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Abstract. Cloud providers offering Software-as-a-Service (SaaS) are in-
creasingly being trusted by customers to store sensitive data. Companies
often monetize such personal data through curation and analysis, pro-
viding customers with personalized application experiences and targeted
advertisements. Personal data is often accompanied by strict privacy
and security policies, requiring data processing to be governed by non-
trivial enforcement mechanisms. Moreover, to offset the cost of hosting
the potentially large amounts of data privately, SaaS companies even
employ Infrastructure-as-a-Service (IaaS) cloud providers not under the
direct supervision of the administrative entity responsible for the data.
Intel Software Guard Extensions (SGX) is a recent trusted computing
technology that can mitigate some of these privacy and security con-
cerns through the remote attestation of computations, establishing trust
on hardware residing outside the administrative domain. This paper in-
vestigates and demonstrates the added cost of using SGX, and further
argues that great care must be taken when designing system software in
order to avoid the performance penalty incurred by trusted computing.
We describe these costs and present eight specific principles that appli-
cation authors should follow to increase the performance of their trusted
computing systems.

Keywords: Privacy, Security, Cloud Computing, Trusted Computing,
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1 Introduction

Pervasive computing and the ongoing Internet of Things (IoT) revolution have
led to many new mobile recording and sensory devices that record ever more
facets of our daily lives. Captured data is often analyzed and stored by complex
ecosystems of cloud hosted services. Storing and analyzing large amounts of data
are non-trivial problems. Handling personal data such as smart home monitoring
systems and health tracking, only adds the to this complexity as data processing
might be governed by strict privacy requirements [7].



The curation and analysis of privacy sensitive personal data on third-party
cloud providers necessitate the design of a new Software-as-a-Service (SaaS) ar-
chitecture that is able to enforce rigid privacy and security policies [10] through-
out the entire software stack, including the underlying cloud provided Infrastructure-
as-a-Service (IaaS). Commodity hardware components for trusted computing
have been available for some time [13, 16], but the functionality of existing so-
lutions has been limited to establishing trust and guarantees on the integrity of
running software, and rudimentary support for secure code execution (e.g., Intel
Trusted Execution Technology).

In 2015, Intel introduced the Software Guard Extensions [1] as part of their
sixth generation Intel Core processor micro architecture (codenamed Skylake).
Together with complementary efforts by ARM and AMD, SGX is making general
trusted computing a commodity, providing confidentiality, integrity and attesta-
tion of code and data running on untrusted third-party platforms. SGX is able
to deter multiple different software and physical attacks by establishing secure
execution environments, or enclaves, of trusted code and data segments inside
individual CPUs. While SGX is an iterative technology building upon previous
efforts, it is more general in functionality allowing code execution inside enclaves
at native processor speeds, a significant performance improvement over previ-
ous efforts. SGX is designed with backwards compatibility in mind, allowing
developers to port sensitive logic from existing legacy applications into secure
enclaves. These properties make SGX a compelling technology for cloud based
SaaS hosting privacy sensitive data on untrusted third-party cloud providers.
SGX is a proprietary technology and prior knowledge of its characteristics is
mostly based on limited documentation by Intel. In particular, little is known
about the performance of the computing primitives comprising SGX and how
developers should best utilize these to maximize application performance.

This paper provide an in-depth investigation into key performance traits of
the Intel SGX platform. We provide a performance analysis of its low-level mech-
anisms and primitives, and describe several non-obvious idiosyncrasies related
to threading, context switching, and memory footprint. From our observations,
we derive 1 principles for developing more efficient software on this platform.

The remainder of this paper is structured as follows: Section 2 outlines the
relevant parts of the SGX micro architecture while Section 3 outlines the details
of our micro benchmarks. Section 4 provides an informed discussion of our find-
ings and a set of derived principles intended for developers of trusted computing
systems. Section 5 details relevant work before concluding remarks.

2 Intel Software Guard Extensions (SGX)

Intel’s new general trusted computing platform enables the execution of code
on untrusted third-parties at native processor speed. Moreover, the platform
preserves the confidentiality and integrity of code and data segments running
inside what is referred to as enclaves. This section details the core mechanisms



comprising SGX, building a foundation for the performance analysis detailed in
Section 3.

2.1 Enclave Creation

Enclave code and data are distributed to runtime systems in form of a shared
library which is bundled together with what the developer reference refers to
as the SIGSTRUCT data structure. During the compilation of an enclave, a
hash, or measurement, of each code and data segment executable within the
shared library is computed and stored together with a signature generated by
the developers private key. This bundle is then distributed to the target third-
party platform together with the corresponding public key. During initialization,
the signature is verified against the public key and the measurement is recalcu-
lated and compared with the corresponding value inside the SIGSTRUCT. If
the signature matches that of the public key and the integrity of the code and
data segments are preserved, the enclave is allowed to execute. This establishes
a guarantee that only the expected enclave code and data from the expected
enclave author are successfully able to run on the third-party.

2.2 Entry and Exit

Regular application threads are able to enter secure enclaves by invoking the
EENTER instruction on a particular logical core. The thread then performs a
controlled jump into the enclave code, similar in operation to a call-gate. Threads
can only enter enclaves from privilege level 3 (user level).

Software interrupts are prohibited when running in encalve mode. As a con-
sequence, no system calls are allowed within enclaves. Applications requesting
access to common Operating System (OS) resources such as IO, must there-
fore explicitly exit the enclave prior to invocation. The application developer
explicitly defines these transitions and, in the presence of a potentially malicious
OS, all such transitions, parameters to these and responses must be carefully
validated.

Although threads cannot be instantiated in enclave mode, SGX allows multi-
ple threads to enter the same enclave and execute concurrently. For each logical
core executing inside a particular enclave, a Thread Control Structure (TCS) is
required to keep track of thread specific context. Before instantiation, these data
structures must be provisioned and stored in the Enclave Page Cache (EPC),
comprising pages explicitly set aside for enclaves. The TCS contains an OENTRY
field specifying the entry point for the thread, loaded into the instruction pointer
upon entry. Stack regions are not explicitly handled by the SGX microcode, how-
ever, as Costan and Devadas [5] state, the stack pointer is expected to be set to a
region of memory fully contained within the enclave during entry transition. Pa-
rameters input to the developer-specified entry points are marshaled and, once
the transition is done, copied into enclave memory from untrusted memory. Al-
though not handled by SGX directly, parameter marshaling and stack pointer



manipulation are managed under the hood by the SDK implementation which
most application authors will use for enclave developement.

Threads may transition out of enclaves by means of two different mechanisms,
either synchronously trough the explicit EEXIT instruction, or asynchronously
by service of a hardware interrupt. Synchronous exists will cause the thread to
leave enclave mode, restoring the execution context to its content prior to enclave
entry. Asynchronous Enclave Exit (AEX) is caused by a hardware interrupt such
as a page fault event. In this case all threads executing on the logical core affected
by the interrupt must exit the enclave and trap down to the kernel in order to
service the fault. Before exit, the execution context for all logical cores executing
within the enclave is saved and subsequently cleared to avoid leaking information
to the untrusted OS. When the page fault has been serviced, the ERESUME
instruction restores the context and the enclave resumes execution.

2.3 Enclave Memory

During boot-up of the CPU, a contiguous region of memory called Processor
Reserved Memory (PRM) is set aside from regular DRAM. Divided into 4kB
pages, only accessible inside the enclave or directly by the SGX instructions,
this region of memory is collectively referred to as the EPC. Any attempts to
either read or write EPC memory from both privileged level system software or
regular user level applications are ignored. Moreover, any Direct Memory Access
(DMA) request to this region is explicitly prohibited, deterring physical attacks
on the system bus by potentially malicious peripheral devices. Confidentiality is
achieved through Intels Memory Encryption Engine (MEE), further preventing
physical memory inspection attacks as enclave data is encrypted at the CPU
package boundary on the system bus right after the L3 cache.

Much the same as regular virtual memory, EPC pages are also managed
by the OS. However, these are handled indirectly through SGX instructions
as EPC memory is not directly accessible. The OS is responsible for assigning
pages to enclaves and evict unused pages to regular DRAM. Through memory
management, the physical limit of 128 MB is evaded by swapping EPC pages
and as such there is no practical limit to the size of enclaves. The integrity
and liveness of pages being evicted are guarded by an axillary data structure
also contained within the PRM, called the Enclave Page Cache Map (EPCM).
The EPCM maintains the mappings between virtual and physical addresses of
PRM memory. Moreover, it maintains for each page an integrity check and a
liveness challenge vector. These precautions guard against a malicious OS trying
to subvert an enclave by either manipulating the address translation, explicitly
manipulating pages, or serving old pages back to the enclave (replay attacks). In
this memory model, only one enclave can claim ownership of a particular page
at one given moment, and as a consequence shared memory between enclaves is
prohibited. Enclaves are however allowed to read and write directly to untrusted
DRAM inside the host process’ address space, and therefore two enclaves residing
within the same host process are able to share untrusted memory.



Because stale address translations may be exploited to subvert enclave in-
tegrity, the processor performs a coarse-grained Translation Lookaside Buffer
(TLB) shootdown for each page subject to eviction. Given a page fault event
on a particular thread executing inside an enclave, all threads executing on that
same logical core must perform an AEX, as described in Section 2.2. In order
to avoid information leakage stemming from memory access patterns inside en-
claves, the lowermost 12 bits of the faulting address, stored in the CR2 registry
are cleared. SGX instructions explicitly support batching up to 16 page evictions
together at a time, thus curtailing the cost of AEX for each page fault inside an
enclave.

2.4 Enclave Initialization

SGX allows the creation of multiple, mutually distrusting enclaves, on the same
hardware instance. These can reside in either a single process’ address space or
multiple. To instantiate enclave system software the OS, on behalf of the applica-
tion, invokes the ECREATE instruction. This causes the underlying microcode
implementation to allocate a new EPC page for the SGX Enclave Control Struc-
ture (SECS), identifying each enclave and storing per-enclave operational meta-
data. Moreover, physical pages are mapped to enclave SECS through the EPCM
structure. Before initialization is complete, each separate code and data segment
must be added to enclave memory explicitly through the EADD instructions.
Similarly, each TCS is added for each logical core expected to execute within
the enclave. Once this process is complete the OS issues the EINIT instruction
which finalizes initialization and compares the enclave measurement observed to
the contents of the SIGSTRUCT. Upon completion, a launch token is generated
by a special pre-provisioned enclave trusted by Intel, at which point the enclave
is considered fully initialized. Once this process is completed, no further mem-
ory page allocations may happen. Intels revised specifications for SGX version 2
includes the possibility for dynamic paging support by means of the EEXTEND
command. However, we refrain from further comment, as hardware supporting
these features have not yet been released at the time of writing.

Inversly, during teardown of an enclave, the opposite operation is performed.
The OS tags each page as invalid, by issuing the EREMOVE instruction. Prior
to this, SGX verifies for each page that no threads attributed to that page
are executing inside the enclave. Lastly, the SECS is destroyed once all pages
referring to it through the EPCM are themselves deallocated.

2.5 Enclave Attestation

In order for applications to securely host privacy-sensitive software components
on platforms outside of their administrative domain, we need to establish trust.
This can be achieved through remote attestation, a process in which the re-
mote party proves its correctness to the initiator. Assuming an enclave has been
created and initialized as outlined above on an untrusted platform, the entity
wishing to establish trust with this enclave issues a request for proof. The code



inside this enclave then requests a Quote from the hardware, which consists of
the enclave measurement, in addition to a signature from the hardware platform
key. This quote is then sent to the requesting party which can themselves val-
idate the measurement compared to the expected provisioned enclave. Lastly,
the quote is sent to Intel for verification through their Intel Attestation Service,
which validates the signature against their own private key. These two in combi-
nation prove to the requesting party that the expected code and data segments
are running on a valid SGX-enabled platform.

3 Experiments

The next generation of SaaS systems should be designed from the ground up
to utilize trusted computing features in a performance optimal way. Therefore,
we conduct a series of micro benchmark experiments on a SGX-enabled CPU to
fully understand the micro architectural cost of trusted computing on commodity
hardware. Our experimental setup consists of a Dell Optiplex workstation with
an Intel Core i5-6500 CPU @ 3.20 GHz with four logical cores and 2 x 8 GB of
DDR3 DIMM DRAM. Dynamic frequency scaling, Intel Speedstep and CStates
are disabled throughout our experiments to avoid inaccuracies. We set the PRM
size to its maximum allowed 128 MB to measure the peak theoretical perfor-
mance of the platform. Our experiments ran on Ubuntu 14.04 using the open
source kernel module by Intel implementing OS support for SGX'. Furthermore,
this module has been modified with instrumentation in order to also capture the
operational cost from the system perspective. Based on our knowledge regarding
SGX, we have derived a set of benchmarks conjectured to capture core aspects
of the trusted computing platform. It is worth noting that for all our exper-
iments, more iterations did not yield a lower deviation. We attribute this to
noise generated by the rest of the system that while subtle, becomes significant
at fine-grained time intervals.

The current generation of SGX does not support the use of the RDTSC
instruction or any other native timing facilities inside enclaves. Intel has later
released a microcode update to counter this problem, allowing for the RTDSC
instruction to execute inside enclaves. We are however unsuccessful, at the time of
writing, in obtaining a firmware update specific to our SKU through the correct
OEM. Measurements performed throughout the experiments must therefore exit
the enclave for each point in time. Consequently, all measurements therefore
include the time taken to enter and exit the enclave, described as the sequence
of events detailed in Figure 1.

3.1 Entry and Exit Costs

With SGX, SaaS applications are able to influence the size of their Trusted
Computing Base (TCB) by partitioning application logic between trusted and

! https://github.com/0lorg/linux-sgx-driver



t Application Enclave
| enclave_ecall( ) ~_

| "~ enclave_ecall( )
| / t0_ocall( )
|

| get_time( ) <

| T t0_ocall( )
- 1 ocall( )
| |~ tloca

| get_time( ) <

* T~ t1_ocall( )

Fig. 1. Sequence of events involved in measuring time spent inside enclaves [8].

untrusted execution domains. In order to quantify any potential performance
trade-off, we examine the associated cost of enclave transitions. An optimal
application arrangement should conciser the following trade-off depending on
the transition cost: A high cost of transition would necessitate a reduction in the
overall amount of transitions and mediating this cost will increase the amount of
logic residing within the enclave, thus expanding the TCB. A prominent example
at one end of the spectrum is Heaven [3], in which an entire library OS is placed
within a secure enclave. Furthermore, details in the Intel Software Developer
Manual? suggest that that the cost of entering an enclave should also factor
in the cost of argument data copied as part of the transition into the enclave.
Therefore, if the cost of data input to an enclave is high, only data requiring
explicit confidentiality and trust should be placed within the enclave.

Figure 2 depicts the measured cost in millisecond latency, as a function of
increasing buffer sizes. The cost of entering an enclave is observed to increase
linearly with the size of the buffer input as the argument. It is worth mentioning
that only buffer input to the enclave is considered. The experiment does not
include output buffers or return values from enclaves.

Hosting a buffer inside enclave memory requires that the enclave heap is
sufficiently large. Since enclave sizes are final after initialization, we set the heap
size to be equally large for all iterations of the experiment. From the graph, we
observe that the baseline cost of entering an enclave quickly becomes insignificant

% https://software.intel.com/en-us/articles/intel-sdm
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Fig. 2. Enclave transition cost as a function of buffer size [8].

as the buffer size increases. This behavior is not surprising, as the overall cost
includes the cost of copying memory into the enclaves which invokes the MEE
for each page written to the enclave. A curious observation, however, is the fact
that the baseline cost only increases linearly for buffers larger than 64 kB. This
could be explained by enclaves less than 64 kB being fully provisioned into EPC
memory at startup. Whereas for large buffers the cost may be attributed to lazily
loaded enclave memory, triggering page faults during the buffer copy operation.
This aspect is explored in detail in the following experiment.

3.2 Paging

Another aspect to consider in the application trade off between TCB and enclave
transition cost, is the fact that an increase in TCB would cause an increase
in PRM consumption. Moreover, as stated in Section 2.3, PRM is a a fairly
limited resource compared to regular memory and the depletion of this resource
will cause system software to evict EPC pages more aggressively. As such, any
application utilizing SGX should consider carefully the cost of enclave memory
management, more specifically the cost of page swapping between EPC and
regular DRAM. Figure 3 illustrates this overhead as observed by both the OS
kernel and inside the enclave.

The y-axis is the discrete cost in nano seconds, while the x-axis is time elapsed
into the experiment. The SGX kernel module has been instrumented to measure
the latency of page eviction denoted by the red dots, and the total time spent
in the page fault handler, represented by the black solid line.
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sequentially to enclave memory [8].

From the enclave perspective, the green line denotes the user level instru-
mentation and represents time spent writing to a particular address in enclave
memory. As mentioned in the experimental introduction, measurement primi-
tives are unavailable inside enclaves, and all user level measurements therefore
include the cost of entry and exit, including a 4 byte word as parameter input
each way.

To induce page faults, the experimental enclave heap size is set to 256 MB,
double that of the of the physical PRM size made available by hardware. More-
over, we invoke write operations on addresses located within each 4kB page
sequentially along the allocated memory address space inside the enclave.

Recall from Section 2 that all memory for a particular enclave must be al-
located prior to initialization. We observe from Figure 3 that prior to enclave
startup, a cluster of page fault events occur at the beginning of the experiment,
corresponding with our prior observations. The system is attempting to allocate
memory for an enclave of 256 MB while only being physically backed by 128 MB
of EPC memory.

The events occurring at user level can easily be correlated with the obser-
vations made in the page fault handler. For each increase in latency observed
from inside the enclave, a corresponding cluster of evictions occur in the page
fault handler. Moreover, the total time spent in the page fault handler coincides
with the write overhead observed at user level. Parts of the overhead can be at-
tributed to the fact that page faults cause AEX events to occur for each logical
core executing within the enclave, as detailed in Section 2.



Moreover, we observe that the SGX kernel module is behaving conservatively
in terms of page evictions, and is not exhausting EPC memory resources. As de-
tailed in Section 2, the 12 lower bits of the virtual page fault address are cleared
by SGX before exiting the enclave and trapping down to the page fault han-
dler. Hence, system software is not able to make any algorithmic assumptions
about memory access patterns to optimize page assignment. Furthermore, live-
ness challenge vector data might also be evicted out of EPC memory, causing a
cascade of page loads to occur from DRAM. As a side note, this experiment only
uses a single thread, and all page evictions only interrupt this single thread.

In light of the prior discovery, high performance applications should consider
tuning the SGX page fault handler to their particular use case, given that the
application is able to predict a specific access pattern. Moreover, regardless of
access pattern the SGX page fault handler should be optimized to allow ex-
haustive use of EPC, such that applications running inside enclaves may be less
affected by page faults in high memory footprint scenarios.

The initial setup of enclaves will retain large amounts of the pages in EPC
memory, alleviating the overhead of paging in certain situations. Moreover, this
reduces the execution overhead caused by threads performing AEX. Given that
the cost of enclave setup is still a large factor, by the prior statements, it might
be advantageous for application developers to pre-provision enclaves.

3.3 Enclave provisioning

Modular programming and componentized system organization are paradigms
commonly used in modern distributed systems. Applications consisting of pos-
sibly multiple trust domains and third-party open source components should
separate the unit of failure and trust to reduce the overall system impact.

By enabling the creation of mutually distrusting enclaves, SGX is able to
support a modular application architecture. Section 2 explains how enclaves
might communicate with the untrusted application through well defined inter-
faces, lending itself to compartmentalization of software into separate enclaves.
To capture the cost of using SGX through the scope of a modular software ar-
chitecture, Figure 4 illustrates the cost in terms of provisioning latency as a
function of enclaves created simultaneously for differently sized enclaves. We
observe that the added cost of enclave creation increases linearly for all sized
enclaves, becoming significant for enclaves larger than 256 kB. As detailed in
Section 2, enclaves are created by allocating each page of code and data to the
enclave prior to initialization. During this experiment we observed a significant
amount of page faults further attributing to the creation cost. This is expected
as the size of enclaves combined with number of instances increases above that
of the physically available PRM. Our observations about buffers less than 64 kB
from Section 3.1 still stands, as we observe that the provisioning cost for enclaves
less than 64 kB is nearly identical.

To offset the latency of creation for enclave instances, real-time applications
should consider pre-provisioning them. However, as prior experiments show co-
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locating multiple enclaves in EPC memory might result in additional cost if the
memory footprint is large enough.

3.4 Multithreading

The curation and analysis of large amounts of data use concurrency as a measure
to speed up processing of data elements. This is especially true for embarrassingly
parallel computations. One example is the distinct count aggregate operation,
where a large corpus of data is sectioned into buckets and where each can be
counted in parallel. Such computations require parallelism built into the run-
time. Fortunately, SGX provides the ability to run multithreaded operations in-
side the same enclave. However, implementation details reveal that applications
with high memory footprint might suffer from extensive page faults, which can
act as a barrier and in the worst cases degrade performance significantly. Fur-
thermore, as we argued earlier, applications with multiple tenants might want to
isolate analytics execution into separate enclaves, and it is therefore important
to consider how threads are delegated inside of enclaves.
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To induce a high memory footprint we use the same technique as in Sec-
tion 3.2, where we create an enclave which exceeds in size the amount of available



physical PRM. We expect some performance degradation for multiple threads
running on the same logical core executing within the enclave. When a page
fault occurs, all threads running on the particular core must exit the enclave
and block until the page fault is serviced. Our experiment therefore consists of
two modes, one where we pin all threads to separate logical cores, and one where
we pin all threads to a single core. Both experiments dedicate a single thread to
interrogating every 4kB page of the heap memory causing regular page faults
to occur. Our test bench has 4 logical cores so our experiment runs a total of
4 threads simultaneously for both experiments. The remaining threads are just
busy-waiting in a loop, measuring the time taken in each iteration. Figure 5
illustrates 4 threads pinned to 4 different cores where core 0 is interrogating
memory and causing page faults to occur as illustrated in the green spikes. We
observe that there is no co-dependency between threads, and the 3 remaining
threads are not impacted by interrupts occurring on the former.

Our second experiment demonstrates the opposite. We force all 4 threads to
be pinned to a single logical core, and as a consequence we observe that thread 0,
who is causing interrupts to occur, is blocking all other threads from executing
while servicing the costly page faults. It is worth noting that this is how threads
behave in regular process address space when faced with a hardware interrupt.
However, page faults are more costly to perform in enclave memory and more
frequent as previous experiments show due to memory footprint constraints.
Secondly, we observe that thread scheduling behaves differently as well. Context
switches between threads executing on the same logical core happens multiple
magnitudes more infrequently than regular threads executing outside of enclaves.
We theorize that this is a design choice when implementing enclave support,
because interrupts in enclaves are especially costly. Any context switch would
have to be induced by the timer hardware interrupt triggering the thread to
exit the enclave, and so it makes sense increasing the scheduler time slices to
amortize this cost.

4 Discussion

From the micro benchmarks detailed in Section 3, we pinpoint several perfor-
mance traits of SGX that should be taken into consideration when designing
trusted computing-enabled cloud services. We classify these individually as the
cost of entering and exiting enclaves, the cost of data copying, the cost of pro-
visioning new enclaves, the cost of memory usage and the cost of multithreaded
execution.

Section 2 explained that the transitioning cost is uniform in terms of cost with
respect to direction. Moreover, the most significant cost is attributed to the buffer
size input as argument to the transition. More specifically, from Figure 2 we
observe a sharp rise in cost when buffer sizes are larger than 64 kB. We conjecture
that this is an architectural boundary, where encalves are pre-provisoned, by
default, with a given number of pages. Future iterations of SGX may alter this



behavior, opting for an increase in pre-provisioned pages. Our principles therefore
state:

The Size Principle: The size of an enclave should not exceed the architecturaly
determined pre-provisoned memory resources.

The Cohesion Principle: Applications should partition its functional compo-
nents to minimize data copied across enclave boundaries.

Following the latter principle, a possible component architecture would be
to co-locate all application logic into a single, self-sufficient enclave. Haven [3],
is a prominent example of this approach. By means of a library OS, a large
part of the system software stack is placed within a single enclave, reducing the
interface between trusted and untrusted code. However, this approach directly
contradicts the observation made in Section 3.2 regarding the cost of having
a large memory footprint. Since the EPC is a limited resource, the SGX page
fault handler promptly pages out enclave memory not being used. However,
the paging experiment demonstrates that the available pool of EPC memory is
not exhausted, even in the presence of high memory contention. As detailed in
Section 3.2, the faulting address is not provided as part of the page fault event
and the page fault handler is therefore not able to make any assumptions about
the memory access patterns. We therefore state that:

The Access Pattern Principle: Prior knowledge about application’s memory
consumption and access pattern should be used to modify the SGX kernel module
in order to reduce memory page eviction.

Our experiments have demonstrated that enclave creation is costly in terms
of provisioning latency. By pre-provisioning enclaves whenever usage patterns
can be predicted, the application is able to hide some of this cost. However, once
used, an enclave might be tainted with secret data. Recycling used enclaves to
a common pool can therefore potentially leek secrets from one domain to the
next; invalidating the isolation guarantees. We therefore state that:

The Pre-provisioning Principle: Application authors that can accurately pre-
dict before-the-fact usage of enclaves should pre-provision enclaves in a dispos-
able pool of resources that guarantees no reuse between isolation domains.

The cost of enclave creation must also factor in the added baseline cost of
storing metadata structures associated with each enclave in memory. Provision-
ing enclaves must at least account for its SECS, one TCS structure for each
logical core executed inside an enclave, and one SSA for storing secure execution
context for each thread. [5] details that to simplify implementation, most of these
structures are allocated at the beginning of an EPC page wholly dedicated to



that instance. Therefore, enclaves executing on 4 logical cores may have 9 pages
(34kB) in total allocated to it, excluding code and data segments. Applications
should consider the added memory cost of separate enclaves in conjunction with
the relative amount of available EPC. Furthermore, to offset the cost of hav-
ing multiple enclaves, application authors should consider security separation
at a continuous scale. Some security models might be content with role based
isolation, rather than call for an explicit isolation of all users individually. We
therefore state that:

The Isolation Principle: Application authors should carefully consider the gran-
ularity of isolation required for their intended use, as a finer granularity includes
the added cost of enclave creation.

Executing multiple threads from the same core inside a single enclave de-
grades the concurrent performance by blocking execution when servicing a page
fault. Although regular non-enclave execution behaves similarly, the overhead
associated with enclave page faults becomes significant when memory footprint
increases. Moreover, latency critical applications will suffer because of the in-
creased time slices of thread interrupts initially thought to amortize the cost of
exiting enclaves when switching contexts. From this we deduce that the number
of threads executing inside enclaves should never exceed the logical core count
for a given system. We therefore establish the following principle:

The Affinity Principle: Applications should not affinitize multiple threads to
the same core.

Section 3.1 demonstrates the cost of transitioning into and out of an enclave,
and it becomes evident that to reduce the transitioning overhead threads should
be pinned inside enclaves. Enclave threads should rather transport data out of
the enclave through writing to regular DRAM and similarly poll for incoming
data. We therefore state:

The Pinning Principle: Application authors should pin threads to enclaves to
avoid costly transitions.

The prior statements lead us to the following principle:

The Asynchrony Principle: All execution inside enclaves should be asyn-
chronous.

Threads should be pinned inside enclaves to amortize transition cost and
total thread count should not exceed logical core count. Application authors
must therefore be diligent in terms of assigning threads to enclaves. Applica-
tions might further isolate contexts based on either user or tenant in different



mutually distrusting enclaves, each of which requires a dedicated thread. Core
logic executing inside enclaves should remain responsive at all time, servicing
both incoming requests and processing data. We therefore state that rather
than allocating multiple threads to the same enclave, all execution should be
fully asynchronous. This furthermore has the added benefit of high resource
utilization improving overall application performance.

At the time of writing, the only available hardware supporting SGX are the
Skylake generation Core chips with SGX version 1. Our experiments demonstrate
that paging has a profound impact on performance and a natural follow-up
would be to measure the performance characteristics of dynamic paging support
proposed in the SGX version 2 specifications.

SGX supports attestation of software running on top of an untrusted plat-
form, by using signed hardware measurements to establish trust between parties.
For future efforts it would be interesting, in light of the large cost of enclave
transition demonstrated above, to examine the performance characteristics of a
secure channel for communication between enclaves.

5 Related Work

Several previous works quantify various aspects of the overhead associated with
composite architectures based on SGX. Haven [3] implements shielded execution
of unmodified legacy applications by inserting a library OS entirely inside of SGX
enclaves. This effort resulted in architectural changes to the SGX specification to
include, among other things, support for dynamic paging. The proof-of-concept
implementation of Haven is only evaluated in terms of legacy applications run-
ning on top of the system. Furthermore, Haven was built on a pre-release emu-
lated version of SGX, and the performance evaluation is not directly comparable
to real world applications. Overshadow [4] provides similar capabilities as Haven,
but does not rely on dedicated hardware support.

SCONE [2] implements support for secure containers inside of SGX enclaves.
The design of SCONE is driven by experiments on container designs pertaining
to the TCB size inside enclaves, in which, at the most extreme an entire library
OS is included and at the minimum a stub interface to application libraries. The
evaluation of SCONE is much like the evaluation of Haven, based on running
legacy applications inside SCONE containers. While Arnautov et al. [2] make the
same conclusions with regards to TCB size versus memory usage and enclave
transition cost as Baumann et al. [3], the paper does not quantify this cost.
Despite this, SCONE supplies a solution to the entry-exit problem we outline in
Section 3, where threads are pinned inside the enclave, and do not transition to
the outside. Rather, communication happens by means of the enclave threads
writing to a dedicated queue residing in regular DRAM memory. This approach
is still, however, vulnerable to theads being evicted from enclaves by AEX caused
by an Inter Processor Interrupt (IPI) as part of a page fault.

Costan and Devadas [5] describe the architecture of SGX based on prior art,
released developer manuals, and patents. Furthermore, they conduct a compre-



hensive security analysis of SGX, falsifying some of its guarantees by explaining
in detail exploitable vulnerabilities within the architecture. This work is mostly
orthogonal to our efforts, yet we base most of our knowledge of SGX from this
treatment on the topic. These prior efforts lead Costan et al. [6] to implement
Sanctum, an alternative hardware architectural extension providing many of the
same properties as SGX, but targeted towards the Rocket RISC-V chip archi-
tecture. This paper evaluates its prototype by simulated hardware, against an
insecure baseline without the proposed security properties. McKeen et al. [11]
introduce dynamic paging support to the SGX specifications. This prototype
hardware was not available to us.

Ryoan [9] attempts to solve the same problems outlined in the introduc-
tion, by implementing a distributed sandbox facilitating untrusted computing
on secret data residing on third-party cloud services. Ryoan proposes a new
request oriented data-model where processing modules are activated once with-
out persisting data input to them. Furthermore, by remote attestation, Ryoan
is able to verify the integrity of sandbox instances and protect execution. By
combining sandboxing techniques with SGX, Ryoan is able to create a shielding
construct supporting mutually distrust between the application and the infras-
tructure. Again, Ryoan is benchmarked against real world applications, and just
like other prior work, does not correctly quantify the exact overhead attributed
to SGX primitives. Furthermore, large parts of its evaluation is conducted in an
SGX emulator based on QEMU, which has been retrofitted with delays and TLB
flushes based upon real hardware measurements to better mirror real SGX per-
formance. These hardware measurements are present for EENTRY and EEXIT
instructions, but do not attribute the cost of moving argument data into and out
of enclave memory. Moreover, Ryoan speculates on the cost of SGX V2 paging
support, although strictly based on emulated measurements and assumptions
about physical cost.

ARM TrustZone is a hardware security architecture that can be incorporated
into ARMv7-A, ARMv8-A and ARMv8-M on-chip systems [12, 15]. Although
the underlying hardware design, features, and interfaces differ substantially to
SGX, both essentially provide the same key concepts of hardware isolated exe-
cution domains and the ability to bootstrap attested software stacks into those
enclaves [14]. However, the TrustZone hardware can only distinguish between
two execution domains, and relies on having a software based trusted execution
environment for any further refinements.

6 Conclusion

SaaS providers are increasingly storing personal privacy-sensitive data about
customers on third-party cloud providers. Moreover, companies monetize this
data by providing personalized experiences for customers requiring curation and
analysis. This dilution of responsibility and trust is concerning for data owners
as cloud providers cannot be trusted to enforce the, often government mandated,
restrictive usage policies which accompany privacy-sensitive data.



Intel SGX is part of a new wave of trusted computing targeting commodity
hardware and allowing for the execution of code and data in trusted segments
of memory at close to native processor speed. These extensions to the x86 ISA
guarantee confidentiality, integrity and correctness of code and data residing on
untrusted third-party platforms.

Prior work demonstrates the applicability of SGX for complete systems capa-
ble of hosting large legacy applications. These systems, however, do not quantify
the exact micro architectural cost of achieving confidentiality, integrity and at-
testation for applications through the use of trusted computing. This paper has
evaluated the cost of provisioning, data copying, context transitioning, memory
footprint and multi-threaded execution of enclaves. From these results we have
distilled a set of principles which developers of trusted analytics systems should
use to maximize the performance of their application while securing privacy-
sensitive data on third-party cloud platforms.
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