3q

2
px0q2, Ua “ ua `

3Capt
2q

2
x0,

T a “ ta, Z “ u0 `
Cpt3q

2
x0,

which yields local coordinates pXa, U, Ua, T
a, Zq on the leaf space E . Pulling back I by the section σ : E Ñ E

determined by x0 “ 0 yields the differential system

ω “ dZ ´
3

2
CapT

2qdXa, θ “ dU ´ UadX
a, θa “ dUa ´ 3CabpT qdX

b, 1 ď a, b ď n´ 1.(3.23)

Its dual vector distribution D is spanned by

BTa , Ya “ BXa ` UaBU ` 3CabpT qBUb `
3

2
CapT

2qBZ .(3.24)

Note rBTa ,Ybs “ 3CabcBUc ` 3CabpT qBZ . Since C : W Ñ S2W ˚ is injective, we may take m´2 – D´2{D to
be spanned by BUc ` T

cBZ pmod Dq. We obtain the symbol algebra g´ “ g´1 ‘ g´2 ‘ g´3, where

g´1 –W ‘W –W b C2, g´2 –W ˚, g´3 – C2.(3.25)

With respect to the bracket
Ź2 g´1 Ñ g´2, each copy of W in g´1 –W ‘W is isotropic, while cross terms

yield a map W bW ÑW ˚ expressed via C. The bracket g´1 ˆ g´2 Ñ g´3 is the natural contraction.
More abstractly, referring to the pZNpjq,Zjq-bigrading used in Proposition 3.11, we have ChpDqp “ g0,´1,

so quotienting by this only retains the ZNpjq-grading and we may re-express (3.25) as

g´1 “ g´1,0 ‘ g´1,´1, g´2 “ g´2,´1, g´3 “ g´3,´1 ‘ g´3,´2.(3.26)

Thus, the symbol algebra for the distribution D on E corresponding to g´1 matches that for the underlying
structure for (regular, normal) pG,PNpjqq-geometries. (From [29], this structure comes from the filtration;
no additional structure group reduction is required.) We refer to these as second-order Monge geometries.

Proposition 3.13. Let G ‰ A`, C`. The structure pE ,Dq in (3.23) is the flat model for pG,PNpjqq-
geometries. If moreover G ‰ G2, B3, then any (regular, normal) pG,PNpjqq-geometry is (locally) flat.

Proof. All symmetries of pE ;D, rCq preserve ChpDq, so are projectable over E . Since ChpDq X ChprCq “ 0,
then g injects into the symmetry algebra of pE ,Dq. But all pG,PNpjqq-geometries have symmetry dimension
at most dimpgq. The flat model is uniquely maximally symmetric, which implies the first claim.

The second claim is due to Yamaguchi [30, pg.313]. Namely, almost all pG,PNpjqq satisfy H2
`pg´, gq “ 0,

hence κH “ 0 for regular, normal geometries. The only exceptions are pG2, P1q and pB3, P1,3q. �
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3.6.2. Second order Monge equations and their solutions. Integral manifolds of (3.23), i.e. submanifolds
upon which ω, θ, θa vanish, have maximal dimension dimpW q and we may take these to be parametrized by
Xa. These are the solutions to the second order Monge equations (1.1), where T c “ T cpXeq. On integral
manifolds, dω, dθ, dθa also vanish. Since dω “ T adθa, the compatibility condition is

CacrbT
c
,es “ 0, where T c,e “

BT c

BXe
.(3.27)

Proposition 3.14. If W ‰ J3pHq and W ‰ JS1, the only solutions to (3.27) are T c “ λXc ` µc, where
λ and µc are constants. In these cases, the solution of (1.1) is

Z “
λ2

2
CpX3q `

λ

2
CapX

2qµa ` CabpXqµ
aµb ` const(3.28)

U “
λ

2
CpX3q `

1

2
CapX

2qµa ` νaX
a ` const,(3.29)

depending on 2n` 1 arbitrary constants.

Proof. By Proposition 3.9, T c,e “ λδce, so T c “ λXc ` µc as claimed, and the rest easily follows. �

For G “ G2, i.e. W “ J3pHq, (3.27) is trivial. Eliminating T , (1.1) becomes Z 1 “ 1
2pU

2q2 (equivalent to

Hilbert–Cartan). When G “ B3, i.e. W “ JS1, Cpt
3q “ v2λ for t “ pv, λq, and (1.1) becomes

Zx “ UxxUxy, Zy “
1

2
pUxyq

2, Uyy “ 0.(3.30)

This has solution Z “ 1
2f
1pxq2y `

ş

f 1pxqg2pxqdx, U “ fpxqy ` gpxq.

3.7. The parabolic Goursat PDE F . Let G ‰ A`, C`. For the flat G-contact structure, consider

F Ă M p1q and its associated PD-manifold pF ;D, rCq. We now verify that F has parabolic Goursat type
and show how the first-order covariant system N [30] leads to the sub-adjoint variety field V.

The hypersurface F Ă M p1q has local coordinates pxi, u, ui, uab, t
aq adapted to F Ñ M2n`1. While

rC “ anntdu´ uidx
iu “ spantBxi ` uiBu, Bui , Buab , Btau, D has rank 2n´ 1 and is spanned by

Bta , Buab , Bxi ` uiBu ` uijBuj , where

#

u00“ tatbuab ´ 2Cpt3q

ua0“ tbuab ´
3
2Capt

2q
.(3.31)

Off of uab “ 3Cabptq, i.e. E Ă F , we have D´2 “ rC, so ChpDq “ 0 by (3.7). (We verify that F p1q Ñ F
is onto.) Hence, pF ,Dq and pF ;D, rCq share the same symmetries (which are the external symmetries of

F ĂM p1q; see §3.1). The symbol algebra7 of pF ;D, rCq at v P F is the subalgebra of g´ in (3.4) given by

spvq “ s´1pvq ‘ s´2pvq ‘ s´3pvq “ pL‘ rpvqq ‘ L˚ ‘ C,(3.32)

where rpvq Ă S2L˚ has codimension one. This corresponds to the vertical subspace spanned by differenti-
ating the parametric equations for F by Btc and Bucd . If tχiu is a basis of L and tχiu its dual basis, then
S2L˚ is spanned by χiχj (corresponding to Buij ). Let lpvq “ χ0 ´ taχa P L. Then rKpvq “ annprpvqq “

spantl2u Ă S2L, i.e. F is of parabolic type. (If F “ tFpxi, u, ui, uijq “ 0u, then rankp BF
Buij

q “ 1 everywhere.)

We have a distinguished lK Ă L˚ and a corresponding first-order covariant system N Ă D´2 spanned
by D together with taBu0 ` Bua . The (graded Lie algebra) automorphism group Apsq of s distinguishes a
subspace spantφplq : φ P Apsqu Ă s´1 and we let M Ă D be the corresponding distribution, called the
Monge characteristic system. (See [27, §7.3] for more details.) Explicitly, N and M are spanned by

N : Bx0 ` u0Bu ´
1

2
Cpt3qBu0 , Bxa ` uaBu ´

3

2
Capt

2qBu0 , Bta , Buab , taBu0 ` Bua ;

M : Bx0 ` u0Bu ´ t
apBxa ` uaBuq ´

Cpt3q

2
Bu0 ´

3Capt
2q

2
Bua , Buab .

Since M “ ChpN q, then M is completely integrable, i.e. F is of Goursat type.

7The symbol algebra of a PD-manifold should not be confused with the symbol algebra of a distribution.
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The vertical bundle for F ÑM is ChprCq “ spantBta , Buabu. We have ChpN q XChprCq “ spantBuabu, and
the projection of ChpN q to M recovers the sub-adjoint variety field V Ă PpCq. Since N and ChpN q are
covariant for D, this confirms that all symmetries of pF ,Dq are inherited by pM, C,Vq.

3.8. Degenerate cases. In this section, we treat the exceptional type A and C cases.

3.8.1. Type A. For G “ An`1, An`1{P1,n`1 – Gad ãÑ Ppgq and g´1 is reducible for g0 – C2ˆsln. Here, the
corresponding geometric structure is a Legendrian contact structure, i.e. pM2n`1, Cq with a decomposition
C “ E‘F into complementary Legendrian subspaces. When F is integrable, we can introduce coordinates
pxi, u, uiq, 1 ď i ď n, so that C “ annpdu´uidx

iq and F “ spantBuku (see [9]). Now E specifies a section of

M p1q ÑM , so such structures can be regarded as complete systems of 2nd order PDE uij “ fijpx
k, u, ukq

up to point transformations, i.e. contact transformations preserving spantBuku.

Proposition 3.15. The PDE system uij “ 0, 1 ď i, j ď n has point symmetry algebra g “ An`1. Its
generating functions are:

g´2 g´1 g0 g1 g2

g´1,´1 g´1,0 g0,´1 g0,0 g1,0 g0,1 g1,1

1 xi ui
Z “ 2u´ xiui

xiuj
uui xipu´ xjujq upu´ xjujq

Here, Z “ Z1 ` Zn`1, where the bi-grading element pZ1,Zn`1q “ pu, u´ x
iuiq acts as indicated above.

The top slot is a special case of (3.13) when C “ 0. (Here, x0, u0 are no longer distinguished.)

Harmonic curvature obstructs flatness and corresponds to H2
`pg´, gq. We summarize its components:

‚ n “ 1: Relative invariants I1, I2 (Tresse invariants).
‚ n ě 2: Two torsions τE , τF (obstructing the integrability of E,F ) and a curvature W. For semi-

integrable structures, uij “ fijpx
k, u, ukq, W has components Wkl

ij “ trfr
´

B2fij
BukBul

¯

; see [9].

3.8.2. Type C. For G “ Cn`1, Cn`1{P1 – Gad ãÑ Ppgq and Gss
0 – Sppg´1q acts transitively on LGpg´1q, so

instead examine the stabilizer P1,n`1 of a Lagrangian subspace. This induces a |3|-grading g “ g´3‘ ...‘g3
with g0 – C2 ˆ An´1 and g´ having the same commutator relations as (3.4) for pJ2pCn,Cq, Cp1qq, where
dimpLq “ n :“ `´1. In g´1 “ L‘S2L˚, both L and S2L˚ are distinguished subspaces under the G0-action.

By [28, Cor.6.6], any pN,Dq with symbol algebra modelled on g´ (and D modelled on g´1) is locally

isomorphic to pJ2pCn,Cq, Cp1qq. The structure underlying a regular, normal pCn`1, P1,n`1q geometry is a
further choice of subbundle E Ă D complementary to V “ ChpD´2q Ă D. (These correspond to L and

S2L˚ in g´1.) Locally, D – Cp1q is given by (3.2) and V – spantBuiju. Hence,

E “ spantrBxi :“ Bxi ` uiBu ` uijBuj ` fijkBujku,

for some functions fijkpx
l, u, ul, ulmq (symmetric in i, j, k). Equivalently, the geometric structure corre-

sponds to the contact geometry of a complete system of 3rd order PDE

uijk “ fijkpx
l, u, ul, ulmq, 1 ď i, j, k, l,m ď n.(3.33)

The n “ 1 case is the contact geometry of a 3rd order ODE. The flat model is:

Proposition 3.16. The PDE system uijk “ 0, 1 ď i, j, k ď n has contact symmetry algebra g “ Cn`1 and
isotropy P1,n`1 on the second jet space pxi, u, ui, uijq. The generating functions are:

g´3 g´2 g´1 g0 g1 g2 g3

1 xi
ui

xixj
u

xiuj

xipxjuj ´ 2uq

uiuj
uipx

juj ´ 2uq pxjuj ´ 2uq2
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Harmonic curvature κH can be computed in a similar fashion as in §3.3. On Cp1q, define a partial

connection ∇ such that ∇prBxiq “ 0 and ∇pBulmq “ 0, which clearly preserves the splitting Cp1q “ E ‘ V .
Restricting to n ě 2, H2

`pg´, gq decomposes into two g0-irreps, both of homogeneity `1 and comprised of
torsion. (If n “ 1, a curvature appears, so this case is different.) Hence, κH is comprised of two components
τE and τEV of torsion T∇ and these are obtained as follows:

(i) In g´, V is modelled on S2L˚. The Cartan product
Ź2 L˚ d S2L˚ is the kernel of the skew-

symmetrization map on the first three factors of
Ź2 L˚ b S2L˚. We calculate

´T∇prBxl ,
rBxmq “ rrBxl ,

rBxms “

´

rBxlpfmjkq ´
rBxmpfljkq

¯

Bujk “: TlmjkBujk

Thus, τE P Γp
Ź2E˚ d V q has components pτEqlmjk “ Tlmjk ´ Trlmjsk.

(ii) Let pEbV q0 be the kernel of the Levi-bracket restricted to EbV . Then τEV P trfrppEbV q0q
˚bV q,

where all traces have been removed. We calculate

T∇prBxi , Bulmq “ rBulm ,
rBxis “ δliBum ` δ

m
i Bul `

Bfijk
Bulm

Bujk .

Now we need to remove all traces. Let Rlmijk “
Bfijk
Bulm

, Smjk “ Rrmrjk and Tk “ Srrk. Define

pτEV q
lm
ijk :“ trfr

ˆ

Bfijk
Bulm

˙

“ Rlmijk ´
6

n` 3
δ
pl
piS

mq
jkq `

6

pn` 2qpn` 3q
δ
pl
piδ

mq
j Tkq.

Since κH completely obstructs flatness, we have:

Theorem 3.17. Let n ě 2. The complete 3rd order PDE system (3.33) is contact equivalent to the flat
model uijk “ 0, 1 ď i, j, k ď n if and only if τE “ 0 and τEV “ 0.

In Definition 3.1, we omitted Cn`1-contact structures (contact projective structures; Cn`1{P1 geome-
tries) since these are instead encoded via a class of contact connections. Such structures are equivalent,
via Čap’s theory of correspondence and twistor spaces [3], to complete systems of 3rd order PDE (i.e.
Cn`1{P1,n`1 geometries) satisfying τEV “ 0.

4. Non-flat structures

4.1. G2-contact structures. Following §3.3, we exhibit a formula for κH for G2-contact structures, and
then we establish some symmetry classification results. We follow notation introduced in Example 2.2.
Here, V “ g´1 “ S3C2, g0 – gl2, the grading element is Z “ ´1

3 I, and we find (via Kostant) that:

‚ H2
`pg´, gq arises as a g0-irreducible component of

Ź2
0 V

˚ b V . (In particular, Z acts as `1.)

‚ H2
`pg´, gq – S7C2 b p

Ź2
pC2q˚q5 as g0-modules, i.e. (weighted) binary septics.

Let Γk denote the sl2-module SkC2. Then
Ź2

0 V
˚b V – Γ4bΓ3 – Γ7‘Γ5‘Γ3‘Γ1. The sl2-equivariant

projection Γ4 b Γ3 Ñ Γ7 is simply multiplication of polynomials, i.e. f b g ÞÑ fg.
Let us exhibit

Ź2
0 V

˚ – Γ4 explicitly. Consider the sl2-basis pe0, e1, e2, e3q “ pr
3, 3r2s, 3rs2, s3q of V . Let

ω0, ω1, ω2, ω3 be its dual basis. Then η from (2.2) is a multiple of ω0 ^ ω3 ´ 3ω1 ^ ω2. Hooking with the
latter yields an sl2-isomorphism V – V ˚, which identifies pω0, ω1, ω2, ω3q “ p´s3, rs2,´r2s, r3q. Hence,

Element of
Ź2

0 V
˚: ω2 ^ ω3 ω3 ^ ω1 1

2pω
0 ^ ω3 ` 3ω1 ^ ω2q ω2 ^ ω0 ω0 ^ ω1

Element of
Ź2

0 V : r3 ^ r2s r3 ^ rs2 1
2pr

3 ^ s3 ` 3r2s^ rs2q r2s^ s3 rs2 ^ s3

Element of Γ4: r4 2r3s 3r2s2 2rs3 s4
(4.1)

Next, note that a CS-basis of pV, rηsq is given by pr3,´3r2s,´6s3,´6rs2q. We can pointwise identify this
with a given CS-framing pX0,X1,U

0,U1q defining a G2-contact structure.

Theorem 4.1. Consider the G2-contact structure on pM5, Cq for a CS-framing X0,X1,U
0,U1 of C. Define

E0 “ X0, E1 “ ´X1, E2 “ ´
1

2
U1, E3 “ ´

1

6
U0.(4.2)
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Given Y P ΓpCq, define ρpYq “ r3ρ0pYq`3r2sρ1pYq`3rs2ρ2pYq` s3ρ3pYq, where tρipYqu are components

with respect to tEiu. Then κH is (up to a constant) the tensor product of 0 ‰ vol5 P p
Ź2
pC2q˚q5 with

r4ρprE2,E3sq ` 2r3sρprE3,E1sq ` r2s2ρ p3rE0,E3s ` rE1,E2sq ` 2rs3ρprE2,E0sq ` s4ρprE0,E1sq.(4.3)

The G2-contact structure is flat iff κH “ 0.

Proof. The framing (4.2) corresponds to the sl2-basis pe0, e1, e2, e3q “ pr
3, 3r2s, 3rs2, s3q. As in §3.3, pick ∇

that leaves the CS-framing, hence (4.2), parallel. The basis for
Ź2

0 V
˚ in (4.1) has dual basis e2 ^ e3, e3 ^

e1,
1
3p3e0^e3`e1^e2q, e2^e0, e0^e1. Evaluate T∇ on corresponding bivectors (formed from the framing

(4.2)) and find their components via ρ. Multiply with corresponding elements of Γ4 to obtain (4.3). �

One can naturally classify non-flat G2-contact structures according to the root type of κH . Some
homogeneous examples are given in Table 8, with V, rQs, E , F determined by (3.8)–(3.11). Note that to
write E (or F) in standard jet-coordinates, we identify the CS-element g specifying the frame change from

the standard CS-framing (3.1) (corresponding to uxx “
t3

3 , uxy “
t2

2 , uyy “ t) to the given one, and then
use (2.1). These PDE satisfy additional compatibility conditions. A case analysis shows that the solution
space generally depends on 3 arbitrary constants. However, our type [7] PDE example is inconsistent, while
our type [2,2,1,1,1] PDE example has general solution upx, yq “ c1 ` c2x ` c3y or an arbitrary function
fpyq. For all these examples, pE ,Dq does not admit any Cauchy characteristics.

Proposition 4.2. Consider a non-flat G2-contact structure on pM5, Cq with harmonic curvature κH and
symmetry algebra S. Fix any m PM . Then:

(i) If κHpmq has root type r7s, then dimpSq ď 7.
(ii) If κHpmq has root type r6, 1s, r5, 2s, or r4, 3s, then dimpSq ď 6.
(iii) If κHpmq has ě 3 distinct roots, then dimpSq ď 5.

For all root types except possibly r1, 1, 1, 1, 1, 1, 1s, these upper bounds are sharp.

Proof. We have dimpSq ď 5 ` dimpannpκHpmqqq. This follows immediately from [16, Thm.3.3] (Tanaka
prolongation dimension gives a pointwise upper bound) and [15, Cor.3.4.8] (G2{P2 is prolongation-rigid).
For (i) and (ii), take GL2-representative elements r7´asa b vol5, which have annihilators in g0 spanned by:

a “ 7 : 7I´ 3H, Y; a “ 6 : 5I´ 3H; a “ 5 : I´ H; a “ 4 : I´ 3H.

This proves (i) and (ii). For (iii), the annihilator is trivial. The final statement follows from Table 8. �

We do not know any homogeneous G2-contact structures of root type r1, 1, 1, 1, 1, 1, 1s. The CS-framing

X0 “ Bx ` pBu, X1 “ By ` qBu ` uBq, U0 “ Bp, U1 “ p1` upqBq ` ppBy ` qBuq

determines a type r1, 1, 1, 1, 1, 1, 1s structure with 4-dimensional symmetry algebra spanned by p, q, e´y, ey.

4.2. Submaximally symmetric G-contact structures. Let G ‰ A`, C` with associated Jordan algebra
W (Table 3) and basis twau. Fix 1 ď c ď dimpW q and take the G-contact structure for the CS-framing

X0 “ Bx0 ` u0Bu ` x
cBu0 , Xa “ Bxa ` uaBu, U0 “ Bu0 , Ua “ Bua .(4.4)

As in §4.1, we can find the corresponding E and F in standard jet-coordinates:

E : puijq “

˜

u00 u0b

ua0 uab

¸

“

¨

˝

Cpt3q ` xc 3
2Cbpt

2q

3
2Capt

2q 3Cabptq

˛

‚,(4.5)

F :

#

u00 “ tatbuab ´ 2Cpt3q ` xc

ua0 “ tbuab ´
3
2Capt

2q
,(4.6)

which are also the first and second-order envelopes determined by the parametrization

Pt : u00 ´ 2taua0 ` t
atbuab “ Cpt3q ` xc.
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Root type X0 X1 U0 U1 G2-contact structure

symmetries

r7s Bx ` pBu ` yBp By ` qBu Bp Bq
1, x, y, p, x3 ´ 3y2 ´ 6qx,

2q ´ x2, 7u´ 2px´ 3qy

r6, 1s Bx ` pBu ` qBp By ` qBu Bp Bq 1, x, p, q, x2 ` 2y, 5u´ px´ 2qy

r5, 2s Bx ` pBu ` pBp By ` qBu Bp Bq 1, y, p, q, ex, 3u´ qy

r4, 3s Bx ` pBu By ` qBu ` qBq Bp Bq 1, x, p, q, ey, u` px

r5, 1, 1s Bx ` pBu ` pp` qqBp By ` qBu Bp Bq 1, p, q, ex, y ´ x

r4, 2, 1s Bx ` pBu ` pBp By ` qBu ´ qBq Bp Bq 1, p, q, e´y, ex

r3, 3, 1s Bx ` pBu By ` qBu ` pp` qqBq Bp Bq 1, p, q, ey, y ´ x

r3, 2, 2s pq ` x
6
qpBx ` pBuq ypBy ` qBuq yBp pq ` x

6
qBq 1, x, u´ px, u´ qy, y ` 6p

r4, 1, 1, 1s Bx ` pBu By ` qBu ` px` qqBq Bp Bq 1, x, q, p` y, ey

r3, 2, 1, 1s px` qqpBx ` pBuq ypBy ` qBuq yBp px` qqBq 1, x, y ` p, u´ px, u´ qy

r2, 2, 2, 1s pq ´ x
6
qpBx ` pBuq pp` y

2
qpBy ` qBuq pp` y

2
qBp pq ´ x

6
qBq 1, x` 2q, y ´ 6p, u´ px, u´ qy

r3, 1, 1, 1, 1s Bx ` pBu By ` qBu ` px` p` qqBq Bp Bq 1, q, ey, x´ y, p` y

r2, 2, 1, 1, 1s xpBx ` pBuq ppBy ` qBuq
1
x
Bp

1
p
Bq 1, y, q, 4px´ 3u, 4qy ´ 3u

r2, 1, 1, 1, 1, 1s qpBx ` pBuq ` pBp ppBy ` qBuq pBp qBq 1, p, q, qy ´ u, px´ u

Root type G2-contact structure PDE E associated to the models above

r7s uxx “
1
3
puyyq

3
` y, uxy “

1
2
puyyq

2

r6, 1s uxx “
1
3
puyyq

3
` uy, uxy “

1
2
puyyq

2

r5, 2s uxx “
1
3
puyyq

3
` ux, uxy “

1
2
puyyq

2

r4, 3s uxx “
1
3
puyy ´ uyq

3, uxy “
1
2
puyy ´ uyq

2

r5, 1, 1s uxx “
1
3
puyyq

3
` ux ` uy, uxy “

1
2
puyyq

2

r4, 2, 1s uxx “
1
3
puyy ` uyq

3
` ux, uxy “

1
2
puyy ` uyq

2

r3, 3, 1s uxx “
1
3
puyy ´ ux ´ uyq

3, uxy “
1
2
puyy ´ ux ´ uyq

2

r3, 2, 2s uxx “
puyyq

3y4

3puy`
x
6
q4
, uxy “

puyyq
2y2

2puy`
x
6
q2

r4, 1, 1, 1s uxx “
1
3
puyy ´ x´ uyq

3, uxy “
1
2
puyy ´ x´ uyq

2

r3, 2, 1, 1s uxx “
puyyq

3y4

3puy`xq4
, uxy “

puyyq
2y2

2puy`xq2

r2, 2, 2, 1s uxx “
1
3
puyyq

3
´

ux`
y
2

uy´
x
6

¯4

, uxy “
1
2
puyyq

2
´

ux`
y
2

uy´
x
6

¯2

r3, 1, 1, 1, 1s uxx “
1
3
puyy ´ x´ ux ´ uyq

3, uxy “
1
2
puyy ´ x´ ux ´ uyq

2

r2, 2, 1, 1, 1s uxx “
1
3
puyyq

3 puxq
6

x2
, uxy “

1
2
puyyq

2 puxq
3

x

r2, 1, 1, 1, 1, 1s uxx “
1
3
puyyq

3 puxq
4

puyq
4 `

ux
uy
, uxy “

1
2
puyyq

2 puxq
2

puyq
2

Table 8. Some homogeneous G2-contact structures on pJ1pC2,Cq, rdu´ pdx´ qdysq

Proposition 4.3. The symmetry algebra of the G-contact structure (4.4) is spanned by

1, xi, ui ´ δi
c px

0q2

2
, 7u´ 2x0u0 ´ 3xaua, x0ua `

3

2
CapX

2q ´
1

6
δa
cpx0q3,(4.7)

7Aabx
bua ´ k

`

3x0u0 ` x
aua

˘

, where 0 “ AapbCdeqa and Acb “ kδcb,(4.8)

and 0 ď i ď n´ 1 and 1 ď a, b ď n´ 1.

Proof. This calculation is similar to that for Theorem 3.4. We have V :“ Vp1, tq as in (3.8) and pV “ pTrVsV
as in (3.10). Let ρi :“ dxiprV,Sf sq “ ´Vpfuiq and µi :“ duiprV,Sf sq “ V

´

df
dxi

¯

` δi
0fuc . Then

rV,Sf s “ ρ0X0 ` ρ
aXa ` pµ0 ´ ρ

0xcqU0 ` µaU
a.
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Using (3.10), the condition rV,Sf s P pTrVsV, expressed in the CS-framing tXi,U
iu is

0 “ µ0 ´ ρ
0pxc ` Cpt3qq ´

3

2
ρaCapt

2q “ V

ˆ

df

dx0

˙

` fuc `Vpfu0qpx
c ` Cpt3qq ´

3

2
VpfuaqCapt

2q(4.9)

0 “ µa ´
3

2
ρ0Capt

2q ´ 3ρbCabptq “ V

ˆ

df

dxa

˙

`
3

2
Vpfu0qCapt

2q ´ 3VpfubqCabptq(4.10)

The t-degree 6 and 5 components of (4.9) imply fu0u0 “ fu0ui “ 0, so f “ gpxi, u, uaq`hpx
i, uqu0. Setting

u0 “ 0 in (4.9)[t-degree 1] implies

0 “ phxa ` uahuqx
c, 0 “ gxax0 ` uagux0 .(4.11)

The first equation in (4.11) implies h “ hpx0q. Furthermore, the equations (4.9)[pt, u0q-degree p0, 2q],
(4.10)[pt, u0q-degree p0, 1q], (4.9)[t-degree 4], and (4.10)[pt, u0q-degree p1, 1q] imply

guxa “ 0, guu “ 0, gubue “ 0, guub “ 0.(4.12)

The third of these follows from (4.9)[t-degree 4] and (2.11): 0 “ ´taXapfu0qCpt
3q ` 9

4Capt
2qCbpt

2qfuaub “
9
4p3pC

˚qabeXapfu0q ` fubueqCbpt
2qCept

2q. Since Cbpt
2q is arbitrary and fuau0 “ fuu0 “ 0, then fubue “ 0.

Now combine (4.11) and (4.12), and after a straightforward calculation, we obtain

h “ hpx0q, g “ Gapxiqua ` αpx
aq ` βpx0q ` γpx0qu.(4.13)

Using (4.10)[t-degree 1] and the coefficients of u, ua, and u0 in (4.9)[t-degree 0], these must satisfy

0 “ pGbqxax0 ` δa
bγx0 , pGbqxexa “ 0, αxexa ´ 3pGbqx0Cabe “ 0,(4.14)

γx0x0 “ 0, pGaqx0x0 “ 0, hx0x0 ` 2γx0 “ 0,(4.15)

βx0x0 ` x
cp2hx0 ` γq `G

c “ 0.(4.16)

(The first equation in (4.14) is a residual equation from (4.11).) Differentiating (4.16) with respect to x0, xc

yields 0 “ 2hx0x0 ` γx0 ` pG
cqx0xc “ ´4γx0 (no sum on c). Hence, we must have

γ “ γ0, h “ rkx0 ` h0, Ga “ rAabx
b `Bax0 ` Ca, rAcb “ ´δ

c
bp2rk ` γ0q(4.17)

α “
3

2
BbCbpX

2q ` αbx
b ` α0, β “ ´

1

6
Bcpx0q3 ´

1

2
Ccpx0q2 ` β1x

0.(4.18)

Define rAab “ Aab `
1
3δ
a
bp
rk ´ γ0q. Then Acb “ p´

7
3
rk ´ 2

3γ0qδ
c
b and (4.9)[t-degree 3] yields 0 “ AapbCdeqa.

Setting rk “ ´2
7γ0 and Aab “ 0 yields the symmetry u´ 2

7x
0u0´

3
7x

aua. Now relabel rk “ ´3
7k and set γ0 “ 0

for the remaining symmetries. The V :“ Vp0, tq case quickly follows from the condition fu0ui “ 0. �

The number of symmetries in (4.7) is dimpMq`1`dimpW q “ 3n`1. By (4.8), the linear transformation
wa ÞÑ Abawb must be a symmetry of C P S3W ˚, so from §2.3 is contained in fss0 . Moreover, it must preserve
the line rwcs P PpW ˚q. To maximize the solution space of (4.8), we should examine the minimal F0-orbit(s)
in PpW ˚q. (Recall that W is reducible in type B and D.)

G{P B`{P2 p` ě 3q D`{P2 p` ě 4q

Sp21q 2`2 ´ 5`` 8 2`2 ´ 7`` 11

Sp23q
2`2 ´ 7`` 15, ` ě 4;

11, ` ě 3

2`2 ´ 9`` 19

(same for Sp24q

when ` “ 4)

G{P G2{P2 F4{P1 E6{P2 E7{P1 E8{P8

S 7 28 43 76 147

Table 9. Submaximal symmetry dimensions S for G-contact structures (see [15])

Theorem 4.4. If rwcs lies in a minimal F0-orbit in PpW ˚q, then the G-contact structure (4.4) is submax-
imally symmetric.

Proof. We give the proof for g “ E8 and g “ D` p` ě 5q. The other cases are treated similarly.
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‚ g “ E8, f
ss
0 “ E6, n “ 28: The E6-highest weights of W and W ˚ are λ6 and λ1. The dimension of

P1 Ă E6 is 62. Adding this to 3n` 1 “ 85 agrees with S “ 147.
‚ g “ D`, f

ss
0 “ D`´3, n “ 2` ´ 4: Here 3n ` 1 “ 6` ´ 11, m “ 2` ´ 6 and W “ Cm ‘ C – W ˚ as

D`´3-reps. Also, dimpzpf0qq “ 2, so one element acts non-trivially on C, and the other preserves it.
There are two harmonic curvature branches:
(i) Cm: highest weight λ1, so p3n ` 1q ` 1 ` dimpP1q “ p6` ´ 11q ` 1 ` p2`2 ´ 15` ` 29q “

2`2 ´ 9`` 19 “ Sp23q.

(ii) C: p3n` 1q ` 1` dimpD`´3q “ 6`´ 11` 1` p`´ 3qp2`´ 7q “ 2`2 ´ 7`` 11 “ Sp21q.

�

4.3. Type A and C. In Table 10, we give submaximally symmetric PDE (for n ě 2) in the type A and
C cases. The n “ 1 cases are the classically known 2nd and 3rd order ODE cases.

G{P Invariants Submax sym dim Model Symmetries

An`1{P1,n`1

pn ě 2q

τE ‰ 0,

τF “ 0,

W “ 0

Sp12q “ n2
` 4

uij “ 0

except

u11 “ xn

1, xi, uk pk ‰ nq, xiul p1 ‰ l ‰ nq,

px1q2 ´ 2un, x1un ´
1
6
px1q3,

x1u1 ´ 2xnun, u´ xiui ` x
1u1

An`1{P1,n`1

pn ě 2q

τE “ 0,

τF “ 0,

W ‰ 0

Sp1,n`1q “ n2
` 4

uij “ 0

except

u11 “ punq
2

1, xk pk ‰ nq, ui, xkul pk ‰ n; l ‰ 1q,

unpx
1
q
2
` xn, u´ xiui ´

1
2
xnun,

x1u1 ` x
nun

Cn`1{P1,n`1

pn ě 2q

τE ‰ 0,

τEV “ 0
Sp12q “ 2n2

´ n` 5

uijk “ 0

except

u111 “ x2

1, xi, uk pk ‰ 2q, xixj , xiul l ě 3,

ukul pk, l ě 3q, u´ x2u2, 6u2 ´ px
1
q
3,

24x1u2 ´ px
1
q
4, x1u1 ´ 3x2u2

Cn`1{P1,n`1

pn ě 2q

τE “ 0,

τEV ‰ 0
Sp1,n`1q “

3n2`n`8
2

uijk “ 0

except

unnn “ u11

1, xi, u, ui, xkxl pk ‰ 1 ‰ lq,

xkul pk ‰ 1; l ‰ nq,

3px1q2 ` pxnq3, 3x1u1 ` 2xnun ´ 5u

Table 10. Submaximally symmetric PDE for An`1{P1,n`1 and Cn`1{P1,n`1 geometries

Appendix A. Some explicit PDE E for the flat G-contact structure

G B` or D` G2 D4

W JSm “ Cm ‘ C J3pHq J3p0q

Coordinate pv, λq λ diagpt1, t2, t3q

puijq

¨

˚

˚

˝

xv, vyλ x¨, vyλ 1
2
xv, vy

x¨, vyλ x¨, ¨yλ x¨, vy
1
2
xv, vy x¨, vy 0

˛

‹

‹

‚

˜

λ3

3
λ2

2

λ2

2
λ

¸

¨

˚

˚

˚

˚

˝

2λ1λ2λ3 λ2λ3 λ1λ3 λ1λ2

λ2λ3 0 λ3 λ2

λ1λ3 λ3 0 λ1

λ1λ2 λ2 λ1 0

˛

‹

‹

‹

‹

‚

Given A “ parsq P Mat3ˆ3pCq, let CrspAq be its pr, sq-th cofactor.

‚ G “ F4: W “ J3pRCq, so ars “ asr.

puijq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

detpAq 1
2
C11pAq

1
2
C22pAq

1
2
C33pAq C12pAq C13pAq C23pAq

1
2
C11pAq 0 1

2
a33

1
2
a22 0 0 ´a23

1
2
C22pAq

1
2
a33 0 1

2
a11 0 ´a13 0

1
2
C33pAq

1
2
a22

1
2
a11 0 ´a12 0 0

C12pAq 0 0 ´a12 ´a33 a23 a13

C13pAq 0 ´a13 0 a23 ´a22 a12

C23pAq ´a23 0 0 a13 a12 ´a11

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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‚ G “ E6: Since W has weight λ1 ` λ11 for fss0 “ A2 ˆ A2, we may use W “ Mat3ˆ3pCq as an
alternative model to W “ J3pCCq.

puijq “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

2 detpAq C11pAq C12pAq C13pAq C21pAq C22pAq C23pAq C31pAq C32pAq C33pAq

C11pAq 0 0 0 0 a33 ´a32 0 ´a23 a22

C12pAq 0 0 0 ´a33 0 a31 a23 0 ´a21

C13pAq 0 0 0 a32 ´a31 0 ´a22 a21 0

C21pAq 0 ´a33 a32 0 0 0 0 a13 ´a12

C22pAq a33 0 ´a31 0 0 0 ´a13 0 a11

C23pAq ´a32 a31 0 0 0 0 a12 ´a11 0

C31pAq 0 a23 ´a22 0 ´a13 a12 0 0 0

C32pAq ´a23 0 a21 a13 0 ´a11 0 0 0

C33pAq a22 ´a21 0 ´a12 a11 0 0 0 0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚
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Math. Soc., Transl., II. Ser. 6 (1957), 245–378.
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